JP2017082455A - Hysteretic damper and antivibration structure of building - Google Patents

Hysteretic damper and antivibration structure of building Download PDF

Info

Publication number
JP2017082455A
JP2017082455A JP2015210415A JP2015210415A JP2017082455A JP 2017082455 A JP2017082455 A JP 2017082455A JP 2015210415 A JP2015210415 A JP 2015210415A JP 2015210415 A JP2015210415 A JP 2015210415A JP 2017082455 A JP2017082455 A JP 2017082455A
Authority
JP
Japan
Prior art keywords
cylindrical body
frame
building
damper
hysteretic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015210415A
Other languages
Japanese (ja)
Other versions
JP6677480B2 (en
Inventor
真 濱田
Makoto Hamada
真 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2015210415A priority Critical patent/JP6677480B2/en
Publication of JP2017082455A publication Critical patent/JP2017082455A/en
Application granted granted Critical
Publication of JP6677480B2 publication Critical patent/JP6677480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hysteretic damper, which has entirely polygonal shape and multiple parts and enables rigidity required at corner parts to be easily calculated and an antivibration structure of a building including the hysteretic damper.SOLUTION: A hysteretic damper 14 has a steel flat cylindrical body 26 with polygonal cross-sectional shape having 4 or more sides and apexes. The cylindrical body has flat surface parts 26a, 26b, 26c located on sides of the polygon and bent corner parts 26d, 26e located at apexes of the polygon. When installing the hysteretic damper, the cylindrical body 26 is disposed between two diagonal members 28 along one of two diagonal lines of a rectangle defining a frame surface 22 of a building 10 and fixed on end part 28a of two diagonal members on two surface parts 26a of the cylindrical body. The cross-sectional shape of the cylindrical body 26 is preferably convex hexagon or concave hexagon.SELECTED DRAWING: Figure 2

Description

本発明は、建物に加わる地震エネルギを吸収し、これにより建物が負担する地震力を低減する制振装置である履歴型ダンパーと該履歴型ダンパーを含む建物の制振構造とに関する。   The present invention relates to a hysteretic damper that is a vibration damping device that absorbs seismic energy applied to a building and thereby reduces seismic force borne by the building, and a vibration damping structure for the building including the hysteretic damper.

建物の制振のために、建物の梁及び柱が構成する矩形状の架構内に、鋼材の塑性変形を利用して地震エネルギを吸収する履歴型ダンパーを配置することが行われている。このような履歴型ダンパーの一つとして、従来、鋼材により全体に矩形状を呈するように形成された、互いに相対する2対の角部を有するものが提案されている。この履歴型ダンパーは、その2対の角部がそれぞれ建物の架構の2つの対角線上に位置するように配置され、2対の角部に固定される2対の斜材を介して、架構に取り付けられる。   For vibration control of buildings, hysteretic dampers that absorb seismic energy using plastic deformation of steel materials are arranged in a rectangular frame formed by beams and columns of buildings. As one of such hysteretic dampers, there has conventionally been proposed one having two pairs of corner portions opposed to each other and formed to have a rectangular shape as a whole by a steel material. This hysteretic damper is arranged so that its two pairs of corners are located on two diagonals of the building frame, and is attached to the frame via two pairs of diagonal members fixed to the two pairs of corners. It is attached.

この履歴型ダンパーは、建物が地震のために架構の形状が矩形から平行四辺形に変化し、これに伴って架構の両対角線の長さに変化が生じ、引張力と圧縮力とを受ける。このとき、履歴型ダンパーの2対の角部において角度の変化を伴う塑性変形が生じ、これにより、建物に加わる地震エネルギが吸収される。   In this hysteretic damper, the shape of the frame changes from a rectangular shape to a parallelogram due to the earthquake of the building, and accordingly, the length of both diagonal lines of the frame changes, and receives tensile and compressive forces. At this time, plastic deformation accompanied by a change in angle occurs at the two pairs of corners of the hysteretic damper, whereby the seismic energy applied to the building is absorbed.

ところで、従来の履歴型ダンパーの角部は、該角部における塑性変形が所要の地震エネルギの吸収効果を発揮するように、所定の剛性を有することが求められる。従来の履歴型ダンパーにあっては、角部に斜材を固定するための継手が設けられる。このため、角部の剛性の設定は継手を含む角部全体について行う必要がある。しかし、継手を含む角部全体についての剛性を算出することには困難を伴う。   By the way, the corner portion of the conventional hysteretic damper is required to have a predetermined rigidity so that the plastic deformation at the corner portion exhibits the required effect of absorbing seismic energy. In the conventional hysteresis type damper, a joint for fixing the diagonal member to the corner is provided. For this reason, it is necessary to set the corner rigidity for the entire corner including the joint. However, it is difficult to calculate the rigidity of the entire corner including the joint.

特開2010−95901号公報JP 2010-95901 A

本発明の目的は、全体に多角形状を呈し、複数の各部を有する履歴型ダンパーであって前記角部に求められる剛性の算定が容易である履歴型ダンパーを提供し、また、前記履歴型ダンパーを含む建物の制振構造を提供することにある。   An object of the present invention is to provide a hysteretic damper having a polygonal shape as a whole and having a plurality of parts, and capable of easily calculating the rigidity required for the corner, and the hysteretic damper It is to provide a vibration control structure of a building including

本発明は、建物の矩形状の架構面内に設置される履歴型ダンパーに係り、履歴型ダンパーは、4以上の辺及び頂点を有する多角形の横断面形状を有する鋼製の扁平な筒体であって前記多角形の各辺に位置する平坦な面部及び前記多角形の各頂点に位置する折り曲げられた角部を有する筒体を備え、前記筒体は、前記架構面を規定する矩形の2つの対角線の一方に沿って配置される2つの斜材の間に配置され、かつ、前記筒体の4以上の面部のうちの2つの面部においてそれぞれ前記2つの斜材の端部に固定される。前記筒体の横断面形状は、好ましくは、凸六角形又は凹六角形である。   The present invention relates to a hysteretic damper installed in a rectangular frame of a building, and the hysteretic damper is a flat steel tube having a polygonal cross-sectional shape having four or more sides and apexes. And a cylindrical body having a flat surface portion positioned on each side of the polygon and a bent corner portion positioned at each vertex of the polygon, the cylindrical body having a rectangular shape defining the frame surface It is arranged between two diagonal members arranged along one of two diagonal lines, and is fixed to the end portions of the two diagonal members at two of the four or more surface portions of the cylindrical body. The The cross-sectional shape of the cylindrical body is preferably a convex hexagon or a concave hexagon.

本発明は、また、建物の制振構造に係り、制振構造は、前記建物の矩形状の架構と、前記架構に設置された前記履歴型ダンパーとを含む。好ましくは、さらに、一対の粘性型ダンパーを含む。両粘性型ダンパーは、前記架構面を規定する矩形の2つの対角線の他方に沿ってかつ前記履歴型ダンパーを間において配置され、また、前記履歴型ダンパーの他の2つの面部と前記架構とにそれぞれピン結合されている。   The present invention also relates to a vibration damping structure for a building, and the vibration damping structure includes a rectangular frame of the building and the hysteretic damper installed on the frame. Preferably, it further includes a pair of viscous dampers. The viscous damper is disposed along the other of the two diagonal lines of the rectangle defining the frame surface and between the hysteresis type dampers, and between the other two surface portions of the hysteresis type damper and the frame. Each pin is connected.

本発明によれば、前記履歴型ダンパーが設置された架構を有する建物が地震の発生により水平方向に揺れ、前記架構の形状が矩形から平行四辺形に変化するとき、前記2つの斜材を介して、前記履歴型ダンパーを構成する筒体がその2つの面部において前記筒体を引き伸ばしまた押し縮めようとする外力を交互に受ける。このとき、前記筒体の各角部に角度の変化を伴う塑性変形が生じ、前記建物に作用する地震力が緩和される。   According to the present invention, when a building having a frame in which the hysteretic damper is installed shakes in a horizontal direction due to the occurrence of an earthquake, and the shape of the frame changes from a rectangle to a parallelogram, the two diagonal members are interposed. Thus, the cylindrical body constituting the hysteretic damper alternately receives an external force that tries to expand and contract the cylindrical body at its two surface portions. At this time, plastic deformation accompanied by a change in angle occurs at each corner of the cylindrical body, and the seismic force acting on the building is alleviated.

本発明にあっては、前記履歴型ダンパーを構成する筒体は、その2つの面部において、前記2つの斜材の端部に固定され、いずれの角部も前記筒体の固定に関与しない。このことから、想定される地震力の緩和に必要とされる前記角部の剛性について、前記筒体を構成する鋼材の厚さ、幅又は種類の選択により、容易に設定することができる。   In the present invention, the cylindrical body constituting the hysteretic damper is fixed to the end portions of the two diagonal members at its two surface portions, and neither corner portion is involved in fixing the cylindrical body. From this, it is possible to easily set the rigidity of the corners required for mitigating the assumed seismic force by selecting the thickness, width or type of the steel material constituting the cylindrical body.

前記履歴型ダンパーが設置された前記架構内に、さらに、一対の粘性型ダンパーを設置することができる。前記履歴型ダンパー及び前記粘性型ダンパーは、それぞれ、比較的の大きい地震力の緩和及び比較的小さい地震力の緩和に寄与する制振装置とすることができる。   A pair of viscous dampers can be further installed in the frame where the hysteretic dampers are installed. The hysteretic damper and the viscous damper can be damping devices that contribute to the mitigation of a relatively large seismic force and the mitigation of a relatively small seismic force, respectively.

建物の架構と該架構内に設置された履歴型ダンパー及び一対の粘性型ダンパーとを示す斜視図である。It is a perspective view which shows the frame of a building, the hysteresis type damper installed in the frame, and a pair of viscous dampers. 図1に示す架構並びに履歴型ダンパー及び一対の粘性型ダンパーの正面図である。It is a front view of the frame shown in FIG. 1, a hysteresis type damper, and a pair of viscous dampers. 建物の架構の地震発生前及び発生後における形状を示す図である。It is a figure which shows the shape before and after the occurrence of the earthquake of the building frame.

図1及び図2を参照すると、建物10の架構12内に制振装置である履歴型ダンパー14と一対のオイルダンパーのような粘性型ダンパー16とが設置されている。   Referring to FIGS. 1 and 2, a hysteresis damper 14 as a vibration damping device and a viscous damper 16 such as a pair of oil dampers are installed in a frame 12 of a building 10.

図示の建物10は、架構12を構成する左右一対の鉄筋コンクリート製の柱18と、一対の柱18に連なりかつ両柱18間を水平に伸びる上下一対の鉄骨製の梁20とを備える。柱18は、これが鉄筋コンクリート製である図示の例に代えて、鉄骨製又は鉄骨鉄筋製であってもよい。同様に、梁20は、これが鉄骨製である図示の例に代えて、鉄骨鉄筋製又は鉄筋コンクリート製であってもよい。架構12を構成する一対の柱18及び一対の梁20は矩形状の架構面22を規定する。前記制振装置(履歴型ダンパー14及び粘性型ダンパー16)は、建物10が地震力を受けて水平方向に揺れ、これに伴って架構面22の形状が矩形から平行四辺形に変化するとき(図3参照)、地震エネルギを吸収し、建物10に作用する地震力を緩和する働きをなす。   The illustrated building 10 includes a pair of left and right reinforced concrete columns 18 constituting the frame 12 and a pair of upper and lower steel beams 20 that are connected to the pair of columns 18 and extend horizontally between the columns 18. The column 18 may be made of steel or steel rebar instead of the illustrated example where it is made of reinforced concrete. Similarly, the beam 20 may be made of steel rebar or reinforced concrete instead of the illustrated example in which it is made of steel. The pair of columns 18 and the pair of beams 20 constituting the frame 12 define a rectangular frame surface 22. The vibration damping device (the hysteresis damper 14 and the viscous damper 16) is such that when the building 10 receives a seismic force and shakes in the horizontal direction, the shape of the frame surface 22 changes from a rectangle to a parallelogram accordingly ( 3), the seismic energy is absorbed, and the seismic force acting on the building 10 is mitigated.

履歴型ダンパー14と一対の粘性型ダンパー16とは、これらのダンパー14、16が設置された架構12と共に、建物10の制振構造24を構成する。但し、制振構造24を構成する前記制振装置は、図示の例に代えて、一対の粘性型ダンパー16を欠く、履歴型ダンパー14のみからなるものとすることが可能である。   The hysteretic damper 14 and the pair of viscous dampers 16 constitute a vibration damping structure 24 of the building 10 together with the frame 12 on which the dampers 14 and 16 are installed. However, the vibration damping device constituting the vibration damping structure 24 may be composed of only the hysteresis damper 14 without the pair of viscous dampers 16 instead of the illustrated example.

履歴型ダンパー14は鋼製の扁平な筒体26を備える。履歴型ダンパー14は、筒体26の軸線が架構面22に直交するように架構12内に配置されている。筒体26は、好ましくは、梁20の厚さ寸法、図示の例にあっては梁20を構成するH形鋼のフランジの幅寸法にほぼ等しい軸線方向長さを有する。   The hysteretic damper 14 includes a flat tubular body 26 made of steel. The hysteretic damper 14 is disposed in the frame 12 so that the axis of the cylindrical body 26 is orthogonal to the frame surface 22. The cylindrical body 26 preferably has an axial length substantially equal to the thickness dimension of the beam 20, and in the illustrated example, the width dimension of the flange of the H-shaped steel constituting the beam 20.

図示の筒体26は、多角形の一つである6つの辺及び頂点を有する六角形の横断面形状を有し、前記六角形の各辺に位置する平坦な面部26a、26b、26cと、前記六角形の各頂点に位置する折り曲げられた角部26d、26eとを有する。   The illustrated cylindrical body 26 has a hexagonal cross-sectional shape having six sides and apexes that are one of polygons, and flat surface portions 26a, 26b, and 26c located on each side of the hexagon, And bent corners 26d and 26e located at the respective apexes of the hexagon.

図示の例にあっては、前記六角形は、180度を超える少なくとも1つの内角を有する凹多角形の一つである凹六角形である。この凹六角形は、互いに相対しかつ互いに平行である等長の2辺(面部26a)と、これらの2辺間にあって「く」の字形に折れ曲がりかつ前記2辺(面部26a)に連なる等長の2辺(面部26b及び面部26c)を1組とする2組の2辺とを有する。前記2辺と両組の2辺とがそれぞれ180度以内の前記内角(角部26d)を規定し、また、各組の2辺がそれぞれ180度を超える前記内角(角部26e)を規定する。また、図示の例では、前記2組の2辺の一方(面部26b)同士及び他方(面部26c)同士がそれぞれ互いに平行である。なお、図示の例にあっては、前記平行な2辺(面部26a)のそれぞれが、各組の各辺(面部26b、26c)より大きい長さ寸法を有する。   In the illustrated example, the hexagon is a concave hexagon that is one of the concave polygons having at least one interior angle exceeding 180 degrees. This concave hexagon has two sides of equal length (surface portion 26a) that are opposite to each other and parallel to each other, and is bent into a “<” shape between these two sides and is connected to the two sides (surface portion 26a). The two sides (the surface portion 26b and the surface portion 26c) have two sets of two sides. The two sides and the two sides of both sets define the interior angle (corner portion 26d) within 180 degrees, and the two sides of each set define the interior angle (corner portion 26e) exceeding 180 degrees. . In the illustrated example, one of the two sets of two sides (surface portion 26b) and the other (surface portion 26c) are parallel to each other. In the illustrated example, each of the two parallel sides (surface portion 26a) has a length dimension larger than each side (surface portions 26b and 26c) of each set.

筒体26は、帯鋼片(図示せず)に折り曲げ加工を施すことにより角部26d、26eと、これらの間の面部26a、26b、26cとを形成し、その後、前記帯鋼片の両端面を互いに突き合わせて溶接し、相互接合することにより、形成することができる。ここにおいて、前記溶接は一般に前記溶接により接合される箇所の剛性を増大させる。このため、前記帯鋼片の互いに突き合わされる両端面(突合せ面)の位置が、角部26d、26eにはなく、角部26d、26d相互間又は角部26d、26e相互間にあるようにする。これにより、全ての角部26d、26eの剛性を、前記帯鋼片由来の一様なものとすることができる。   The cylindrical body 26 is bent into a steel strip (not shown) to form corners 26d, 26e and surface portions 26a, 26b, 26c between them, and then the ends of the steel strip. It can be formed by butting the surfaces together and welding and interconnecting. Here, the welding generally increases the rigidity of the locations joined by the welding. For this reason, the position of the both end surfaces (butting surfaces) with which the steel strip is abutted with each other is not at the corners 26d and 26e, but between the corners 26d and 26d or between the corners 26d and 26e. To do. Thereby, the rigidity of all the corner | angular parts 26d and 26e can be made uniform from the said strip steel piece.

なお、図1及び図2に示すところでは、図示の便宜のため、筒体26の角部26d、26eが筒体26の内面及び外面のそれぞれにおいて直線で描かれている。しかし、筒体26の各角部26d、26eは、折り曲げられていることから、実際には湾曲面を呈する。   1 and 2, for convenience of illustration, corners 26 d and 26 e of the cylindrical body 26 are drawn with straight lines on the inner surface and the outer surface of the cylindrical body 26, respectively. However, since each corner | angular part 26d and 26e of the cylinder 26 is bent, it actually exhibits a curved surface.

筒体26は、前記凹六角形に代えて、全ての内角の大きさが180度未満である凸多角形の一つである凸六角形の横断面形状を有するものとすることができる。なお、前記六角形の辺の長さ及び頂角の大きさは任意に定めることが可能である。また、筒体26は、4以上の辺及び頂点を有する前記六角形以外の多角形の横断面形状を有するものとすることができる。前記六角形以外の多角形も、また、これが凹多角形であるか凸多角形であるかを問わない。また、前記六角形以外の多角形はこれが等辺であるか不等辺であるかを問わない。   The cylindrical body 26 may have a convex hexagonal cross-sectional shape that is one of the convex polygons whose inner angles are less than 180 degrees instead of the concave hexagon. The length of the hexagonal side and the size of the apex angle can be arbitrarily determined. Moreover, the cylinder 26 can have a polygonal cross-sectional shape other than the hexagon having four or more sides and apexes. Polygons other than the hexagon do not matter whether this is a concave polygon or a convex polygon. It does not matter whether the polygon other than the hexagon is equilateral or unequal.

履歴型ダンパー14を構成する筒体26は、2つの斜材28を介して、架構12に固定されている。より詳細には、筒体26は、架構面22を規定する矩形の2つの対角線22a、22bの一方22a(図3)に沿って配置された2つの斜材28間に配置され、また、筒体26の各面部26aの任意の位置において、好ましくは各面部26aに連なる2つの角部26d相互間の中央位置において、各斜材28の各端部28a(図2)に固定されている。各斜材28の他端部28bは、架構12にこれを構成する柱18及び梁20の交差部において固定されている。   The cylindrical body 26 constituting the hysteretic damper 14 is fixed to the frame 12 via two diagonal members 28. More specifically, the cylindrical body 26 is disposed between the two diagonal members 28 disposed along one of the two diagonal lines 22a and 22b of the rectangle defining the frame surface 22 (FIG. 3). It is fixed to each end portion 28a (FIG. 2) of each diagonal member 28 at an arbitrary position of each surface portion 26a of the body 26, preferably at a central position between two corner portions 26d connected to each surface portion 26a. The other end portion 28 b of each diagonal member 28 is fixed to the frame 12 at the intersection of the column 18 and the beam 20 constituting the same.

図示の例にあっては、各斜材28がH形鋼からなり、該H形鋼はその長さ方向に伸びる軸線に対して直角な端面を有し、該端面において筒体26の平坦な面部26aに接している。但し、筒体26の横断面形状によっては、前記筒体の面部に接する斜材28の端面は該斜材の軸線に対して非直角である場合がある。なお、斜材28は、前記H形鋼以外の形鋼又は他の長尺材からなるものとすることができる。また、斜材28を構成する前記H形鋼は、筒体26の前記軸線方向長さより小さい幅寸法を有する。   In the illustrated example, each diagonal member 28 is made of an H-shaped steel, and the H-shaped steel has an end surface perpendicular to an axis extending in the length direction, and the cylindrical body 26 is flat at the end surface. It is in contact with the surface portion 26a. However, depending on the cross-sectional shape of the cylindrical body 26, the end face of the diagonal member 28 that contacts the surface portion of the cylindrical body may be non-perpendicular to the axis of the diagonal member. The diagonal member 28 may be made of a shape steel other than the H-shaped steel or other long material. Further, the H-section steel constituting the diagonal member 28 has a width dimension smaller than the axial length of the cylindrical body 26.

両斜材28は、履歴型ダンパー14を架構12内に設置するに先立ち、筒体26の両面部26aにそれぞれ固定しておくことができる。面部26aに対する斜材28の固定は、これらを溶接することにより、あるいは、予め面部26aに継手(図示せず)を固定しておき、前記継手と斜材28の端部28aとを複数対のボルト及びナット(図示せず)で固定することにより行うことができる。   Both diagonal members 28 can be fixed to both side portions 26a of the cylindrical body 26 prior to installing the hysteretic damper 14 in the frame 12, respectively. The diagonal member 28 is fixed to the surface portion 26a by welding them or by fixing a joint (not shown) to the surface portion 26a in advance and connecting the joint and the end portion 28a of the diagonal member 28 to a plurality of pairs. It can be performed by fixing with bolts and nuts (not shown).

建物10が地震力を受けて水平方向へ左右に揺れるとき、架構12又は架構面22の形状が矩形から平行四辺形に変化し、これに伴って架構面22の両対角線22a、22bの長さが伸長し及び短縮する(図3参照)。このとき、履歴型ダンパー14を構成する筒体26が、2つの斜材28にそれぞれ固定された2つの面部26aにおいて、架構12から引張力及び圧縮力を交互に受け、筒体26は一方の対角線22aの伸長方向に関して交互に引き伸ばされまた押し縮められる。同時に、筒体26の各角部26d、26eに角度の変化を伴う塑性変形が生じる。具体的には、筒体26が引き伸ばされるとき、筒体26に、角部26dの内角の大きさが漸増しまた角部26eの内角の大きさが漸減する塑性変形が生じる。反対に、筒体26が押し縮められるとき、角部26dの内角の大きさが漸減しまた角部26eの内角の大きさが漸増する塑性変形が生じる。その結果、建物10に作用する地震エネルギが吸収され、建物10が負担する地震力が緩和される。   When the building 10 receives a seismic force and swings in the horizontal direction from side to side, the shape of the frame 12 or the frame surface 22 changes from a rectangular shape to a parallelogram. Elongates and shortens (see FIG. 3). At this time, the cylindrical body 26 constituting the hysteretic damper 14 receives the tensile force and the compressive force alternately from the frame 12 on the two surface portions 26a fixed to the two diagonal members 28, respectively. The diagonal lines 22a are alternately stretched and compressed in the extending direction of the diagonal line 22a. At the same time, plastic deformation accompanied by a change in angle occurs in each corner portion 26d, 26e of the cylindrical body 26. Specifically, when the cylindrical body 26 is stretched, the cylindrical body 26 undergoes plastic deformation in which the size of the inner angle of the corner portion 26d is gradually increased and the size of the inner angle of the corner portion 26e is gradually decreased. On the other hand, when the cylindrical body 26 is compressed, plastic deformation occurs in which the size of the inner angle of the corner portion 26d is gradually reduced and the size of the inner angle of the corner portion 26e is gradually increased. As a result, the seismic energy acting on the building 10 is absorbed, and the seismic force borne by the building 10 is reduced.

履歴型ダンパー14の筒体26の各角部26d、26eの剛性の程度又は大きさは、前記帯鋼片の厚さ、幅、又は種類(鋼種)の選択により、任意にまた容易に定めることができる。筒体26の各角部26d、26eの剛性の程度又は大きさは、想定される規模の地震力の緩和に有効とされる前記塑性変形の程度を考慮して定められる。また、筒体26の各面部26a、26b、26cは、筒体26が一方の対角線22aの伸長方向に引き伸ばされまた押し縮められるとき、これに撓みがほとんど生じない程度の剛性を有する。各面部26a、26b、26cの剛性もまた前記帯鋼片の厚さ、幅、又は種類(鋼種)に基づいて、前記角部の剛性と共に、適切に定めることができる。   The degree or size of the rigidity of each corner portion 26d, 26e of the cylindrical body 26 of the hysteretic damper 14 is determined arbitrarily and easily by selecting the thickness, width, or type (steel type) of the steel strip. Can do. The degree or size of the rigidity of each corner portion 26d, 26e of the cylindrical body 26 is determined in consideration of the degree of plastic deformation that is effective in mitigating the seismic force of the assumed scale. Further, each surface portion 26a, 26b, 26c of the cylindrical body 26 has such a rigidity that hardly bends when the cylindrical body 26 is stretched in the extending direction of one diagonal line 22a and compressed. The rigidity of each of the surface portions 26a, 26b, and 26c can be appropriately determined together with the rigidity of the corner portion based on the thickness, width, or type (steel type) of the steel strip.

履歴型ダンパー14と共に架構12内に設置される一対の粘性型ダンパー16は、架構面22を規定する前記矩形の2つの対角線22a、22bのうちの他方の対角線22bに沿ってかつ履歴型ダンパー14を間において配置され、また、履歴型ダンパー14の筒体26の2つの面部26a以外の他の2つの面部、図示の例にあっては互いに平行な2つの面部26bと、架構12を構成する柱18及び梁20の交差部(具体的には交差部に固定されたガセットプレート32)とにそれぞれピン30により結合(ピン結合)されている。   The pair of viscous dampers 16 installed in the frame 12 together with the hysteretic damper 14 is along the other diagonal line 22b of the two rectangular diagonal lines 22a and 22b defining the frame surface 22, and the hysteretic damper 14 The frame 12 is composed of two other surface portions other than the two surface portions 26a of the cylindrical body 26 of the hysteretic damper 14, and two surface portions 26b parallel to each other in the illustrated example. Each of the pillars 18 and the beam 20 is coupled (pin-coupled) by a pin 30 to an intersection (specifically, a gusset plate 32 fixed to the intersection).

地震のために建物10が水平方向へ左右に揺れ、このために架構面22の形状が矩形から平行四辺形に変化し、これに伴って架構面22の他方の対角線22bの長さが交互に短縮し及び伸長するとき(図3参照)、両粘性型ダンパー16は圧縮力及び引張力を交互に受ける。このとき、両粘性型ダンパー16は、その振動減衰機能により、架構12の形状変化の程度を軽減させる働きをなす。   Due to the earthquake, the building 10 sways left and right in the horizontal direction, so that the shape of the frame surface 22 changes from a rectangle to a parallelogram, and the length of the other diagonal line 22b of the frame surface 22 is alternated accordingly. When shortening and extending (see FIG. 3), both viscous dampers 16 are alternately subjected to compressive and tensile forces. At this time, the both-viscous damper 16 serves to reduce the degree of change in the shape of the frame 12 due to its vibration damping function.

両粘性型ダンパー16は、地震が履歴型ダンパー14に前記塑性変形を生じさせる程の比較的大きい規模のものであるときは、履歴型ダンパー14と共同して、建物10に働く地震力の緩和に寄与する。反対に、地震が履歴型ダンパー14に前記塑性変形ではなく弾性変形を生じさせる程の比較的小さい規模のものであるときは、主として、両粘性型ダンパー16の働きが建物10に働く地震力の緩和に寄与する。   When the earthquake is of a relatively large scale that causes the plastic deformation of the hysteretic damper 14, the viscous damper 16 reduces the seismic force acting on the building 10 in cooperation with the hysteretic damper 14. Contribute to. On the other hand, when the earthquake is of a relatively small scale that causes the hysteretic damper 14 to be elastically deformed rather than plastically deformed, the action of the viscous damper 16 is mainly the seismic force acting on the building 10. Contributes to mitigation.

10 建物
12 架構
14 履歴型ダンパー
16 粘性型ダンパー
18 柱
20 梁
22 架構面
24 制振構造
26 筒体
26a、26b、26c 筒体の面部
26d、26e 筒体の角部
28 斜材
28a 斜材の一端部

DESCRIPTION OF SYMBOLS 10 Building 12 Frame 14 Hysteretic damper 16 Viscous damper 18 Column 20 Beam 22 Frame surface 24 Damping structure 26 Cylindrical body 26a, 26b, 26c Cylindrical surface part 26d, 26e Cylindrical corner part 28 Diagonal material 28a Diagonal material One end

Claims (4)

建物の矩形状の架構面内に設置される履歴型ダンパーであって、
4以上の辺及び頂点からなる多角形の横断面形状を有する鋼製の扁平な筒体であって前記多角形の各辺に位置する平坦な面部及び前記多角形の各頂点に位置する折り曲げられた角部を有する筒体を備え、
前記筒体は、前記架構面を規定する矩形の2つの対角線の一方に沿って配置される2つの斜材の間に配置され、かつ、前記筒体の4以上の面部のうちの2つの面部においてそれぞれ前記2つの斜材の端部に固定される、履歴型ダンパー。
A hysteretic damper installed in the rectangular frame of a building,
A flat steel body having a polygonal cross-sectional shape composed of four or more sides and vertices, a flat surface portion located on each side of the polygon, and a bend located on each vertex of the polygon A cylindrical body having a corner portion,
The cylinder is arranged between two diagonal members arranged along one of two diagonal lines of a rectangle defining the frame surface, and two of the four or more plane parts of the cylinder And hysteretic dampers, each fixed to the end of the two diagonal members.
前記筒体の横断面形状は凸六角形又は凹六角形である、請求項1に記載の履歴型ダンパー。   The hysteretic damper according to claim 1, wherein a cross-sectional shape of the cylindrical body is a convex hexagon or a concave hexagon. 矩形状の架構と、
前記架構に設置された請求項1又は2に記載の履歴型ダンパーとを含む、建物の制振構造。
A rectangular frame;
A vibration-damping structure for a building, including the hysteretic damper according to claim 1 or 2 installed on the frame.
さらに、一対の粘性型ダンパーを含み、
両粘性型ダンパーは、前記架構面を規定する矩形の2つの対角線の他方に沿ってかつ前記履歴型ダンパーを間において配置され、また、前記履歴型ダンパーの他の2つの面部と前記架構とにそれぞれピン結合されている、請求項3に記載の建物の制振構造。
In addition, it includes a pair of viscous dampers,
The viscous damper is disposed along the other of the two diagonal lines of the rectangle defining the frame surface and between the hysteresis type dampers, and between the other two surface portions of the hysteresis type damper and the frame. The building vibration control structure according to claim 3, wherein each of the structures is pin-coupled.
JP2015210415A 2015-10-27 2015-10-27 Hysteretic damper and vibration control structure of building Active JP6677480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015210415A JP6677480B2 (en) 2015-10-27 2015-10-27 Hysteretic damper and vibration control structure of building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015210415A JP6677480B2 (en) 2015-10-27 2015-10-27 Hysteretic damper and vibration control structure of building

Publications (2)

Publication Number Publication Date
JP2017082455A true JP2017082455A (en) 2017-05-18
JP6677480B2 JP6677480B2 (en) 2020-04-08

Family

ID=58714128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015210415A Active JP6677480B2 (en) 2015-10-27 2015-10-27 Hysteretic damper and vibration control structure of building

Country Status (1)

Country Link
JP (1) JP6677480B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107269088A (en) * 2017-07-28 2017-10-20 中国地震局工程力学研究所 The energy dissipation brace device of replaceable framework
CN115370031A (en) * 2022-09-08 2022-11-22 浙江大地钢结构有限公司 Viscous fluid damper and steel structure system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107269088A (en) * 2017-07-28 2017-10-20 中国地震局工程力学研究所 The energy dissipation brace device of replaceable framework
CN107269088B (en) * 2017-07-28 2023-03-31 中国地震局工程力学研究所 Energy consumption strutting arrangement of removable frame
CN115370031A (en) * 2022-09-08 2022-11-22 浙江大地钢结构有限公司 Viscous fluid damper and steel structure system

Also Published As

Publication number Publication date
JP6677480B2 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
JP5885950B2 (en) Seismic control wall frame structure
US8397444B2 (en) Perforated plate seismic damper
WO2011158289A1 (en) Seismic damping metal plate and building structure
WO2015037094A1 (en) Column base structure
KR20180046558A (en) Damper for earthquake proof of structure
JP2017082455A (en) Hysteretic damper and antivibration structure of building
JP2010216611A (en) Seismic response control metallic plate
KR101051058B1 (en) Damping system for construction
JP3664611B2 (en) Seismic structure of wooden buildings
JP6368545B2 (en) Damping element
JP5192655B2 (en) Building with vibration control device
JP6717636B2 (en) Vibration control device
JP2016084874A (en) Shear damper
JP2019070236A (en) Vibration control structure
JP2005290753A (en) Energy absorbing brace vibration damping device and energy absorbing device
JP2013199823A (en) Damper brace and seismic response controlled structure
TWI600819B (en) Steel Panel Damper
JP6838877B2 (en) Buckling restraint brace damper
JP3209800U7 (en)
JP7220069B2 (en) frame structure
JP2001115599A (en) Steel structural member and frame member
JP6091565B2 (en) Manufacturing method of steel pipe structural material in which PC steel rod is arranged in steel pipe fixed to cross joint and steel pipe structural material manufactured thereby
KR101798007B1 (en) Frame used in building
JP2016079753A (en) Framework reinforcement structure of architectural structure
JP7240902B2 (en) shear panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200313

R150 Certificate of patent or registration of utility model

Ref document number: 6677480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350