JP2017089714A - Earthquake resistance improving elastic member, earthquake resistance improving structure and manufacturing method of earthquake resistance improving elastic member - Google Patents

Earthquake resistance improving elastic member, earthquake resistance improving structure and manufacturing method of earthquake resistance improving elastic member Download PDF

Info

Publication number
JP2017089714A
JP2017089714A JP2015218453A JP2015218453A JP2017089714A JP 2017089714 A JP2017089714 A JP 2017089714A JP 2015218453 A JP2015218453 A JP 2015218453A JP 2015218453 A JP2015218453 A JP 2015218453A JP 2017089714 A JP2017089714 A JP 2017089714A
Authority
JP
Japan
Prior art keywords
earthquake resistance
elastic member
improving earthquake
flat
improving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015218453A
Other languages
Japanese (ja)
Inventor
樹一郎 澤田
Kiichiro Sawada
樹一郎 澤田
将悟 鶴田
Masashi Tsuruda
将悟 鶴田
江藤 弘樹
Hiroki Eto
弘樹 江藤
建人 中村
Kento Nakamura
建人 中村
銀次 西田
Ginji Nishida
銀次 西田
翼 山下
Tsubasa Yamashita
翼 山下
拓史 後藤
Takushi Goto
拓史 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagoshima University NUC
Original Assignee
Kagoshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagoshima University NUC filed Critical Kagoshima University NUC
Priority to JP2015218453A priority Critical patent/JP2017089714A/en
Publication of JP2017089714A publication Critical patent/JP2017089714A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an earthquake resistance improving elastic member in which an effect for restricting damage of a building is hardly lost and a limitation over its mounting location is hardly influenced when repeated loads of several times may act or even if an amplitude of oscillation is large.SOLUTION: A core member 2 acting as an earthquake resistance improving elastic member has an outer shape in which a flat plate body S is partially removed. The core member 2 comprises a pair of fixing portions 21, 22 positioned at both end portions in an extending direction [x-direction] of the flat plate body S and a main body part 23 arranged between a pair of fixing portions 21, 22. The main body part 23 has a shape bent back in a direction crossing with x-direction as seen at a plan view in respect to the flat plate body S and has a folding spring part 231 that can be extended or retracted elastically in the x-direction by a load in the x-direction.SELECTED DRAWING: Figure 2

Description

本発明は、耐震性向上用弾性部材、耐震性向上用構造体、及び耐震性向上用弾性部材の製造方法に関する。   The present invention relates to an elastic member for improving earthquake resistance, a structure for improving earthquake resistance, and a method for producing an elastic member for improving earthquake resistance.

大地震が発生した場合に、建物の損傷を低減するためには、予め建物の柱や梁に、方杖や筋交い等として耐震性向上用構造体を取り付けておくことが有効である。   In order to reduce the damage to a building when a large earthquake occurs, it is effective to attach a structure for improving earthquake resistance to a pillar or beam of the building in advance, such as a cane or brace.

特許文献1に示されるように、鋼板の平面視中央部分にスリットを形成してなる芯材と、この芯材の座屈変形を防止する部材と、を備える耐震性向上用構造体が知られている。   As shown in Patent Document 1, there is known a structure for improving earthquake resistance comprising a core formed by forming a slit in the central portion of a steel plate in plan view, and a member for preventing buckling deformation of the core. ing.

特許文献2に示されるように、板ばねを備える耐震性向上用構造体も知られている。   As shown in Patent Document 2, a structure for improving earthquake resistance including a leaf spring is also known.

特開2015−14100号公報Japanese Patent Laying-Open No. 2015-14100 特開2005−350937号公報JP 2005-350937 A

特許文献1の耐震性向上用構造体は、芯材が塑性変形することで地震のエネルギを吸収する。芯材のスリットは、その部分を優先的に塑性変形させるために形成されたものであり、芯材に弾性復元力をもたせるためのものではない。   The structure for improving earthquake resistance of Patent Document 1 absorbs the energy of earthquakes by the plastic deformation of the core material. The slit of the core material is formed in order to preferentially plastically deform the portion, and is not for giving an elastic restoring force to the core material.

このような耐震性向上用構造体は、小規模の地震に対しては建物の損傷を抑える効果を示すが、揺れの継続時間が長く多数回の繰り返し荷重が作用する場合や、揺れの振幅が大きな場合は、かかる効果を発揮し難い。これは、芯材は、塑性変形後は剛性がほぼゼロとなり、弾性復元力による原点復帰の効果を発揮できないことによる。   Such a structure for improving earthquake resistance shows the effect of suppressing damage to buildings for small-scale earthquakes, but the duration of shaking is long and many repeated loads are applied. If it is large, it is difficult to exert such an effect. This is because the core material has almost zero rigidity after plastic deformation and cannot return to the origin by the elastic restoring force.

特許文献2の耐震性向上用構造体は、板ばねによって弾性復元力を発揮できる。しかし、板ばねを、仕口を構成する柱と梁の双方の長手方向に直交する奥行方向に幅方向を向けた状態で設置する必要がある。このため、板ばねの幅に見合う奥行が確保できる箇所にしか設置することができない。   The structure for improving earthquake resistance of Patent Document 2 can exhibit an elastic restoring force by a leaf spring. However, it is necessary to install the leaf spring in a state in which the width direction is directed in the depth direction perpendicular to the longitudinal direction of both the columns and beams constituting the joint. For this reason, it can install only in the location which can ensure the depth corresponding to the width | variety of a leaf | plate spring.

また、特許文献2の耐震性向上用構造体は、複数の板ばねを束ねる複雑な構造を有するため、製造に手間を要する。   Moreover, since the structure for improving earthquake resistance of Patent Document 2 has a complicated structure in which a plurality of leaf springs are bundled, it takes time to manufacture.

本発明は上記事情に鑑みてなされたものであり、多数回の繰り返し荷重が作用する場合や、揺れの振幅が大きな場合でも、建物の損傷を抑える効果が失われにくく、設置箇所の制約を受けにくい耐震性向上用弾性部材及び耐震性向上用構造体を提供することを第1の目的とする。   The present invention has been made in view of the above circumstances, and even when a large number of repeated loads are applied or when the amplitude of shaking is large, the effect of suppressing damage to the building is not easily lost, and the installation location is restricted. A first object is to provide an elastic member for improving earthquake resistance and a structure for improving earthquake resistance.

また、本発明は、耐震性向上用弾性部材を容易に得ることができる耐震性向上用弾性部材の製造方法を提供することを第2の目的とする。   Moreover, this invention makes it the 2nd objective to provide the manufacturing method of the elastic member for seismic improvement which can obtain the elastic member for seismic improvement easily.

本発明の第1の観点に係る耐震性向上用弾性部材は、
平板状体を部分的に除去した形状の外形を有する耐震性向上用弾性部材であって、
前記平板状体の延在方向両端部分に位置する一対の取り付け部と、
前記一対の取り付け部間に配置される本体部であって、前記平板状体に対する平面視において前記延在方向と交差する方向に折り返された形状を有し、前記延在方向の荷重によって前記延在方向に弾性的に伸縮可能な折り返しばね部を有する本体部と、
を備える。
The elastic member for improving earthquake resistance according to the first aspect of the present invention is:
An elastic member for improving earthquake resistance having an outer shape of a shape obtained by partially removing a flat plate,
A pair of attachment portions located at both ends of the plate-like body in the extending direction;
A body portion disposed between the pair of attachment portions, the body portion having a shape folded in a direction intersecting the extending direction in a plan view with respect to the flat plate-like body, and the extension by the load in the extending direction A body portion having a folding spring portion that is elastically expandable and contractable in the direction of movement;
Is provided.

前記本体部が、前記平板状体の厚さ方向及び前記延在方向に直交する幅方向に、複数のセグメントに分割して構成され、各々の前記セグメントが前記折り返しばね部を有すると共に、前記セグメント同士が前記幅方向に互いに遠ざかる方向及び近づく方向に弾性的に変位可能に構成されていてもよい。   The main body is divided into a plurality of segments in the thickness direction of the flat body and the width direction orthogonal to the extending direction, and each of the segments has the folding spring portion, and the segments They may be configured to be elastically displaceable in a direction away from and in a direction toward each other in the width direction.

前記本体部が、前記折り返しばね部を前記延在方向に複数連結した構造を有してもよい。   The main body portion may have a structure in which a plurality of the folding spring portions are connected in the extending direction.

前記折り返しばね部が、前記平板状体の厚さ方向及び前記延在方向に直交する幅方向外方に矩形に折り返された形状を有していてもよい。   The folding spring portion may have a shape folded in a rectangular shape outward in the width direction perpendicular to the thickness direction of the flat plate-like body and the extending direction.

前記一対の取り付け部と、前記本体部と、が一体に形成されていてもよい。   The pair of attachment portions and the main body portion may be integrally formed.

本発明の第2の観点に係る耐震性向上用構造体は、
上記第1の観点に係る耐震性向上用弾性部材と、
前記耐震性向上用弾性部材の、前記延在方向の圧縮荷重に対する、前記平板状体の厚さ方向の座屈変形を防止する座屈防止部材と、
を備える。
The structure for improving earthquake resistance according to the second aspect of the present invention is:
An elastic member for improving earthquake resistance according to the first aspect;
A buckling prevention member for preventing buckling deformation in the thickness direction of the plate-like body with respect to the compressive load in the extending direction of the elastic member for improving earthquake resistance;
Is provided.

前記座屈防止部材が、前記耐震性向上用弾性部材を、前記平板状体の厚さ方向に関して両側から挟み込んでいてもよい。   The buckling prevention member may sandwich the elastic member for improving earthquake resistance from both sides in the thickness direction of the flat plate-like body.

前記平板状体の、該平板状体の厚さ方向及び前記延在方向に直交する幅方向に向かい合う側面の位置よりも外方に、前記折り返しばね部が撓むことが可能に構成されていてもよい。   The folding spring portion is configured to be able to bend outward from a position of a side surface of the flat plate body facing a thickness direction of the flat plate body and a width direction orthogonal to the extending direction. Also good.

本発明の第3の観点に係る耐震性向上用弾性部材の製造方法は、
平鋼を部分的に除去することにより、前記平鋼の長さ方向両端部分に、一対の取り付け部を形成する工程と、
前記平鋼を部分的に除去することにより、前記平鋼の長さ方向中間部分に、前記一対の取り付け部に接続される本体部であって、前記平鋼に対する平面視において前記長さ方向と交差する方向に折り返された形状を有し、前記長さ方向の荷重によって前記長さ方向に弾性的に伸縮可能な折り返しばね部を有する本体部を形成する工程と、
を含む。
The manufacturing method of the elastic member for improving earthquake resistance according to the third aspect of the present invention,
Forming a pair of attachment portions on both ends of the flat steel in the longitudinal direction by partially removing the flat steel; and
By partially removing the flat bar, a main body part connected to the pair of attachment parts at a middle part in the length direction of the flat bar, and in the plan view with respect to the flat bar, the length direction and Forming a body portion having a folded back spring portion that has a shape folded in an intersecting direction and elastically expandable and contractable in the length direction by the load in the length direction;
including.

本発明の第1の観点に係る耐震性向上用弾性部材及び第2の観点に係る耐震性向上用構造体によれば、折り返しばね部が延在方向に弾性的に伸縮するため、塑性変形によって揺れを吸収する場合に比べると、多数回の繰り返し荷重が作用する場合や、揺れの振幅が大きな場合でも、建物の損傷を抑える効果が失われにくい。   According to the elastic member for improving earthquake resistance according to the first aspect of the present invention and the structure for improving earthquake resistance according to the second aspect, the folding spring portion elastically expands and contracts in the extending direction. Compared to absorbing vibration, the effect of suppressing damage to the building is less likely to be lost even when a large number of repeated loads are applied or the amplitude of the vibration is large.

また、耐震性向上用弾性部材が、平板状体を部分的に除去した形状の外形を有するため、例えば、柱と梁で構成される仕口に設置する場合、柱と梁の双方の長手方向に直交する奥行方向に、平板状体の厚さ方向を向けた状態で設置できる。即ち、厚さに見合う奥行さえ確保できれば設置できるため、設置箇所の制約を受けにくい。   In addition, since the elastic member for improving earthquake resistance has an outer shape in which the flat plate body is partially removed, for example, when installed in a joint composed of a column and a beam, the longitudinal direction of both the column and the beam It can install in the state which turned the thickness direction of the flat plate-like body in the depth direction orthogonal to the direction. That is, since it can be installed as long as the depth corresponding to the thickness can be secured, it is difficult to be restricted by the installation location.

本発明の第3の観点に係る耐震性向上用弾性部材の製造方法によれば、平鋼を部分的に除去するだけで、耐震性向上用弾性部材を容易に得ることができる。   According to the manufacturing method of the elastic member for improving earthquake resistance according to the third aspect of the present invention, the elastic member for improving earthquake resistance can be easily obtained only by partially removing the flat bar.

実施形態に係る耐震性向上用構造体の一設置態様を示す概念図である。It is a conceptual diagram which shows the installation aspect of the structure for earthquake resistance improvement which concerns on embodiment. 実施形態に係る耐震性向上用構造体の主要部を示す分解斜視図である。It is a disassembled perspective view which shows the principal part of the structure for earthquake resistance improvement which concerns on embodiment. 実施形態に係る耐震性向上用構造体の芯材の平面図である。It is a top view of the core material of the structure for earthquake resistance improvement which concerns on embodiment. 実施形態に係る耐震性向上用構造体のx方向に垂直な部分断面図である。It is a fragmentary sectional view perpendicular | vertical to the x direction of the structure for earthquake resistance improvement which concerns on embodiment. 実施形態に係る耐震性向上用構造体の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the structure for earthquake resistance improvement which concerns on embodiment. 実施形態に係る耐震性向上用構造体の芯材の作用を示す概念図である。It is a conceptual diagram which shows the effect | action of the core material of the structure for earthquake resistance improvement which concerns on embodiment. 実施形態に係る耐震性向上用構造体の芯材の作用を示す概念図である。It is a conceptual diagram which shows the effect | action of the core material of the structure for earthquake resistance improvement which concerns on embodiment. 他の実施形態に係る耐震性向上用構造体の芯材の平面図である。It is a top view of the core material of the structure for earthquake resistance improvement which concerns on other embodiment. さらに他の実施形態に係る耐震性向上用構造体の芯材の平面図である。It is a top view of the core material of the structure for earthquake resistance improvement which concerns on other embodiment. (A)は、実施形態に係る耐震性向上用構造体の他の設置態様を示す概念図であり、(B)は取り付け部とプレートとの連結部分のy方向に垂直な断面図である。(A) is a conceptual diagram which shows the other installation aspect of the structure for earthquake resistance improvement which concerns on embodiment, (B) is sectional drawing perpendicular | vertical to the y direction of the connection part of an attachment part and a plate. 他の実施形態に係る耐震性向上用構造体のx方向に垂直な部分断面図である。It is a fragmentary sectional view perpendicular | vertical to the x direction of the structure for earthquake resistance improvement which concerns on other embodiment. 実施例に係る耐震性向上用構造体の芯材に作用させたx方向荷重と、芯材のx方向変位量との関係を計測した結果のグラフである。It is a graph of the result of having measured the relationship between the x direction load made to act on the core material of the structure for an earthquake resistance improvement which concerns on an Example, and the x direction displacement amount of a core material. 実施例に係る耐震性向上用構造体の地震波に対する応答を求めるためのシミュレーションの条件を示す概念図である。It is a conceptual diagram which shows the conditions of the simulation for calculating | requiring the response with respect to the seismic wave of the structure for an earthquake resistance improvement which concerns on an Example. (A)は、骨組の地震波に対する応答を示すシミュレーション結果のグラフであり、(B)は、実施例に係る耐震性向上用構造体を取り付けた骨組の地震波に対する応答を示すシミュレーション結果のグラフである。(A) is a graph of the simulation result which shows the response with respect to the seismic wave of a frame, (B) is the graph of the simulation result which shows the response with respect to the seismic wave of the frame which attached the structure for an earthquake resistance improvement which concerns on an Example. . 芯材に生じるミーゼス応力の値を濃淡で表した濃淡グラフである。It is a shading graph which expressed the value of Mises stress which arises in a core material with shading.

以下、本発明の一実施形態を図面に基づいて説明する。図中、同一又は対応する部分に同一符号を付す。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the figure, the same or corresponding parts are denoted by the same reference numerals.

図1に示すように、実施形態に係る耐震性向上用構造体1は、耐震性向上の対象となる建物90の柱91と梁92とで構成される仕口に、方杖として斜めに架け渡された態様で使用可能である。耐震性向上用構造体1は、大略、板状を成しており、柱91と梁92の双方の長手方向に直交する奥行方向(図1では紙面に垂直な方向)に厚さ方向を向けた状態で設置されている。   As shown in FIG. 1, the structure 1 for improving earthquake resistance according to the embodiment is slanted as a cane on a joint composed of a column 91 and a beam 92 of a building 90 to be improved for earthquake resistance. It can be used in the passed mode. The structure for improving earthquake resistance 1 is generally plate-shaped, and the thickness direction is directed in the depth direction (the direction perpendicular to the paper surface in FIG. 1) perpendicular to the longitudinal direction of both the column 91 and the beam 92. Installed.

耐震性向上用構造体1は、耐震性向上用弾性部材としての芯材2と、芯材2の座屈変形を防止する座屈防止部材3と、を備える。芯材2は、梁92に固定されたプレート93に取り付けられる取り付け部21と、柱91に固定されたプレート94に取り付けられる取り付け部22と、を有する。なお、図1では、芯材2の、座屈防止部材3の背後に位置する部分を破線(隠れ線)で示した。   The structure for improving earthquake resistance 1 includes a core material 2 as an elastic member for improving earthquake resistance, and a buckling prevention member 3 for preventing buckling deformation of the core material 2. The core member 2 includes an attachment portion 21 attached to a plate 93 fixed to the beam 92 and an attachment portion 22 attached to a plate 94 fixed to the column 91. In addition, in FIG. 1, the part located behind the buckling prevention member 3 of the core material 2 was shown with the broken line (hidden line).

芯材2の、一対の取り付け部21及び22が対向する方向(以下、対向方向という。)に、地震等に起因する荷重が加えられる。ここで荷重とは、引張荷重及び圧縮荷重を含む。   A load caused by an earthquake or the like is applied to a direction in which the pair of attachment portions 21 and 22 of the core member 2 are opposed to each other (hereinafter referred to as a facing direction). Here, the load includes a tensile load and a compressive load.

図2は、耐震性向上用構造体1の主要部を示す分解斜視図である。上記対向方向をx方向とし、上記厚さ方向をz方向とするxyz直交座標系を定義する。図1の座屈防止部材3は、芯材2をz方向に関して、両側から挟み込む第1及び第2の座屈防止部材31及び32を備える。   FIG. 2 is an exploded perspective view showing the main part of the structure 1 for improving earthquake resistance. An xyz orthogonal coordinate system is defined in which the facing direction is the x direction and the thickness direction is the z direction. The buckling prevention member 3 in FIG. 1 includes first and second buckling prevention members 31 and 32 that sandwich the core material 2 from both sides in the z direction.

これら第1及び第2の座屈防止部材31及び32は、図1に示す固定手段としてのボルト33を用いて、芯材2を挟み込んだ状態で、固定される。第1、第2の座屈防止部材31、32には、夫々そのボルト33が挿通するボルト挿通孔31a、32aが複数形成されている。   The first and second buckling prevention members 31 and 32 are fixed using a bolt 33 as a fixing means shown in FIG. The first and second buckling prevention members 31 and 32 are formed with a plurality of bolt insertion holes 31a and 32a through which the bolts 33 are inserted.

なお、図2には、x方向に荷重が加えられていない無荷重状態の芯材2を示す。芯材2は、無荷重状態においては、x方向に延在する平板状体Sを部分的に除去した外形を有する。なお、平板状体Sは、x方向を長手方向とするようにx方向に長尺に延在しており、平板状体Sの延在方向としてのx方向は、平板状体Sの長手方向でもある。   FIG. 2 shows the core material 2 in a no-load state in which no load is applied in the x direction. The core material 2 has an outer shape in which the flat plate-like body S extending in the x direction is partially removed in a no-load state. The flat plate body S extends long in the x direction so that the x direction is the longitudinal direction, and the x direction as the extending direction of the flat plate body S is the longitudinal direction of the flat plate body S. But there is.

芯材2と同様、第1及び第2の座屈防止部材31及び32も、x方向に長尺に延在する。但し、芯材2のx方向の長さは、第1及び第2の座屈防止部材31及び32のx方向の長さより長い。第1及び第2の座屈防止部材31及び32が芯材2を挟み込んだ状態では、芯材2のx方向両端部分に位置する取り付け部21、22が、夫々第1、第2の座屈防止部材31、32よりもx方向外方に突出する。   Similar to the core material 2, the first and second buckling prevention members 31 and 32 also extend long in the x direction. However, the length of the core material 2 in the x direction is longer than the lengths of the first and second buckling prevention members 31 and 32 in the x direction. In the state where the first and second buckling prevention members 31 and 32 sandwich the core material 2, the attachment portions 21 and 22 located at both ends in the x direction of the core material 2 are the first and second buckling members, respectively. It protrudes outward in the x direction from the prevention members 31 and 32.

取り付け部21及び22は、各々平板状体Sと平行な扁平状を成す。これら扁平な取り付け部21、22は、夫々その扁平な面(表面又は裏面)の略全域が、建物(具体的に図1のプレート93、94)に面接触した状態で、建物に固定される。取り付け部21、22には、夫々建物に固定するためのボルトが挿通するボルト挿通孔21a、22aが複数形成されている。   The attachment portions 21 and 22 each have a flat shape parallel to the flat plate-like body S. These flat mounting portions 21 and 22 are fixed to the building in a state where substantially the entire flat surface (front surface or back surface) is in surface contact with the building (specifically, the plates 93 and 94 in FIG. 1). . A plurality of bolt insertion holes 21a and 22a through which bolts for fixing to the building are inserted are formed in the attachment portions 21 and 22, respectively.

芯材2は、一対の取り付け部21及び22間の、第1及び第2の座屈防止部材31及び32によって挟み込まれる部分に、本体部23を有する。本体部23は、一対の取り付け部21及び22と一体に形成されてなる。以下、本体部23の構成について説明する。   The core material 2 has a main body portion 23 at a portion sandwiched between the first and second buckling prevention members 31 and 32 between the pair of attachment portions 21 and 22. The main body portion 23 is formed integrally with the pair of attachment portions 21 and 22. Hereinafter, the configuration of the main body 23 will be described.

図3に示すように、本体部23は、図2の平板状体Sの厚さ方向(z方向)及び延在方向(x方向)に直交する幅方向(y方向)に、2つのセグメント23a及び23bに分割されて構成されている。セグメント23aと23bは、y方向に離間している。   As shown in FIG. 3, the main body 23 has two segments 23a in the width direction (y direction) orthogonal to the thickness direction (z direction) and the extending direction (x direction) of the flat plate S in FIG. And 23b. The segments 23a and 23b are separated in the y direction.

セグメント23a及び23bの各々は、平面視で互いに合同な外形をもつ複数の折り返しばね部231が、連結部232によってx方向に連結された周期的連結構造を有する。   Each of the segments 23a and 23b has a periodic connection structure in which a plurality of folding spring portions 231 having outer shapes that are congruent with each other in a plan view are connected in the x direction by a connection portion 232.

各々の連結部232は、本体部23のy方向ほぼ中央部分においてx方向に延在する。   Each connecting portion 232 extends in the x direction at a substantially central portion in the y direction of the main body portion 23.

各々の折り返しばね部231は、本体部23の幅方向(y方向)外方に矩形に折り返されたコ字形状を有する。具体的には、各々の折り返しばね部231は、本体部23の幅方向(y方向)最外方に位置する頂部231aと、頂部231aを連結部232に接続する一対の脚部231bと、を有する。頂部231aは、x方向に延在し、各脚部231bは、y方向に延在する。   Each of the folding spring portions 231 has a U-shape that is folded in a rectangular shape outward in the width direction (y direction) of the main body portion 23. Specifically, each folding spring portion 231 includes a top portion 231a located on the outermost side in the width direction (y direction) of the main body portion 23, and a pair of leg portions 231b that connect the top portion 231a to the connecting portion 232. Have. The top portion 231a extends in the x direction, and each leg portion 231b extends in the y direction.

一方のセグメント23aの頂部231a、連結部232は、夫々他方のセグメント23bの対応する頂部231a、連結部232とy方向に対向している。   The top part 231a and the connecting part 232 of one segment 23a are respectively opposed to the corresponding top part 231a and connecting part 232 of the other segment 23b in the y direction.

セグメント23a、23bのx方向両端部分は、夫々取り付け部21、22に接続されている。その接続位置は、取り付け部21及び22のy方向端部である。具体的には、セグメント23a及び23bの各々は、そのx方向両端部分において、連結部232のx方向終端からy方向外方に延在する脚部233と、脚部233のy方向終端からx方向に延在し、取り付け部21又は22に接続される接続部234と、を有する。   Both ends of the segments 23a and 23b in the x direction are connected to the attachment portions 21 and 22, respectively. The connection position is the end of the attachment portions 21 and 22 in the y direction. Specifically, each of the segments 23a and 23b includes a leg portion 233 extending outward from the x-direction end of the connecting portion 232 in the x-direction both ends, and an x-direction from the y-direction end of the leg 233. And a connection portion 234 that extends in the direction and is connected to the attachment portion 21 or 22.

図3中、破線で示す円Vは、図2のボルト挿通孔31a及び32aに挿通される図1のボルト33の挿通位置を示す。図示のように、ボルト33は、x方向に隣り合う折り返しばね部231の間を挿通される。なお、ボルト33の挿通位置は、本体部23に接触しない位置であれば、特に限定されるものではない。   In FIG. 3, a circle V indicated by a broken line indicates an insertion position of the bolt 33 of FIG. 1 inserted through the bolt insertion holes 31a and 32a of FIG. As illustrated, the bolt 33 is inserted between the folding spring portions 231 adjacent in the x direction. The insertion position of the bolt 33 is not particularly limited as long as it is a position that does not contact the main body portion 23.

図4は、耐震性向上用構造体1の、図3のA−A線の位置における、x方向に垂直な部分断面図である。第1の座屈防止部材31は、平板状の底板部311と、底板部311の幅方向両側から垂直に立ち上がった、補剛リブとしての側板部312とを有する溝形鋼よりなる。同様に、第2の座屈防止部材32も、底板部321と、側板部322と、を有する溝形鋼よりなる。   FIG. 4 is a partial cross-sectional view of the structure 1 for improving earthquake resistance at a position along the line AA in FIG. 3 and perpendicular to the x direction. The first buckling prevention member 31 is made of a grooved steel having a flat bottom plate portion 311 and side plate portions 312 that rise vertically from both widthwise sides of the bottom plate portion 311 and serve as stiffening ribs. Similarly, the second buckling prevention member 32 is also made of channel steel having a bottom plate portion 321 and side plate portions 322.

第1及び第2の座屈防止部材31及び32は、互いの底板部311、321の底面を向かい合わせ、それら底板部311と321間に芯材2を挟み込んだ状態で、ボルト33及びナット34、35で固定されている。   The first and second buckling prevention members 31 and 32 face each other with the bottom surfaces of the bottom plate portions 311 and 321 facing each other, and sandwich the core material 2 between the bottom plate portions 311 and 321. , 35.

本体部23と、底板部311及び321とは面接触している。芯材2にx方向の荷重が加えられた場合、本体部23は、底板部311及び321との間の摩擦力に抗して、底板部311及び321に平行なxy面内で弾性的に撓むことが可能である(図6及び図7参照)。   The main body portion 23 and the bottom plate portions 311 and 321 are in surface contact. When a load in the x direction is applied to the core member 2, the main body portion 23 elastically resists frictional force between the bottom plate portions 311 and 321 in an xy plane parallel to the bottom plate portions 311 and 321. It is possible to bend (refer FIG.6 and FIG.7).

図5を参照し、以下、耐震性向上用構造体1の製造方法について説明する。   With reference to FIG. 5, the manufacturing method of the structure 1 for improving earthquake resistance will be described below.

まず、得ようとする芯材2のx方向の長さと等しい長さ、y方向の幅と等しい幅、及びz方向の厚さと等しい厚さをもつ平鋼を準備する(ステップS11)。なお、図1に示した平板状体Sは、かかる平鋼を表したものである。平鋼(平板状体S)は、厚さ(z方向の長さ)が幅(y方向の長さ)及び長さ(x方向の長さ)よりも小さい扁平形状をなす。   First, a flat bar having a length equal to the length in the x direction of the core material 2 to be obtained, a width equal to the width in the y direction, and a thickness equal to the thickness in the z direction is prepared (step S11). In addition, the flat body S shown in FIG. 1 represents this flat steel. The flat steel (flat plate S) has a flat shape in which the thickness (the length in the z direction) is smaller than the width (the length in the y direction) and the length (the length in the x direction).

次に、平鋼を部分的に除去する除去加工を行う(ステップS12)。このステップS12は、除去加工により、平鋼の長さ方向両端部分に一対の取り付け部21及び22を形成する工程Aと、平鋼の長さ方向中間部分に、一対の取り付け部21及び22に接続される本体部23を形成する工程Bと、を含む。なお、工程Aと工程Bの順序は任意であり、工程AとBを同時に行うこともできる。   Next, the removal process which removes a flat bar partially is performed (step S12). This step S12 is a process of forming a pair of attachment portions 21 and 22 at both ends in the lengthwise direction of the flat steel by removal processing, and a pair of attachment portions 21 and 22 at the middle portion in the lengthwise direction of the flat steel. Forming a main body portion 23 to be connected. In addition, the order of the process A and the process B is arbitrary, and the processes A and B can be performed simultaneously.

工程Aでは、平鋼の長さ方向両端部分にボルト挿通孔21a(図3参照)を形成すれば、取り付け部21及び22が得られる。この場合、除去加工としては、ボルト挿通孔21aを形成するための、穴あけ加工が用いられる。   In the process A, if the bolt insertion holes 21a (see FIG. 3) are formed in both ends of the flat steel in the length direction, the attachment portions 21 and 22 are obtained. In this case, as the removal process, a drilling process for forming the bolt insertion hole 21a is used.

工程Bでは、折り返しばね部231、連結部232、幅方向延在部233、及び軸方向延在部234が残されるように、これら以外の部分を除去すれば、本体部23が得られる。この場合、除去加工としては、ワイヤ放電加工が用いられる。平鋼を一方の電極とし、放電ワイヤを他方の電極とする。放電ワイヤを平鋼の厚さ方向に送りながら、放電ワイヤの貫通位置を平鋼の表面に平行な面内で走査させることにより、所望の部分を除去できる。   In the process B, the main body 23 is obtained by removing the other portions such that the folding spring portion 231, the connecting portion 232, the width direction extending portion 233, and the axial direction extending portion 234 are left. In this case, wire electric discharge machining is used as the removal machining. Flat steel is used as one electrode, and the discharge wire is used as the other electrode. A desired portion can be removed by scanning the penetration position of the discharge wire in a plane parallel to the surface of the flat bar while feeding the discharge wire in the thickness direction of the flat bar.

なお、除去加工の方法は特に限定されず、ワイヤ放電加工の他、例えば、打ち抜き加工や切削加工等を用いてもよい。また、除去加工の後、平鋼の表面であった面や除去加工で形成された面の粗さを低減させる仕上げ加工を行ってもよい。また、得られた芯材2に、溶接等で他の部材を接続してもよい。   In addition, the removal processing method is not particularly limited, and other than wire electric discharge processing, for example, punching processing or cutting processing may be used. Moreover, you may perform the finishing process which reduces the roughness of the surface which was the surface of the flat steel after the removal process, and the surface formed by the removal process. Further, another member may be connected to the obtained core material 2 by welding or the like.

次に、平鋼の除去加工で得られた芯材2を、各々溝鋼よりなる第1及び第2の座屈防止部材31及び32で挟み込み、ボルト33とナット34及び35で固定することにより、耐震性向上用構造体1が完成する(ステップS13)。   Next, the core material 2 obtained by removing the flat steel is sandwiched between first and second buckling prevention members 31 and 32 each made of groove steel, and fixed with bolts 33 and nuts 34 and 35. Then, the structure 1 for improving earthquake resistance is completed (step S13).

以下、図6及び図7を参照し、耐震性向上用構造体1の作用について説明する。   Hereinafter, with reference to FIG.6 and FIG.7, the effect | action of the structure 1 for earthquake resistance improvement is demonstrated.

図6(A)は、地震等に起因して芯材2にx方向の引張荷重が加えられた場合に、折り返しばね部231が弾性的に撓む様子を示す。この場合、折り返しばね部231は、その脚部231bがx方向に開くように撓む。これにより、図1の取り付け部21及び22が互いにx方向に遠ざかるように相対変位することが実現される。   FIG. 6A shows a state in which the folding spring portion 231 is elastically bent when a tensile load in the x direction is applied to the core member 2 due to an earthquake or the like. In this case, the folding spring portion 231 bends so that the leg portion 231b opens in the x direction. Thereby, it is realized that the mounting portions 21 and 22 in FIG. 1 are relatively displaced so as to be away from each other in the x direction.

図6(B)は、芯材2にx方向の圧縮荷重が加えられた場合に、折り返しばね部231が弾性的に撓む様子を示す。この場合、折り返しばね部231は、その脚部231bがx方向に閉じるように撓む。また、折り返しばね部231の頂部231aが、図1の平板状体Sのy方向に向かい合う側面よりも外方に撓む。これにより、図1の取り付け部21及び22が互いにx方向に近づくように相対変位することが実現される。   FIG. 6B shows a state in which the folding spring portion 231 is elastically bent when a compressive load in the x direction is applied to the core material 2. In this case, the folding spring portion 231 bends so that the leg portion 231b is closed in the x direction. Moreover, the top part 231a of the folding | returning spring part 231 bends outward rather than the side surface which faces the y direction of the flat body S of FIG. Thereby, it is realized that the attachment portions 21 and 22 in FIG. 1 are relatively displaced so as to approach each other in the x direction.

なお、図3に示したように、図4のボルト33は、本体部23の撓みを妨げない位置に挿通されており、第1及び第2の座屈防止部材31及び32で挟み込まれた折り返しばね部231のy方向両側は開放されている。このため、図6(B)で、折り返しばね部231の頂部231aは、図2の平板状体Sのy方向に向かい合う側面よりy方向外方に撓むことが可能である。   As shown in FIG. 3, the bolt 33 in FIG. 4 is inserted in a position that does not hinder the bending of the main body portion 23, and is folded between the first and second buckling prevention members 31 and 32. Both sides of the spring portion 231 in the y direction are open. Therefore, in FIG. 6B, the top portion 231a of the folding spring portion 231 can be bent outward in the y direction from the side surface of the flat plate-like body S in FIG.

図7(A)は、芯材2にx方向の引張荷重が加えられた場合に、連結部232が撓む様子を示す。この場合、一方のセグメント23aの連結部232と、他方のセグメント23bの連結部232とが、互いにy方向に近づくように撓む。この撓みは、図6(A)に示す折り返しばね部231の撓みと相まって、図1の取り付け部21及び22の、互いに遠ざかる方向の相対変位可能量を高めることに寄与する。   FIG. 7A shows how the connecting portion 232 bends when a tensile load in the x direction is applied to the core material 2. In this case, the connecting portion 232 of one segment 23a and the connecting portion 232 of the other segment 23b are bent so as to approach each other in the y direction. This bending, combined with the bending of the folding spring portion 231 shown in FIG. 6 (A), contributes to increasing the relative displaceable amount of the attachment portions 21 and 22 in FIG. 1 in the direction away from each other.

図7(B)は、芯材2にx方向の圧縮荷重が加えられた場合に、連結部232が撓む様子を示す。この場合、一方のセグメント23aの連結部232と、他方のセグメント23bの連結部232とが、互いにy方向に遠ざかるように撓む。この撓みは、図6(B)に示す折り返しばね部231の撓みと相まって、図1の取り付け部21及び22の、互いに近づく方向の相対変位可能量を高めることに寄与する。   FIG. 7B shows a state in which the connecting portion 232 bends when a compressive load in the x direction is applied to the core material 2. In this case, the connection part 232 of one segment 23a and the connection part 232 of the other segment 23b are bent so as to be away from each other in the y direction. This bending, combined with the bending of the folding spring portion 231 shown in FIG. 6B, contributes to increasing the relative displaceable amount of the attachment portions 21 and 22 in FIG.

以上説明したように、本実施形態によれば、例えば次の効果が得られる。   As described above, according to the present embodiment, for example, the following effects can be obtained.

(1)芯材2に、x方向の荷重が作用すると、折り返しばね部231がx方向に弾性的に伸縮すると同時に、建物90に、x方向の弾性復元力を作用させる。このため、塑性変形によって揺れを吸収する場合に比べると、多数回の繰り返し荷重が作用する場合や、揺れの振幅が大きな場合でも、建物の損傷を抑える効果が失われにくい。   (1) When a load in the x direction acts on the core material 2, the folding spring portion 231 elastically expands and contracts in the x direction, and at the same time, an elastic restoring force in the x direction acts on the building 90. For this reason, compared with the case where the vibration is absorbed by plastic deformation, the effect of suppressing damage to the building is less likely to be lost even when a large number of repeated loads are applied or the amplitude of the vibration is large.

(2)本体部23がy方向にセグメント23a及び23bに分割して構成され、セグメント23a及び23bの各々が折り返しばね部231を有すると共に、セグメント23a及び23bの連結部232同士がy方向に互いに遠ざかる方向及び近づく方向に弾性的に変位可能に構成されている。このため、本体部23がセグメント23aと23bとに分割されてない場合に比べると、取り付け部21及び22のx方向の相対変位可能量を大きくすることができる。   (2) The main body portion 23 is divided into segments 23a and 23b in the y direction, each of the segments 23a and 23b has a folding spring portion 231, and the connecting portions 232 of the segments 23a and 23b are mutually in the y direction. It is configured to be elastically displaceable in the direction of moving away and the direction of approaching. For this reason, compared with the case where the main-body part 23 is not divided | segmented into the segments 23a and 23b, the relative displacement amount of the attachment parts 21 and 22 in the x direction can be enlarged.

(3)本体部23が、折り返しばね部231をx方向に複数連結した構造を有する。このため、1つの折り返しばね部231のみを有する場合に比べると、取り付け部21及び22のx方向の相対変位可能量を大きくすることができる。   (3) The main body portion 23 has a structure in which a plurality of folding spring portions 231 are connected in the x direction. For this reason, compared with the case where it has only one folding spring part 231, the relative displacement possible amount of the attaching parts 21 and 22 in the x direction can be increased.

(4)第1及び第2の座屈防止部材31及び32で挟まれた状態の折り返しばね部231が、平板状体Sのy方向に向かい合う側面よりも外方に撓むことが可能に構成されている。このため、取り付け部21及び22のx方向の相対変位可能量を大きくすることができる。   (4) The folding spring portion 231 sandwiched between the first and second buckling prevention members 31 and 32 is configured to be able to bend outward from the side surface of the flat body S facing the y direction. Has been. For this reason, the amount of relative displacement in the x direction of the attachment portions 21 and 22 can be increased.

(5)芯材2が平板状体Sを部分的に除去した外形を有するため、図1に示すように、例えば、柱91と梁92で構成される仕口に設置する場合、柱91と梁92の双方の長手方向に直交する奥行方向にz方向、即ち平板状体Sの厚さ方向を向けた状態で設置できる。即ち、厚さに見合う奥行さえ確保できれば設置できる。このため、設置箇所の制約を受けにくい。また、このように耐震性向上用構造体1は、設置スペースが小さくて済むので、他の制振ダンパー等と併用することも容易に実現できる。   (5) Since the core material 2 has an outer shape obtained by partially removing the flat plate-like body S, as shown in FIG. The beam 92 can be installed in a state in which the z direction, that is, the thickness direction of the plate-like body S is directed in the depth direction orthogonal to both longitudinal directions of the beams 92. In other words, it can be installed as long as the depth corresponding to the thickness can be secured. For this reason, it is hard to receive restrictions of an installation location. Moreover, since the structure 1 for improving earthquake resistance requires only a small installation space, it can be easily realized in combination with other vibration dampers.

(6)芯材2は、平鋼を除去加工するだけで、容易かつ安価に得ることができる。   (6) The core material 2 can be obtained easily and inexpensively by simply removing the flat steel.

以上、本発明の一実施形態について説明したが、本発明はこれに限られない。例えば、以下の変形が可能である。   Although one embodiment of the present invention has been described above, the present invention is not limited to this. For example, the following modifications are possible.

上記実施形態では、座屈防止部材3を備えたが、芯材2の圧縮力による座屈を許容し、その圧縮抵抗力を無視して構造設計できる場合や、芯材2に引張荷重しか作用しない場合等には、座屈防止部材3は備えなくてもよい。芯材2のみを、耐震性向上用弾性部材として、建物90に取り付ければよい。   In the above embodiment, the buckling prevention member 3 is provided. However, the buckling due to the compressive force of the core material 2 is allowed, and the structural design can be performed ignoring the compressive resistance force, or only the tensile load acts on the core material 2. If not, the buckling prevention member 3 may not be provided. Only the core material 2 may be attached to the building 90 as an elastic member for improving earthquake resistance.

上記実施形態では、無荷重状態において、セグメント23aと23bとがy方向に離間した構成を示したが、セグメント23aと23bが無荷重状態においてy方向に接触する部分を有していてもよい。例えば、セグメント23aと23bの連結部232同士がy方向に接触していても、図7(B)に示すように、引張荷重が加わった際、それら連結部232同士が離れる弾性変位が実現される。   In the above-described embodiment, the configuration in which the segments 23a and 23b are separated in the y direction in the no-load state is shown, but the segments 23a and 23b may have a portion that contacts in the y direction in the no-load state. For example, even if the connecting portions 232 of the segments 23a and 23b are in contact with each other in the y direction, as shown in FIG. 7B, an elastic displacement that separates the connecting portions 232 when a tensile load is applied is realized. The

上記実施形態では、ボルト33を折り返しばね部231の撓みを妨げない位置に挿通させたが、折り返しばね部231が一定以上撓んだ場合にボルト33に接触するような位置にボルト33を挿通させ、ボルト33によって本体部23の一定以上の撓みが規制されるようにしてもよい。   In the above-described embodiment, the bolt 33 is inserted into a position that does not hinder the bending of the folding spring portion 231. However, when the folding spring portion 231 is bent more than a certain amount, the bolt 33 is inserted into a position where it comes into contact with the bolt 33. The bending of the main body 23 may be regulated by the bolt 33.

上記実施形態では、図1に、耐震性向上用構造体1を方杖として仕口に設置した例を示したが、耐震性向上用構造体1又は芯材2は、相隣る柱と柱の間に筋交いとして設置することも可能であるし、梁と梁の間に設置すること等も可能である。また、耐震性向上用構造体1は、鉄骨構造だけでなく、木造構造やRC構造にも取り付け可能である。また、耐震性向上用構造体1又は芯材2は、既存の建物に後付けすることもできるし、新築の際に建物に予め組み込むこともできる。   In the above embodiment, FIG. 1 shows an example in which the structure 1 for improving earthquake resistance is installed in a joint as a walking stick, but the structure 1 for improving earthquake resistance or the core material 2 is composed of adjacent columns and columns. It is also possible to install as a brace between the two, or between the beams. The structure 1 for improving earthquake resistance can be attached not only to the steel structure but also to a wooden structure or an RC structure. Moreover, the structure 1 or the core material 2 for improving earthquake resistance can be retrofitted to an existing building, or can be incorporated in a building in advance at the time of new construction.

上記実施形態では、芯材2を平鋼から形成したが、芯材2の素材は、耐震性向上用に使用可能な弾性を示すものであれば、特に鋼に限定されない。例えば、芯材2の素材は、鋼以外の鉄であってもよいし、鉄以外の金属又は合金であってもよい。   In the said embodiment, although the core material 2 was formed from the flat steel, if the raw material of the core material 2 shows the elasticity which can be used for an earthquake resistance improvement, it will not be specifically limited to steel. For example, the material of the core material 2 may be iron other than steel, or a metal or alloy other than iron.

図8(A)〜(E)に、芯材2の本体部の変形例を示す。   8A to 8E show modifications of the main body portion of the core material 2.

図8(A)に示すように、折り返しばね部をリング状部材241で構成し、複数のリング状部材241を連結部242で接続してもよい。このように、本体部は、必ずしもy方向に複数のセグメントに分割されていなくてもよい。   As shown in FIG. 8A, the folding spring portion may be configured by a ring-shaped member 241, and a plurality of ring-shaped members 241 may be connected by a connecting portion 242. As described above, the main body does not necessarily have to be divided into a plurality of segments in the y direction.

図8(B)に示すように、y方向最外方に位置する頂部243aと、頂部243aを連結部243cに接続する一対の脚部243b−1及び243b−2と、を有する折り返しばね部243の、脚部243b−1及び243b−2の少なくともいずれか一方が、y方向と交差する方向に延在していてもよい。図8(B)では、脚部243b−2がy方向と交差する斜め方向に延在し、のこぎり波状の本体部が構成されている。   As shown in FIG. 8B, a folding spring portion 243 having a top portion 243a located on the outermost side in the y direction and a pair of leg portions 243b-1 and 243b-2 connecting the top portion 243a to the connecting portion 243c. At least one of the leg portions 243b-1 and 243b-2 may extend in a direction intersecting the y direction. In FIG. 8B, the leg portion 243b-2 extends in an oblique direction intersecting the y direction, and a sawtooth-shaped main body portion is configured.

図8(C)に示すように、或る折り返しばね部244の形状及び/又は寸法が、他の折り返しばね部245のそれと異なっていてもよい。このように、折り返しばね部は、平面視において必ずしも互いに合同で無くてもよい。   As shown in FIG. 8C, the shape and / or size of a certain folding spring portion 244 may be different from that of other folding spring portions 245. In this way, the folding spring portions do not necessarily have to be congruent with each other in plan view.

図8(D)に示すように、y方向に関して、一方のセグメント246における連結部246cが、一方のセグメント246における折り返しばね部の頂部246aよりも、他方のセグメント247における折り返しばね部の頂部247aに近い位置に配置されていてもよい。図8(D)では、一方のセグメント246における折り返しばね部の脚部246bと、他方のセグメント247における折り返しばね部の脚部247bとが、x方向に対向している。そして、一方のセグメント246における折り返しばね部の頂部246aと、他方のセグメント247における連結部247cとが、y方向に対向している。   As shown in FIG. 8D, with respect to the y direction, the connecting portion 246c in one segment 246 is located on the top portion 247a of the folding spring portion in the other segment 247 rather than the top portion 246a of the folding spring portion in the one segment 246. You may arrange | position in the near position. In FIG. 8D, the leg portion 246b of the folding spring portion in one segment 246 and the leg portion 247b of the folding spring portion in the other segment 247 face each other in the x direction. And the top part 246a of the folding | returning spring part in one segment 246 and the connection part 247c in the other segment 247 are facing the y direction.

図8(E)に示すように、折り返しばね部248の脚部248bは、平面視において、頂部248aとの接続部から、連結部248cとの接続部までの間に、略直角状の屈曲部が2箇所有するクランク状をなしていてもよい。図8(E)では、脚部248bは、頂部248a及び連結部248cの双方とy方向に対向する部分を有する。   As shown in FIG. 8E, the leg portion 248b of the folding spring portion 248 has a substantially right-angled bent portion between the connecting portion with the top portion 248a and the connecting portion with the connecting portion 248c in plan view. May have a crank shape having two locations. In FIG. 8E, the leg portion 248b has a portion facing both the top portion 248a and the connecting portion 248c in the y direction.

図9(A)〜(E)に、芯材2の本体部のさらに他の変形例を示す。   9A to 9E show still another modification of the main body portion of the core material 2.

図9(A)に示すように、折り返しばね部249は、y方向外方を向く角部を有するよう平面視略V字状に折り返された形状を有していてもよい。   As shown in FIG. 9A, the folding spring portion 249 may have a shape folded back in a substantially V shape in plan view so as to have a corner portion facing outward in the y direction.

図9(B)に示すように、折り返しばね部250は、y方向外方に向かって凸に湾曲するよう平面視略U字状に折り返された形状を有していてもよい。   As shown in FIG. 9B, the folding spring portion 250 may have a shape folded in a substantially U shape in a plan view so as to be convexly curved outward in the y direction.

図9(C)に示すように、一方のセグメントの折り返しばね部231と、他方のセグメントの折り返しばね部231とで、x方向の位置にずれがあってもよい。   As shown in FIG. 9C, the position in the x direction may be shifted between the folding spring portion 231 of one segment and the folding spring portion 231 of the other segment.

図9(D)に示すように、折り返しばね部251は、平面視において、x方向及びy方向と交差する斜め方向に折り返された形状を有していてもよい。   As shown in FIG. 9D, the folding spring portion 251 may have a shape folded in an oblique direction intersecting the x direction and the y direction in plan view.

図9(E)に示すように、一方のセグメントと、他方のセグメントとの間に、x方向に延在する軸部材252を配置してもよい。軸部材252は、例えば、芯材2のy方向への曲がりを防止する効果を奏する。軸部材252のx方向両端と、取り付け部21及び22との間には間隙が確保され、軸部材252は、取り付け部21及び22の、互いに近づく方向の相対変位を妨げない。また、軸部材252のy方向両端と、折り返しばね部との間にも間隙が確保されている。軸部材252は、図2に示す第1及び第2の座屈防止部材31及び32に厚さ方向に挟まれた状態で保持される。なお、軸部材252も、芯材を得るための平鋼と同一の平鋼から得ることができる。   As shown in FIG. 9E, a shaft member 252 extending in the x direction may be disposed between one segment and the other segment. The shaft member 252 has an effect of preventing the core material 2 from bending in the y direction, for example. A gap is secured between both ends of the shaft member 252 in the x direction and the attachment portions 21 and 22, and the shaft member 252 does not hinder the relative displacement of the attachment portions 21 and 22 in the direction approaching each other. Further, a gap is also secured between both ends of the shaft member 252 in the y direction and the folding spring portion. The shaft member 252 is held in a state of being sandwiched between the first and second buckling prevention members 31 and 32 shown in FIG. 2 in the thickness direction. The shaft member 252 can also be obtained from the same flat bar as the flat bar for obtaining the core material.

図10(A)は、耐震性向上用構造体1の他の設置態様を示す概念図である。図示のように、取り付け部21とプレート93とを添板81を用いて連結し、取り付け部22とプレート93とを添板82を用いて連結してもよい。   FIG. 10 (A) is a conceptual diagram showing another installation mode of the earthquake-proof structure 1. As shown in the drawing, the attachment portion 21 and the plate 93 may be connected using the accessory plate 81, and the attachment portion 22 and the plate 93 may be connected using the accessory plate 82.

図10(B)は、取り付け部21とプレート93との連結部分の、xz平面に平行な断面図である。添板81は、取り付け部21とプレート93とを厚さ方向(z方向)に挟み込む表裏一対の添板81a及び81bで構成されている。添板81a及び81bによって取り付け部21及びプレート93を挟み込んだ状態で、添板81a及び81bと取り付け部21、並びに添板81a及び81bとプレート93とが、それぞれz方向に挿通されたボルトで結合されている。また、図示しないが、添板82も表裏一対の添板で構成され、取り付け部22とプレート94との連結部分も、図10(B)と同様に構成されている。   FIG. 10B is a cross-sectional view of the connecting portion between the attachment portion 21 and the plate 93 parallel to the xz plane. The accessory plate 81 includes a pair of front and back accessory plates 81a and 81b that sandwich the attachment portion 21 and the plate 93 in the thickness direction (z direction). In a state where the attachment portion 21 and the plate 93 are sandwiched between the attachment plates 81a and 81b, the attachment plates 81a and 81b and the attachment portion 21, and the attachment plates 81a and 81b and the plate 93 are coupled with bolts inserted in the z direction, respectively. Has been. Although not shown, the accessory plate 82 is also constituted by a pair of front and back accessory plates, and the connecting portion between the attachment portion 22 and the plate 94 is also configured in the same manner as in FIG.

図11(A)〜(C)は、耐震性向上用構造体1の他の変形例を示す。   FIGS. 11A to 11C show other modified examples of the structure 1 for improving earthquake resistance.

図11(A)に示すように、芯材2と、第1及び第2の座屈防止部材31及び32との間に、介在物4を配置してもよい。介在物4としては、芯材2と、第1及び第2の座屈防止部材31及び32との摩擦力を調整するための摩擦力調整剤(例えば、オイルや粘着剤等)や、緩衝のための弾性体(例えば、ゴムパッキン)等が挙げられる。   As illustrated in FIG. 11A, the inclusion 4 may be disposed between the core member 2 and the first and second buckling prevention members 31 and 32. As the inclusion 4, a friction force adjusting agent (for example, oil or adhesive) for adjusting the friction force between the core member 2 and the first and second buckling prevention members 31 and 32, For example, an elastic body (for example, rubber packing).

図11(B)に示すように、第1及び第2の座屈防止部材31及び32のy方向両側に側板5を配置し、その側板5と、第1及び第2の座屈防止部材31及び32とを、y方向に挿通するボルト33で固定してもよい。   As shown in FIG. 11B, the side plate 5 is disposed on both sides of the first and second buckling prevention members 31 and 32 in the y direction, and the side plate 5 and the first and second buckling prevention members 31 are arranged. And 32 may be fixed by a bolt 33 inserted in the y direction.

なお、第1及び第2の座屈防止部材31及び32の幅を、芯材2の幅より広くしておけば、芯材2のy方向外方への弾性変位は許容される。また、側板5の、折り返しバネ部231と対向する位置に、折り返しばね部231の突出を許容する開口を形成してもよい。   In addition, if the width | variety of the 1st and 2nd buckling prevention members 31 and 32 is made wider than the width | variety of the core material 2, the elastic displacement to the y direction outward of the core material 2 is accept | permitted. Further, an opening that allows the folding spring portion 231 to protrude may be formed at a position of the side plate 5 that faces the folding spring portion 231.

図11(C)に示すように、芯材2と、これを挟み込んだ第1及び第2の座屈防止部材31及び32とを、角形鋼管よりなる中空管状体6内に挿入してもよい。この場合、ボルト33とナット34及び35が不要となる。   As shown in FIG. 11C, the core member 2 and the first and second buckling prevention members 31 and 32 sandwiching the core member 2 may be inserted into the hollow tubular body 6 made of a square steel pipe. . In this case, the bolt 33 and the nuts 34 and 35 are unnecessary.

〔実施例〕
以下、実施例について説明する。
〔Example〕
Examples will be described below.

日本鉄鋼連盟製品規格に規定される高強度鋼H‐SA700よりなる平鋼を準備した。かかる平鋼の厚さは9mm、長さは1140mm、幅は140mmである。この平鋼をワイヤ放電加工することにより、図3に示す形状の芯材2を得た。   A flat steel made of high-strength steel H-SA700 specified in the Japan Iron and Steel Federation product standard was prepared. The flat steel has a thickness of 9 mm, a length of 1140 mm, and a width of 140 mm. The flat steel was subjected to wire electric discharge machining to obtain a core material 2 having a shape shown in FIG.

得られた芯材2は、平鋼と同じ厚さ、長さ、及び幅をもつ。本体部23のx方向の長さは760mmである。各折り返しばね部231のx方向の長さは80mmである。各連結部232のx方向の長さは60mm、幅は10mmであり、連結部232同士のy方向の間隔は10mmである。   The obtained core material 2 has the same thickness, length, and width as flat steel. The length of the main body 23 in the x direction is 760 mm. Each folding spring portion 231 has a length in the x direction of 80 mm. Each connecting portion 232 has a length in the x direction of 60 mm and a width of 10 mm, and an interval in the y direction between the connecting portions 232 is 10 mm.

次に、得られた芯材2を、各々溝鋼よりなる第1及び第2の座屈防止部材31及び32で挟み込み、手締めで軽くボルト締めし、耐震性向上用構造体1を得た。   Next, the obtained core material 2 was sandwiched between first and second buckling prevention members 31 and 32 each made of grooved steel, and lightly bolted by hand tightening to obtain a structure 1 for improving earthquake resistance. .

得られた耐震性向上用構造体1の取付け部21及び22間に、x方向に引張荷重と圧縮荷重とを交互に繰返し作用させ、x方向の変位量を計測した。   A tensile load and a compressive load were alternately and repeatedly applied in the x direction between the attachment portions 21 and 22 of the obtained structure 1 for improving earthquake resistance, and the amount of displacement in the x direction was measured.

図12は、計測された変位量と荷重との関係を示すグラフである。横軸は、一対の取り付け部21及び22のx方向の相対変位量を示し、この値は変位計により計測した。縦軸は、芯材2に作用させたx方向の荷重を示し、この値はロードセルにより計測した。なお、荷重は、圧縮荷重を正とし、引張荷重を負とした。荷重は、x方向変位量が、±5mm、±10mm、±15mmとなるように段階的に変化させた。   FIG. 12 is a graph showing the relationship between the measured displacement amount and the load. The horizontal axis represents the relative displacement amount in the x direction of the pair of attachment portions 21 and 22, and this value was measured by a displacement meter. The vertical axis represents the load in the x direction applied to the core material 2, and this value was measured by a load cell. As for the load, the compressive load was positive and the tensile load was negative. The load was changed stepwise so that the amount of displacement in the x direction was ± 5 mm, ± 10 mm, and ± 15 mm.

図示のように、x方向変位量約±15mmの範囲内で、弾性挙動が維持されることが確認された。グラフの傾きで表される芯材2の剛性は、約5kN/cmである。グラフが示す若干の非線形挙動は、芯材2と座屈防止部材3との間の摩擦に起因すると考えられる。   As shown in the figure, it was confirmed that the elastic behavior was maintained within the range of the displacement amount in the x direction of about ± 15 mm. The rigidity of the core material 2 represented by the inclination of the graph is about 5 kN / cm. The slight nonlinear behavior shown in the graph is considered to be caused by friction between the core material 2 and the buckling prevention member 3.

芯材2に生じた最大ひずみは、15/1140≒1/67であり、この値は、大地震で一般的な建築物に強制されるひずみにほぼ等しい。このように、本実施例に係る耐震性向上用構造体1によれば、揺れが大きく、かつ多数回の繰り返し荷重が作用する場合でも、その弾性が維持されることが確認された。   The maximum strain generated in the core material 2 is 15 / 1140≈1 / 67, and this value is almost equal to the strain imposed on a general building in a large earthquake. Thus, according to the structure 1 for improving earthquake resistance according to this example, it was confirmed that the elasticity is maintained even when the shaking is large and a large number of repeated loads are applied.

〔シミュレーション1〕
上記実施例に係る耐震性向上用構造体1の地震に対する応答を求めるためのシミュレーションを行った。耐震性向上用構造体1の剛性は、5kN/cmとした。
[Simulation 1]
The simulation for obtaining the response to the earthquake of the structure for improving earthquake resistance 1 according to the above embodiment was performed. The rigidity of the structure 1 for improving earthquake resistance was set to 5 kN / cm.

図13に、シミュレーションの条件を示す。基礎97、97に夫々柱95、95が立設され、柱95、95間には梁96が架設されてなる門型の骨組の四隅に、耐震性向上用構造体1を取り付ける。柱95の高さは400cm、梁96の長さは800cm、耐震性向上用構造体1の長さ(x方向の長さ)は、約141.4cmである。   FIG. 13 shows the simulation conditions. The pillars 95 and 95 are erected on the foundations 97 and 97, respectively, and the structure 1 for improving earthquake resistance is attached to the four corners of a gate-shaped frame in which a beam 96 is installed between the pillars 95 and 95. The height of the column 95 is 400 cm, the length of the beam 96 is 800 cm, and the length (the length in the x direction) of the structure 1 for improving earthquake resistance is about 141.4 cm.

柱95は、肉厚12mm、一辺角250mmの角型鋼管とした。梁96は、H寸法450mm、B寸法200mm、t1寸法9mm、t2寸法14mmのH型鋼とした。柱95と梁96の材料の降伏強さは235N/mm、ヤング係数は2.05×10N/mmとした。また、梁96の両端に50kNの集中重量が存在し、梁96の中央には100kNの集中重量が存在しているとした。 The column 95 was a square steel pipe having a wall thickness of 12 mm and a side angle of 250 mm. The beam 96 was an H-shaped steel having an H dimension of 450 mm, a B dimension of 200 mm, a t1 dimension of 9 mm, and a t2 dimension of 14 mm. Yield strength of the material of the pillars 95 and beams 96 235N / mm 2, Young's modulus was 2.05 × 10 5 N / mm 2 . Further, it is assumed that a concentrated weight of 50 kN exists at both ends of the beam 96 and a concentrated weight of 100 kN exists at the center of the beam 96.

上記構成の骨組に、地震波を与えた。地震波は、1995年神戸海洋気象台で観測された兵庫県南部地震の地震波(神戸NS波)と同一のものとした。地震波の最大地動加速度は818galであり、継続時間は29.6秒である。   A seismic wave was given to the frame of the above configuration. The seismic wave was the same as that of the 1995 Hyogoken Nanbu Earthquake observed at the Kobe Ocean Meteorological Observatory (Kobe NS wave). The maximum ground motion acceleration of the seismic wave is 818 gal and the duration is 29.6 seconds.

図14(A)は、比較例として、耐震性向上用構造体1が取り付けられて無い上記骨組に、上記地震波を与えた場合の応答を示すグラフである。横軸は、骨組みの、梁96の位置の横方向(梁96の長さ方向)の変位(以下、層間変位という。)を示し、縦軸は横方向のせん断力(以下、層せん断力という。)を示す。   FIG. 14A is a graph showing, as a comparative example, a response when the seismic wave is given to the frame to which the structure for improving earthquake resistance 1 is not attached. The horizontal axis represents the displacement of the frame in the lateral direction (the length direction of the beam 96) of the beam 96 (hereinafter referred to as interlayer displacement), and the vertical axis represents the lateral shear force (hereinafter referred to as layer shear force). .)

図示のように、ヒステリシスはみられるが、層間変位の正方向への偏りがみられる。正方向の最大変位は8.28cmであった。また、ヒステリシスを表すグラフの上部C1は、略水平であり、この部分では骨組の剛性がほぼゼロとなっていることを示す。   As shown in the figure, hysteresis is observed, but the displacement of the interlayer displacement in the positive direction is observed. The maximum displacement in the positive direction was 8.28 cm. Further, the upper part C1 of the graph representing the hysteresis is substantially horizontal, indicating that the rigidity of the frame is substantially zero in this part.

図14(B)は、実施例に係る耐震性向上用構造体1を四隅に取り付けた骨組の、同じ地震波に対する応答を示すグラフである。図示のように、層間変位の正方向への偏りが緩和されている。これは、耐震性向上用構造体1の弾性復元力による原点復帰の効果が発揮されたことを示す。正方向の最大変位は6.93cmへと減少した。さらに、ヒステリシスを表すグラフの上部C2の傾きは、比較例の対応する部分C1の傾きよりも大きい。このことは、骨組の剛性が維持されていることを示す。このように、実施例に係る耐震性向上用構造体1によれば、大地震が生じた場合でも建物の損傷を抑える効果が維持されることが確認された。   FIG. 14B is a graph showing the response to the same seismic wave of the frame in which the structure 1 for improving earthquake resistance according to the example is attached to the four corners. As shown in the figure, the bias of the interlayer displacement in the positive direction is reduced. This indicates that the effect of returning to the origin by the elastic restoring force of the structure 1 for improving earthquake resistance is exhibited. The maximum positive displacement decreased to 6.93 cm. Furthermore, the slope of the upper part C2 of the graph representing the hysteresis is larger than the slope of the corresponding part C1 of the comparative example. This indicates that the rigidity of the frame is maintained. Thus, according to the structure 1 for improving earthquake resistance according to the example, it was confirmed that the effect of suppressing damage to the building was maintained even when a large earthquake occurred.

〔シミュレーション2〕
同一の平鋼(H‐SA700)よりなり、平面視での形状のみが異なる芯材の試験体A〜Hの各々について、x方向一端を固定し、他端にx方向の引張荷重を与えた場合に、試験体に生じるミーゼス応力を、弾性有限要素解析により算出した。
[Simulation 2]
For each of the core specimens A to H made of the same flat steel (H-SA700) and different in shape in plan view, one end in the x direction was fixed and a tensile load in the x direction was given to the other end. In some cases, the Mises stress generated in the specimen was calculated by elastic finite element analysis.

図15(A)〜(H)に、ミーゼス応力の算出結果を、濃淡で表現した画像を示す。ミーゼス応力比が0の部分を白色で表現し、ミーゼス応力比が1の部分を黒色で表現し、ミーゼス応力比が0を超え1未満の部分は、1に近い程濃くなるよう灰色で表現した。色の濃い部分程、応力が集中していることを表す。   15A to 15H show images in which the calculation results of Mises stress are expressed in shades. The portion where the Mises stress ratio is 0 is expressed in white, the portion where the Mises stress ratio is 1 is expressed in black, and the portion where the Mises stress ratio exceeds 0 and less than 1 is expressed in gray so that the closer to 1, the darker . The darker the color, the more concentrated the stress.

図15(A)は、試験体Aの解析結果を示す。試験体Aは、図3に示す形状のものとした。折り返しばね部を構成する頂部及び脚部並びに連結部の各々の幅を10mmとした。   FIG. 15A shows the analysis result of the specimen A. The test body A had the shape shown in FIG. The width of each of the top part, the leg part, and the connecting part constituting the folding spring part was 10 mm.

図15(B)は、試験Bの解析結果を示す。試験体Bは、試験体Aと比べて、各セグメントが有する折り返しばね部の数が1つ少ない。   FIG. 15B shows the analysis result of test B. Compared with the test body A, the test body B has one fewer folding spring parts.

図15(C)は、試験体Cの解析結果を示す。試験体Cも、試験体A及びBと同様、図3に示す形状のものとした。但し、折り返しばね部を構成する頂部及び脚部並びに連結部の各々の幅を20mmとした。   FIG. 15C shows the analysis result of the specimen C. Similarly to the test specimens A and B, the test specimen C has the shape shown in FIG. However, each width | variety of the top part which comprises a folding | returning spring part, a leg part, and a connection part was 20 mm.

図15(D)は、試験体Dの解析結果を示す。試験体Dは、図8(A)に示す形状のものとした。折り返しばね部を構成する頂部及び脚部並びに連結部の各々の幅を10mmとした。   FIG. 15D shows the analysis result of the specimen D. The test body D had the shape shown in FIG. The width of each of the top part, the leg part, and the connecting part constituting the folding spring part was 10 mm.

図15(E)は、試験体Eの解析結果を示す。試験体Eは、図8(B)に示す形状のものとした。折り返しばね部を構成する頂部及び脚部並びに連結部の各々の幅を10mmとした。   FIG. 15E shows the analysis result of the specimen E. The specimen E had a shape shown in FIG. The width of each of the top part, the leg part, and the connecting part constituting the folding spring part was 10 mm.

図15(F)は、試験体Fの解析結果を示す。試験体Fは、図8(C)に示す形状のものとした。折り返しばね部を構成する頂部及び脚部並びに連結部の各々の幅を15mmとした。また、x方向中央の折り返しばね部の頂部のx方向の長さは、他の折り返しばね部のそれの2倍とした。   FIG. 15 (F) shows the analysis result of the specimen F. The test body F had a shape shown in FIG. The width of each of the top part, the leg part, and the connecting part constituting the folding spring part was 15 mm. Further, the length in the x direction of the top portion of the folding spring portion at the center in the x direction was twice that of the other folding spring portions.

図15(G)は、試験体Gの解析結果を示す。試験体Gは、図8(D)に示す形状のものとした。折り返しばね部を構成する頂部及び脚部並びに連結部の各々の幅を15mmとした。   FIG. 15G shows the analysis result of the specimen G. The test body G had a shape shown in FIG. The width of each of the top part, the leg part, and the connecting part constituting the folding spring part was 15 mm.

図15(H)は、試験体Hの解析結果を示す。試験体Hは、図8(E)に示す形状のものとした。折り返しばね部を構成する頂部及び脚部並びに連結部の各々の幅を15mmとした。   FIG. 15 (H) shows the analysis result of the specimen H. The test body H had a shape shown in FIG. The width of each of the top part, the leg part, and the connecting part constituting the folding spring part was 15 mm.

また、試験体A〜Hの各々について、いずれかの箇所がミーゼス降伏条件にはじめて達するときのx方向の変位(降伏時変位)と、そのときの荷重(降伏荷重)とを算出した。   Further, for each of the test bodies A to H, the displacement in the x direction (displacement at yield) and the load at that time (yield load) when any part reaches the Mises yield condition for the first time were calculated.

表1に、算出結果を示す。表1中、幅とは、折り返しばね部を構成する頂部及び脚部並びに連結部の各々の幅のことを指す。   Table 1 shows the calculation results. In Table 1, the width refers to the width of each of the top portion and the leg portion and the connecting portion constituting the folding spring portion.

例えば、試験体A及びBと、試験体Dとの計算結果を比較すると、試験体A及びBの方が、試験体Dよりも、大きな降伏時変位を確保できることが分かる。これは、試験体A及びBにおいては、本体部がy方向に2つのセグメントに分割されており、図7(A)を参照して説明したように、セグメント同士がy方向に互いに遠ざかる方向に弾性的に変位可能であることによる。   For example, when the calculation results of the test bodies A and B and the test body D are compared, it can be seen that the test bodies A and B can secure a larger displacement at yield than the test body D. In the test bodies A and B, the main body is divided into two segments in the y direction, and the segments are separated from each other in the y direction as described with reference to FIG. By being elastically displaceable.

また、のこぎり波状の本体部を有する試験体Eの降伏時荷重は、矩形状の折り返しばね部を有する他の試験体のそれに比べて著しく小さい。このことから、折り返しばね部は、矩形に折り返された形状を有する方が好ましいと言える。   Moreover, the load at the time of yielding of the test body E having a sawtooth-shaped main body is significantly smaller than that of other test bodies having a rectangular folded spring portion. From this, it can be said that the folding spring portion preferably has a shape folded into a rectangle.

なお、試験体Cは、降伏時荷重は最も大きいが、降伏時変位は最も小さい。降伏時変位よりも大きな変位がもたらされると、弾性復元力を発揮できなくなる。このため、降伏時荷重と降伏時変位の双方が大きいことが好ましい。この観点から、試験体A、B、G、及びHが好ましいと言える。   The specimen C has the largest yield load, but the smallest yield displacement. If a displacement larger than the yield displacement is brought about, the elastic restoring force cannot be exhibited. Therefore, it is preferable that both the yield load and the yield displacement are large. From this viewpoint, it can be said that the specimens A, B, G, and H are preferable.

本発明は、その広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされる。上記実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。本発明の範囲は、実施形態ではなく、請求の範囲によって示される。請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。   Various embodiments and modifications can be made to the present invention without departing from the broad spirit and scope thereof. The above embodiment is for explaining the present invention, and does not limit the scope of the present invention. The scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and the scope of the equivalent invention are considered to be within the scope of the present invention.

1…耐震性向上用構造体、2…芯材(耐震性向上用弾性部材)、3…座屈防止部材、4…介在物、5…測板、6…中空管状体、21,22…取り付け部、21a,22a…ボルト挿通孔、23…本体部、23a,23b…セグメント、31…第1の座屈防止部材、31a,32a…ボルト挿通孔、32…第2の座屈防止部材、33…ボルト、34,35…ナット、81,81a,81b,82,82a,82b…添板、90…建物、91,95…柱、92,96…梁、93,94…プレート、97…基礎、231,235,236,238…折り返しばね部、232…連結部、233…幅方向延在部、234…軸方向延在部、231a…頂部、231b,233…脚部、234…接続部、241…リング状部材、242…連結部、243…折り返しばね部、243a…頂部、243b−1,243b−2…脚部、243c…連結部、244,245…折り返しばね部、246…セグメント、246a…頂部、246b…脚部、246c…連結部、247…セグメント、247a…頂部、247b…脚部、247c…連結部、248…折り返しばね部、248a…頂部、248b…脚部、248c…連結部、249,250,251…折り返しばね部、252…軸部材、311,321…底板部、312,322…側板部、S…平板状体。   DESCRIPTION OF SYMBOLS 1 ... Structure for improving earthquake resistance, 2 ... Core material (elastic member for improving earthquake resistance), 3 ... Buckling prevention member, 4 ... Inclusion, 5 ... Measuring plate, 6 ... Hollow tubular body, 21, 22 ... Installation Part, 21a, 22a ... bolt insertion hole, 23 ... main body part, 23a, 23b ... segment, 31 ... first buckling prevention member, 31a, 32a ... bolt insertion hole, 32 ... second buckling prevention member, 33 ... bolts, 34, 35 ... nuts, 81, 81a, 81b, 82, 82a, 82b ... accessory plates, 90 ... buildings, 91, 95 ... pillars, 92, 96 ... beams, 93, 94 ... plates, 97 ... foundations, 231, 235, 236, 238 ... folding spring part, 232 ... connection part, 233 ... width direction extension part, 234 ... axial direction extension part, 231a ... top part, 231b, 233 ... leg part, 234 ... connection part, 241 ... Ring-shaped member, 242 ... Connection part, 243 ... Fold Return spring part, 243a ... top part, 243b-1,243b-2 ... leg part, 243c ... connecting part, 244,245 ... folding spring part, 246 ... segment, 246a ... top part, 246b ... leg part, 246c ... connecting part, 247 ... Segment, 247a ... Top, 247b ... Leg, 247c ... Connection part, 248 ... Folding spring part, 248a ... Top part, 248b ... Leg part, 248c ... Connection part, 249, 250, 251 ... Folding spring part, 252 ... Shaft member, 311, 321... Bottom plate portion, 312, 322... Side plate portion, S.

Claims (9)

平板状体を部分的に除去した形状の外形を有する耐震性向上用弾性部材であって、
前記平板状体の延在方向両端部分に位置する一対の取り付け部と、
前記一対の取り付け部間に配置される本体部であって、前記平板状体に対する平面視において前記延在方向と交差する方向に折り返された形状を有し、前記延在方向の荷重によって前記延在方向に弾性的に伸縮可能な折り返しばね部を有する本体部と、
を備える耐震性向上用弾性部材。
An elastic member for improving earthquake resistance having an outer shape of a shape obtained by partially removing a flat plate,
A pair of attachment portions located at both ends of the plate-like body in the extending direction;
A body portion disposed between the pair of attachment portions, the body portion having a shape folded in a direction intersecting the extending direction in a plan view with respect to the flat plate-like body, and the extension by the load in the extending direction A body portion having a folding spring portion that is elastically expandable and contractable in the direction of movement;
An elastic member for improving earthquake resistance.
前記本体部が、前記平板状体の厚さ方向及び前記延在方向に直交する幅方向に、複数のセグメントに分割して構成され、各々の前記セグメントが前記折り返しばね部を有すると共に、前記セグメント同士が前記幅方向に互いに遠ざかる方向及び近づく方向に弾性的に変位可能に構成された請求項1に記載の耐震性向上用弾性部材。   The main body is divided into a plurality of segments in the thickness direction of the flat body and the width direction orthogonal to the extending direction, and each of the segments has the folding spring portion, and the segments The elastic member for improving seismic resistance according to claim 1, wherein the elastic members are configured to be elastically displaceable in a direction in which they are separated from each other in the width direction and a direction in which they are approached. 前記本体部が、前記折り返しばね部を前記延在方向に複数連結した構造を有する請求項1又は2に記載の耐震性向上用弾性部材。   The elastic member for improving earthquake resistance according to claim 1 or 2, wherein the main body has a structure in which a plurality of the folding springs are connected in the extending direction. 前記折り返しばね部が、前記平板状体の厚さ方向及び前記延在方向に直交する幅方向外方に矩形に折り返された形状を有する請求項1から3のいずれか1項に記載の耐震性向上用弾性部材。   The earthquake resistance according to any one of claims 1 to 3, wherein the folding spring portion has a shape folded in a rectangular shape outward in the width direction perpendicular to the thickness direction of the flat plate-like body and the extending direction. Elastic member for improvement. 前記一対の取り付け部と、前記本体部と、が一体に形成されている請求項1から4のいずれか1項に記載の耐震性向上用弾性部材。   The elastic member for improving earthquake resistance according to any one of claims 1 to 4, wherein the pair of attachment portions and the main body portion are integrally formed. 請求項1から5のいずれか1項に記載の耐震性向上用弾性部材と、
前記耐震性向上用弾性部材の、前記延在方向の圧縮荷重に対する、前記平板状体の厚さ方向の座屈変形を防止する座屈防止部材と、
を備える耐震性向上用構造体。
The elastic member for improving earthquake resistance according to any one of claims 1 to 5,
A buckling prevention member for preventing buckling deformation in the thickness direction of the plate-like body with respect to the compressive load in the extending direction of the elastic member for improving earthquake resistance;
A structure for improving earthquake resistance.
前記座屈防止部材が、前記耐震性向上用弾性部材を、前記平板状体の厚さ方向に関して両側から挟み込んでいる請求項6に記載の耐震性向上用構造体。   The structure for improving earthquake resistance according to claim 6, wherein the buckling preventing member sandwiches the elastic member for improving earthquake resistance from both sides in the thickness direction of the flat plate-like body. 前記平板状体の、該平板状体の厚さ方向及び前記延在方向に直交する幅方向に向かい合う側面の位置よりも外方に、前記折り返しばね部が撓むことが可能に構成された請求項6又は7に記載の耐震性向上用構造体。   The folding spring portion is configured to be able to bend outward from a position of a side surface of the flat plate body facing a thickness direction of the flat plate body and a width direction orthogonal to the extending direction. Item 8. The structure for improving earthquake resistance according to Item 6 or 7. 平鋼を部分的に除去することにより、前記平鋼の長さ方向両端部分に、一対の取り付け部を形成する工程と、
前記平鋼を部分的に除去することにより、前記平鋼の長さ方向中間部分に、前記一対の取り付け部に接続される本体部であって、前記平鋼に対する平面視において前記長さ方向と交差する方向に折り返された形状を有し、前記長さ方向の荷重によって前記長さ方向に弾性的に伸縮可能な折り返しばね部を有する本体部を形成する工程と、
を含む耐震性向上用弾性部材の製造方法。
Forming a pair of attachment portions on both ends of the flat steel in the longitudinal direction by partially removing the flat steel; and
By partially removing the flat bar, a main body part connected to the pair of attachment parts at a middle part in the length direction of the flat bar, and in the plan view with respect to the flat bar, the length direction and Forming a body portion having a folded back spring portion that has a shape folded in an intersecting direction and elastically expandable and contractable in the length direction by the load in the length direction;
A method for producing an elastic member for improving earthquake resistance, comprising:
JP2015218453A 2015-11-06 2015-11-06 Earthquake resistance improving elastic member, earthquake resistance improving structure and manufacturing method of earthquake resistance improving elastic member Pending JP2017089714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015218453A JP2017089714A (en) 2015-11-06 2015-11-06 Earthquake resistance improving elastic member, earthquake resistance improving structure and manufacturing method of earthquake resistance improving elastic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015218453A JP2017089714A (en) 2015-11-06 2015-11-06 Earthquake resistance improving elastic member, earthquake resistance improving structure and manufacturing method of earthquake resistance improving elastic member

Publications (1)

Publication Number Publication Date
JP2017089714A true JP2017089714A (en) 2017-05-25

Family

ID=58767909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015218453A Pending JP2017089714A (en) 2015-11-06 2015-11-06 Earthquake resistance improving elastic member, earthquake resistance improving structure and manufacturing method of earthquake resistance improving elastic member

Country Status (1)

Country Link
JP (1) JP2017089714A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124443A1 (en) * 2017-12-19 2019-06-27 京セラ株式会社 Pressing member and substrate holding tool
JP2021065561A (en) * 2019-10-28 2021-04-30 合同会社イニット Leaf spring, portable cooking utensil, and portable storage tool
CN114623179A (en) * 2022-03-28 2022-06-14 江苏科技大学 Phononic crystal sandwich plate based on multilayer S-shaped local oscillator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124443A1 (en) * 2017-12-19 2019-06-27 京セラ株式会社 Pressing member and substrate holding tool
JP2021065561A (en) * 2019-10-28 2021-04-30 合同会社イニット Leaf spring, portable cooking utensil, and portable storage tool
CN114623179A (en) * 2022-03-28 2022-06-14 江苏科技大学 Phononic crystal sandwich plate based on multilayer S-shaped local oscillator

Similar Documents

Publication Publication Date Title
JP4729134B1 (en) Metal plate for vibration control and building structure
JP5885950B2 (en) Seismic control wall frame structure
JP6432797B2 (en) Vibration damping device for prefabricated warehouses and similar buildings
JP2017089714A (en) Earthquake resistance improving elastic member, earthquake resistance improving structure and manufacturing method of earthquake resistance improving elastic member
JP6888301B2 (en) Assembly materials, bearing walls, truss beams and beams
JP6043525B2 (en) Seismic isolation structure
JP2010216611A (en) Seismic response control metallic plate
JP4395419B2 (en) Vibration control pillar
JPH05332045A (en) Oscillation damper for structure
JP5626924B2 (en) Damper
JP6677480B2 (en) Hysteretic damper and vibration control structure of building
JP5271164B2 (en) Floor slab structure
JP6251701B2 (en) Vibration control device
KR100822594B1 (en) Friction type retrofitting device for steel tower structures using relative displacement between members added to a tower column
JP4660722B2 (en) Vibration control device
JP2000351424A (en) Rack
JP7172488B2 (en) Energy-absorbing devices and load-bearing walls with energy-absorbing devices
KR102164646B1 (en) Column type hysteresis damper
JP7128068B2 (en) External wall panel mounting structure
JP7228336B2 (en) damping building
JPH09125740A (en) Earthquake-resisting wall
JPS6317990B2 (en)
JP5806843B2 (en) Seismic structure of building and building
JP3215235U (en) Vibration control panel
Liew et al. Stability functions for second-order inelastic analysis of space frames