JP6677480B2 - Hysteretic damper and vibration control structure of building - Google Patents

Hysteretic damper and vibration control structure of building Download PDF

Info

Publication number
JP6677480B2
JP6677480B2 JP2015210415A JP2015210415A JP6677480B2 JP 6677480 B2 JP6677480 B2 JP 6677480B2 JP 2015210415 A JP2015210415 A JP 2015210415A JP 2015210415 A JP2015210415 A JP 2015210415A JP 6677480 B2 JP6677480 B2 JP 6677480B2
Authority
JP
Japan
Prior art keywords
frame
building
hysteretic
cylindrical body
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015210415A
Other languages
Japanese (ja)
Other versions
JP2017082455A (en
Inventor
真 濱田
真 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2015210415A priority Critical patent/JP6677480B2/en
Publication of JP2017082455A publication Critical patent/JP2017082455A/en
Application granted granted Critical
Publication of JP6677480B2 publication Critical patent/JP6677480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、建物に加わる地震エネルギを吸収し、これにより建物が負担する地震力を低減する制振装置である履歴型ダンパーと該履歴型ダンパーを含む建物の制振構造とに関する。   The present invention relates to a hysteretic damper that is a vibration damping device that absorbs seismic energy applied to a building and thereby reduces the seismic force that the building bears, and a vibration damping structure of a building including the hysteretic damper.

建物の制振のために、建物の梁及び柱が構成する矩形状の架構内に、鋼材の塑性変形を利用して地震エネルギを吸収する履歴型ダンパーを配置することが行われている。このような履歴型ダンパーの一つとして、従来、鋼材により全体に矩形状を呈するように形成された、互いに相対する2対の角部を有するものが提案されている。この履歴型ダンパーは、その2対の角部がそれぞれ建物の架構の2つの対角線上に位置するように配置され、2対の角部に固定される2対の斜材を介して、架構に取り付けられる。   2. Description of the Related Art For damping a building, a hysteretic damper that absorbs seismic energy by using plastic deformation of a steel material is disposed in a rectangular frame formed by beams and columns of the building. Conventionally, as one of such hysteretic dampers, a damper having two pairs of corners opposed to each other, which is formed of a steel material so as to have a rectangular shape as a whole, has been proposed. This hysteretic damper is arranged on the frame through two pairs of diagonal members fixed to the two pairs of corners, with the two pairs of corners located on two diagonal lines of the building frame, respectively. It is attached.

この履歴型ダンパーは、建物が地震のために架構の形状が矩形から平行四辺形に変化し、これに伴って架構の両対角線の長さに変化が生じ、引張力と圧縮力とを受ける。このとき、履歴型ダンパーの2対の角部において角度の変化を伴う塑性変形が生じ、これにより、建物に加わる地震エネルギが吸収される。   In this hysteretic damper, the structure of the frame changes from a rectangle to a parallelogram due to the earthquake of the building, and accordingly, the length of both diagonal lines of the frame changes, thereby receiving a tensile force and a compressive force. At this time, plastic deformation accompanied by a change in angle occurs at the two pairs of corners of the hysteretic damper, thereby absorbing the seismic energy applied to the building.

ところで、従来の履歴型ダンパーの角部は、該角部における塑性変形が所要の地震エネルギの吸収効果を発揮するように、所定の剛性を有することが求められる。従来の履歴型ダンパーにあっては、角部に斜材を固定するための継手が設けられる。このため、角部の剛性の設定は継手を含む角部全体について行う必要がある。しかし、継手を含む角部全体についての剛性を算出することには困難を伴う。   Incidentally, the corners of the conventional hysteretic damper are required to have a predetermined rigidity so that the plastic deformation at the corners exhibits a required seismic energy absorbing effect. In a conventional hysteretic damper, a joint for fixing a diagonal member is provided at a corner. Therefore, it is necessary to set the rigidity of the corners for the entire corner including the joint. However, it is difficult to calculate the rigidity of the entire corner including the joint.

特開2010−95901号公報JP 2010-95901 A

本発明の目的は、全体に多角形状を呈し、複数の部を有する履歴型ダンパーであって前記角部に求められる剛性の算定が容易である履歴型ダンパーを提供し、また、前記履歴型ダンパーを含む建物の制振構造を提供することにある。 An object of the present invention is to provide a hysteretic damper having a polygonal shape as a whole and having a plurality of corners , in which the rigidity required for the corners can be easily calculated. An object of the present invention is to provide a damping structure for a building including a damper.

本発明は、建物の矩形状の架構面内に設置される履歴型ダンパーに係り、履歴型ダンパーは、凹六角形の横断面形状を有する鋼製の扁平な筒体であって前記凹六角形6つの及び6つの頂点にそれぞれ位置する6つの平坦な面部及び6つの折り曲げられた角部を有する筒体を備える。前記筒体は、前記架構面を規定する矩形の2つの対角線の一方に沿って配置される2つの斜材の間に配置され、前記筒体の6つの面部は、前記2つの斜材の端部にそれぞれ固定される互いに相対する2つの面部と、該2つの面部間にあって前記凹六角形の180度を超える内角を規定する他の2つの面部を1組とする2組の他の面部とからなる。前記筒体は折り曲げ加工を施された帯鋼片であって互いに突き合わされかつ接合された両端面を有する帯鋼片からなり、前記帯鋼片の両端面は前記6つの角部間のいずれかに存するものとすることができる。 The present invention relates to a hysteretic damper installed in a rectangular frame surface of a building, wherein the hysteretic damper is a flat steel cylinder having a concave hexagonal cross-sectional shape, wherein the concave hexagon is Ru with six sides and six vertices six located respective flat surface portion and the cylindrical body having six folded corners of. The tubular body is disposed between two diagonals arranged along one of two diagonal lines of a rectangle defining the frame surface, and six surface portions of the tubular body are end portions of the two diagonal members. And two sets of other face portions each of which is fixed to the portion, and two other face portions defining the interior angle exceeding 180 degrees of the concave hexagon between the two face portions as one set. Consists of The tubular body is a bent steel strip, which is formed of a steel strip having both end faces abutted and joined to each other, and both end faces of the steel strip are any one of the six corners. Can exist.

本発明は、また、建物の制振構造に係り、制振構造は、前記建物の矩形状の架構と、前記架構に設置された前記履歴型ダンパーとを含む。好ましくは、さらに、一対の粘性型ダンパーを含む。両粘性型ダンパーは、前記架構面を規定する矩形の2つの対角線の他方に沿ってかつ前記履歴型ダンパーを間において配置され、また、前記履歴型ダンパーの2組の他の2つの面部の一方と前記架構とにそれぞれピン結合されている。 The present invention also relates to a damping structure for a building, wherein the damping structure includes a rectangular frame of the building and the hysteretic damper installed on the frame. Preferably, it further includes a pair of viscous dampers. Both viscous dampers are arranged along the other of the two diagonal lines of the rectangle defining the frame surface and between the hysteretic dampers, and one of the other two surface portions of the two sets of the hysteretic dampers And the frame are respectively pin-connected.

本発明によれば、前記履歴型ダンパーが設置された架構を有する建物が地震の発生により水平方向に揺れ、前記架構の形状が矩形から平行四辺形に変化するとき、前記2つの斜材を介して、前記履歴型ダンパーを構成する筒体がその2つの面部において前記筒体を引き伸ばしまた押し縮めようとする外力を交互に受ける。このとき、前記筒体の各角部に角度の変化を伴う塑性変形が生じ、前記建物に作用する地震力が緩和される。   According to the present invention, when a building having a frame in which the hysteretic damper is installed swings in the horizontal direction due to the occurrence of an earthquake, and the shape of the frame changes from a rectangle to a parallelogram, the two diagonal members are used. Thus, the cylindrical body constituting the hysteretic damper alternately receives an external force at its two surface portions to expand and compress the cylindrical body. At this time, plastic deformation accompanied by a change in angle occurs at each corner of the cylindrical body, and the seismic force acting on the building is reduced.

本発明にあっては、前記履歴型ダンパーを構成する筒体は、その2つの面部において、前記2つの斜材の端部に固定され、いずれの角部も前記筒体の固定に関与しない。このことから、想定される地震力の緩和に必要とされる前記角部の剛性について、前記筒体を構成する鋼材の厚さ、幅又は種類の選択により、容易に設定することができる。   In the present invention, the cylindrical body constituting the hysteretic damper is fixed to the ends of the two diagonal members on two surface portions thereof, and neither corner is involved in fixing the cylindrical body. From this, the rigidity of the corners required for alleviating the assumed seismic force can be easily set by selecting the thickness, width or type of the steel material constituting the cylindrical body.

前記履歴型ダンパーが設置された前記架構内に、さらに、一対の粘性型ダンパーを設置することができる。前記履歴型ダンパー及び前記粘性型ダンパーは、それぞれ、比較的の大きい地震力の緩和及び比較的小さい地震力の緩和に寄与する制振装置とすることができる。   A pair of viscous dampers can be further installed in the frame where the hysteretic dampers are installed. The hysteresis type damper and the viscous type damper may be vibration damping devices that contribute to the mitigation of relatively large seismic force and the mitigation of relatively small seismic force, respectively.

建物の架構と該架構内に設置された履歴型ダンパー及び一対の粘性型ダンパーとを示す斜視図である。It is a perspective view which shows the frame of a building, the hysteresis type damper installed in the said frame, and a pair of viscous type damper. 図1に示す架構並びに履歴型ダンパー及び一対の粘性型ダンパーの正面図である。It is a front view of the frame shown in FIG. 1, a hysteresis type damper, and a pair of viscous type dampers. 建物の架構の地震発生前及び発生後における形状を示す図である。It is a figure which shows the shape of the frame of a building before and after an earthquake.

図1及び図2を参照すると、建物10の架構12内に制振装置である履歴型ダンパー14と一対のオイルダンパーのような粘性型ダンパー16とが設置されている。   Referring to FIGS. 1 and 2, a hysteretic damper 14 as a vibration damping device and a viscous damper 16 such as a pair of oil dampers are installed in a frame 12 of a building 10.

図示の建物10は、架構12を構成する左右一対の鉄筋コンクリート製の柱18と、一対の柱18に連なりかつ両柱18間を水平に伸びる上下一対の鉄骨製の梁20とを備える。柱18は、これが鉄筋コンクリート製である図示の例に代えて、鉄骨製又は鉄骨鉄筋製であってもよい。同様に、梁20は、これが鉄骨製である図示の例に代えて、鉄骨鉄筋製又は鉄筋コンクリート製であってもよい。架構12を構成する一対の柱18及び一対の梁20は矩形状の架構面22を規定する。前記制振装置(履歴型ダンパー14及び粘性型ダンパー16)は、建物10が地震力を受けて水平方向に揺れ、これに伴って架構面22の形状が矩形から平行四辺形に変化するとき(図3参照)、地震エネルギを吸収し、建物10に作用する地震力を緩和する働きをなす。   The illustrated building 10 includes a pair of left and right reinforced concrete columns 18 constituting the frame 12, and a pair of upper and lower steel beams 20 connected to the pair of columns 18 and extending horizontally between the columns 18. The column 18 may be made of steel frame or steel frame bar instead of the illustrated example in which it is made of reinforced concrete. Similarly, the beam 20 may be made of steel reinforced steel or reinforced concrete instead of the illustrated example in which it is made of steel. The pair of pillars 18 and the pair of beams 20 constituting the frame 12 define a rectangular frame surface 22. The vibration damping device (history damper 14 and viscous damper 16) is used when the building 10 shakes in the horizontal direction due to the seismic force and the shape of the frame surface 22 changes from a rectangle to a parallelogram with this ( It absorbs seismic energy and reduces the seismic force acting on the building 10.

履歴型ダンパー14と一対の粘性型ダンパー16とは、これらのダンパー14、16が設置された架構12と共に、建物10の制振構造24を構成する。但し、制振構造24を構成する前記制振装置は、図示の例に代えて、一対の粘性型ダンパー16を欠く、履歴型ダンパー14のみからなるものとすることが可能である。   The hysteretic damper 14 and the pair of viscous dampers 16 form a vibration damping structure 24 of the building 10 together with the frame 12 on which these dampers 14, 16 are installed. However, instead of the illustrated example, the vibration damping device constituting the vibration damping structure 24 may include only the hysteretic damper 14 without the pair of viscous dampers 16.

履歴型ダンパー14は鋼製の扁平な筒体26を備える。履歴型ダンパー14は、筒体26の軸線が架構面22に直交するように架構12内に配置されている。筒体26は、好ましくは、梁20の厚さ寸法、図示の例にあっては梁20を構成するH形鋼のフランジの幅寸法にほぼ等しい軸線方向長さを有する。   The hysteretic damper 14 includes a flat cylindrical body 26 made of steel. The hysteretic damper 14 is disposed in the frame 12 such that the axis of the cylindrical body 26 is orthogonal to the frame surface 22. The tubular body 26 preferably has an axial length substantially equal to the thickness dimension of the beam 20, in the example shown, the width dimension of the flange of the H-section steel constituting the beam 20.

図示の筒体26は、多角形の一つである6つの辺及び頂点を有する六角形の横断面形状を有し、前記六角形の各辺に位置する平坦な面部26a、26b、26cと、前記六角形の各頂点に位置する折り曲げられた角部26d、26eとを有する。   The illustrated cylindrical body 26 has a hexagonal cross-sectional shape having six sides and vertices that are one of the polygons, and flat surface portions 26a, 26b, and 26c located on each side of the hexagon, It has bent corners 26d and 26e located at each vertex of the hexagon.

図示の例にあっては、前記六角形は、180度を超える少なくとも1つの内角を有する凹多角形の一つである凹六角形である。この凹六角形は、互いに相対しかつ互いに平行である等長の2辺(面部26a)と、これらの2辺間にあって「く」の字形に折れ曲がりかつ前記2辺(面部26a)に連なる等長の2辺(面部26b及び面部26c)を1組とする2組の2辺とを有する。前記2辺と両組の2辺とがそれぞれ180度以内の前記内角(角部26d)を規定し、また、各組の2辺がそれぞれ180度を超える前記内角(角部26e)を規定する。また、図示の例では、前記2組の2辺の一方(面部26b)同士及び他方(面部26c)同士がそれぞれ互いに平行である。なお、図示の例にあっては、前記平行な2辺(面部26a)のそれぞれが、各組の各辺(面部26b、26c)より大きい長さ寸法を有する。   In the illustrated example, the hexagon is a concave hexagon that is one of concave polygons having at least one interior angle greater than 180 degrees. This concave hexagon has two equal-length sides (surface portion 26a) opposed to each other and parallel to each other, and an equi-length portion which is bent between the two sides in the shape of a triangle and is continuous with the two sides (surface portion 26a). And two pairs of two sides (the surface portion 26b and the surface portion 26c) as one set. The two sides and the two sides of both sets each define the interior angle (corner 26d) within 180 degrees, and the two sides of each set each define the interior angle (corner 26e) exceeding 180 degrees. . In the illustrated example, one of the two sides (the surface portion 26b) and the other (the surface portion 26c) are parallel to each other. In the illustrated example, each of the two parallel sides (surface portions 26a) has a length dimension larger than each side (surface portions 26b and 26c) of each set.

筒体26は、帯鋼片(図示せず)に折り曲げ加工を施すことにより角部26d、26eと、これらの間の面部26a、26b、26cとを形成し、その後、前記帯鋼片の両端面を互いに突き合わせて溶接し、相互接合することにより、形成することができる。ここにおいて、前記溶接は一般に前記溶接により接合される箇所の剛性を増大させる。このため、前記帯鋼片の互いに突き合わされる両端面(突合せ面)の位置が、角部26d、26eにはなく、角部26d、26d相互間又は角部26d、26e相互間にあるようにする。これにより、全ての角部26d、26eの剛性を、前記帯鋼片由来の一様なものとすることができる。   The cylindrical body 26 forms corner portions 26d and 26e and surface portions 26a, 26b and 26c by bending a steel strip (not shown), and thereafter, both ends of the steel strip. It can be formed by butt welding the surfaces together and joining them together. Here, the welding generally increases the stiffness of a portion to be joined by the welding. For this reason, the position of both end surfaces (butting surfaces) of the strip steel pieces butting each other is not at the corners 26d and 26e, but between the corners 26d and 26d or between the corners 26d and 26e. I do. Thereby, the rigidity of all the corner portions 26d and 26e can be made uniform from the steel strip.

なお、図1及び図2に示すところでは、図示の便宜のため、筒体26の角部26d、26eが筒体26の内面及び外面のそれぞれにおいて直線で描かれている。しかし、筒体26の各角部26d、26eは、折り曲げられていることから、実際には湾曲面を呈する。   1 and 2, the corners 26d and 26e of the cylindrical body 26 are drawn as straight lines on the inner surface and the outer surface of the cylindrical body 26 for convenience of illustration. However, since each corner 26d and 26e of the cylindrical body 26 is bent, it actually exhibits a curved surface.

なお、前記六角形の辺の長さ及び頂角の大きさは任意に定めることが可能である。 In addition , the length of the side and the size of the apex angle of the hexagon can be arbitrarily determined .

履歴型ダンパー14を構成する筒体26は、2つの斜材28を介して、架構12に固定されている。より詳細には、筒体26は、架構面22を規定する矩形の2つの対角線22a、22bの一方22a(図3)に沿って配置された2つの斜材28間に配置され、また、筒体26の各面部26aの任意の位置において、好ましくは各面部26aに連なる2つの角部26d相互間の中央位置において、各斜材28の各端部28a(図2)に固定されている。各斜材28の他端部28bは、架構12にこれを構成する柱18及び梁20の交差部において固定されている。   The cylindrical body 26 constituting the hysteretic damper 14 is fixed to the frame 12 via two diagonal members 28. More specifically, the cylindrical body 26 is disposed between two diagonal members 28 disposed along one of two rectangular diagonal lines 22 a and 22 b (FIG. 3) that define the frame surface 22. It is fixed to each end 28a (FIG. 2) of each diagonal member 28 at an arbitrary position on each surface 26a of the body 26, preferably at a center position between two corners 26d connected to each surface 26a. The other end 28b of each diagonal member 28 is fixed to the frame 12 at the intersection of the column 18 and the beam 20 which constitute the frame 12.

図示の例にあっては、各斜材28がH形鋼からなり、該H形鋼はその長さ方向に伸びる軸線に対して直角な端面を有し、該端面において筒体26の平坦な面部26aに接している。但し、筒体26の横断面形状によっては、前記筒体の面部に接する斜材28の端面は該斜材の軸線に対して非直角である場合がある。なお、斜材28は、前記H形鋼以外の形鋼又は他の長尺材からなるものとすることができる。また、斜材28を構成する前記H形鋼は、筒体26の前記軸線方向長さより小さい幅寸法を有する。   In the illustrated example, each diagonal member 28 is made of an H-section steel, the H-section steel having an end surface perpendicular to an axis extending in the longitudinal direction thereof, and a flat surface of the cylindrical body 26 at the end surface. It is in contact with the surface 26a. However, depending on the cross-sectional shape of the cylinder 26, the end surface of the diagonal member 28 that is in contact with the surface of the cylinder may be non-perpendicular to the axis of the diagonal member. In addition, the diagonal member 28 can be made of a shaped steel other than the H-shaped steel or another long material. In addition, the H-shaped steel constituting the diagonal member 28 has a width dimension smaller than the axial length of the cylindrical body 26.

両斜材28は、履歴型ダンパー14を架構12内に設置するに先立ち、筒体26の両面部26aにそれぞれ固定しておくことができる。面部26aに対する斜材28の固定は、これらを溶接することにより、あるいは、予め面部26aに継手(図示せず)を固定しておき、前記継手と斜材28の端部28aとを複数対のボルト及びナット(図示せず)で固定することにより行うことができる。   Prior to installing the hysteretic damper 14 in the frame 12, the two diagonal members 28 can be fixed to both side portions 26 a of the cylindrical body 26, respectively. The diagonal member 28 may be fixed to the surface portion 26a by welding them or a joint (not shown) is fixed to the surface portion 26a in advance, and the joint and the end portion 28a of the diagonal member 28 are connected in a plurality of pairs. It can be performed by fixing with bolts and nuts (not shown).

建物10が地震力を受けて水平方向へ左右に揺れるとき、架構12又は架構面22の形状が矩形から平行四辺形に変化し、これに伴って架構面22の両対角線22a、22bの長さが伸長し及び短縮する(図3参照)。このとき、履歴型ダンパー14を構成する筒体26が、2つの斜材28にそれぞれ固定された2つの面部26aにおいて、架構12から引張力及び圧縮力を交互に受け、筒体26は一方の対角線22aの伸長方向に関して交互に引き伸ばされまた押し縮められる。同時に、筒体26の各角部26d、26eに角度の変化を伴う塑性変形が生じる。具体的には、筒体26が引き伸ばされるとき、筒体26に、角部26dの内角の大きさが漸増しまた角部26eの内角の大きさが漸減する塑性変形が生じる。反対に、筒体26が押し縮められるとき、角部26dの内角の大きさが漸減しまた角部26eの内角の大きさが漸増する塑性変形が生じる。その結果、建物10に作用する地震エネルギが吸収され、建物10が負担する地震力が緩和される。   When the building 10 shakes horizontally in the horizontal direction under the seismic force, the shape of the frame 12 or the frame surface 22 changes from a rectangle to a parallelogram, and the length of the two diagonal lines 22a and 22b of the frame surface 22 is accordingly changed. Extend and shorten (see FIG. 3). At this time, the cylindrical body 26 constituting the hysteretic damper 14 receives the tensile force and the compressive force from the frame 12 alternately on the two surface portions 26a fixed to the two diagonal members 28, respectively. It is alternately stretched and compressed in the direction of extension of the diagonal 22a. At the same time, plastic deformation accompanied by a change in angle occurs at each corner 26d, 26e of the cylindrical body 26. Specifically, when the cylindrical body 26 is extended, plastic deformation occurs in the cylindrical body 26 in which the size of the inner angle of the corner 26d gradually increases and the size of the inner angle of the corner 26e gradually decreases. Conversely, when the cylindrical body 26 is compressed and contracted, plastic deformation occurs in which the size of the inner angle of the corner 26d gradually decreases and the size of the inner angle of the corner 26e gradually increases. As a result, the seismic energy acting on the building 10 is absorbed, and the seismic force that the building 10 bears is reduced.

履歴型ダンパー14の筒体26の各角部26d、26eの剛性の程度又は大きさは、前記帯鋼片の厚さ、幅、又は種類(鋼種)の選択により、任意にまた容易に定めることができる。筒体26の各角部26d、26eの剛性の程度又は大きさは、想定される規模の地震力の緩和に有効とされる前記塑性変形の程度を考慮して定められる。また、筒体26の各面部26a、26b、26cは、筒体26が一方の対角線22aの伸長方向に引き伸ばされまた押し縮められるとき、これに撓みがほとんど生じない程度の剛性を有する。各面部26a、26b、26cの剛性もまた前記帯鋼片の厚さ、幅、又は種類(鋼種)に基づいて、前記角部の剛性と共に、適切に定めることができる。   The degree or size of the rigidity of each corner 26d, 26e of the cylindrical body 26 of the hysteretic damper 14 can be arbitrarily and easily determined by selecting the thickness, width, or type (steel type) of the strip. Can be. The degree or magnitude of the rigidity of each of the corners 26d and 26e of the cylindrical body 26 is determined in consideration of the degree of the plastic deformation that is effective in reducing the seismic force of an assumed scale. Each of the surface portions 26a, 26b, 26c of the cylindrical body 26 has such a rigidity that when the cylindrical body 26 is stretched and contracted in the direction of extension of one of the diagonal lines 22a, there is almost no bending. The stiffness of each surface portion 26a, 26b, 26c can also be appropriately determined based on the thickness, width, or type (steel type) of the steel strip, together with the stiffness of the corner portion.

履歴型ダンパー14と共に架構12内に設置される一対の粘性型ダンパー16は、架構面22を規定する前記矩形の2つの対角線22a、22bのうちの他方の対角線22bに沿ってかつ履歴型ダンパー14を間において配置され、また、履歴型ダンパー14の筒体26の2つの面部26a以外の他の2つの面部、図示の例にあっては互いに平行な2つの面部26bと、架構12を構成する柱18及び梁20の交差部(具体的には交差部に固定されたガセットプレート32)とにそれぞれピン30により結合(ピン結合)されている。   A pair of viscous dampers 16 installed in the frame 12 together with the hysteretic damper 14 are provided along the other diagonal line 22b of the two rectangular diagonals 22a and 22b defining the frame surface 22 and the hysteretic damper 14. And two other surface parts other than the two surface parts 26a of the cylindrical body 26 of the hysteretic damper 14, and in the example shown in the drawing, two surface parts 26b parallel to each other, and constitute the frame 12. Pins 30 are connected to the intersections of the columns 18 and the beams 20 (specifically, gusset plates 32 fixed to the intersections) by pins 30.

地震のために建物10が水平方向へ左右に揺れ、このために架構面22の形状が矩形から平行四辺形に変化し、これに伴って架構面22の他方の対角線22bの長さが交互に短縮し及び伸長するとき(図3参照)、両粘性型ダンパー16は圧縮力及び引張力を交互に受ける。このとき、両粘性型ダンパー16は、その振動減衰機能により、架構12の形状変化の程度を軽減させる働きをなす。   Due to the earthquake, the building 10 sways horizontally from side to side, so that the shape of the frame surface 22 changes from a rectangle to a parallelogram, and the length of the other diagonal line 22b of the frame surface 22 alternates with this. When shortening and extending (see FIG. 3), both viscous dampers 16 receive alternating compressive and tensile forces. At this time, the viscous damper 16 has a function of reducing the degree of shape change of the frame 12 by its vibration damping function.

両粘性型ダンパー16は、地震が履歴型ダンパー14に前記塑性変形を生じさせる程の比較的大きい規模のものであるときは、履歴型ダンパー14と共同して、建物10に働く地震力の緩和に寄与する。反対に、地震が履歴型ダンパー14に前記塑性変形ではなく弾性変形を生じさせる程の比較的小さい規模のものであるときは、主として、両粘性型ダンパー16の働きが建物10に働く地震力の緩和に寄与する。   When the earthquake is of a relatively large scale that causes the hysteretic damper 14 to undergo the plastic deformation, the viscous damper 16 cooperates with the hysteretic damper 14 to reduce the seismic force acting on the building 10. To contribute. Conversely, when the earthquake is of a relatively small scale that causes the hysteretic damper 14 to undergo elastic deformation instead of the plastic deformation, the action of the two-viscosity damper 16 mainly reduces the seismic force acting on the building 10. Contributes to mitigation.

10 建物
12 架構
14 履歴型ダンパー
16 粘性型ダンパー
18 柱
20 梁
22 架構面
24 制振構造
26 筒体
26a、26b、26c 筒体の面部
26d、26e 筒体の角部
28 斜材
28a 斜材の一端部
DESCRIPTION OF SYMBOLS 10 Building 12 Frame 14 Hysteresis damper 16 Viscous damper 18 Column 20 Beam 22 Frame surface 24 Damping structure 26 Cylindrical body 26a, 26b, 26c Cylindrical surface part 26d, 26e Cylindrical corner part 28 Diagonal material 28a One end

Claims (4)

建物の矩形状の架構面内に設置される履歴型ダンパーであって、
凹六角形の横断面形状を有する鋼製の扁平な筒体であって前記凹六角形6つの及び6つの頂点にそれぞれ位置する6つの平坦な面部及び6つの折り曲げられた角部を有する筒体を備え、
前記筒体は、前記架構面を規定する矩形の2つの対角線の一方に沿って配置される2つの斜材の間に配置され、
前記筒体の6つの面部は、前記2つの斜材の端部にそれぞれ固定される互いに相対する2つの面部と、該2つの面部間にあって前記凹六角形の180度を超える内角を規定する他の2つの面部を1組とする2組の他の面部とからなる、履歴型ダンパー。
A hysteretic damper installed in a rectangular frame of a building,
Having six flat surface portions and six folded corners a flat cylindrical body of steel respectively located six sides and six vertices of the concave hexagon with concave hexagonal cross-sectional shape Equipped with a cylinder,
The cylinder is disposed between two diagonal members disposed along one of two diagonal lines of a rectangle defining the frame surface,
The six surface portions of the cylindrical body are two surface portions facing each other fixed to the ends of the two diagonal members, respectively, and define an interior angle of the concave hexagon exceeding 180 degrees between the two surface portions. A hysteretic damper comprising two sets of other face parts, each of which has two face parts as one set .
前記筒体は折り曲げ加工を施された帯鋼片であって互いに突き合わされかつ接合された両端面を有する帯鋼片からなり、前記帯鋼片の両端面は前記6つの角部間のいずれかに存する、請求項1に記載の履歴型ダンパー。 The tubular body is a bent steel strip, which is formed of a steel strip having both end faces abutted and joined to each other, and both end faces of the steel strip are any one of the six corners. The hysteretic damper according to claim 1, wherein 矩形状の架構と、
前記架構に設置された請求項1又は2に記載の履歴型ダンパーとを含む、建物の制振構造。
A rectangular frame,
A damping structure for a building, comprising the hysteretic damper according to claim 1 or 2 installed on the frame.
さらに、一対の粘性型ダンパーを含み、
両粘性型ダンパーは、前記架構面を規定する矩形の2つの対角線の他方に沿ってかつ前記履歴型ダンパーを間において配置され、また、前記履歴型ダンパーの2組の他の2つの面部の一方と前記架構とにそれぞれピン結合されている、請求項3に記載の建物の制振構造。
In addition, it includes a pair of viscous dampers,
Both viscous dampers are arranged along the other of the two diagonal lines of the rectangle defining the frame surface and between the hysteretic dampers, and one of the other two surface portions of the two sets of the hysteretic dampers The building vibration damping structure according to claim 3, wherein the vibration damping structure is connected to the frame and the frame by pins.
JP2015210415A 2015-10-27 2015-10-27 Hysteretic damper and vibration control structure of building Active JP6677480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015210415A JP6677480B2 (en) 2015-10-27 2015-10-27 Hysteretic damper and vibration control structure of building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015210415A JP6677480B2 (en) 2015-10-27 2015-10-27 Hysteretic damper and vibration control structure of building

Publications (2)

Publication Number Publication Date
JP2017082455A JP2017082455A (en) 2017-05-18
JP6677480B2 true JP6677480B2 (en) 2020-04-08

Family

ID=58714128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015210415A Active JP6677480B2 (en) 2015-10-27 2015-10-27 Hysteretic damper and vibration control structure of building

Country Status (1)

Country Link
JP (1) JP6677480B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107269088B (en) * 2017-07-28 2023-03-31 中国地震局工程力学研究所 Energy consumption strutting arrangement of removable frame
CN115370031A (en) * 2022-09-08 2022-11-22 浙江大地钢结构有限公司 Viscous fluid damper and steel structure system

Also Published As

Publication number Publication date
JP2017082455A (en) 2017-05-18

Similar Documents

Publication Publication Date Title
US8397444B2 (en) Perforated plate seismic damper
TWI529284B (en) Composite damping connector
JP5822203B2 (en) Brace damper
KR101319698B1 (en) Steel damper using cantilever behavior
TWI428494B (en) Hysteresis damping construct
JP6677480B2 (en) Hysteretic damper and vibration control structure of building
JP5575838B2 (en) Beam support structure of building
JP2017133282A (en) Steel device and load bearing wall
JP3664611B2 (en) Seismic structure of wooden buildings
KR101051058B1 (en) Damping system for construction
JP6803661B2 (en) Rod-shaped damping member
JP5654060B2 (en) Damper brace and damping structure
JP3997289B2 (en) Structural member with hysteretic damper
JP2019070236A (en) Vibration control structure
JP2012219500A (en) Vibration control bearing wall panel
JP6707992B2 (en) Damper structure and damper manufacturing method
JP7045780B2 (en) Reinforcement structure of wooden building
JP2017089714A (en) Earthquake resistance improving elastic member, earthquake resistance improving structure and manufacturing method of earthquake resistance improving elastic member
JP6838877B2 (en) Buckling restraint brace damper
US8099914B2 (en) Perforated plate seismic damper
JP7220069B2 (en) frame structure
US8037647B2 (en) Perforated plate seismic damper
JP6447227B2 (en) Damper structure
JP7172488B2 (en) Energy-absorbing devices and load-bearing walls with energy-absorbing devices
JP6313067B2 (en) Damping damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200313

R150 Certificate of patent or registration of utility model

Ref document number: 6677480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350