JP6404990B2 - Mechanical switching body stop device for switchgear - Google Patents

Mechanical switching body stop device for switchgear Download PDF

Info

Publication number
JP6404990B2
JP6404990B2 JP2017089906A JP2017089906A JP6404990B2 JP 6404990 B2 JP6404990 B2 JP 6404990B2 JP 2017089906 A JP2017089906 A JP 2017089906A JP 2017089906 A JP2017089906 A JP 2017089906A JP 6404990 B2 JP6404990 B2 JP 6404990B2
Authority
JP
Japan
Prior art keywords
closing
opening
shutter curtain
mechanical
curtain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017089906A
Other languages
Japanese (ja)
Other versions
JP2017129005A (en
Inventor
展行 ▲吉▼田
展行 ▲吉▼田
聡 猪俣
聡 猪俣
和博 ▲角▼
和博 ▲角▼
橋本 淳
淳 橋本
野口 宏幸
宏幸 野口
彰雄 西川
彰雄 西川
岡田 秀正
秀正 岡田
Original Assignee
文化シヤッター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008204051 priority Critical
Priority to JP2008204051 priority
Application filed by 文化シヤッター株式会社 filed Critical 文化シヤッター株式会社
Publication of JP2017129005A publication Critical patent/JP2017129005A/en
Application granted granted Critical
Publication of JP6404990B2 publication Critical patent/JP6404990B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

  The present invention relates to a mechanical opening / closing body stopping device for an opening / closing device for stopping the closing movement when the opening / closing body being closed is in contact with an obstacle. For example, a shutter curtain is an opening / closing body. The present invention can be used for various opening / closing devices such as shutter devices, awning devices, and smoke-proof banner devices.

  In the management shutter device that is an opening / closing device and is an opening / closing body in which the shutter curtain is opened / closed, the shutter curtain is opened / closed to open / close an opening such as an entrance / exit. In addition, in the shutter device for disaster prevention, which is also an open / close device, the shutter curtain having a disaster prevention function such as smoke prevention is closed and moved in the event of an abnormal situation such as a fire. A disaster prevention zone is formed. In such a management shutter device, a disaster prevention shutter device, and a combined management and disaster prevention shutter device, an obstacle exists in the closing direction of the shutter curtain, and the shutter curtain that is being moved closes against this obstacle. When the contact is made, the closing movement of the shutter curtain is stopped. An apparatus for executing this stop is disclosed in Patent Document 1 below.

  In the shutter device disclosed in Patent Document 1, when the shutter curtain that is being closed is in contact with the obstacle, the movable member provided at the end of the shutter curtain on the closing side is disposed on the shutter curtain due to the contact. The detection signal from the micro switch is sent to a driving device that opens and closes the shutter curtain via the transmitter and the receiver, and the closing movement of the shutter curtain is stopped by stopping the driving device.

JP-A-8-105280

  The conventional device for stopping the closing movement of the shutter curtain in contact with the obstacle is an electrical device using a microswitch, a transmitter, a receiver, or the like as described above. If this device can be a mechanical device, it is more preferable because the closing movement of the shutter curtain in contact with the obstacle can be stopped even in the event of a disaster such as a fire or during a normal power outage. It becomes.

  Even when the device for stopping the closing movement of the shutter curtain in contact with the obstacle is a mechanical device, when the shutter curtain in the closing movement comes into contact with the obstacle, the shutter curtain It is desirable to stop the closing movement of the shutter curtain, and it is desirable to stop the closing movement of the shutter curtain instantaneously in order to ensure the safety of the shutter curtain and obstacles.

  An object of the present invention is to provide a mechanical opening / closing body stopping device for an opening / closing device capable of instantaneously stopping the closing movement of the opening / closing body when the opening / closing body in the closing movement contacts an obstacle. .

  The mechanical opening / closing body stopping device for an opening / closing apparatus according to the present invention has a portion spanned between the opening and closing body and an immovable member that is stationary with respect to the opening / closing body that opens and closes in the vertical direction, A bridging member that causes movement relative to the opening / closing body by the opening / closing movement of the opening / closing body, and the bridging member that is disposed on the opening / closing body and that is in contact with an obstacle when the opening / closing body in the middle of the closing movement contacts the obstacle A mechanical coupling device for mechanically coupling a member, and the opening / closing body disposed on the stationary member and acting on the bridge member when the opening / closing body abuts against the obstacle Relay means for relaying the tension force due to its own weight, and the tension force relayed by the relay means is transmitted via the tension force transmission member, and the closing movement of the opening / closing body is stopped by the transmission of the tension force With automatic closure device for, The relay means and the automatic closing device are arranged at a position shifted from a central position in the width direction of the opening / closing body to either side of the width direction, and the relay means and the automatic closing device The position where the apparatus is displaced is the same position in the width direction with respect to the center position.

  In the present invention, the relay means and the automatic closing device are arranged at positions shifted from the center position in the width direction of the opening / closing body to either side of the width direction, and the relay means and the automatic closing device are shifted. Since the disposed position is the same position in the width direction with respect to the central position, the length of the tension transmitting member spanned between the relay means and the automatic closing device is long. The length is getting shorter. For this reason, the tension force due to the weight of the opening / closing body acting on the bridging member when the opening / closing body in the closing movement abuts on the obstacle is instantaneously transmitted to the automatic closing device by the tension force transmitting member, Therefore, the closing movement of the opening / closing body can be quickly stopped when the opening / closing body in the closing movement contacts an obstacle.

  In the present invention, the stationary member that spans the spanning member between the opening and closing body may be any member as long as it is a member that is stationary relative to the opening and closing body that opens and closes. A member (including the floor of the opening) that forms the outer frame of the opening such as an entrance that is opened and closed by the door, a guide member that guides the opening and closing movement of the opening and closing body, and a structural housing of the opening and closing device and the opening and closing device It is a frame for a structure such as an installed building.

  In the present invention, the bridging member may be of any shape and structure, and this bridging member may be, for example, a telescopic-type rod-like member or block-like member that is stretchable. A member etc. may be sufficient. When the bridge member is a string-like member, the string-like member may be a wire made of metal, a string made of synthetic resin, a rope, or a chain including a roller chain or a ball chain. Other elongated members may be used.

  Further, in the present invention, the above-mentioned relay means may be of any shape and structure, and this relay means has a connecting member for connecting, for example, the bridging member and the tension transmitting member. It may be a device, or it may be a connecting member itself for connecting the bridging member and the tension transmitting member, or when connecting the bridging member and the tension transmitting member directly, these bridging members And a guide member for guiding the movement of the tension transmission member.

  Furthermore, when the bridging member is a string-like member, the shape, structure, etc. of the string-like member are arbitrary.

  An example of the case where the bridging member is a string-like member is that the string-like member has a U-shape in which a portion corresponding to the mechanical coupling device is a folded portion. Another example is that the string-like member extends linearly in the opening / closing movement direction of the opening / closing body except for the portion corresponding to the mechanical coupling device.

  When the string-like member has a U shape in which the portion corresponding to the mechanical coupling device is a folded portion, one end of the string-like member is coupled to the relay means, and the other of the string-like member The end of this is coupled to a winding means for winding the string member so as to be unwound.

  When the string-like member extends linearly in the opening / closing movement direction of the opening / closing body except for the portion corresponding to the mechanical coupling device, one end of the string-like member is connected to the relay The other end of the string-like member is coupled to the stationary member on which the relay unit is disposed or a stationary member different from the stationary member.

  Further, the opening / closing movement of the opening / closing body according to the present invention in the vertical direction may be guided by a pair of guide members arranged on both sides of the opening / closing body in the width direction, and guided by such guide members. It may be done without.

  When the opening / closing movement in the vertical direction of the opening / closing body is guided by a pair of guide members arranged on both sides in the width direction of the opening / closing body, the relay means and the mechanical coupling device among the bridging members The portion in between may be arranged outside the pair of guide members, or may be arranged inside one guide member of the pair of guide members.

  When the part between the relay means and the mechanical coupling device is arranged inside one guide member of the pair of guide members, the inside of the one guide member of the bridge members The portion disposed in the can be effectively protected from external force by the guide member.

  Further, in the case where the portion of the bridging member between the relay means and the mechanical coupling device is disposed inside one guide member of the pair of guide members, the relay means is arranged on the one guide. It is preferable that the self-closing device is disposed directly above or near the member, and the automatic closing device is also disposed directly above or near the one guide member.

  According to this, since both the relay means and the automatic closing device are arranged immediately above or near the one guide member, the arrangement position of the relay means and the arrangement position of the automatic closing device are However, they are in the same position or close to each other in the horizontal direction. For this reason, the length of the tension transmission member spanned between these relay means and the automatic closing device can be further shortened, so that the opening / closing body in the closing movement comes into contact with the obstacle. Thus, the tension force due to the weight of the opening / closing body acting on the spanning member is transmitted to the automatic closing device more instantaneously by the tension force transmitting member, and when the opening / closing body in the closing movement comes into contact with the obstacle, the opening / closing body Can be stopped more quickly.

  Further, in the present invention, the configuration of the automatic closing device for stopping the closing movement of the opening / closing body by transmitting the tension force described above via the tension force transmitting member is arbitrary, and an example thereof is an automatic closing The automatic closing device is a device for stopping the closing movement of the opening / closing body by operating the brake means of the opening / closing machine that opens and closes the opening / closing body.

  When the opening / closing movement of the opening / closing body is performed by winding and unwinding the opening / closing body by the winding shaft, the opening / closing machine rotates the winding shaft for opening / closing movement of the opening / closing body. be able to.

  Further, the automatic closing device is connected to a pulling operation member that turns off the brake means in order to close and move the opening / closing body that has been fully opened by pulling, and pulling the pulling operation member. An operating device may be provided on one of the building frames arranged on both sides of the opening / closing body in the width direction.

  When the operation device for pulling the pulling operation member is provided on one of the building housings arranged on both sides in the width direction of the opening / closing body, the one building provided with the operation device is provided. It is preferable that the frame is a building frame close to the arrangement position of the automatic closing device among the building frames arranged on both sides of the opening / closing body in the width direction.

  According to this, since the length of the pulling operation member spanned between the automatic closing device and the operation device can be shortened, the brake means is instantly turned off by the pulling operation of the pulling operation member by the operation device. The opening / closing body that has been fully opened by this turning off can be quickly closed and moved.

  Further, instead of arranging the above-mentioned relay means and the automatic closing device that are shifted from the above-mentioned central position in the width direction of the opening / closing body to the same side in the width direction, at the same position in the width direction of the opening / closing body, Of these relay means and the automatic closing device, the relay means is preferably arranged at a position closer to the central position in the width direction of the opening / closing body than the automatic closing device.

  According to this, as described above, when the opening / closing body in the middle of the closing movement contacts the obstacle, the relay means is mechanically coupled to the relay means via the connecting member. Since the mechanical coupling device for achieving the connected state is connected, this mechanical coupling device is also disposed at a position closer to the center position in the width direction of the opening / closing body than the automatic closing device. Thus, the opening / closing body and the bridging member are mechanically coupled to the mechanical coupling device regardless of the position of the opening / closing body in the width direction of the opening / closing body that the opening / closing body in the middle of the closing movement comes into contact with the obstacle. The operation for achieving the state can be more reliably performed. Further, the automatic closing device is disposed at a position farther from the center position in the width direction of the opening / closing body than the relay means, and this position is opened / closed by a member that supports the opening / closing body so as to be opened and closed, for example, by a winding shaft. In the opening and closing device that opens and closes the opening and closing body by winding and unwinding the body, the position is close to the side surface portion of the support member that rotatably supports the winding shaft. Can be supported directly or indirectly through other members or devices.

  The present invention described above can be applied to any opening / closing device. One example is a shutter device whose opening / closing body is a shutter curtain. The present invention can also be applied to an awning device, a smoke-proof banner device, and the like.

  When the present invention is applied to a shutter device, the shutter device may be a shutter device for an arbitrary use. That is, the shutter device to which the present invention is applied may be a management shutter device in which the shutter curtain is opened and closed to open and close an opening such as an entrance, and the shutter curtain having a disaster prevention function such as smoke prevention fires. It may be a shutter device for disaster prevention for forming a disaster prevention zone in a structure such as a building by closing and moving when an abnormal situation such as the above occurs, and may also be a combined shutter device for management and disaster prevention. The disaster prevention shutter device includes a disaster prevention shutter device for lifting means for closing the vicinity of the lifting means such as an elevator with a fully closed shutter curtain.

  Further, in the shutter device to which the present invention is applied, the shutter curtain may be configured by an arbitrary member and structure. That is, all or the main part of the shutter curtain may be formed by a plurality of slats, may be formed by a sheet, may be formed by a plurality of pipes connected by a link member, or may be formed by a plurality of panels. It may be formed with a net, and may be formed by combining a plurality of members among these members.

  Furthermore, at least one of the opening and closing movements of the shutter curtain may be performed by an automatic driving device such as an electric motor or may be performed manually.

  In addition, when the closing movement of the shutter curtain is downward, the closing movement may be performed by the weight of the shutter curtain, or the driving force of the driving device such as an electric motor is applied to the weight of the shutter curtain. May be added.

  Further, the means for stopping the shutter curtain before closing and moving in the downward direction may be a brake means or a shutter curtain such as a seat plate provided at the end of the shutter curtain on the closing side. The latching means provided with the latching member latched to a structural member may be sufficient.

  For the above-mentioned brake means, for the shutter device that performs the opening and closing movement of the shutter curtain by winding and unwinding of the shutter curtain by the winding shaft, an opening / closing machine that is a driving device for rotating the winding shaft is connected to the electric motor. Braking means are included which are configured with the means.

  Further, the locking means includes one that stops the shutter curtain at the fully open position when the locking member is locked to a shutter curtain constituent member such as a seat plate when the shutter curtain reaches the fully open position. included.

  Further, the shutter curtain can be opened and closed by winding and unwinding the shutter curtain using the take-up shaft as described above, or the shutter curtain can be opened and closed by moving the shutter curtain all over like an overhead door. It may be performed while maintaining the same shape as the overall shape when reaching the closed position (including a shape that is somewhat deformed but substantially the same shape), or opening the shutter curtain The movement may be performed while the shutter curtain is deformed into a curved shape or the like, or a plurality of structural members such as a panel constituting the shutter curtain are connected when the shutter curtain is closed and moved while the shutter curtain is opened ( When storing the shutter curtain), they are separated from each other, and these components are overlapped in the thickness direction. It may be adapted to fit.

  The shutter curtain opening and closing movement is performed by winding and unwinding the shutter curtain by forward and reverse rotation of the winding shaft, and the downward closing movement of the shutter curtain is the shutter curtain's own weight or the driving force of the driving device in addition to its own weight. For the shutter device used in the above, a return spring by a torsion coil spring or a mainspring spring that accumulates a return force during the closing movement of the shutter curtain is provided on the winding shaft, and the upward opening movement of the shutter curtain is performed. The return force accumulated in the return spring may be used as an auxiliary force.

  According to the present invention, it is possible to obtain an effect that the closing movement of the opening / closing body can be instantaneously stopped when the opening / closing body in the closing movement contacts an obstacle.

FIG. 1 is a front view showing the entirety of a shutter device serving as an opening / closing device according to an embodiment of the present invention. 2 is a cross-sectional view taken along line S2-S2 of FIG. FIG. 3 is a cross-sectional view showing the internal structure of the switch shown in FIGS. 1 and 2. FIG. 4 is a perspective view showing a mechanical obstacle detection device for mechanically detecting an obstacle when the shutter curtain as an opening / closing body abuts on the obstacle while moving. FIG. 5 is a view showing the front side of the case of the mechanical coupling device shown in FIG. 4. FIG. 6 is a front sectional view of FIG. 5 showing the structure of the mechanical coupling device. FIG. 7 is a front view showing the mechanical coupling device attached to the shutter curtain. 8 is a cross-sectional view taken along line S8-S8 in FIG. FIG. 9 is a cross-sectional view showing a structure for attaching the mechanical coupling device to the fixing portion of the seat plate of the shutter curtain. FIG. 10 is a view similar to FIG. 9 showing the structure of an embodiment different from FIG. FIG. 11 is a front view showing that the swinging member disposed inside the fixing portion of the seat plate is formed by connecting a plurality of extruded molded products or pull-molded products with connecting members. . FIG. 12 is a front view showing that the movable part of the seat plate is formed by simply arranging a plurality of extruded molded products or drawn molded products in the length direction without connecting them. 13 is a cross-sectional view taken along line S13-S13 in FIG. FIG. 14 is an opening / closing body sub-portion, and is similar to FIG. 13, which shows a case where the movable portion of the seat plate, which is the curtain sub-portion, is raised with respect to the obstacle by contact with the obstacle. FIG. FIG. 15 shows a state in which when the shutter curtain being moved is in contact with an obstacle, the locking wire that is a bridging member is locked by the mechanical coupling device, and the shutter curtain and the locking wire are coupled. It is a figure similar to FIG. 6 shown. FIG. 16 is a diagram showing the internal structure of the second processing device of the mechanical obstacle detection device shown in FIG. FIG. 17 is a front view showing an internal structure of the automatic closing device shown in FIG. 1 and the like. FIG. 18 is a plan view showing the internal structure of the automatic closing device. FIG. 19 is a view similar to FIG. 18 showing when the solenoid of the automatic closing device is energized and excited due to a disaster such as a fire. FIG. 20 is a view similar to FIG. 18 showing when energization and excitation of the solenoid of the automatic closing device are stopped. FIG. 21 is a view similar to FIG. 18 showing when the shutter curtain in the closing movement comes into contact with an obstacle. FIG. 22 is a view similar to FIG. 1 showing the state after the shutter curtain is guided by the guide rail which is a guide member and before the operation of bridging the locking wire. FIG. 23 is a view similar to FIG. 1 showing the state after the operation of bridging the locking wire from the state of FIG. In FIG. 24, the unit structure constituting the mechanical obstacle detection device and the pressing means for pressing the shutter curtain to the side opposite to the arrangement position of the unit structure are arranged in the lintel that is a stationary member. It is a figure similar to FIG. 2 which shows embodiment. FIG. 25 is a perspective view of the pressing means. FIG. 26 is a plan view of the pressing means. FIG. 27 is a view similar to FIG. 2 showing an embodiment in which the shutter curtain and the unit structure can be separated in the thickness direction of the shutter curtain. FIG. 28 is a view similar to FIG. 1 showing an embodiment in which a lock wire is disposed inside a guide rail serving as a guide member for guiding opening and closing movement of the shutter curtain. FIG. 29 is a front sectional view showing the mechanical coupling device in the case of the embodiment of FIG. FIG. 30 is a view similar to FIG. 1 showing the shutter device in the embodiment in which the bridging member is a linearly extending roller chain except for the portion corresponding to the mechanical coupling device. 31 is a cross-sectional view taken along line S31-S31 of FIG. FIG. 32 is a diagram showing the processing apparatus shown in FIG. 31, in which the front and back are reversed. FIG. 33 is an enlarged front view showing a part of a seat plate which is an end member of the shutter curtain. FIG. 34 is a front sectional view showing the internal structure of the seat plate shown in FIG. 35 is a cross-sectional view taken along line S35-S35 of FIG. 36 is a cross-sectional view taken along line S36-S36 of FIG. FIG. 37 is a view similar to FIG. 34 showing a state in which the ratchet member is engaged with the ratchet wheel by the shutter curtain being moved in contact with the obstacle. FIG. 38 is a view similar to FIG. 36 when the state shown in FIG. 37 is reached. FIG. 39 is a view similar to FIG. 36 showing a first alternative embodiment of the mechanical coupling device when the bridging member is a roller chain. FIG. 40 is a view similar to FIG. 36 showing a second alternative embodiment of the mechanical coupling device when the bridging member is a roller chain. FIG. 41 is a view similar to FIG. 36 showing a third alternative embodiment of the mechanical coupling device when the bridging member is a roller chain.

  EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated based on drawing. The opening / closing device according to the present embodiment is a shutter device in which the opening / closing body is a shutter curtain. The shutter device according to the present embodiment is a combined management and disaster prevention shutter device. That is, the shutter device according to the present embodiment has a function as a shutter device for management in which the shutter curtain moves to open and close an opening such as an entrance and a shutter curtain having a disaster prevention function such as smoke prevention. It has a function as a shutter device for disaster prevention for forming a disaster prevention zone in a structure such as a building by closing and moving when an abnormal situation such as a fire occurs.

  FIG. 1 shows the entire shutter device according to the present embodiment, and FIG. 1 shows a half in which the opening / closing movement direction is up and down, and the shutter curtain 1 that is closed and moved downward is closed to about half. It shows when it is in the closed state. The opening that is opened and closed by the shutter curtain 1 is an entrance 2 formed in the building. The entrance 2 includes a left and right building housing 3 such as a wall and a lower end of the shutter curtain 1 when fully closed. It is surrounded by a floor 4 and a ceiling member 5 that are counterpart members to be hit. A pair of left and right guide rails 6 slidably inserted at both ends in the left and right direction of the shutter curtain 1, in other words, both ends in the width direction of the shutter curtain 1, are attached to the left and right building housings 3. The shutter curtain 1 is moved up and down by being guided by these guide rails 6 as members.

  A shutter box 8 is disposed in a ceiling space 7 partitioned by the ceiling member 5 with respect to the entrance / exit 2, and this shutter box 8 is shown in FIG. 2, which is a cross-sectional view taken along line S <b> 2-S <b> 2 of FIG. As shown in the figure, it is coupled to a building housing 9 such as a falling wall existing in the ceiling space 7 with a coupler 10 such as a bolt. A take-up shaft 11 is horizontally accommodated in the shutter box 8, and the take-up shaft 11 is rotatably supported by the left and right side portions 8A and 8B shown in FIG. Yes. As shown in FIG. 1, an opening / closing machine 13 is connected to one end of the winding shaft 11 via a driving force transmission means 12 using a sprocket wheel and a roller chain. The opening / closing machine 13 serving as a driving device for driving the winding shaft 11 is also shown in FIG. 2, and the rotational force of the driving shaft 14 of the opening / closing machine 13 is driven by a driving sprocket attached to the driving shaft 14. A driving force transmission means 12 includes a wheel 12A, a driven sprocket wheel 12B attached to the one end of the winding shaft 11, and an endless roller chain 12C bridged between the sprocket wheels 12A and 12B. Then, it is transmitted to the winding shaft 11.

  In addition, the opening / closing machine 13 of this embodiment is attached to the bracket member 15 coupled to one of the left and right side surface portions 8A and 8B of the shutter box 8.

  As can be seen from FIG. 2, the shutter curtain 1 is wound around the winding shaft 11, and the upper end of the shutter curtain 1 is coupled to the outer peripheral surface of the winding shaft 11. Further, the lower part of the shutter curtain 1 from the winding shaft 11 is suspended below the ceiling member 5 through a slit 17 provided in the lintel 16 disposed on the ceiling member 5, and further the shutter. Both ends in the width direction of the curtain 1 are slidably inserted into the left and right guide rails 6 as described above. The lintel 16 is formed by lintel members 16A and 16B arranged to face each other, and a slit 17 is formed between the lintel members 16A and 16B.

  FIG. 3 is a cross-sectional view showing the internal structure of the switch 13. As shown in FIG. 3, the opening / closing machine 13 has a DC or AC electric motor means 18 and a brake means 19 arranged in parallel in the axial direction. The drive shaft 14 described above is an electric motor means. The rotary shaft is fixedly arranged at the center of the 18 rotating rotors 18A. A disc-shaped brake shoe 20 is coupled to the end of the drive shaft 14 on the brake means 19 side. The brake means 19 is provided with a brake shaft 21 that is slidable by a fixed distance in the axial direction. The brake shaft 21 is coupled to a brake drum 22 facing the brake shoe 20 in the axial direction. The brake shaft 21 and the brake drum 22 in the normal state are pressed toward the electric motor means 18 by the spring 23, and therefore the brake means 19 is turned on by the pressure contact between the brake shoe 20 and the brake drum 22. Accordingly, the drive shaft 14 of the electric motor means 18 at this time is not rotated by the braking force of the brake means 19.

  On the other hand, when the solenoid 24 arranged in the brake means 19 is energized, the brake shaft 21 and the brake drum 22 slide in a direction away from the electric motor means 18 against the spring 23 by the magnetic force of the solenoid 24. For this reason, the pressure contact between the brake shoe 20 and the brake drum 22 is released, and the brake means 19 is turned off. Therefore, at this time, the drive shaft 14 of the electric motor means 18 can be rotated by energizing the coil 25.

  Among the left and right building housings 3 shown in FIG. 1, in one building housing 3A, the shutter curtain 1 is opened and moved upward with respect to the doorway 2, closed and moved downward, and stopped. An operating device 30 for performing the above is attached. The operation device 30 is provided with an “open” button, a “close” button, and a “stop” button. Further, the shutter curtain 1 occupies most of the area of the shutter curtain 1, and a curtain body 1A whose upper end is coupled to the winding shaft 11 and a seat plate 1B provided at the lower end of the curtain body 1A. It has become. The curtain body 1A of the present embodiment is formed by connecting a large number of slats vertically.

  The curtain main body 1A is an opening / closing body main body in the present embodiment, and the seat plate 1B is an end member in the present embodiment.

  When the shutter curtain 1 reaches the height position of the lintel 16 disposed on the ceiling member 5 as described above, or when the occupant plate 1B has the lintel 16 and the floor 4 as shown in FIG. When the “close” button is operated when the shutter curtain 1 has reached a halfway position (half-open state), the brake means 19 receives a signal from the “close” button by a control device (not shown). Since the solenoid 24 is energized, the brake means 19 is turned off. Thus, the shutter curtain 1 is rotated downward from the take-up shaft 11 by rotating the take-up shaft 11 and the drive shaft 14 by the dead weight of the shutter curtain 1, and the shutter curtain 1 that is closed and moved thereby is brought into the fully closed position. When it reaches, the control device that receives a signal from a sensor (not shown) that detects the fully closed position cuts off the energization of the solenoid 24 and the brake means 19 is turned on by the spring 23. In addition, when the shutter curtain 1 is fully closed, or the shutter curtain 1 is in a half-open state where the seat plate 1B reaches the midway position between the lintel 16 and the floor 4 as shown in FIG. When the “open” button is operated in the semi-closed state), the solenoid 24 of the brake means 19 is energized by the control device that receives a signal from the “open” button, so that the brake means 19 is turned off. The coil 25 of the electric motor means 18 is energized by the control device. For this reason, the drive shaft 14 rotates in the reverse direction, and this rotation is transmitted to the winding shaft 11 via the driving force transmission means 12 described above, and the shutter curtain 1 is moved to the winding shaft 11 by the reverse rotation of the winding shaft 11. It is rolled up and moved. When the shutter curtain 1 reaches the fully open position, the control device that receives a signal from a sensor (not shown) that detects the fully open position cuts off the energization of the solenoid 24, and the brake means 19 is turned on by the spring 23. The energization of the coil 25 is cut off by the control device.

  Further, if the “stop” button is operated while the shutter curtain 1 is being closed and moved, the energization to the solenoid 24 is cut off by the control device that receives a signal from the “stop” button. Is turned on by the spring 23, and the shutter curtain 1 stops at that position. Further, when the “stop” button is operated while the shutter curtain 1 is being opened and moved, the energization to the solenoid 24 is cut off by the control device that receives a signal from the “stop” button. Is turned on by the spring 23, and the control device cuts off the energization of the coil 25 of the electric motor means 18, whereby the shutter curtain 1 stops at that position.

  As can be seen from the above description, the floor 4 and the guide rail 6, the shutter box 8, the bracket member 15 coupled to the shutter box 8, the lintel 16 and the like with respect to the shutter curtain 1 that opens and closes. Therefore, the floor 4, the guide rail 6, the shutter box 8, the bracket member 15, the lintel 16, and the like are immovable members for the shutter curtain 1.

  In addition, the winding shaft 11 that rotates forward and backward as described above is provided with a return spring by a torsion coil spring or a mainspring spring in which a return force is accumulated during the closing movement of the shutter curtain 1, and the shutter curtain 1 is moved upward. The opening movement may be performed using the return force accumulated in the return spring as an auxiliary force.

  Further, as shown in FIG. 3, a lever member 31 is disposed at the end of the brake shaft 21 opposite to the electric motor means 18 side. The lever member 31 penetrates the brake shaft 21 and includes a first portion 31A and a second portion 31B that are divided with the brake shaft 21 as a boundary. A first bent portion 31C is formed in the first portion 31A, and a second bent portion 31D is formed in the second portion 31B. When a load is applied to the first portion 31A in the A direction, that is, the side opposite to the electric motor means 18, the first portion 31A swings in the A direction with the second bent portion 31D as a fulcrum, so that the brake shaft 21 and the brake drum 22 slide in the A ′ direction which is the same direction as the A direction. For this reason, the brake means 19 can be turned off without energizing the solenoid 24.

  The load in the A direction acting on the first portion 31 </ b> A in this way is performed by an automatic closing device 32 described later attached to the opening / closing machine 13. As will be described later, the automatic closing device 32 is a mechanical control device for mechanically controlling the opening / closing machine 13 serving as a driving device for driving the shutter curtain 1.

  Further, when a load in the same direction as the A direction acts on the second portion 31B, the second portion 31B swings in the same direction as the A direction with the first bent portion 31C as a fulcrum. 21 and the brake drum 22 slide in the A ′ direction. Therefore, the brake means 19 can be turned off at this time without energizing the solenoid 24.

  Thus, applying a load in the same direction as the A direction to the second portion 31B can be performed manually. For this reason, the opening / closing machine 13 according to this embodiment can turn off the brake means 19 by manual operation. Note that the second portion 31B may be omitted leaving the second bent portion 31D.

  4 shows a mechanical obstacle for mechanically detecting the obstacle 34 when the seat plate 1B of the shutter curtain 1 abuts against the obstacle 34 shown in FIG. A detection device 35 is shown. The mechanical obstacle detection device 35 includes a locking wire 36 serving as a bridging member having a portion spanned between the lintel 16 serving as the stationary member and the shutter curtain 1. One end of the flexible locking wire 36 is coupled, and the first processing device 37 that processes the one end is coupled to the other end of the locking wire 36. The second processing unit 38 processing the other end and the locking wire 36 are disposed in the middle of the length of the locking wire 36, and the locking wire 36 is mechanically moved when the shutter curtain 1 comes into contact with the obstacle 34. And, in other words, a mechanical coupling device 39 for mechanically coupling the shutter curtain 1 and the locking wire 36 to each other. The mechanical coupling device 39 is attached to the shutter curtain 1 as will be described later.

  The locking wire 36 serving as the above-described bridging member is also a string-like member and an elongated member in the present embodiment.

  The first processing device 37, the second processing device 38, and the mechanical coupling device 39 are connected to each other by the lock wire 36, and therefore, mechanical obstacles including these devices 37 to 39 as constituent elements. The detection device 35 is a unit that is easy to handle.

  The first processing device 37 is provided with a rotatable reel 40, and the locking wire 36 is wound around the reel 40 to which one end of the locking wire 36 is coupled. A return spring 41 such as a mainspring spring is connected to the reel 40, and when the lock wire 36 rotates the reel 40 and is drawn out from the reel 40, a return force is accumulated in the return spring 41. When the locking wire 36 is slack, the reel 40 is rotated in the direction in which the locking wire 36 is wound by the return force accumulated in the return spring 41. For this reason, in the present embodiment, the first processing device 37 is a winding device for winding the locking wire 36 so as to be unwound.

  The second processing device 38 is provided with a rotating member 42, and the other end of the locking wire 36 is coupled to the rotating member 42 via a coil spring 43.

  In addition, the first processing device 37 and the second processing device 38 are disposed on the upper surface of the base member 44 that is fixedly disposed on the lintel 16 with bolts or welding. For this reason, the first processing device 37 and the second processing device 38 are disposed. The processing device 38 is a unit structure 45 connected by a base member 44. Therefore, in order to perform the operation of laying the lock wire 36 between the lintel 16 and the shutter curtain 1, the operation of arranging the first processing device 37 and the second processing device 38 in the lintel 16 is a unit structure. The work 45 can be completed simply by performing the work of fixing and installing the object 45 to the lintel 16 with bolts or welding, and this work can be easily performed.

  Also, as described above, the other end of the locking wire 36 is coupled to the rotating member 42 of the second processing device 38 via the coil spring 43, as shown in FIG. The wire 36 is passed through the slit 17 of the lintel 16 disposed on the ceiling member 5 described above. That is, the lock wire 36 has a length that extends over the top and bottom of the ceiling member 5, and the lock wire 36 is inserted into the slit 17 of the lintel 16 without contacting the lintel 16. Yes.

  The arrangement positions of the first processing device 37 and the second processing device 38 in the lintel 16 can be adjusted in the thickness direction of the shutter curtain 1. This will be described. As shown in FIG. 4, the machine casing 46 of the first processing device 37 is a fastening device such as a screw inserted into a long hole 47 formed in the side surface portion 44 </ b> A of the base member 44. 48 is attached to this side surface portion 44A. Therefore, the attachment position of the first processing device 37 on the base member 44 can be adjusted in the thickness direction of the shutter curtain 1 by the length of the long hole 47. Further, the substrate portion 49A of the machine casing 49 of the second processing apparatus 38 is attached to the base member 44 with a fastening tool 51 such as a screw inserted into a long hole 50 formed in the substrate portion 49A. Therefore, the mounting position of the second processing device 38 on the base member 44 can be adjusted in the thickness direction of the shutter curtain 1 by the length of the long hole 50.

  In addition, the structure which can adjust the arrangement position of the 1st processing apparatus 37 and the 2nd processing apparatus 38 in the lintel 16 to the thickness direction of the shutter curtain 1 is not limited to the system of the long holes 47 and 50, for example, Further, a screw feeding method using rotation of a screw shaft member such as a bolt, or a slide-and-stop method in which a plurality of stop members are arranged in the middle of the guide groove may be used.

  The case 55 of the mechanical coupling device 39 shown in FIG. 4 has a back surface portion 55A and an upper surface portion 55B shown in FIG. 4, and a front surface portion 55C shown in FIG. That is, in FIG. 4 and FIG. 5, the front and back of the mechanical coupling device 39 are reversed. FIG. 6 is a front sectional view of FIG. 5 showing the structure of the mechanical coupling device 39 housed in the case 55. As shown in FIG. 4, the upper surface portion 55B of the case 55 is formed with two holes 56 and 57 through which the locking wire 36 enters and exits. As shown in FIG. Two rotatable rollers 58 and 59 for guiding the lock wire 36 are arranged in the interior of the 55 so as to be separated from each other in the width direction of the shutter curtain 1, and together with these rollers 58 and 59, the lock wire 36. A plurality of guide members 60 such as pins for guiding them are also arranged.

  Further, in the case 55, a first lever member 61 serving as a sandwiching member for sandwiching a portion (a folded portion described later) 36A between the rollers 58 and 59 of the lock wire 36 from above and below. The second lever member 62 is disposed, and these lever members 61 and 62 are swingable up and down around the same fulcrum shaft 63. A downward pressing force by a torsion coil spring 64 is acting on the upper first lever member 61, and the first lever member 61 is provided with a convex portion 61A that is curved downward. When the portion 61A hits the portion 36A of the locking wire 36, the downward swing limit of the first lever member 61 around the fulcrum shaft 63 is defined. Further, in order to prevent the first lever member 61 from largely swinging downward about the fulcrum shaft 63 when the portion 36A is relaxed, the case 55 includes a first lever member. A stop member 65 is fixed by a pin or the like for receiving the end of 61 opposite to the fulcrum shaft 63 side.

  A weight member 66 is attached to an end of the lower second lever member 62 opposite to the fulcrum shaft 63 side. Due to the weight of the weight member 66, the fulcrum shaft 63 is attached to the second lever member 62. A downward swinging force is acting around the center. Further, the second lever member 62 is provided with a convex portion 62A that is curved upward.

  Further, friction members 67 and 68 are provided on the lower surface of the upper first lever member 61 and the upper surface of the lower second lever member 62, in other words, on the surfaces of the lever members 61 and 62 facing each other. It is attached. When the first lever member 61 and the second lever member 62 pinch and lock the portion 36A of the lock wire 36, the friction members 67 and 68 generate a friction force between the portion 36A and the friction member 67 and 68. It is intended to increase the size and secure the lock. The upper first lever member 61 is formed with a downward projecting piece portion 61B. The projecting piece portion 61B and the back surface portion 55A of the case 55 provide two portions 36A for the locking wire 36. It is prevented that the lever members 61 and 62 are disengaged from each other. Further, the convex portion 62A of the second lever member 62 has the friction members 67 and 68 sandwiching the portion 36A of the locking wire 36 by the second lever member 62 swinging upward about the fulcrum shaft 63. Immediately before the attachment and locking, the portion 36A is pushed upward, whereby the portion 36A by the friction members 67 and 68 is clamped and the locking can be performed more reliably. Further, the lower second lever member 62 is provided with a convex portion 62B that is curved downward.

  FIG. 7 shows a front view when the mechanical coupling device 39 is attached to the shutter curtain 1. FIG. 8 is a cross-sectional view taken along line S8-S8 of FIG. 7. FIG. 8 shows the internal structure of the seat plate 1B of the shutter curtain 1 described above, and FIG. The mechanical coupling device 39 is indicated by a two-dot chain line. As described with reference to FIG. 1, the shutter curtain 1 occupies most of the area of the shutter curtain 1, and is as shown in FIG. And a seat plate 1B provided at the lower end of the curtain body 1A and serving as an end member in the present embodiment. The seat plate 1B is fixed to the lower portion of the curtain body 1A, and a movable portion 70B is disposed below the fixed portion 70A and is movable in the vertical direction with respect to the fixed portion 70A. It consists of.

  Further, as shown in FIG. 7, the shutter curtain 1 of the present embodiment includes a curtain main portion 71A and a curtain sub-portion 71B. The curtain main portion 71A includes a curtain main body 1A and a seat plate 1B. The curtain sub-part 71B is constituted by the movable part 70B of the seat plate 1B. Accordingly, the curtain sub-portion 71B is disposed at the end of the shutter curtain 1 on the closing side. The curtain main portion 71A is an open / close body main portion in the present embodiment, and the curtain sub-portion 71B is an open / close body sub-portion in the present embodiment.

  As shown in FIG. 8, the fixing portion 70 </ b> A of the seat plate 1 </ b> B is formed by inner and outer members 75 and 76 each having a box shape in cross section, and the outer member 75 is divided in the thickness direction of the shutter curtain 1. The two divided members 75A and 75B are arranged, and these divided members 75A and 75B are coupled to the lower end portion of the curtain body 1A by a coupling tool 77 such as a bolt or a nut. Further, the lower surfaces of the inner and outer members 75 and 76 have an opening 78, and the upper end of the rising portion 79 of the movable portion 70B of the seat plate 1B is inserted into the internal space of the fixed portion 70A from the opening 78. At the upper end of the rising portion 79, extending portions 79A and 79B extending outward in the thickness direction of the shutter curtain 1 are formed, and these extending portions 79A and 79B are formed at the lower end of the inner member 76 of the fixing portion 70A. By riding on the upper surfaces of the formed projecting piece portions 76A and 76B, the lower limit of movement of the movable portion 70B relative to the fixed portion 70A is defined.

  A swinging member 81 that can swing up and down around a fulcrum shaft 80 extending in the width direction of the shutter curtain 1 is housed inside the fixed portion 70A. As shown in FIG. 14, the swinging member 81 is moved when the movable part 70B is lifted with respect to the fixed part 70A, that is, when the shutter curtain 1 in the closing movement is in contact with the obstacle 34 shown in FIG. When in contact, the extending portion 79A of the rising portion 79 of the movable portion 70B pushes up the protruding piece 81A of the swinging member 81, so that the swinging member 81 swings upward about the fulcrum shaft 80. Further, the fixed portion 70A and the movable portion 70B constituting the seat plate 1B have a length that extends to the left and right guide rails 6 shown in FIG. It has an extended length.

  The swing member 81 and the movable portion 70B are formed of an extrusion molded product or a pultruded molded product made of, for example, an aluminum alloy. When the lateral width of the entrance / exit 2 shown in FIG. 1 is large, it is difficult to form the swinging member 81 and the movable portion 70B with a single continuous extruded product or pultruded product. The swing member 81 and the movable portion 70B are formed by a plurality of extrusion molded products or pultruded molded products arranged in the length direction (width direction of the shutter curtain 1).

  FIG. 11 shows a case where the swing member 81 is formed by a plurality of molded products 82 arranged in the length direction. The swing member 81 is formed by connecting two molded products 82 adjacent to each other by connecting members 83 provided with portions 83A and 83B press-fitted into the molded products 82 at both ends. . The molded product 82 and the connecting member 83 may be joined by press-fitting as described above, using a fastener such as a screw, welding, or bonding. FIG. 12 shows a case where the movable portion 70B is formed by a plurality of molded products 84 arranged in the length direction. The movable portion 70B is formed by simply arranging a plurality of molded products 84 in the above-described length direction. Therefore, unlike the case of the swing member 81, the molded products 84 are not connected.

  Thus, even if the movable part 70B is formed by not connecting the molded products 84 to each other, thereby simplifying the structure of the movable part 70B and facilitating its manufacture, the swing member 81 extends to the left and right guide rails 6. Since it is in a continuous state, the movable portion 70B during the closing movement of the shutter curtain 1 no matter where the obstacle 34 shown in FIG. 1 exists between the left and right guide rails 6. Among the plurality of molded products 84 forming the one, the one that the obstacle 34 hits or the two molded products 84 that are adjacent to each other are raised with respect to the fixing portion 70A, whereby the swinging member 81 is moved. It can be swung upward.

  As shown in FIG. 7, the mechanical coupling device 39 described in FIG. 4 is incorporated in the fixing portion 70 </ b> A of the seat plate 1 </ b> B. That is, the mechanical coupling device 39 is disposed on the fixed portion 70A among the curtain main body 1A constituting the curtain main portion 71A described above of the shutter curtain 1 and the fixed portion 70A of the seat plate 1B. FIG. 13 is a cross-sectional view taken along line S13-S13 of FIG. 7, and is a cross-sectional view of the seat plate 1B at a portion where the mechanical coupling device 39 is disposed. As shown in FIG. 13, the upper and front parts of the inner and outer members 75 and 76 forming the fixing part 70 </ b> A of the seat plate 1 </ b> B have positions corresponding to the arrangement position of the mechanical coupling device 39. , An opening 90 is formed by notching, and a mechanical coupling device 39 is inserted into the opening 90 from above and coupled to the fixing portion 70A. Therefore, the opening 90 is a mechanical coupling device arrangement portion for arranging the mechanical coupling device 39.

  The protruding piece 81A of the swinging member 81 that is swingable in the vertical direction around the fulcrum shaft 80 has a position corresponding to the downward convex portion 62B of the lower second lever member 62 shown in FIG. The pressing member 91 is attached. For this reason, during the closing movement of the shutter curtain 1, the movable portion 70B of the seat plate 1B comes into contact with the obstacle 34 that exists in the lower side in the closing movement direction, and as described with reference to FIG. When the extending portion 79A of the movable portion 70B swings the swinging member 81 upward about the fulcrum shaft 80, as shown in FIG. 15, the pressing member 91 presses the convex portion 62B. The second lever member 62 swings upward about the fulcrum shaft 63. Accordingly, the friction member 68 attached to the second lever member 62 pushes up the portion 36A between the roller 58 and the roller 59 of the locking wire 36 upward.

  By this push-up, the upper first lever member 61 swings upward about the fulcrum shaft 63 via the friction member 67 attached to the first lever member 61, and this upward swing As a result, the torsion coil spring 64 is compressed, so that the portion 36A between the roller 58 and the roller 59 of the lock wire 36 is clamped with a large load from above and below by the friction members 67 and 68 of the two lever members 61 and 62. By this clamping, the portion 36A of the lock wire 36 is locked, and the shutter curtain 1 and the lock wire 36 are mechanically coupled by the mechanical coupling device 39 by this locking. Become.

  As shown in FIG. 13, when the movable part 70B of the seat plate 1B reaches the lowest position with respect to the fixed part 70A, the protruding piece 81A of the swinging member 81 extends from the movable part 70B. By hitting the portion 79A, the downward swing of the swing member 81 about the fulcrum shaft 80 is restricted.

  As described above, when the shutter curtain 1 that is being closed is in contact with the obstacle 34, the friction member 67, 68 of the two lever members 61, 62 causes a large load on the portion 36A of the lock wire 36. In order to be locked, before the shutter curtain 1 comes into contact with the obstacle 34, in other words, when the movable part 70B of the seat plate 1B reaches the lowest position with respect to the fixed part 70A, It is important that the mechanical coupling device 39 is disposed at an appropriate vertical position with respect to the pressing member 91 of the swing member 81. Arranging the mechanical coupling device 39 at an appropriate vertical position with respect to the pressing member 91 of the swinging member 81 means that the mechanical coupling device 39 is attached to the fixing portion 70A of the seat plate 1B. That is, the coupling device 39 is attached to an appropriate vertical position in the fixing portion 70A. The present embodiment is devised so that the mechanical coupling device 39 can be attached to an appropriate vertical position in the fixing portion 70A.

  Next, this device will be described. As shown in FIG. 4, protrusions 55D are formed on both side surfaces of the case 55 of the mechanical coupling device 39, and the mechanical coupling device 39 is seated using these protrusions 55D. It is attached to the fixing portion 70A of the plate 1B. Since the attachment structure using these protrusion pieces 55D is the same, the attachment structure for one protrusion piece 55D will be described with reference to FIG.

  A base member 92 is coupled to the inner upper surface of the fixing portion 70A by a fastening tool 93 such as a rivet. The base member 92 is formed on the above-described inner and outer members 75 and 76 forming the fixing portion 70A. A screw shaft member 95 that penetrates the holes 94A and 94B and protrudes upward from the fixing portion 70A is provided. After inserting one or a plurality of washers 96 into the screw shaft member 95, the screw shaft member 95 is inserted into the hole 55E of the projecting piece 55D. By changing the number of washers 96 inserted into the screw shaft member 95 or not inserting the washers 96 into the screw shaft member 95, the vertical arrangement position of the mechanical coupling device 39 in the fixing portion 70A is adjusted. Become. Thereby, the arrangement position of the mechanical coupling device 39 can be set to an appropriate vertical position with respect to the pressing member 91 of the swing member 81.

  In order to be able to confirm whether or not the mechanical coupling device 39 is arranged at an appropriate vertical position with respect to the pressing member 91 of the swinging member 81 as shown in FIG. In addition, a window hole 55F is formed in the front portion 55C of the case 55 of the mechanical coupling device 39. From the window hole 55F, when the movable portion 70B of the seat plate 1B reaches the lowest position with respect to the fixed portion 70A, the friction member 68 of the lower second lever member 62 described above and the lock wire 36 The distance in the vertical direction between the portion 36A described above can be checked, and when the vertical distance becomes a value within a predetermined appropriate range, the nut 97 shown in FIG. The screw shaft member 95 is screwed and tightened. Thereby, the mechanical coupling device 39 is fixed to the fixing portion 70A of the seat plate 1B. Then, the window hole 55F is shielded with a shielding member such as a tape to prevent dust and the like from entering the inside of the case 55.

  As a result, the mechanical coupling device 39 is attached to an appropriate vertical position in the fixing portion 70A. As a result, when the shutter curtain 1 moving in a closed state comes into contact with the obstacle 34, the mechanical coupling device 39 is mechanically coupled. The friction members 67 and 68 of the two lever members 61 and 62 provided in the device 39 can lock the portion 36A of the locking wire 36 with a large load.

  As described above, the structure for setting the arrangement position of the mechanical coupling device 39 to an appropriate vertical position with respect to the pressing member 91 of the swinging member 81 is not limited to the above-described structure.

  FIG. 10 shows a structure according to another method. In the structure of FIG. 10, a nut 98 is used instead of the washer 96 of FIG. When the nut 98 is rotated, the nut 98 moves up and down little by little along the screw shaft member 95. Therefore, the arrangement position of the mechanical coupling device 39 is changed according to the height position of the nut 98. The height position of the mechanical coupling device 39 in the fixed portion 70A can be finely adjusted.

  The number of nuts 98 may be one. However, in FIG. 10, two nuts 98A and 98B are used, and these nuts 98A and 98B can press one nut against the other nut so that the height of the nuts 98A and 98B in the screw shaft member 95 can be increased. It is a double nut that can fix the position. For this reason, the arrangement position of the mechanical coupling device 39 can be more reliably fixed.

  As described above, the work for attaching the mechanical coupling device 39 to the fixing portion 70A of the seat plate 1B is performed by replacing the shutter curtain 1 of the shutter device of the present embodiment with the shutter device according to the present embodiment. This is performed after the guide rail 6 attached to the left and right building frames 3 shown in FIG. That is, the installation work of the shutter device itself excluding the mechanical obstacle detection device 35 described above with reference to FIG. 4 is performed first, and then the installation work of the mechanical obstacle detection device 35 is performed. The installation work of the mechanical obstacle detection device 35 includes the work of attaching the unit structure 45 to the lintel 16 and the work of attaching the mechanical coupling device 39 to the fixing portion 70A of the seat plate 1B. Of the work of attaching the unit structure 45 to the lintel 16 and the work of attaching the mechanical coupling device 39 to the fixing portion 70A of the seat plate 1B, either work may be performed first, and these work are performed simultaneously ( Including the case of being said to be substantially simultaneous).

  When performing the installation work of the mechanical obstacle detection device 35 in this way, the opening 90 and the like for arranging and attaching the mechanical coupling device 39 to the fixing portion 70A of the seat plate 1B are previously installed. It is preferable to form in a factory.

  In the present embodiment, as described above, the mechanical obstacle detection device 35 including the locking wire 36, the first processing device 37, the second processing device 38, and the mechanical coupling device 39 is unitized. Therefore, the installation work for the mechanical obstacle detection device 35 transported from the factory to the building where the shutter device according to the present embodiment is installed can be easily performed, and the first processing device 37 and Since the second processing device 38 is a unit structure 45 and only the first processing device 37 and the second processing device 38 are unitized, the first processing device 37 and the second processing device 38 are sprinkled. The attachment work to the length 16 can be easily performed.

  As described above, when the mechanical coupling device 39 is attached to the fixing portion 70A of the seat plate 1B, the first processing device 37 and the second processing device 38 of FIG. 4 installed in the above-described lintel 16 which is a stationary member. The locking wire 36 whose both ends are coupled to each other is bridged between the lintel 16 and the shutter curtain 1. Further, since the lock wire 36 is folded back by the mechanical coupling device 39, as shown in FIG. 1, the first portion 36B extending from the lintel 16 to the shutter curtain 1, and the shutter curtain 1 The second portion 36 </ b> C extends from the lintel 16 to the lintel 16. Of the locking wire 36, the portion 36 </ b> A shown in FIGS. 6 and 15 corresponding to the mechanical coupling device 39 becomes a folded portion of the U-shaped locking wire 36.

  When the shutter curtain 1 is closed and moved by its own weight, the locking wire 36 is rotated from the reel 40 by rotating the reel 40 of the first processing apparatus by the weight of the shutter curtain 1, thereby The lengths of the first portion 36B and the second portion 36C are increased. Further, when the shutter curtain 1 is opened and moved upward by the rotation of the drive shaft 14 of the opening / closing device 13 described above, the locking wire 36 is slackened. Therefore, the return force of the return spring 41 described above is opposite to the above. The locking wire 36 is taken up by the reel 40 that rotates in the direction, whereby the length of each of the first portion 36B and the second portion 36C is shortened. For this reason, the locking wire 36 follows the opening / closing movement of the shutter curtain 1.

  In this embodiment, as can be seen from FIG. 1, the unit structure 45 including the mechanical coupling device 39 and the first processing device 37 and the second processing device 38 is disposed at the central position B in the width direction of the shutter curtain 1. The mechanical coupling device 39 and the unit structure 45 constituting the above-described mechanical obstacle detection device 35 are not moved from the central position B to one side in the width direction of the shutter curtain 1. It is placed at a displaced position. This displaced position is a position on the side where the above-described opening / closing device 13 serving as a driving device for driving the shutter curtain 1 and the above-described automatic closing device 32 attached to the opening / closing device 13 are arranged. .

  Further, as shown in FIG. 1, the extending direction of the first portion 36B and the second portion 36C of the locking wire 36 is a vertical direction (substantially a vertical direction) along the curtain body 1A of the shutter curtain 1. The first portion 36B and the second portion 36C are parallel to each other (including what can be said to be substantially parallel to each other).

  As shown in FIGS. 2 and 4, the first portion 36 </ b> B and the second portion 36 </ b> C of the lock wire 36 are disposed at the inner position of the slit 17 for hanging the shutter curtain in the lintel 16. For this reason, the first portion 36 </ b> B and the second portion 36 </ b> C do not interfere with the lintel 16. In other words, in the first processing device 37 and the second processing device 38 arranged on the upper surface of the lintel 16, the position of the portion where the first portion 36 </ b> B and the second portion 36 </ b> C of the locking wire 36 hang down is the lintel 16. Is arranged on the lintel 16 so as to be positioned above the internal position of the slit 17 for hanging the shutter curtain.

  Further, as shown in FIG. 13, the arrangement position of the mechanical coupling device 39 in the fixing portion 70A of the seat plate 1B is not the central position in the thickness direction of the shutter curtain 1, but the thickness of the shutter curtain 1 from this central position. The position is displaced to one side in the vertical direction. For this reason, the lock wire 36 is paraphrased to a position in the shutter curtain 1 that does not interfere with the curtain body 1A described above, as shown in FIG. 8, for both the first portion 36B and the second portion 36C. The shutter body 1 is disposed at a position away from the curtain body 1 </ b> A in the thickness direction of the shutter curtain 1. That is, since the curtain main portion 71A described above is configured by the curtain body 1A and the fixed portion 70A of the seat plate 1B, both the first portion 36B and the second portion 36C of the locking wire 36 are It is arranged at a position away from the curtain main part 71A (curtain body 1A) excluding the fixing part 70A where the mechanical coupling device 39 is arranged in the thickness direction of the shutter curtain 1.

  A portion of the curtain main portion 71A excluding the fixing portion 70A where the mechanical coupling device 39 is disposed is a curtain main body 1A, and the curtain main body 1A is a large portion that occupies most of the area of the shutter curtain 1. For this reason, as described above, both the first portion 36B and the second portion 36C of the locking wire 36 are separated from the curtain main portion 71A excluding the fixing portion 70A where the mechanical coupling device 39 is disposed. Since it is arranged at a position away from the thickness direction and does not interfere with the curtain main part 71A, it is a bridge member that is bridged between the lintel 16 and the shutter curtain 1, and this embodiment The locking wire 36 that is a mechanical member in the embodiment does not hinder the opening / closing movement of the shutter curtain 1.

  Further, as described above, the movable portion 70B of the seat plate 1B forms the curtain sub-portion 71B. As shown in FIG. 8, the thickness direction dimension of the shutter curtain 1 with respect to the movable portion 70B. Is W1. The dimension in the thickness direction of the shutter curtain 1 for the fixing portion 70A of the seat plate 1B that constitutes a part of the curtain main portion 71A described above is W2, and this W2 is smaller than W1. The lock wire 36 is disposed within the range of W1 and within the range of W2. Since the movable portion 70B forms the curtain sub portion 71B, the lock wire 36 is disposed within the shutter curtain thickness direction dimension W1 of the curtain sub portion 71B, and W1. Is a dimension that defines the overall thickness dimension of the shutter curtain 1, so that the locking wire 36 is disposed within the entire thickness dimension of the shutter curtain 1.

  Therefore, the lock wire 36 is disposed along the curtain body 1A of the shutter curtain 1, and thereby the first portion 36B and the second portion 36C of the lock wire 36 are disposed at positions that do not interfere with the curtain body 1A. Moreover, it can suppress that the whole thickness dimension of the shutter curtain 1 containing this wire 36 for a lock | rock becomes large.

  Even when W1 is equal to W2 (including a case where there is some difference and it can be said that it is substantially equal), the entire thickness of the shutter curtain 1 including the lock wire 36 is also included. An increase in the size can be suppressed.

  In the present embodiment, as described with reference to FIG. 4, the arrangement positions of the first processing device 37 and the second processing device 38 in the lintel 16 are adjusted in the thickness direction of the shutter curtain 1 by the long holes 47 and 50. Therefore, both the first portion 36B and the second portion 36C of the locking wire 36 are removed from the curtain main portion 71A excluding the fixing portion 70A where the mechanical coupling device 39 is disposed. It can arrange | position more reliably in the position away in the vertical direction. Also. By adjusting the arrangement positions of the first processing device 37 and the second processing device 38 in the lintel 16 separately for the first processing device 37 and the second processing device 38, the first portion 36B and the second portion 36C. Can also be performed for separating the curtain main portion 71A excluding the fixing portion 70A where the mechanical coupling device 39 is disposed in the thickness direction of the shutter curtain 1 by the same distance.

  FIG. 16 shows the internal structure of the second processing device 38. As described above, the second processing device 38 is provided with the rotating member 42 in which the end of the lock wire 36 is coupled via the coil spring 43. The turning direction of the turning member 42 is a vertical direction centering on a horizontal central axis 42A. A return spring 100 such as a mainspring spring is disposed behind the rotating member 42. The return force of the return spring 100 is such that the rotation member 42 is rotated in the direction C, that is, the rotation member 42 is rotated in the direction in which the second portion 36C of the lock wire 36 is pulled up. It acts on the moving member 42. The rotating member 42 is formed with an arc-shaped long hole 42B centered on the central axis 42A, and the stop member 101 attached to the machine frame 49 of the second processing device 38 is inserted into the long hole 42B. The rotation amount of the rotation member 42 is restricted to a certain amount by the stop member 101.

  Gear teeth 42C are formed on a part of the outer peripheral portion of the rotating member 42. For this reason, the rotating member 42 is a sector gear formed with a part of the gear teeth 42C. The gear teeth 42 </ b> C are provided on the side of the rotating member 42 in the thickness direction of the shutter curtain 1 (including those that can be said to be substantially in the thickness direction; the same applies hereinafter). In addition, two rotary dampers 102 are disposed in the second processing device 38, and these dampers 102 include a pinion gear 103 that meshes with the gear teeth 42 </ b> C of the rotating member 42. A plurality of blades arranged inside the damper 102 are attached to the rotation center shaft 104 of the pinion gear 103 via a one-way clutch, and the pinion gear 103 and the center shaft are rotated by the rotation member 42 rotating in the C direction. When 104 rotates in the E direction, each blade rotates in the viscous fluid filled in the damper 102 via the one-way clutch. For this reason, the rotation member 42 rotates in the C direction at a low speed by the resistance force of the viscous fluid. On the other hand, when the rotating member 42 rotates in the D direction opposite to the C direction and the pinion gear 103 and the central shaft 104 rotate in the F direction, the rotation in this direction is caused by the cutting action of the one-way clutch. Is not transmitted to the blade. For this reason, the rotation member 42 can rotate at high speed in the D direction.

  The number of dampers 102 may be one. However, by using a plurality of dampers 102 as in the present embodiment, the above-described resistance force that rotates the rotating member 42 in the C direction at a low speed can be increased, and thus the C of the rotating member 42 can be increased. The speed in the direction can be reduced to the desired speed.

  In addition, the rotation member 42 is a sector gear partially formed with gear teeth 42 </ b> C, so that the rotation member 42 is more than the case where the rotation member 42 is a gear formed with gear teeth all around. The overall vertical dimension of the can be reduced. Accordingly, the vertical dimension of the second processing apparatus 38, and hence the vertical dimension of the unit structure 45 configured by the first processing apparatus 37 and the second processing apparatus 38 can be reduced. As shown, the unit structure 45 can be effectively arranged in a space having a small vertical dimension between the lintel 16 and the shutter box 8 described above.

  Further, the rotating member 42 is a sector gear partially formed with gear teeth 42C, and the gear teeth 42C are provided on the rotating member 42 in the thickness direction side of the shutter curtain 1 as described above. Since the arrangement position of the rotation member 42 in the second processing device 38 can be set to a high position, the shutter curtain 1 is opened to the fully open position without the rotation member 42 interfering with the seat plate 1B. It can be moved.

  The gear teeth 42C are formed on the opposite side of the rotating member 42 from the shutter curtain 1 side, and a recess 42D in which the gear teeth 42C are not formed is formed on the same side of the rotating member 42 as the shutter curtain 1. Therefore, the rotating member 42 can be prevented from interfering with the seat plate 1B when the shutter curtain 1 is fully opened. Also, when the shutter curtain 1 is opened and closed, it can be rotated. It is possible to prevent the moving member 42 from interfering with the curtain body 1A.

  In the present embodiment, as shown in FIG. 4, the connecting portion N <b> 1 between the coil spring 43 and the second portion 36 </ b> C of the locking wire 36 is the connecting portion N <b> 2 between the rotating member 42 and the coil spring 43. With respect to the shutter curtain 1 side. For this reason, even if the shutter curtain 1 reaches the fully open position, the coil spring 43 can be prevented from coming into contact with the slats forming the curtain body 1A, and the coil spring 43 is connected to the rotating member 42 and the coil spring. Since it can suppress swinging to the shutter curtain 1 side centering on the connection part N2 with 43, it can also prevent that the coil spring 43 contacts the slat which forms the curtain main body 1A by this suppression.

  FIG. 17 is a front view showing the internal structure of the automatic closing device 32 shown in FIGS. 1 to 3, and FIG. 18 is a plan view showing the internal structure of the automatic closing device 32. When a disaster such as a fire occurs, the automatic closing device 32 automatically controls the shutter 13 shown in FIGS. 1 to 3 to mechanically control the shutter curtain 1 that has reached the fully opened position. It is intended to close the doorway 2 of FIG. 1 by the shutter curtain 1 having a smokeproof property and / or a fireproof property. The automatic closing device 32 is attached to the opening / closing machine 13 by a bracket portion 110A of FIG. 17 provided on the machine casing 110 of the automatic closing device 32. As shown in FIG. 18, each of the first control wire 111, the second control wire 112, and the third control wire 113 for controlling the automatic closing device 32 up to the automatic closing device 32. The end of is extended. These control wires 111 to 113 are flexible string-like members, and are also elongated members, like the aforementioned locking wires 36.

  Further, these control wires 111 to 113 are slidably inserted into the flexible outer cables 114 to 116. For this reason, the control wires 111 to 113 are protected by the outer cables 114 to 116.

  As shown in FIG. 16, the first control wire 111 extends to the second processing device 38, and the end of the first control wire 111 is connected to the rotating member 42 of the second processing device 38. It is connected. As shown in FIG. 2, the first processing wire 111 and the outer cable 114 into which the first control wire 111 is inserted are part of the second processing device 38. The above-described unit structure 45 and the switch 13 are wired in the ceiling space 7 where they are arranged, and avoid the object 117 existing in the ceiling space 7, in other words, bypass the object 117. The first control wire 111 and the outer cable 114 are wired in a space where wiring is possible. Note that this space may exist in advance, and when the first control wire 111 and the outer cable 114 are wired, a part of the object 117 is cut out or a hole is provided in the object 117. Or formed.

  Thus, it is possible to wire the first control wire 111 and the outer cable 114 without interfering with the object 117 because the first control wire 111 and the outer cable 114 have flexibility. is there. The object 117 may be related to the building itself in which the shutter device of the present embodiment is installed, or may be related to a part of the shutter device of the present embodiment, for example, the shutter box 8 described above.

  Further, as shown in FIG. 16, the first control wire 111 and the outer cable 114 are inclined with respect to the second processing device 38 in the vicinity of the second processing device 38. Thus, the first control wire 111 and the outer cable 114 do not interfere with the coupling member 26 that couples the lintel 16A of the lintel 16 illustrated in FIG. Yes.

  As shown in FIGS. 17 and 18, the machine casing 110 of the automatic closing device 32 is provided with two rising portions 110 </ b> B and 110 </ b> C that face each other, and formed on these rising portions 110 </ b> B and 110 </ b> C. A plate-like slide member 120 having a length straddling the two rising portions 110B and 110C is slidably inserted into the holes 110D and 110E. A spring 121 is wound around the outer periphery of the slide member 120. Due to the spring force of the spring 121, a forward force toward the rising portion 110B is constantly acting on the slide member 120. The direction of the forward force is a direction in which the first portion 31A of the lever member 31 provided in the opening / closing machine 13 described in FIG.

  As shown in FIG. 3 and FIG. 17, the actuating member 122 is attached to the bent portion 120 </ b> A that is bent downward at the front end of the slide member 120, and the first portion of the lever member 31. An actuated member 123 is erected and coupled to 31A. When the slide member 120 moves forward by the spring force of the spring 121, the load in the direction A shown in FIG. 3 is applied to the first portion 31A of the lever member 31 by the operating member 122 coming into contact with the operated member 123. It comes to work. As shown in FIG. 17, in the present embodiment, the actuating member 122 is the head 124 </ b> A of the bolt 124, and thus the bolt 124 is turned by bending the head 124 </ b> A. By moving forward and backward with respect to 120A, the distance between the actuating member 122 and the actuated member 123 can be adjusted to an appropriate dimension. After this adjustment, the lock nut 125 screwed into the bolt 124 is rotated, and the lock nut 125 is pressed against the bent portion 120A, whereby the position of the operating member 122 relative to the operated member 123 is adjusted. It can be fixed in an appropriate position.

  As shown in FIG. 18, a solenoid 126 is attached to the machine casing 110 of the automatic closing device 32, and a spring force of a spring 128 is applied to the plunger 127 of the solenoid 126 from the solenoid 126. It always works in the protruding direction. One end of an L-shaped bent lever member 129 that is rotatable about a central axis 129A is connected to the tip of the plunger 127 by a slide-type connecting portion 129B. A roller 130 is rotatably provided at the other end of the bent lever member 129.

  A concave portion 120 </ b> B is formed in the portion of the slide member 120 that faces the roller 130. A portion of the recess 120B on the backward side of the slide member 120 is an inclined surface 120C. In the automatic closing device 32, the spring 131 for applying a turning force in the G direction about the central axis 129A to the bending lever member 129 and the direction in which the plunger 127 protrudes from the solenoid 126 together with the spring 128 described above. And a spring 132 for rotating the bending lever member 129 in the G direction about the central axis 129A. The roller 130, 131, 132 is provided with a spring force so that the roller 130 in a normal state is provided. As shown in FIG. 18, the slide member 120 is engaged with the recess 120B, and the forward movement of the slide member 120 by the spring 121 is stopped by this engagement. Thus, the position of the front end of the slide member 120 when the forward movement is stopped by the roller 130 fitted into the recess 120B is the H position among the three positions H, I, and J shown in FIG.

  As shown in FIG. 18, the self-closing device 32 is provided with a microswitch 135, and this microswitch 135 is provided with an actuating member 136 biased in a direction protruding from the microswitch 135 by a spring. It has been. In addition, a dog member 137 is attached to the slide member 120 at a portion opposite to the concave portion 120 </ b> B, and the operating member 136 is in contact with the dog member 137.

  A connecting member 138 provided with a first connecting portion 138A and a second connecting portion 138B is connected to the slide member 120, and a connecting member 140 is connected to the tip of the plunger 127 of the solenoid 126, as described above. One end of the spring 132 is connected to the connecting member 140. The other end of the first control wire 111, which has one end connected to the rotating member 42 of the second processing apparatus 38 shown in FIG. 4, is the first of the connecting member 138 of the slide member 120. The end portion of the second control wire 112 is connected to the connecting portion 138A, the end portion of the third control wire 113 is connected to the connecting member 140 connected to the plunger 127, and the end portion of the connecting member 138 of the slide member 120 is connected. It is connected to the second connecting part 138B.

  Further, the second control wire 112 inserted into the outer cable 115 extends to the operating device 30 shown in FIG. 1, and the end of the second control wire 112 protruding from the outer cable 115. A manual operation member such as a lever member arranged in the operation device 30 is connected to the operation device 30. Further, the third control wire 113 inserted into the outer cable 116 extends from the above-described ceiling space 7 where the automatic closing device 32 is disposed to a position where it can be manually operated in the building. In this embodiment, as shown in FIG. 1, this position is an upper position of the entrance / exit 2 that has passed through the slit 17 of the lintel 16 from the ceiling space 7 and protrudes from the outer cable 116. A manual operation member 141 capable of manually pulling the third control wire 113 is coupled to the end of the third control wire 113, and this manual operation member 141 is a ring member in this embodiment. ing.

  In a building where the shutter device according to the present embodiment is installed, when a disaster such as a fire occurs when the shutter curtain 1 is fully open, a control device (not shown) to which a signal from a sensor that detects the disaster is input. As a result, the solenoid 126 of the automatic closing device 32 is energized and the solenoid 126 is energized, so that the plunger 127 of the solenoid 126 moves backward against the spring force of the spring 128. As a result, the bending lever member 129 rotates against the spring force of the springs 131 and 132 about the central axis 129A in the direction opposite to the G direction in FIG. The state at this time is shown in FIG. When the bending lever member 129 rotates about the central axis 129 </ b> A in the direction opposite to the G direction, the roller 130 of the bending lever member 129 escapes from the recess 120 </ b> B of the sliding member 120. The forward movement is stopped when the front end of the connecting member 138 comes into contact with the above-described rising portion 110B of the machine casing 110 of the automatic closing device 32. The position of the front end of the slide member 120 at this time is the I position which is the foremost position among the three positions H, I and J shown in FIG. 18 as shown in FIG.

  Further, when the slide member 120 moves forward, the operation member 136 of the micro switch 135 is disengaged from the position of the dog member 137 attached to the slide member 120, so that the operation member 136 protrudes and moves by the biasing force of the spring. In response to a signal from the switch 135, the control device stops energizing the solenoid 126.

  When the energization of the solenoid 126 is stopped, the plunger 127 projects and moves from the solenoid 126 by the spring force of the spring 128, and the bending lever member 129 is centered on the central axis 129A by the spring force of the springs 131 and 132 in the G direction of FIG. To turn. Since the slide member 120 at this time has advanced to the limit of movement in which the front end of the slide member 120 reaches the I position, the roller 130 of the bending lever member 129 slides as shown in FIG. It hits the aforementioned inclined surface 120C of the member 120. For this reason, the protruding movement of the plunger 127 and the rotation of the bending lever member 129 about the central axis 129A in the G direction stop halfway.

  When the slide member 120 of the automatic closing device 32 advances as described above, the operating member 122 provided at the front end of the slide member 120 is connected to the opening / closing machine 13 via the operated member 123 shown in FIG. In order to press the first portion 31A of the lever member 31 in the direction A in FIG. 3, as described above, the first portion 31A swings in the A direction using the second bent portion 31D of the lever member 31 as a fulcrum. As a result, the brake shaft 21 and the brake drum 22 of the brake means 19 of the opening / closing machine 13 slide in the A ′ direction, which is the same direction as the A direction. Become. For this reason, the shutter curtain 1 that is fully open is closed and moved downward while rotating the winding shaft 11 by the weight of the seat plate 1B and the like below the winding shaft 11. The above-described drive shaft 14 of the opening / closing machine 13 also freely rotates via the drive force transmission means 12 and the shutter curtain 1 is fully closed, whereby a disaster prevention zone is formed by the shutter curtain 1.

  Further, when a person discovers that a disaster such as a fire has occurred, this person is arranged in the operating device 30 shown in FIG. 1 and is connected to the end of the second control wire 112 described above. The second control wire 112 is pulled by a manual operation member such as a lever member. As a result, the plunger 127 of the solenoid 126 moves backward, so that even before the solenoid 126 is energized and excited, the bending lever member 129 is centered on the central axis 129A even when the solenoid 126 is energized and excited. 18, the roller 130 of the bending lever member 129 escapes from the recess 120 </ b> B of the slide member 120, and the slide member 120 moves forward by the spring force of the spring 121.

  For this reason, in the present embodiment, the second control wire 112 spanned between the automatic closing device 32 and the operation device 30 is a pull operation member that is pulled by the operation device 30. Even in the manual operation using the second control wire 112, the brake means 19 of the switch 13 can be turned off, and the shutter curtain 1 that has been fully opened can be closed and moved by its own weight to be fully closed.

  In the present embodiment, as shown in FIG. 1, the operating device 30 includes a switch 13 and an automatic switch among the building housings 3 such as the left and right walls arranged on both sides in the width direction of the shutter curtain 1. It is arranged in one building housing 3A that is close to the closing device 32. For this reason, the length of the second control wire 112 that is stretched between the automatic closing device 32 and the operation device 30 and is a pulling operation member that is pulled by the operation device 30 can be shortened. . Accordingly, when the second control wire 112 is pulled by the manual operation member such as the lever member described above, compared to the case where the operating device 30 is arranged in the other building housing 3B among the building housings 3 such as the left and right walls. Can be instantaneously input to the automatic closing device 32, so that the brake means 19 of the switch 13 can be instantaneously turned off, and the closing movement of the shutter curtain 1 that has been fully opened can be quickly performed. Can be started.

  When the shutter curtain 1 reaches the fully closed position and a disaster such as a fire is resolved, the end portion of the third control wire 113 is pulled by operating the manual operation member 141 shown in FIG. Thus, since the third control wire 113 is connected to the slide member 120 of the automatic closing device 32, the slide member 120 is retracted against the spring force of the spring 121. For this reason, the slide member 120 returns from the position shown in FIG. 20 to the initial position where the front end becomes the H position in FIG. Further, when the slide member 120 returns to this initial position, the bending lever member 129 rotates in the direction G in FIG. 18 by the spring force of the springs 131 and 132 about the central axis 129A. As shown in FIG. 18, the roller 130 is fitted into the recess 120 </ b> B of the slide member 120, and the slide member 120 stops in a state where the front end of the slide member 120 reaches the H position. Thereby, the automatic closing device 32 returns to the initial state before the occurrence of a disaster such as a fire.

  When the slide member 120 returns to the initial position, the brake shaft 21 and the brake drum 22 of the brake means 19 of the opening / closing machine 13 are moved in the direction opposite to the A ′ direction by the spring 23 described above with reference to FIG. 19 returns to ON. Thereafter, by operating the above-mentioned “open” button provided in the operating device 30, the shutter curtain 1 opens and moves to the fully open position as described above.

  In the case where a coupler 36E for forming a loop portion 36D for connecting the upper end to the coil spring 43 is provided at the upper end of the second portion 36C of the locking wire 36 shown in FIG. It is preferable that the horizontal cross-section of the coupler 36E is elongated in the thickness direction of the shutter curtain 1 by crushing the coupler 36E. According to this, the hole 57 through which the second portion 36C enters and exits is orthogonal to the elongated direction of the coupler 36E, which is formed in the upper surface portion 55B of the case 55 for housing the mechanical coupler 39 shown in FIG. Since the long hole is long in the width direction of the shutter curtain 1, the lower surface of the coupler 36E becomes the outer portion of the long hole 57 when the shutter curtain 1 opens and moves to the fully open position as described above. By contacting the upper surface portion 55B of the case 55, it is possible to prevent the lower surface of the coupler 36E from entering the inside of the long hole 57 and the shutter curtain 1 to be opened and moved more than a predetermined amount.

  As described above, the solenoid 126 of the automatic closing device 32 is energized and excited by the control device that receives a signal from a sensor that detects a disaster such as a fire, or is connected to the end of the second control wire 112. The second control wire 112 is pulled by a manual operation member such as a lever member, which turns off the brake means 19 of the switch 13, and the shutter curtain 1 is closed and moved downward from the fully open position. Sometimes, in other words, when the automatic closing device 32 is in the state shown in FIG. 20, and the obstacle 34 shown in FIG. In the middle of the closing movement of the shutter curtain 1, the curtain sub-part 71B disposed at the front end of the shutter curtain 1 is closed. In other words, the movable portion 70B of the above-described forming the lower portion of the seat plate 1B of the shutter curtain 1 is in contact with the obstacle 34, the descent of the movable part 70B is stopped.

  Even if the lowering of the movable part 70B is stopped, the curtain main part 71A composed of the curtain main body 1A and the fixed part 70A of the seat plate 1B is lowered. Due to the relative rise of the curtain sub-portion 71B with respect to the portion 71A, the first lever member 61 and the second lever member 62 of the mechanical coupling device 39 described above are in friction members 67 and 68 as described with reference to FIG. The above-described folded portion 36A of the locking wire 36 is clamped, and the locking wire 36 is locked by this clamping. As a result, the shutter curtain 1 and the locking wire 36 serving as the bridging member according to the present embodiment are mechanically coupled by the mechanical coupling device 39.

  The lock wire 36 until then follows the closing movement of the shutter curtain 1 and is fed out from the reel 40 of the first processing device 37. Therefore, the movement of the shutter curtain 1 with respect to the shutter curtain 1 is caused by the closing movement of the shutter curtain 1. Is generated in the locking wire 36, and the folded portion 36A of the locking wire 36 is sandwiched between the friction members 67 and 68, and when the locking wire 36 is locked, the folded portion is based on the dent deformation of the obstacle 34. The first portion 36B and the second portion 36C of the lock wire 36 that are folded back at 36A include the weight of the portion of the shutter curtain 1 above the curtain sub-portion 71B, that is, the curtain main portion 71A. Since the weight acts, the locking wire 36, particularly the second portion 36C, has a large tightness. Force is applied.

  As shown in FIG. 15, the folded portion 36A of the lock wire 36 is sandwiched between friction members 67 and 68 having a large frictional force provided on the first lever member 61 and the second lever member 62. Because the friction members 67 and 68 are locked, the locking wire 36 can be prevented from sliding relative to the first lever member 61 and the second lever member 62. Further, in the present embodiment, the above-described shaft 63 serving as the pivot center axis of the first lever member 61 and the second lever member 62 is shared by the first lever member 61 and the second lever member 62. Therefore, the structure of the mechanical coupling device 39 can be simplified by reducing the number of members, and the positional relationship between the friction members 67 and 68 can be set appropriately. For this reason, the folded portion 36A of the lock wire 36 is provided. Can be clamped and locked more reliably by the friction members 67 and 68.

  Further, the contact of the shutter curtain 1 with the obstacle 34 is not performed below the position where the mechanical coupling device 39 is disposed, and the shutter curtain 1 is viewed from below the position where the mechanical coupling device 39 is disposed. Therefore, when the portion of the shutter curtain 1 where the mechanical coupling device 39 is arranged is about to move slightly in the closing direction of the shutter curtain 1, the first processing device 37 is used. The locking wire 36 fed out from the reel 40 tries to move so that the portion clamped by the friction members 67 and 68 moves from the first portion 36B side to the second portion 36C side. Since the distance between the friction members 67 and 68 is gradually reduced in the direction opposite to the moving direction, the locking wire 36 is connected to the first lever member 61 and the second lever member 62. Can be more effectively prevented from sliding move.

  In the present embodiment, when the folded portion 36A of the locking wire 36 is clamped and locked by the friction members 67 and 68, as shown in FIG. One guide member 60A of the guide members 60 and the second lever member 62 form a bypass portion 36F that is not linear. For this reason, even if the obstacle 34 is a hard object that does not dent deform or hardly dent deforms, the second portion 36C of the locking wire 36 is pulled by forming the detour portion 36F in the locking wire 36. As a result, a large tension can be applied to the second portion 36C.

  As described above, the sliding movement of the locking wire 36 relative to the first lever member 61 and the second lever member 62 is prevented by the friction members 67 and 68, and the second portion 36 </ b> C of the locking wire 36 is prevented. When a large tension is applied, the rotating member 42 of the second processing device 38 shown in FIG. 16 is rotated in the direction D in FIG. 16 against the above-described return spring 100 by this tension. The amount of movement is in accordance with the length of the arc-shaped long hole 42B in which the aforementioned stop member 101 is inserted. The rotation at this time rotates the pinion gear 103 of the rotary damper 102 in the F direction. However, the rotation of the pinion gear 103 in the F direction does not generate a resistance force due to the viscous fluid in the damper 102 as described above. For this reason, the rotating member 42 is rotated in the direction D at a high speed by the tension applied to the second portion 36C, and the first control wire having one end connected to the rotating member 42. 111 will be pulled.

  Therefore, in this embodiment, the tension force acting on the second portion 36C of the lock wire 36 is relayed to the second processing device 38 and transmitted to the first control wire 111, and the second processing device. 38 is a relay means for performing this relay, and the first control wire 111 is a tension for transmitting the tension force acting on the second portion 36C of the lock wire 36 to the automatic closing device 32. It is a force transmission member.

  The second portion 36C of the lock wire 36 is not directly connected to the rotating member 42, and an impact load buffering elastic member is provided between the second portion 36C and the rotating member 42. Since the above-described coil spring 43 is interposed, even if the above-described large tension force instantaneously acts on the second portion 36C, this tension force does not directly act on the rotating member 42, and the tension force Can be relaxed and act on the rotating member 42.

  Even when the amount of rotation of the rotating member 42 in the D direction reaches a limit value defined by the stop member 101 inserted in the arc-shaped elongated hole 42B, the shock load buffering action by the coil spring 43 also causes Further, it is possible to prevent a large impact load from propagating between the second portion 36 </ b> C of the locking wire 36 and the rotating member 42.

  When the first control wire 111 is pulled as described above, the other end of the first control wire 111 is connected to the slide member 120 of the automatic closing device 32 shown in FIG. The slide member 120 moves backward while resisting the spring 121. The amount by which the first control wire 111 is pulled and the amount by which the slide member 120 is retracted are the amounts defined by the length of the long hole 42B of the rotating member 42 shown in FIG. The slide member 120 that has reached the I position shown in FIG. 20 does not move back to the retreat limit where the position of the front end of the slide member 120 becomes the H position in FIG. 18, and the position where the front end becomes the J position, Stop at an intermediate position between the H and I positions. The state at this time is shown in FIG. At this time, the position of the slide member 120 with which the roller 130 of the bending lever member 129 is in contact has moved in the length direction of the slide member 120, which is the slide direction of the slide member 120, as compared with FIG. 20. The roller 130 is still in contact with the inclined surface 120C described above.

  Further, since the position of the front end of the slide member 120 at this time is retracted from the I position to the J position, the first member 31A of the lever member 31 of FIGS. 3 and 17 is moved by the operating member 122 of the slide member 120. The load that has been pressed in the direction A in FIG. 3 is released. For this reason, the brake means 19 of the switch 13 is switched from off to on. When the brake means 19 is turned on, the drive shaft 14 of the opening / closing machine 13 cannot rotate, so that the winding shaft 11 to which the upper end of the shutter curtain 1 is coupled cannot also rotate.

  Therefore, the shutter curtain 1 that is in contact with the obstacle 34 closes and stops moving at the contact position. This stop can be achieved by the mechanical coupling device 39 provided with the first lever member 61 and the second lever member 62 for locking the locking wire 36 with the friction members 67 and 68, or the second processing which is also mechanical. It is performed by a mechanical structure constituted by the device 38, the slide member 120 as a member of the automatic closing device 32 that slides mechanically, the brake means 19 of the switch 13 that is mechanically turned on, and the like. For this reason, after the shutter curtain 1 is closed and started moving, the building in which the shutter device according to the present embodiment is installed is blacked out due to the occurrence of a disaster such as a fire or other reasons. In addition, the shutter curtain 1 in contact with the obstacle 34 during the closing movement can be stopped.

  In the present embodiment, as described with reference to FIG. 1, the mechanical coupling device 39 and the unit structure 45 constituting the mechanical obstacle detection device 35 described above are arranged at the center position in the width direction of the shutter curtain 1. It is not arrange | positioned at B, but is arrange | positioned from this center position B in the position displaced to the one side in which the switch 13 and the automatic closing device 32 are arrange | positioned among the width directions of the shutter curtain 1. FIG. . For this reason, the second processing device 38 and the automatic closing device 32 serving as the relay means are arranged on the same side in the width direction of the shutter curtain 1 with respect to the central position B. The length of the first control wire 111 that is wired between the second processing device 38 and the automatic closing device 32 and serves as the tension transmission member described above can be shortened. Therefore, when the shutter curtain 1 in the closing movement comes into contact with the obstacle 34, the aforementioned tension force acting on the first control wire 111 can be instantaneously input to the automatic closing device 32. The brake means 19 of the machine 13 can be quickly turned on.

  Note that, for example, there is not enough space for the first control wire 111 to be wired at the location because there is a large object between the unit structure 45 and the automatic closing device 32. For this reason, the unit structure When it is impossible or difficult to wire the first control wire 111 having a reduced length between the second processing device 38 of the object 45 and the automatic closing device 32, the unit structure in the lintel 16 The position where the object 45 is arranged is changed from the above position, whereby the first control wire 111 and the first control wire 111 can be routed between the second processing device 38 and the automatic closing device 32. You may make it wire by passing. As a result, the position of the unit structure 45 in the lintel 16 is changed from the central position B in the width direction of the shutter curtain 1 to the width direction of the shutter curtain 1 in which the switch 13 and the automatic closing device 32 are disposed. The position of the mechanical obstacle detection device 35, which is configured by the unit structure 45 or the like, is shifted to a position opposite to the one side, and the central position B of the shutter curtain 1 in the width direction. On the other hand, a position opposite to the position shown in FIG. 1, in other words, a position further away from the central position B from the switch 13 and the automatic closing device 32 may be used.

  In the present embodiment, as shown in FIG. 1, the unit structure 45 including the second processing device 38 serving as the relay unit described above and the automatic closing device 32 are provided on the shutter curtain 1. The unit structure 45 and the automatic closing device 32 are disposed at the same position in the width direction of the shutter curtain 1 and are disposed at positions shifted from the central position B in the width direction to the same side in the width direction. Of the unit structure 45 and the automatic closing device 32, the unit structure 45 is disposed closer to the central position B in the width direction of the shutter curtain opening / closing body than the automatic closing device 32. For this reason, in the present embodiment, the mechanical coupling device 39 connected to the unit structure 45 via the locking wire 36 is also located at the center position B in the width direction of the shutter curtain 1 rather than the automatic closing device 32. It is arranged at a close position. According to this, regardless of the position in the width direction of the shutter curtain 1 that the shutter curtain 1 in the middle of the closing movement comes into contact with the obstacle 34, the shutter curtain 1 and the lock wire 36 are connected to the mechanical coupling device 36. Can be more reliably performed to bring them into a mechanically coupled state.

  Further, the unit structure 45 is disposed closer to the center position B in the width direction of the shutter curtain opening / closing body than the automatic closing device 32, so that the automatic closing device 32 has a width of the shutter curtain 1 wider than the unit structure 45. It is arranged at a position far from the central position B in the direction. The position of the automatic closing device 32 is a member for supporting the shutter curtain 1 so that the shutter curtain 1 can be opened and closed, specifically, a winding shaft 11 that opens and closes the shutter curtain 1 by winding and unwinding the shutter curtain 1. Of the shutter box 8 serving as a support member for supporting, the position is close to the side surface portion 8B. Since the opening / closing machine 13 is attached to the side surface portion 8B via the bracket member 15 and the automatic closing device 32 is attached to the opening / closing machine 13, the automatic closing device 32 is more shuttered than the unit structure 45. By disposing the automatic closing device 32 at a position far from the central position B in the width direction of the curtain 1, the automatic closing device 32 is effectively disposed on the side surface portion 8 </ b> B of the shutter box 8 via the bracket member 15 and the switch 13. Can do.

  As described above, after the closing shutter curtain 1 comes into contact with the obstacle 34 and the brake means 19 of the switch 13 is turned on, the obstacle sub-part of the shutter curtain 1 is removed when the obstacle 34 is removed. Since 71B descends, the locking wire 36 is not clamped or locked by the friction members 67 and 68 of the first lever member 61 and the second lever member 62 of the mechanical coupling device 39, and the shutter by the mechanical coupling device 39 is released. The mechanical coupling state between the curtain 1 and the lock wire 36 is also released. As a result, the tension force of the locking wire 36 disappears. Therefore, the rotating member 42 of the second processing device 38 on which the return force by the return spring 100 in FIG. 16 acts is rotated in the direction C in FIG. Due to this rotation, the slide member 120 of the automatic closing device 32 that has been pulled in the backward direction by the first control wire 111 is moved from the J position shown in FIG. 21 to the I position shown in FIG. The moving forward is performed by the spring 121. For this reason, the brake means 19 of the opening / closing machine 13 is switched again from on to off, and the shutter curtain 1 resumes its closed movement.

  When the rotating member 42 of the second processing device 38 rotates in the direction C in FIG. 16, the pinion gear 103 of the rotary damper 102 rotates in the E direction. Resistance is generated. For this reason, the position of the front end of the slide member 120 shifts from the J position shown in FIG. 21 to the I position shown in FIG. 20, and that the brake means 19 of the switch 13 is switched from on to off by this shift. Due to the delay action of the damper 102, it is not performed instantaneously. Therefore, when the shutter curtain 1 is closed and restarted by the removal of the obstacle 34, the movement of the obstacle 34 is started with a time delay from the removal of the obstacle 34. It can be carried out.

  As can be seen from this description, the second processing device 38 in the present embodiment including the damper 102 is a delay device for causing the above-described delay.

  In order to prevent the viscous fluid from dropping from the unit structure 45 shown in FIG. 4 even if the viscous fluid leaks from the damper 102 of the delay device, for example, the base member of the unit structure 45 is used. By providing a rising wall around 44, the base member 44 may be dish-shaped.

  Further, this delay device may employ, for example, mechanical means including a mainspring type timer instead of the damper 102. According to this mechanical means, unlike the viscous fluid damper 102, the delay time can be set more accurately without being affected by the environmental temperature.

  Then, after the shutter curtain 1 is fully closed, the slide member 120 of the automatic closing device 32 is positioned at the front end by pulling the third control wire 113 with the manual operation member 141 shown in FIG. In order to perform the return movement returning to the H position in FIG. 18, the entire automatic closing device 32 returns to the initial state in FIG.

  In addition, by extending the third control wire 113 to the operation device 30 shown in FIG. 1, the end portion of the third control wire 113 is connected to a manual operation member such as a lever member disposed on the operation device 30, or A rotating member that is rotated by a switch operation type electric motor disposed in the operating device 30 may be connected to a winding member for winding the third control wire 113 so as to be unwound. Thereby, you may enable it to be able to be pulled with the said winding member rotated with the said manual operation member or the said electric motor by the 3rd wire 113 for control.

  Next, a method for constructing the apparatus according to the present embodiment at a construction site where the shutter apparatus according to the present embodiment is installed will be described with reference to FIGS. 22 and 23. This device is a mechanical fault configured as a unit by connecting the first processing device 37, the second processing device 38, and the mechanical coupling device 39 shown in FIG. This is a mechanical shutter curtain stop device that includes the object detection device 35 and the automatic closing device 32 shown in FIGS.

  In the construction site, the shutter curtain 1 whose upper end is coupled to the take-up shaft 11 is brought into a state of being taken up by the take-up shaft 11 and is carried from the factory. The object detection device 35 is also carried in from the factory as a unit, and further, members and devices necessary for configuring the shutter device according to the present embodiment are also carried in from the factory. The switch 13 and the automatic closing device 32 shown are also included.

  The automatic closing device 32 may be previously attached to the switch 13 at the factory and carried into the construction site, or may be carried into the construction site without being attached to the switch 13.

  Further, the opening 90 shown in FIG. 13 is formed in the factory in advance in the seat plate 1B of the shutter curtain 1, and for this reason, the shutter wound around the winding shaft 11 and carried into the construction site. The curtain 1 is provided with this opening 90.

  At the construction site, the work of attaching the guide rail 6 to the left and right building frame 3 shown in FIG. 1 and the operation of attaching the shutter box 8 to the building frame 9 of FIG. 2 existing in the ceiling space 7 are performed. The work of supporting the winding shaft 11 rotatably on the left and right side surface parts 8A and 8B shown in FIG. 1 of the box 8, and the work of attaching the switch 13 to the side surface part 8B via the bracket 15, FIG. The work of placing the illustrated lintel 16 on the ceiling member 5 is also performed.

  Thereafter, the operator rotates the take-up shaft 11 so that the shutter curtain 1 is drawn downward from the take-up shaft 11 and the seat plate 1B reaches the upper ends of the left and right guide rails 6 in the left-right direction ( The both ends of the width direction) enter the inside of these guide rails 6, and the winding shaft 11 is rotated by the weight of the shutter curtain 1, whereby the shutter curtain 1 is fully closed so that the seat plate 1 </ b> B contacts the floor 4. Then, the shutter curtain 1 is guided to the guide rail 6. The state at this time is shown in FIG.

  By this time, when the operation of connecting the opening / closing machine 13 and the winding shaft 11 with the driving force transmission means 12 shown in FIGS. By operating the second portion 31B of the lever member 31 of the opening / closing machine 13, the brake means 19 of the opening / closing machine 13 is turned off, whereby the winding shaft 11 can be rotated by its own weight of the shutter curtain 1, and the winding shaft 11, the shutter curtain 1 is lowered to the fully closed position.

  Next, the lock wire 36 serving as the bridging member according to the present embodiment is placed between the lintel 16 that is a stationary member with respect to the shutter curtain 1 that is opened and closed and the seat plate 1B of the shutter curtain 1. Perform the work to transfer to. In order to perform this work, first, the mechanical obstacle detection device 35 as a unit is carried into the ceiling space 7, and among the devices constituting the mechanical obstacle detection device 35, FIG. The unit structure 45 constituted by the first processing device 37 and the second processing device 38 is bolted or welded to the lintel member 16A among the lintel members 16A and 16B forming the lintel 16 of FIG. Secure with. Thereafter, the mechanical coupling device 39 constituting the mechanical obstacle detection device 35 is lowered from the slit 17 between the lintel members 16 </ b> A and 16 </ b> B to the entrance / exit 2 which is a space below the ceiling space 7.

  At this time, the lock wire 36 wound around the reel 40 on which the return force of the return spring 41 of the first processing device 37 acts is drawn out from the reel 40 by the weight of the mechanical coupling device 39, so that the machine The type coupling device 39 is lowered to the floor 4 on which the seat plate 1B of the shutter curtain 1 is landed.

  Next, an operation of placing the mechanical coupling device 39 in the opening 90 shown in FIG. 13 of the seat plate 1B is performed. This arrangement work is performed using a nut 97 shown in FIG. Therefore, in the present embodiment, the opening 90 is a mechanical coupling device arrangement portion for arranging the mechanical coupling device 39 in the shutter curtain 1.

  With the above operation, the operation for spanning the lock wire 36 between the lintel 16 and the seat plate 1B of the shutter curtain 1 is completed.

  The work of fixing the unit structure 45 to the lintel member 16A with bolts or welding or the like is not performed after the lintel member 16A is arranged on the ceiling member 5, but the lintel member 16A is placed on the floor of the construction site. You may do this when you are at 4. According to this, the operation of arranging the unit structure 45 constituted by the first processing device 37 and the second processing device 38 on the lintel member 16A is performed in a good working environment with open surroundings. And workability can be improved.

  As described above, when the unit structure 45 is arranged on the lintel member 16A placed on the floor 4, the lintel member 16A is carried into the ceiling space 7 after the arrangement work, and the lintel member 16A is provided. Is arranged at a predetermined position of the ceiling member 5. Next, in the same manner as described above, the mechanical coupling device 39 is lowered from the slit 17 between the lintel members 16A and 16B to the entrance 2 under the ceiling space 7, and the mechanical coupling device 39 is opened to the opening 90 of the seat plate 1B. Work to place in.

  In addition, the operation | work which arrange | positions the unit structure 45 to the lintel member 16A currently placed on the floor 4 is performed in advance before performing the operation for guiding the shutter curtain 1 to the guide rail 6 as described above. You may carry out after performing this operation | work.

  After the operation for laying the lock wire 36 between the lintel 16 and the seat plate 1B of the shutter curtain 1 is completed as described above, the first control wire 111 is automatically closed with the second processing device 38. The operation of installing between the device 32, the operation of installing the second control wire 112 between the automatic closing device 32 and the operation device 30 attached to the building housing 3A, and the manual operation member 141 The operation of connecting the provided third control wire 113 to the automatic closing device 32 is performed. Of course, if the automatic closing device 32 is not attached to the switch 13 before these operations are performed, these operations are performed after the attachment. Further, when the third control wire 113 is extended to the operation device 30, the above-described operation for connecting the third control wire 113 provided with the manual operation member 141 to the automatic closing device 32 is performed. Instead, an operation for installing the third control wire 113 between the automatic closing device 32 and the operating device 30 is performed.

  In addition, after the work for bridging the lock wire 36 between the lintel 16 and the seat plate 1B of the shutter curtain 1 is completed, other remaining work is also performed. This remaining work includes the work of electrically connecting the switch 13 and the above-described control device and the work of electrically connecting the control device and the operation device 30, and the remaining work includes If the opening / closing machine 13 and the winding shaft 11 are not connected by the driving force transmission means 12 by this time, the operation of making this connection is also included.

  In addition, you may implement these remaining work after completion | finish of the above-mentioned work regarding the 1st-3rd control wires 111-113, and completion | finish of the above-mentioned work regarding the 1st-3rd control wires 111-113. It may be carried out before.

  FIG. 23 is an overall front view of the shutter device when all the above-described work related to the construction work is completed.

  After all the work related to the above construction work is completed, the shutter curtain 1 is opened and moved to the fully opened state by operating the operation device 30. Thereby, the shutter curtain 1 can be arranged in an initial state for moving the shutter curtain 1 to be closed and further to open and move after the closing movement.

  According to the construction method according to the present embodiment described above, the work for bridging the locking wire 36 between the lintel 16 and the seat plate 1B of the shutter curtain 1 is performed by guiding the shutter curtain 1 to the guide rail 6. Since this operation is performed after the operation to bring the shutter curtain 1 into place, this bridging operation is performed in a state in which the shutter curtain 1 is arranged at the original predetermined position on the construction site by the guide rail 6 and the operation on the shutter curtain 1 can be easily performed. Therefore, the transfer work can be performed efficiently and workability can be improved.

  Further, the shutter curtain 1 at this time is not wound around the winding shaft 11 but is unfolded by the guide rail 6, so that the above bridging operation can be performed more efficiently, and further Can be improved.

  Further, since the above-mentioned bridging operation is performed when the shutter curtain 1 is fully closed, the bridging is performed after the weight of the shutter curtain 1 is supported by the floor 4 and the shutter curtain 1 does not move up and down. The work can be carried out. For this reason, the transfer work can be performed more efficiently in this respect, and the workability can be further improved.

  Further, the mechanical obstacle detection device 35 when being brought into the construction site from the factory is a unit in a state where the first processing device 37, the second processing device 38, and the mechanical coupling device 39 are connected by the lock wire 36. Therefore, this carrying-in operation can be easily performed, and various operations on the mechanical obstacle detection device 35 performed at the construction site after this carrying-in operation can be easily performed.

  Further, among the devices constituting the mechanical obstacle detection device 35, the first processing device 37 and the second processing device 38 arranged on the lintel member 16A constitute a single unit structure 45. The operation of arranging the first processing device 37 and the second processing device 38 on the lintel member 16A is performed by performing the operation of disposing only the unit structure 45 on the lintel member 16A. Since it is not necessary to perform the work of individually disposing the first processing device 37 and the second processing device 38 on the support member 16A, the work efficiency and workability can be improved also in this respect.

  Moreover, the mechanical shutter curtain stop device described above according to the present embodiment can be applied to an existing shutter device. Specifically, when the mechanical shutter curtain stopping device is applied to the existing shutter device, the opening 90 described above is formed in the seat plate 1B of the shutter curtain 1 of the existing shutter device. Therefore, after replacing the seat plate 1B, which is a shutter curtain constituent member, with the seat plate 1B in which the opening 90 is formed, the opening 90 serving as the mechanical coupling device arrangement portion is mechanically An operation for arranging the type coupling device 39 is performed.

  In order to replace the seat plate 1B in which the opening 90 is not formed with the seat plate 1B in which the opening 90 is formed, the height of the shutter curtain 1 of the existing shutter device is separated from the floor 4. After being raised to the position, the seat plate 1B is separated from the curtain main body 1A by removing the coupler 77 shown in FIG. 8, and then the both ends of the seat plate 1B are inclined, for example. Is removed from the left and right guide rails 6. After this, the opening 90 is formed, and the seat plate 1B, which is a shutter curtain constituting member, is similarly inclined, and both ends of the seat plate 1B are inserted into the left and right guide rails 6. The seat body 1B is coupled to the curtain body 1A by the coupling tool 77. After the shutter curtain 1 is lowered to the fully closed position, as described above, the unit structure 45 is disposed on the lintel member 16A, and the first processing device 37 and the second processing device of the unit structure 45 are arranged. A mechanical coupling device 39 connected to the locking plate 36 is disposed in the opening 90 of the seat plate 1B after replacement. Next, the remaining work described above is performed.

  Thereby, the operation | work for applying the above-mentioned mechanical shutter curtain stop apparatus which concerns on this embodiment to the existing shutter apparatus is complete | finished.

  Further, in the present embodiment described above, as described above, both the first portion 36B and the second portion 36C of the lock wire 36 are the curtain main members excluding the fixing portion 70A where the mechanical coupling device 39 is disposed. Since it is disposed at a position away from the portion 71A in the thickness direction of the shutter curtain 1 and does not interfere with the curtain main portion 71A, a bridging member spanned between the lintel 16 and the shutter curtain 1; The locking wire 36, which is a mechanical member in the present embodiment, does not hinder the opening and closing movement when the shutter curtain 1 is opened and closed, and smoothly performs the opening and closing movement. Can be made.

  In the present embodiment, since the locking wire 36 is separated from the curtain main portion 71A except the fixing portion 70A of the shutter curtain 1 for both the first portion 36B and the second portion 36C, the shutter curtain 1 is opened and closed. Even if it moves, the entire lock wire 36 does not rub against the curtain main portion 71A except for the fixed portion 70A. For this reason, the entire lock wire 36 and the curtain main portion 71A excluding the fixed portion 70A However, it can be prevented from being damaged.

  Further, according to the present embodiment, as described with reference to FIG. 2, the shutter curtain 1 is suspended below the ceiling member 5 through the slit 17 of the lintel 16 disposed on the ceiling member 5, and the lock wire 36. The first and second portions 36 </ b> B and 36 </ b> C have a length straddling the top and bottom of the ceiling member 5, and the first and second portions 36 </ b> B and 36 </ b> C are not in contact with the lintel 16, and Since the slit 16 is inserted into the slit 16, smooth movement of the locking wire 36 relative to the lintel 16 can be ensured when the shutter curtain 1 is opened and closed.

  Furthermore, since the first and second portions 36B and 36C of the locking wire 36 do not interfere with the lintel 16, it is possible to prevent both the locking wire 36 and the lintel 16 from being damaged.

  Further, in the present embodiment, when the shutter curtain 1 is fully opened, the shutter curtain starts closing movement by operating the “close” button of the operating device 30 shown in FIG. Even when the inner shutter curtain 1 abuts against the obstacle 34, the first lever member 61 and the second lever member 62 of the mechanical coupling device 39 are locked by the friction members 67 and 68 as in the case described above. Since the folding portion 36A of the wire 36 is clamped and locked, and the mechanical coupling device 39 mechanically couples the shutter curtain 1 and the locking wire 36, the second portion 36C of the locking wire 36 has a downward direction. The tension of will act.

  When the closing movement of the shutter curtain 1 is performed by operating the “close” button of the operating device 30 as described above, the tension of the second portion 36C of the lock wire 36 is the second process. It acts on the slide member 120 of the automatic closing device 32 via the rotating member 42 of the device 38 and the first control wire 111. Since the roller 130 of the bending lever member 129 is fitted in the concave portion 120B of the slide member 120 at this time, the shutter curtain 1 is slightly closed due to the dent deformation of the obstacle 34 or the like. After descending, it can be stopped.

  In addition, although the shutter apparatus which concerns on this embodiment demonstrated above was a combined shutter apparatus of management and disaster prevention, this invention is applicable also to the shutter apparatus only for disaster prevention.

  FIG. 24 shows the unit structure 45 including the first processing device 37 and the second processing device 38 described above, the shutter 16 that is a stationary member with respect to the shutter curtain 1 that opens and closes, and the shutter curtain 1. In the thickness direction, an embodiment in which the pressing means 150 for pressing the shutter curtain 1 to the side opposite to the side where the unit structure 45 is arranged is shown.

  That is, when the shutter curtain 1 is unwound from the above-described winding shaft 11, the winding diameter of the shutter curtain 1 on the winding shaft 11 is reduced, so that even if the shutter curtain 1 approaches the unit structure 45, In this embodiment, the approaching position of the shutter curtain 1 relative to the unit structure 45 is limited to a certain position by the pressing means 150 so that the shutter curtain 1 does not interfere with the unit structure 45. As shown in the perspective view of FIG. 25 and the plan view of FIG. 26, the pressing means 150 is obtained by attaching a first roller 152 and a second roller 153 to the machine frame 151 so as to be rotatable up and down. The arrangement position of the upper second roller 153 with respect to the lower first roller 152 is a position that is higher by L1 and is further retracted from the shutter curtain 1 by L2.

  As shown in FIG. 24, when the shutter curtain 1 is advanced from the take-up shaft 11, the shutter curtain 1 first hits the first roller 152, and the shutter curtain 1 is taken out from the take-up shaft 11. As it further proceeds, the shutter curtain 1 then strikes both the first roller 152 and the second roller 153. For this reason, even if the winding diameter of the shutter curtain 1 on the winding shaft 11 becomes extremely small, it is possible to prevent the shutter curtain 1 from interfering with the unit structure 45 by the two rollers 152 and 153.

  The number of rollers provided in the pressing means may be one. When a plurality of rollers are used, the height positions of the rollers may be the same, and these rollers may be arranged in parallel in the width direction of the shutter curtain.

  In FIG. 27, even if the winding diameter of the shutter curtain 1 on the winding shaft 11 changes, a large gap in the thickness direction of the shutter curtain 1 is ensured between the shutter curtain 1 and the unit structure 45. An embodiment is shown that can be used. In this embodiment, the unit structure 45 is attached to the coupling member 26 described with reference to FIG. 2, whereby the unit structure 45 is disposed at a position away from the lintel 16 in the thickness direction of the shutter curtain 1. Yes. A bracket member 161 is attached to the lintel 16, and a guide roller 162 provided for each of the first portion 36 </ b> B and the second portion 36 </ b> C of the locking wire 36 is attached to the lintel 16. Above the slit 17 for hanging the shutter curtain, it is arranged so as to be rotatable up and down. The first portion 36 </ b> B and the second portion 36 </ b> C of the locking wire 36 are hung on these guide rollers 162 and are bridged between the shutter curtain 1 and the unit structure 45.

  The first portion 36 </ b> B and the second portion 36 </ b> C of the locking wire 36 depending from the respective guide rollers 162 are parallel to the portions guided by the left and right guide rails 6 in the shutter curtain 1. Even when the shutter curtain 1 extends from the winding shaft 11 and the winding diameter of the shutter curtain 1 on the winding shaft 11 decreases, the shutter curtain 1 and the unit structure 45 have a shutter between them. Since the large space | interval of the thickness direction of the curtain 1 is ensured, it can prevent that the shutter curtain 1 interferes with the unit structure 45. FIG.

  28 and 29 are views showing an embodiment in which both the first portion 36B and the second portion 36C of the locking wire 36 are arranged at positions where they cannot be visually recognized from the outside, and FIG. 28 is a shutter according to this embodiment. FIG. 29 is a front view showing the entire apparatus, and FIG. 29 is a mechanical coupling device 239 according to this embodiment for mechanically coupling the shutter curtain 1 and the locking wire 36 by locking the locking wire 36. FIG.

  In the above-described embodiment, the first processing device 37 and the second processing device 38 are disposed on the upper surface of the base member 44 that is fixedly disposed on the lintel 16 by bolts, welding, or the like. 37 and the 2nd processing apparatus 38 became the unit structure 45 connected with the base member 44 (refer FIG. 4).

  However, in this embodiment shown in FIGS. 28 and 29, the first processing device 37 and the second processing device 38 are not unitized unit structures, and as shown in FIG. 37 is disposed immediately above or near the left guide rail 6B, which is one of the pair of left and right guide rails 6 in the lintel 16, and serves as the relay means described above. The device 38 is disposed immediately above or near the right guide rail 6A, which is the other of the pair of left and right guide rails 6 in the lintel 16, and therefore, the first processing device 37 and the first The two processing devices 38 are spaced apart in the horizontal direction at the same height position. Further, the opening / closing machine 13 and the automatic closing device 32 attached to the opening / closing machine 13 are also arranged immediately above or near the right guide rail 6A.

  The first portion 36B and the second portion 36 of the locking wire 36 according to the embodiment shown in FIG. 1 and the like are arranged outside the pair of left and right guide rails 6. Of the first portion 36B of the wire 36, the portion that is drawn out from the first processing device 37 and hangs down is disposed inside the left guide rail 6B. Of the second portion 36C of the locking wire 36, the first portion 36B 2 The portion that is drawn out from the processing device 38 and hangs down is disposed inside the right guide rail 6A.

  Further, in this embodiment, as shown in FIG. 29, the width dimension of the case 201 that houses the mechanical coupling device 239 for locking the locking wire 36 (the horizontal direction that is the width direction of the shutter curtain 1). Is substantially the same as the width of the shutter curtain 1.

  The case 201 of the mechanical coupling device 239 according to this embodiment has a back surface portion 201A and an upper surface portion 201B shown in FIG. 29, and a front portion not shown, and these width dimensions are as follows. Since the width of the shutter curtain 1 is substantially the same as that of the shutter curtain 1, the left and right ends, which are the width direction of the case 201, together with the end of the shutter curtain 1 in the width direction, as shown in FIG. Is slidably inserted into the interior of the machine. Therefore, the width dimension of the opening provided in the guide rail 6 (the dimension in the front and back direction in FIG. 28) has a large dimension in which the end in the width direction of the case 201 of the mechanical coupling device 239 can be inserted. doing.

  Further, as shown in FIG. 29, a first lever member 61 and a second lever member 62, which are sandwiching members, are disposed inside the case 201. Are disposed at the same or substantially the same positions as the lever members 61 and 62 disposed in the case 55 of the mechanical coupling device 39 according to the above-described embodiment.

  Further, in the case 201, four rotatable rollers 202, 203, 204, 205 for guiding the lock wire 36 are disposed apart from each other in the width direction of the shutter curtain 1, and these rollers 202 are arranged. , 203, 204, 205 are also arranged with a plurality of guide members 60 such as pins for guiding the lock wire 36.

  The arrangement positions of the two rollers 203 and 204 arranged in the vicinity of the left and right of the two lever members 61 and 62 inside the case 201 are the inside of the case 55 of the mechanical coupling device 39 according to the embodiment of FIG. It is the same as or substantially the same as the arrangement position of the two rollers 58 and 59 arranged in the. On the other hand, the two rollers 202 and 205 arranged at the end in the width direction of the shutter curtain 1 inside the case 201 are arranged so as to hang down inside the left and right guide rails 6. The second portion 36C and the first portion 36B are guided in the horizontal direction.

  Further, as shown in FIG. 29, the holes 56 and 57 through which the locking wire 36 arranged to hang down inside the left and right guide rails 6 are formed in the case 201 on the upper surface portion 201B of the case 201. Are formed at both ends in the width direction. Note that protrusions 201D are formed on both side surfaces of the case 201, and the mechanical coupling device 239 uses these protrusions 201D to allow the seat plate 1B of the shutter curtain 1 shown in FIG. Are attached to a predetermined portion, that is, a portion corresponding to the fixing portion 70A shown in FIG.

  Also in the shutter device according to this embodiment, the first processing device 37 and the second processing device 37 are used after the operation for setting the shutter curtain 1 to the guide rail 6 is performed, as in the embodiment described with reference to FIGS. By disposing the processing device 38 on the lintel 16 and placing the mechanical coupling device 239 on the fixed portion 70A of the seat plate 1B, the lock wire 36 is connected to the lintel 16 and the shutter curtain 1. The work spanned between the two will be performed.

  As described above, in the embodiment shown in FIGS. 28 and 29, the first portion 36 </ b> B and the second portion 36 </ b> C of the locking wire 36 are disposed inside the pair of left and right guide rails 6. For this reason, according to this embodiment, the first portion 36B and the second portion 36C of the locking wire 36 can be protected from external force.

  In this embodiment, the second processing device 38 and the automatic closing device 32 serving as the relay means described above are directly above or right above the right guide rail 6A of the pair of left and right guide rails 6A and 6B. Therefore, the arrangement position of the second processing device 38 and the arrangement position of the automatic closing device 32 are the same or close to each other in the horizontal direction. For this reason, the length of the first control wire 111 serving as the aforementioned tension transmitting member spanned between the second processing device 38 and the automatic closing device 32 can be further shortened. As a result, the tension force due to the weight of the shutter curtain 1 acting on the lock wire 36 when the shutter curtain 1 moving in contact with the obstacle 34 comes into contact with the obstacle 34 more instantly by the first control wire 111. When the shutter curtain 1 in the closing movement comes into contact with the obstacle 34, the closing movement of the shutter curtain 1 can be stopped more quickly.

  Further, also in this embodiment, as shown in FIG. 28, the operating device 30 includes the switch 13 and the automatic among the building housings 3 such as the left and right walls disposed on both sides in the width direction of the shutter curtain 1. Since it is arranged in one building housing 3A that is close to the closing device 32, it is stretched between the automatic closing device 32 and the operating device 30 and is pulled by the operating device 30. The length of the second control wire 112 that is a member can be shortened. For this reason, compared with the case where the operation device 30 is arranged in the other building case 3B among the building cases 3 such as the left and right walls, the second operation is performed by the manual operation member such as the aforementioned lever member arranged in the operation device 30. The pulling force when the control wire 112 is pulled can be instantaneously input to the automatic closing device 32, whereby the brake means 19 of the switch 13 can be instantaneously turned off and fully opened. The closing movement of the shutter curtain 1 can be started quickly.

  Also in this embodiment, the first portion 36B and the second portion 36C of the locking wire 36 are separated in the thickness direction of the shutter curtain 1 from the curtain main portion excluding the fixed portion where the mechanical coupling device 239 is disposed. Since the lock wire 36 does not interfere with the opening / closing movement when the shutter curtain 1 is opened / closed, the locking wire 36 does not interfere with the opening / closing movement. It can be performed smoothly.

  Note that the positions of the first portion 36B and the second portion 36C of the locking wire 36 in the left and right guide rails 6 in the left and right direction are located on the inner side of the guide rail 6 from the end surface of the end portion in the width direction of the shutter curtain 1 ( It may be arranged on the back side. According to this, the 1st part 36B and the 2nd part 36C of the wire 36 for a lock | rock are arrange | positioned in the position away in the width direction of the shutter curtain 1 from the curtain main part except the fixed part in which the mechanical coupling device 239 is arrange | positioned. As a result, even when the shutter curtain 1 is opened and closed, this opening and closing movement can be performed smoothly. In this way, in order to arrange the left and right positions of the first portion 36B and the second portion 36C of the locking wire 36 inside the guide rail 6 rather than the end face of the end portion in the width direction of the shutter curtain 1, for example, The case 201 is provided with two portions that protrude outward from the end surfaces of both ends in the width direction of the shutter curtain 1, and the slits of the lintel 16 without contacting the lintel 16 at these protruding portions. The first portion 36 </ b> B and the second portion 36 </ b> C of the lock wire 36 inserted through the wire 17 may be suspended.

  In the shutter device according to each of the embodiments described above, the bridging member having a portion spanned between the stationary member and the shutter curtain has a U shape having a folded portion. The shutter device according to the embodiment in which the bridging member extends in a straight line except for the portion corresponding to the mechanical coupling device will be described.

  FIG. 30 shows a combined shutter device for management and disaster prevention according to this embodiment, and FIG. 31 is a sectional view taken along line S31-S31 in FIG.

  Also in this embodiment, the opening / closing device 13 and the automatic closing device 32 described in FIGS. 1 and 2 are used, and the automatic closing device is a mechanical control device for controlling the opening / closing device 13 mechanically. Similarly to the embodiment shown in FIGS. 17 to 21, one end of the first to third control wires 111 to 113 is connected to 32. For this reason, in the following description, the structure and operation of the switch 13, the automatic closing device 32, and the first to third control wires 111 to 113 already described will be omitted.

  However, in this embodiment, the other end portion of the third control wire 113 is extended to the operating device 30 shown in FIG. 1 and also shown in FIG. A manual operation member such as a lever member disposed in the device 30 or a rotating member that is rotated by a switch operation type electric motor disposed in the operation device 30 and winds up the third control wire 113 so as to be freely drawn out. It is connected with the winding member for.

  Also in this embodiment, as shown in FIG. 30, the opening / closing device 13 and the automatic closing device 32 are not arranged at the center position B in the width direction of the shutter curtain 301. Of the left and right guide rails 306A and 306B for guiding the opening and closing movement of the shutter curtain 301, the closing device 32 is disposed directly above or near the right guide rail 306A in FIG.

  In this embodiment, a roller chain 335 that is a bridging member and a string-like member in the present embodiment is housed and disposed inside the one guide rail 306A. Further, the roller chain 335 which is a mechanical member in this embodiment passes through the inside of the shutter curtain 301 from the lintel 16 which is a stationary member with respect to the shutter curtain 301, and is a stationary member with respect to the shutter curtain 301. It extends to the lower end of the guide rail 306A. For this reason, the roller chain 335 has a portion extending from the stationary member to the shutter curtain 301. The lower end of the roller chain 335 is coupled to the guide rail 306A or the floor 4 by a coupling member 336 such as a pin, and the upper end of the roller chain 335 is disposed in the lintel 16 for processing the upper end. 337.

  The processing device 337 is a delay device in this embodiment, as will be described later. Further, the processing device 337 is disposed right above or near the right guide rail 306A in FIG. 30 among the pair of left and right guide rails 306A and 306B.

  The processing device 337 is also an intermediate device disposed between the roller chain 335 and the automatic closing device 32. The processing device 337 is also shown in FIGS. FIG. 32 is a view in which the front and back are reversed with respect to FIG. As shown in FIG. 32, the processing device 337 includes a rotating member 339 that is rotatable about a horizontal central shaft 339A coupled to the machine casing 338 of the apparatus 337, and a machine casing 338. And a lever member 340 that is swingable up and down around a fulcrum shaft 340A. The upper end of the roller chain 335 is connected to one end portion of the lever member 340 via a coil spring 341 that is an elastic member, and the other end portion of the lever member 340 is a pin 342 coupled to the rotating member 339. It is connected to the rotation member 339 via Since the pin 342 is inserted into a long hole 340B formed in the lever member 340, when the lever member 340 swings up and down around the fulcrum shaft 340A, the rotating member 339 is centered around the central shaft 339A. Rotate up and down.

  In addition, as shown in FIG. 31, the shutter curtain 301 according to this embodiment is also suspended below the ceiling member 5 through the slit 17 of the lintel 16 disposed on the ceiling member 5. The roller chain 335 has a length straddling the top and bottom of the ceiling member 5, and the roller chain 335 is inserted into the slit 17 of the lintel 16 without contacting the lintel 16.

  FIG. 33 is an enlarged front view of a portion on the guide rail 306 </ b> A side of the seat plate 301 </ b> B that is an end member of the shutter curtain 301. 34 is a front sectional view showing the internal structure of the seat plate 301B, FIG. 35 is a sectional view taken along the line S35-S35 in FIG. 34, and FIG. 36 is a sectional view taken along the line S36-S36 in FIG. FIG. 36 shows the configuration of the shutter curtain 301. The shutter curtain 301 of this embodiment is also formed by a large number of slats 326 arranged vertically as shown in FIG. The curtain body 301A is an opening / closing body, and a seat plate 301B is provided at the lower end of the curtain body 301A and is an end member. In addition, the seat plate 301B is provided with a fixed portion 370A fixed to the lower portion of the curtain body 301A, and a movable portion 370B that is disposed below the fixed portion 370A and is movable in the vertical direction with respect to the fixed portion 370A. It consists of.

  As shown in FIG. 36, the shutter curtain 301 includes a curtain main portion 371A and a curtain sub-portion 371B. The curtain main portion 371A is a fixed one of the curtain main body 301A and the seat plate 301B. The curtain sub-portion 371B includes a movable portion 370B of the seat plate 301B. The curtain sub-portion 371B is disposed at the end of the shutter curtain 301 on the closing side. The curtain main portion 371A is an open / close body main portion in the present embodiment, and the curtain sub portion 371B is an open / close body sub portion in the present embodiment.

  The fixing portion 370A of the seat plate 301B is formed to include an outer member 375 and an inner member 376 that are both box-shaped in cross section, and the outer member 375 is divided and arranged in the thickness direction of the shutter curtain 301. The divided members 375A and 375B are formed by a plurality of divided members 375A and 375B, and these divided members 375A and 375B are coupled to the lower end portion of the curtain body 301A by a coupling tool 377 such as a bolt and a nut. The inner member 376 includes a front surface portion 376A and a rear surface portion 376B that are arranged at an interval in the thickness direction of the shutter curtain 301, and an upper surface portion 376C that connects the upper ends of the front surface portion 376A and the rear surface portion 376B. Consists of. Further, the lower surfaces of the outer member 375 and the inner member 376 are openings 378.

  The curtain sub-portion 371B, which is the movable portion 370B, includes a hollow movable member 390 having an open upper surface, an elevating member 391 housed in the movable member 390 so as to be movable up and down, and an elevating member with respect to the movable member 390. And an elastic member 392 that is always elastically pushed up 391 upward. In this embodiment, the elastic member 392 is formed by a leaf spring bent into a mountain shape, and the upper end of the center of the leaf spring 392 is secured to the elevating member 391 by a fastening tool 393 such as a rivet. Both lower ends of the leaf springs 392 are slidably disposed on the upper surface of the bottom surface portion 390A of the movable member 390.

  The upper surface portions 391A and 391B of the elevating member 391 extend horizontally outward in the thickness direction of the shutter curtain 301, and these upper surface portions 391A and 391B are inserted into the inner member 376 from the opening 378. The lower surface portions 375C and 375D of the outer member 375 extend horizontally outward in the thickness direction of the shutter curtain 301, and the upper surface portions 390B and 390C of the movable member 390 extend horizontally inward in the thickness direction of the shutter curtain 301. These upper surface portions 390B and 390C are vertically opposed to the upper surfaces of the lower surface portions 375C and 375D of the outer member 375. Therefore, when the upper surface portions 390B and 390C of the movable member 390 ride on the lower surface portions 375C and 375D of the outer member 375, the aforementioned movable portion 370B reaches the lower limit position with respect to the fixed portion 370A. Therefore, the above-described curtain sub-portion 371B does not descend any more than the curtain main portion 371A.

  As shown in FIG. 36, a swinging member 381 that can swing up and down around a fulcrum shaft 380 extending in the width direction of the shutter curtain 301 is housed in the above-described fixing portion 370A. . As shown in FIG. 38, when the movable part 370B is raised with respect to the fixed part 370A, that is, when the shutter curtain 301 is closed, the movable member 390 hits the obstacle 34 shown in FIG. When in contact, the upper surface portion 391A of the elevating member 391 connected to the movable member 390 via the elastic member 392 pushes up the protruding piece 381A of the swinging member 381, so that the swinging member 381 is centered on the fulcrum shaft 380. Rocks upward.

  The external member 375, the inner member 376, the movable member 390, the elevating member 391, and the swinging member 381 are formed of an extruded product or a pultruded product such as an aluminum alloy, for example. Therefore, the outer member 375, the inner member 376, the movable member 390, the elevating member 391, and the swinging member 381 have a length in the width direction of the shutter curtain 301. A fulcrum shaft 380 serving as a rocking center portion of the rocking member 381 is formed integrally with the inner member 376, and the fulcrum shaft 380 also has a length in the width direction of the shutter curtain 301. Further, a plurality of elastic members 392 using the leaf springs described above are arranged at intervals in the width direction of the shutter curtain 301.

  As shown in FIG. 36, the aforementioned two divided members 375A and 375B of the outer member 375 are overlapped with each other in the thickness direction of the shutter curtain 301 and extended upwards 375E and 375F. These extending portions 375E and 375F are coupled to the lowermost slat 326A among the slats 326 forming the curtain body 301A by the coupling 377 described above. Each slat 326 has a length in the width direction of the shutter curtain 301 such that both left and right ends are inserted into the left and right guide rails 306 shown in FIG. Further, the two divided members 375A and 375B including the extending portions 375E and 375F, the inner member 376, the movable member 390, the elevating member 391, and the swinging member 381 are spaced apart from each other by the inner width of the left and right guide rails 306. The shutter curtain 301 has a shorter length in the width direction.

  As shown in FIG. 34, the end portions 376D and 381B on the guide rail 306A side of the inner member 376 and the swinging member 381 are separated from the guide rail 306A by a predetermined distance, and the end portions inside the outer member 375 are inside. A holding member 350 is disposed in a portion where the portions 376D and 381B can be separated from the guide rail 306A. Since the holding member 350 coupled to the two divided members 375A and 375B of the outer member 375 by welding or a fastener has the same cross-sectional shape as the inner member 376, the holding member 350 is As shown in FIG. 35, the front surface portion 350A and the rear surface portion 350B that are spaced apart in the thickness direction of the shutter curtain 301, and as shown in FIG. The upper surface portion 350C connects the upper ends of the surface portion 350B. Further, as shown in FIGS. 34 and 35, an extension member 351 extending toward the guide rail 306A is fixed to the front surface portion 350A and the rear surface portion 350B of the holding member 350 with a fixing device 352 such as a rivet. Has been. The extending member 351 connects the front surface portion 351A and the rear surface portion 351B which are arranged at an interval in the thickness direction of the shutter curtain 301, and a part of the upper ends of the front surface portion 351A and the rear surface portion 351B. And an upper surface portion 351C.

  As shown in FIG. 33, the front part 351A and the rear part 351B of the extending member 351 can be fastened to the front part 350A and the rear part 350B of the holding member 350 with a fastening tool 352. The front surface portion 351A and the rear surface portion 351B of the extending member 351 are inserted and disposed in the two divided members 375A and 375B of the outer member 375 that are placed outside the front surface portion 350A and the rear surface portion 350B of the holding member 350. A notch 353 that can be formed is formed.

  As shown in FIG. 35, the distance between the front surface portion 351A and the rear surface portion 351B of the extending member 351 in the thickness direction of the shutter curtain 301 is fixed to the front surface portion 350A and the rear surface portion 350B of the holding member 350. Excluding the portion fixed at 352, the thickness direction of the shutter curtain 301 with respect to the opening 354 provided in the guide rail 306A in order to insert the curtain body 301A of the shutter curtain 301 into the guide rail 306A. It is smaller than the dimension. For this reason, the portion of the extending member 351 on the guide rail 306A side is inserted into the guide rail 306A.

  As shown in FIG. 34, a first sprocket wheel 361 is rotatably arranged inside the extending member 351, and inside the holding member 350, slightly below the first sprocket wheel 361, The second sprocket wheel 362 is rotatably held, and the third sprocket wheel 363 is rotatably disposed inside the extending member 351 slightly below the second sprocket wheel 362. The arrangement positions of the first and third sprocket wheels 361 and 363 in the extending member 351 are inside the guide rail 306A.

  As described above, the roller chain 335 having the upper end connected to the processing device 337 shown in FIGS. 31 and 32 is inserted into the guide rail 306A from the processing device 337, and this roller chain 335 is inserted. 34 is hung around the lower part of the first sprocket wheel 361 and then hung around the second sprocket wheel 362, as shown in FIG. The roller chain 335 extends around the upper part of the third sprocket wheel 363 and then extends downward through the guide rail 306A. The lower end of the roller chain 335 is connected to the coupling member 336 shown in FIG. The position has been reached. Therefore, as shown in FIG. 34, the roller chain 335 passes through the first portion 335A from the processing device 337 to the first sprocket wheel 361 and the first sprocket wheel 361 to the second sprocket wheel 362. There are a second portion 335B extending to the third sprocket wheel 363 and a third portion 335C extending from the third sprocket wheel 363 to the coupling member 336.

  When the shutter curtain 301 is guided by the left and right guide rails 306 and moves up and down, the opening and closing movement of the shutter curtain 301 changes the lengths of the first and third portions 335A and 335C of the roller chain 335. This is done by moving the second portion 335B of the roller chain 335 relative to the shutter curtain 301. Thus, when the second portion 335B of the roller chain 335 moves relative to the shutter curtain 301, the three sprocket wheels 361 to 363 rotate, so that the shutter curtain 301 moves to open and close. In this case, the second portion 335B of the roller chain 335 is a guide member for guiding the roller chain 335 so that the second portion 335B of the roller chain 335 can move with respect to the shutter curtain 301.

  As shown in FIG. 35, the first space 355 into which the first and third sprocket wheels 361 and 363 can be inserted and the inside of the guide rail 306A having the opening 354 described above as an inlet, A second space portion 356 is formed which is formed on the far side of the first space portion 355 and has a smaller dimension in the thickness direction of the shutter curtain 301 than the first space portion 355. As shown in FIG. 34, the first and third portions 335A and 335C of the roller chain 335 are disposed in the second space portion 356. Therefore, the first and third portions 335A and 335C are The guide rail 306A is inserted into the guide rail 306A without contacting the inner wall surface.

  Due to the positional relationship of the roller chain 335 with respect to the shutter curtain 301, the first and third portions 335A and 335C of the roller chain 335 serving as a bridging member in this embodiment are arranged in the width direction of the shutter curtain 301. From the end portion, the shutter curtain 301 is disposed in the guide rail 306 </ b> A at a distance in the width direction.

  Further, as shown in FIG. 34, a ratchet wheel 365 disposed coaxially with the second sprocket wheel 362 is rotatably held in the holding member 350 described above, and a plurality of ratchet wheels 365 are provided on the outer peripheral portion. The ratchet wheel 365 in which the claw portions 365A are formed at equal intervals is coupled and integrated with the second sprocket wheel 362 and the shaft portion 362A as shown in FIG. For this reason, the second sprocket wheel 362 and the ratchet wheel 365 are rotating members that rotate together.

  From the above, in the present embodiment, the second sprocket wheel 362 is a first motion member for guiding the movement of the roller chain 335 with respect to the shutter curtain 301 during the opening and closing movement by a rotational motion. In addition, the ratchet wheel 365 is connected to the first motion member, and is a second motion member that rotates integrally with the first motion member.

  As shown in FIG. 34, the ratchet member 366 is swingably held in the holding member 350 at a position closer to the swing member 381 than the position where the second sprocket wheel 362 is disposed. Has been. As shown in FIG. 35, the ratchet member 366 includes a front surface portion 366A and a rear surface portion 366B that are spaced apart from each other in the thickness direction of the shutter curtain 301, and the front surface portion 366A and the rear surface portion 366B. A bottom surface portion 366C connecting the lower ends. The front surface portion 366A and the rear surface portion 366B are swingably connected to the front surface portion 350A and the rear surface portion 350B of the holding member 350 by a fulcrum shaft 367 using a pin or the like, so that the ratchet member 366 can swing up and down. Yes.

  As shown in FIG. 34, the bottom surface portion 366C of the ratchet member 366 is formed with a claw portion 366D protruding toward the ratchet wheel 365, and this claw portion 366D has an inverted V shape. Yes. In addition, the bottom surface portion 66C of the ratchet member 366 is formed with a protruding portion 366E that protrudes toward the swinging member 381 side. Due to the arrangement position of the fulcrum shaft 367 with respect to the position of the center of gravity of the entire ratchet member 366, as shown in FIG. 34, the ratchet member 366 is in an inclined posture with the protruding portion 366E on the lower side. . A pressing member 394 is attached to the upper surface of the above-described protruding piece 381A of the swinging member 381, and the protruding portion 366E of the ratchet member 366 in the normal state rides on the pressing member 394.

  When the claw portion 366D is engaged with the claw portion 365A of the ratchet wheel 365 by the ratchet member 366 swinging about the fulcrum shaft 367 when the shutter curtain 301 is closed and moved, the ratchet wheel 365 and Since the rotation of the second sprocket wheel 362 is prevented, the roller chain 335 is locked with respect to the shutter curtain 301, in other words, the shutter curtain 301 and the roller chain 335 are mechanically coupled, Thereby, the closing movement of the shutter curtain 301 can be stopped.

  For this reason, in this embodiment, the roller chain 335 is mechanically locked to the shutter curtain 301 that is being opened and closed by the ratchet wheel 365 and the ratchet member 366, and the shutter curtain 301 and the roller chain 335 are mechanically locked. A mechanical coupling device 368 is configured to be coupled to the equation. The ratchet member 366 is a restraining member for restraining the rotational motion of the ratchet wheel 365 serving as the second motion member as described above.

  Further, depending on the arrangement positions of the ratchet wheel 365 and the ratchet member 366 in the shutter curtain 1, the mechanical coupling device 368 is similar to the mechanical coupling device 39 according to the embodiment shown in FIG. 4 and FIG. Of the seat plate 301B of 301, it is incorporated inside the fixed portion 370A. That is, the mechanical coupling device 368 is disposed on the fixed portion 370A among the curtain main body 301A constituting the curtain main portion 371A of the shutter curtain 301 and the fixed portion 370A of the seat plate 301B.

  The roller chain 335 is separated from the shutter curtain 301 in the width direction of the shutter curtain 301 except for the fixing portion 370A of the shutter curtain 301 on which the mechanical coupling device 368 is disposed. Further, the roller chain 335 extends linearly in the opening / closing movement direction of the shutter curtain 301 inside the guide rail 306A except for the second portion 335B which is a portion corresponding to the mechanical coupling device 368. It has become a thing.

  At the end of the movable member 390 described with reference to FIG. 36 on the guide rail 306A side, as shown in FIG. 34, an extension member 395 extending toward the guide rail 306A is a fastening tool 396 such as a rivet. The tip of the extension member 395, which is formed of a channel material that is fastened and opened upward, is inserted into the guide rail 306A. Such an extension member is also provided at the end opposite to the end of the movable member 390 shown in FIG. 34, and the tip of this extension member is the guide rail 306B shown in FIG. Is inserted inside. Accordingly, even if the obstacle 34 shown in FIG. 30 is present inside the guide rail 306A or the guide rail 306B, the movable member 390 is connected to the above-described fixed portion of the shutter curtain 301 via the extension member. Ascending relative to the outer member 375 and the inner member 376 constituting 370A.

  A return spring 400 such as a mainspring spring is disposed behind the rotating member 339 of the processing device 337 described in FIG. The return force of the return spring 400 is such that the rotation member 339 is rotated in the C ′ direction, that is, the rotation member 339 is rotated in the direction of pulling up the roller chain 335 via the lever member 340 described above. Furthermore, it acts on the rotating member 339. An arc-shaped elongated hole 339B centering on the central axis 339A is formed in the rotating member 339, and a stop member 401 attached to the machine casing 338 of the processing device 337 is inserted into the elongated hole 339B. The rotation amount of the rotation member 339 is restricted to a constant amount by the stop member 401.

  Gear teeth 339C are formed on a part of the outer peripheral portion of the rotation member 339. Therefore, the rotation member 339 of this embodiment is also the rotation of the second processing device 38 according to the embodiment described in FIG. Similar to the moving member 42, it is a sector gear partially formed with gear teeth 339C. Similarly to the second processing apparatus 38 according to the embodiment described with reference to FIG. 16, two rotary dampers 402 are disposed in the processing apparatus 337, and the pinion gear 403 of these dampers 402 is a rotating member 339. Is engaged with the gear teeth 339C. The structure and operation of these dampers 402 are the same as those of the damper 102 of the second processing apparatus 38 according to the embodiment described with reference to FIG. 16. For this reason, a one-way clutch is attached to the rotation center shaft 404 of the pinion gear 403. When the pinion gear 403 and the central shaft 404 are rotated in the E ′ direction by rotating the rotating member 339 in the C ′ direction, the respective blades are connected via the one-way clutch. Rotates in the viscous fluid filled in the damper 402. For this reason, the rotating member 339 is rotated in the C ′ direction at a low speed by the resistance force of the viscous fluid. On the other hand, when the rotating member 339 rotates in the D ′ direction opposite to the C ′ direction, and the pinion gear 403 and the central shaft 404 rotate in the F ′ direction, the rotation in the F ′ direction is the one-way clutch. It is not transmitted to each blade by the cutting action. For this reason, the rotation member 339 can rotate at high speed in the D ′ direction.

  Further, the other end portion of the first control wire 111 is extended to one end of the automatic closing device 32 shown in FIGS. 30 and 31. FIG. In this manner, the rotating member 339 is connected.

  In the building where the shutter device according to this embodiment described above is installed, even when a disaster such as a fire occurs when the shutter curtain 301 is fully open, the shutter device according to the embodiment of FIG. Similarly to the case, the shutter curtain 301 is closed and moved by its own weight by the above-described operation of the automatic closing device 32 and the switch 13, and a disaster prevention zone is formed by the shutter curtain 301.

  Further, when the shutter curtain 301 is fully opened, an obstacle 34 shown in FIG. 30 exists when the shutter curtain 301 is closed and moved by its own weight due to a disaster such as a fire. In this case, in the middle of the closing movement of the shutter curtain 301, the curtain sub-portion 371B disposed at the front end of the shutter curtain 301 closes the lower part of the seat plate 301B of the shutter curtain 301. The aforementioned movable member 390 is in contact with the obstacle 34, and the lowering of the movable member 390 stops due to this contact.

  Even if the lowering of the movable portion 370B is stopped, the curtain main portion 371A composed of the curtain main body 301A and the fixed portion 370A of the seat plate 301B is lowered by its own weight, and thus is caused by the lowering. As shown in FIG. 38, the elevating member 391 connected to the movable member 390 via the elastic member 392 by the relative rise of the movable member 390 with respect to the curtain main portion 371A is also attached to the curtain main portion 371A. Relatively rises. When this rise occurs, the swinging member 381 swings upward about the fulcrum shaft 380, and by this swinging, the ratchet member 366 on which the protruding portion 366E is on the pressing member 394 shown in FIG. A swing motion is performed with the claw portion 366D on the lower side about the fulcrum shaft 367. The state at this time is shown in FIG.

  When the ratchet member 366 swings around the fulcrum shaft 367 so that the claw portion 366D is on the lower side, the claw portion 366D of the ratchet member 366 is engaged with the claw portion 365A of the ratchet wheel 365. The rotation of the two-sprocket wheel 362 stops, and the roller chain 335 is mechanically locked with respect to the shutter curtain 301 that is closing and moving. In other words, the above-described mechanical coupling device 368 constituted by the ratchet wheel 365 and the ratchet member 366 operates, and the shutter curtain 301 and the roller chain 335 are mechanically coupled by the mechanical coupling device 368 by this operation. It becomes a state.

  Thus, when the shutter curtain 301 and the roller chain 335 are mechanically coupled by the mechanical coupling device 368, the entire shutter curtain 301 including the movable member 390 is further increased by the amount of deformation of the obstacle 34. Due to the lowering, a large tension force due to the weight of the shutter curtain 301 acts on the aforementioned first portion 335A of the roller chain 335.

  In the case where the obstacle 34 is a hard object that does not dent deform or has a small amount of dent deformation, the movable member 390 that comes into contact with the obstacle 34 does not descend further due to the hard property of the obstacle 34 or It will hardly go down. However, in this embodiment, as described above, the movable member 390 and the elevating member 391 are connected by the elastic member 392 using a leaf spring, and the movable member 390 is located at a certain height position for the hard obstacle 34. The curtain main portion 371A in which the swinging member 381 and the ratchet member 366 are arranged is the distance K shown in FIG. 38 relative to the movable member 390 due to the elastic deformation of the elastic member 392. It can only be lowered. For this reason, even if the movable member 390 does not descend or hardly descends due to the hard obstacle 34, the curtain main portion 371A can remove the weight of the movable member 390, the elevating member 391, and the elastic member 392. The weight can be lowered by a distance K, and by this descent, the elevating member 391 on which the upward elastic force of the elastic member 392 is acting rises relative to the curtain main portion 371A.

  For this reason, even when the obstacle 34 is a hard object that does not dent deform or has a small amount of dent deformation, the roller chain 335 is mechanically moved with respect to the shutter curtain 301 moving in the same manner as described above. The coupling device 368 is mechanically locked, and a large tension force due to the weight of the shutter curtain 301 acts on the first portion 335A of the roller chain 335.

  Further, since the movable member 390 is provided with the extension member 395 inserted into the left and right guide rails 306 as described above, the obstacle 34 exists inside these guide rails 306. Also in this case, as can be seen from the above, the relative movement of the movable member 390 and the like with respect to the curtain main portion 371A occurs. Therefore, in this case as well, the shutter curtain 301 moving in a closed state and the roller chain 335 are mechanically coupled by the mechanical coupling device 368, and the first portion 335A of the roller chain 335 includes a shutter. A large tension force due to the weight of the curtain 301 acts.

  Thus, when a large tension force acts on the first portion 335A of the roller chain 335, the reversing action by the swinging around the fulcrum shaft 340A of the lever member 340 provided in the processing device 337 shown in FIG. The rotation member 339 of the processing device 337 rotates in the direction D ′ in FIG. 32 against the return spring 400 described above, and this rotation amount is an arc-shaped long hole into which the above-described stop member 401 is inserted. It is according to the length of 339B. The rotation at this time causes the pinion gear 403 of the rotary damper 402 to rotate in the F ′ direction. However, the rotation of the pinion gear 403 in the F ′ direction generates a resistance force due to the viscous fluid in the damper 402 as described above. do not do. For this reason, the rotating member 339 rotates in the direction D ′ at high speed due to the tension force acting on the roller chain 335, and the first control wire having one end connected to the rotating member 339. 111 is pulled as in the case of the second processing apparatus 38 according to the embodiment shown in FIG.

  For this reason, the processing device 337 in this embodiment is a relay for relaying the tension force acting on the first portion 335A of the roller chain 335 serving as a bridging member in this embodiment to the first control wire 111. The first control wire 111 is a tension force transmission member for transmitting the tension force acting on the roller chain 335 to the automatic closing device 32.

  By pulling the first control wire 111 as described above, the automatic closing device 32 described above turns the brake means 19 of the switch 13 from OFF to ON, as can be seen from the above description. The shutter curtain 301 in contact with is closed and stopped at the contact position.

  Also in this embodiment, the processing device 337 and the automatic closing device 32 serving as the relay unit described above are arranged in the vicinity of or just above the right guide rail 306A of the pair of left and right guide rails 306A and 306B. Therefore, the length of the first control wire 111 serving as the tension transmitting member spanned between the processing device 337 and the automatic closing device 32 can be further shortened. The tension force due to the weight of the shutter curtain 1 acting on the lock wire 36 when the shutter curtain 1 being closed contacts the obstacle 34 is transmitted to the automatic closing device 32 more instantly by the first control wire 111. The closing movement of the shutter curtain 1 can be stopped more rapidly when the closing shutter curtain 1 comes into contact with the obstacle 34. Rukoto can.

  Also in this embodiment, as shown in FIG. 30, the operating device 30 includes the switch 13 and the automatic among the building housings 3 such as the left and right walls disposed on both sides in the width direction of the shutter curtain 1. It is arranged in one building housing 3A that is close to the closing device 32. For this reason, the length of the second control wire 112 that is stretched between the automatic closing device 32 and the operating device 30 and is a pulling operation member that is pulled by the operating device 30 can be shortened. More than the case where the operating device 30 is disposed in the other building housing 3B among the building housings 3 such as the left and right walls, the second control is performed by the manual operation member such as the aforementioned lever member disposed in the operating device 30. The pulling force when the wire 112 is pulled can be instantaneously input to the automatic closing device 32, whereby the brake means 19 of the opening / closing machine 13 can be instantaneously turned off, and the shutter that has been fully opened The closing movement of the curtain 1 can be started quickly.

  Further, the mechanical coupling device 368 according to this embodiment is configured by a ratchet wheel 365 and a ratchet member 366 that is engaged with the ratchet wheel 365. The second sprocket wheel 362 serving as a guide member for guiding the movement is not a member constituting the mechanical coupling device 368. Further, the second sprocket wheel 362 that performs a rotational motion by the roller chain 335 that moves with respect to the shutter curtain 301 that is being closed is a first motion member, and the second motion member and the second motion member The ratchet wheel 365 is connected, and the ratchet member 365 that serves as a restraining member for restraining the rotational movement of the ratchet wheel 365 is engaged with the ratchet wheel 365, so that the closing movement of the shutter curtain 301 is stopped. Will do.

  For this reason, according to the present embodiment, the closing movement of the shutter curtain 301 is stopped more than when the closing movement of the shutter curtain 301 is stopped by applying a frictional force by a friction member to a bridging member such as a roller chain. Therefore, it is possible to increase the magnitude of the mechanical locking force that can be generated.

  As described above, the shutter curtain 301 in the closing movement comes into contact with the obstacle 34, the brake means 19 of the switch 13 is turned on, and the obstacle 34 is removed after the closing movement of the shutter curtain 301 is stopped. Then, the movable member 390 of the shutter curtain 301 is lowered. By this lowering, the elevating member 391 is also lowered, the swinging member 381 returns and swings downward about the fulcrum shaft 380, and the ratchet member 366 also swings back and swings around the fulcrum shaft 367 with the protruding portion 366E downward. Therefore, the mechanical coupling state between the shutter curtain 301 and the roller chain 335 by the mechanical coupling device 368 is released.

  As a result, the tension force acting on the first portion 335A of the roller chain 335 disappears, and the rotating member 339 on which the return force by the return spring 400 of the processing device 337 in FIG. Since the pulling force acting on the first control wire 111 disappears due to this rotation, the brake means 19 of the switch 13 is turned off from on by the operation of the automatic closing device 32. The shutter curtain 301 is closed again and the movement is resumed.

  Further, when the rotating member 339 rotates in the C ′ direction in FIG. 32, the pinion gear 103 of the rotary damper 402 rotates in the E ′ direction, and in this E ′ direction, the resistance force by the viscous fluid is applied to the damper 402. Therefore, the switching of the brake means 19 of the switch 13 from on to off is not instantaneously performed due to the delay action of the damper 402. Therefore, the processing device 337 serving as a device for connecting the roller chain 335 and the first control wire 111 is a delay device, and the delay function of the delay device allows the shutter to be removed by removing the obstacle 34. The resumption of the closing movement of the curtain 301 is started with a time delay from the removal of the obstacle 34 as in the case of the second processing apparatus 38 according to the embodiment of FIG. Work can be done with a time margin.

  As described in the second processing device 38 according to the embodiment of FIG. 4 instead of the damper 402, for example, mechanical means including a mainspring timer may be adopted as this delay device.

  Also in this embodiment, when the shutter curtain 301 is fully opened, the shutter curtain 301 starts to move and closes when the “close” button of the operation device 30 shown in FIG. 30 is operated. Even when the moving shutter curtain 301 comes into contact with the obstacle 34, the mechanical coupling device 368 brings the shutter curtain 301 and the roller chain 335 into a coupled state, so that tension is applied to the roller chain 335. It will be. Therefore, even when the closing movement of the shutter curtain 301 is performed by operating the “close” button of the operation device 30 as described above, the closing movement of the shutter curtain 301 can be stopped.

  The shutter device according to this embodiment can also be applied to a shutter device dedicated to disaster prevention.

  According to this embodiment, as described above, the roller chain 335 that is a mechanical member has an end portion in the width direction of the shutter curtain 301 except for the portion of the shutter curtain 301 where the mechanical coupling device 368 is disposed. The roller chain 335 does not hinder the opening / closing movement when the shutter curtain 1 is opened / closed, so that the opening / closing movement can be performed smoothly. Can do.

  Further, according to this embodiment, as described in FIG. 31, the shutter curtain 301 is suspended below the ceiling member 5 through the slit 17 of the lintel 16 disposed on the ceiling member 5, and the roller chain 335 is The roller chain 335 has a length straddling the top and bottom of the ceiling member 5, and the roller chain 335 is inserted into the slit 17 of the lintel 16 without contacting the lintel 16. Therefore, both the roller chain 335 and the lintel 16 can be prevented from being damaged.

  Further, since most of the roller chain 335 is housed inside the guide rail 306A and inside the shutter curtain 301, most of the roller chain 335 can be protected from external force or the like.

  FIG. 39 shows a mechanical coupling device 568 of a first alternative embodiment when the bridging member is a roller chain. The upper end of the roller chain 535 is coupled to the lever member 340 of the processing device 337 disposed in the lintel 16 as in the above embodiment, and the lower end of the roller chain 535 is coupled to the guide rail 306A or the floor 4 with a coupling member. However, the roller chain 535 extends linearly from the lever member 340 of the processing device 337 to the coupling member. A sprocket wheel 562 serving as a first motion member and a ratchet wheel 565 serving as a second motion member are coaxially connected to the curtain main portion 371A of the shutter curtain 301. A part of the sprocket wheel 562 protrudes from the curtain main portion 371A in the thickness direction of the shutter curtain 301, and this protrusion portion of the sprocket wheel 562 extends from the curtain main portion 371A in the thickness direction of the shutter curtain 301. The roller chains 535 that are arranged apart from each other mesh with each other, and the roller chains 535 are inserted through holes that are formed through the curtain sub-portion 371B in the vertical direction.

  A ratchet member 566, which serves as a restraining member, is attached to the swing member 381 that is disposed in the curtain main portion 371A so as to be swingable in the vertical direction about the fulcrum shaft 380. . For this reason, when the shutter curtain 301 in the closed movement comes into contact with an obstacle, the ratchet member 566 is engaged with the ratchet wheel 565 by the movement of the movable member 390 relative to the curtain main portion 371A described above. Thus, the mechanical coupling device 568 mechanically couples the shutter curtain 301 and the roller chain 235 that are closing and moving.

  FIG. 40 shows a mechanical coupling device 668 of a second alternative embodiment when the bridging member is a roller chain. The roller chain 635 has a U-shape folded back by the seat plate 301B of the shutter curtain 301, and one end of the roller chain 635 is disposed on the lintel 16 as in each of the previous embodiments. The other end portion of the processing device 337 is connected to the lever member 340, and the other end portion is a device disposed on the lintel 16, and is a device for winding the roller chain 635 freely. It is connected to the winding shaft of the winding device. The roller chain 635 can be wound and unwound by the take-up shaft, and the take-up shaft is provided with a return spring for rotating the take-up shaft in the direction of winding the roller chain 635. The return force of the return spring prevents the roller chain 635 from being loosened when the shutter curtain 301 is opened / closed and stopped.

  In this embodiment as well, the curtain main portion 371A of the shutter curtain 301 is coaxially provided with a sprocket wheel 662 that is a guide member and is a first motion member, and a ratchet wheel 665 that is a second motion member. The sprocket wheel 662 on both sides of the shutter curtain 301 in the thickness direction protrudes from the seat plate 301B in the thickness direction of the shutter curtain 301. The roller chain 635 passing through the seat plate 301B in the thickness direction of the shutter curtain 301 is folded around the sprocket wheel 662 to be U-shaped by being hung around the lower part of the sprocket wheel 662. .

  In addition, a ratchet member 666 that serves as a restraining member is attached to the swing member 381 that is disposed in the curtain main portion 371A so as to be swingable in the vertical direction about the fulcrum shaft 380. ing. For this reason, also in this embodiment, when the shutter curtain 301 in the closing movement comes into contact with an obstacle, the ratchet member 666 is engaged with the ratchet wheel 665 by the movement of the movable member 390 relative to the curtain main portion 371A. Therefore, the mechanical coupling device 368 mechanically couples the shutter curtain 301 and the roller chain 635 that are moving in a closed state.

  FIG. 41 shows a mechanical coupling device 768 of a third alternative embodiment when the bridging member is a roller chain. The upper end of the roller chain 735 is connected to the lever member 340 of the processing device 337 disposed in the lintel 16 as in the first alternative embodiment of FIG. 39, and the lower end of the roller chain 735 is connected to the guide rail 306A or The roller chain 735 is linearly disposed from the lever member 340 of the processing device 337 to the coupling member. A sprocket wheel 762 serving as a first motion member and a ratchet wheel 765 serving as a second motion member are coaxially connected to the curtain main portion 371A of the shutter curtain 301. A part of the sprocket wheel 762 protrudes from the curtain main portion 371A in the thickness direction of the shutter curtain 301, and this protrusion portion of the sprocket wheel 762 extends from the curtain main portion 371A in the thickness direction of the shutter curtain 301. A roller chain 735 arranged at a distance is engaged, and this roller chain 735 is inserted through a hole formed vertically through the curtain sub-part 371B.

  In this embodiment, a swing member that is swingable in the vertical direction about the central axis is not disposed in the curtain main portion 371A. However, the elevating member 391 is provided with a ratchet member 766 serving as a restraining member. For this reason, when the shutter curtain 301 in the closing movement comes into contact with an obstacle, the ratchet member 766 is engaged with the ratchet wheel 765 by the movement of the movable member 390 relative to the curtain main portion 371A. The mechanical coupling device 768 mechanically couples the shutter curtain 301 and the roller chain 735 that are closing and moving.

  INDUSTRIAL APPLICABILITY The present invention can be used for various opening / closing devices such as a shutter device having a mechanical opening / closing body stopping device and having a shutter curtain as an opening / closing body, an awning device, and a smoke proof curtain device.

DESCRIPTION OF SYMBOLS 1,301 Shutter curtain which is opening and closing body 13 Opening and closing machine which is driving device 19 Brake means of opening and closing device 32 Automatic closing device which is mechanical control device 34 Obstacle 36 U-shaped locking wire 39 which is string-like member 39, 239, 368, 568, 668, 768 Mechanical coupling device 110 Machine frame of mechanical control device 111 First control wire as string member 114 Outer cable 120 Slide member 335, 535, 635, 735 String member Roller chain

Claims (12)

  1. An openable / closable body that can be opened and closed in the vertical direction;
    A drive unit configured to include a brake unit that stops the opening and closing body by being turned on, and to drive the opening and closing body;
    A bridging member having a portion spanned between the stationary member that is immovable with respect to the opening and closing body and the opening and closing body, and causing the opening and closing body to move relative to the opening and closing body; and
    A mechanical coupling device that is attached to the opening / closing body and mechanically couples the opening / closing body and the bridging member when the opening / closing body in a closing movement contacts an obstacle;
    A relay means for relaying a tension force due to the weight of the opening / closing body that is arranged on the stationary member and acts on the bridging member when the opening / closing body contacts the obstacle;
    An apparatus for mechanically controlling the driving device, wherein the tension force relayed by the relay means is transmitted via a tension force transmission member, and the brake means is turned on from off by transmission of the tension force. A mechanical control device for switching to
    With
    The relay means and the mechanical control device are disposed at a position shifted from a central position in the width direction of the opening / closing body to either side of the width direction, and the relay means and the mechanical control device are The position that is displaced is a position on the same side in the width direction with respect to the center position,
    The tension transmission member has a string-like member has a thickness direction away extending portion extending away from said relay device to a direction having a thickness direction of the component of the closing member,
    The relay means is provided with a rotating member to which one end of the bridging member that is a string-like member is coupled and one end of the tension transmitting member is connected. And the central axis of the rotating member extends in the width direction of the opening / closing body,
    A return force of a return spring acts on the rotating member, and this return force acts on the rotating member so as to rotate the rotating member in a direction in which the bridging member is pulled up. A mechanical opening / closing body stopping device for an opening / closing device.
  2. The mechanical opening / closing body stopping device for an opening / closing device according to claim 1, wherein the return spring is a mainspring spring.
  3. The mechanical opening / closing body stopping device for an opening / closing device according to claim 1 or 2, wherein the return spring is arranged behind the rotating member.
  4. The mechanical opening / closing body stopping device for an opening / closing device according to any one of claims 1 to 3, wherein the one end of the bridging member is coupled to the rotating member via a coil spring. A mechanical opening / closing body stopping device for an opening / closing device.
  5. The mechanical opening / closing body stopping device for an opening / closing device according to any one of claims 1 to 4, wherein the opening / closing body resumes its closed movement by removing the obstacle, with a time delay from the removal of the obstacle. A mechanical opening / closing body stopping device for an opening / closing device, wherein the delay device is operated by turning of the turning member.
  6. The mechanical opening / closing body stopping device for an opening / closing device according to claim 5, wherein the delay device causes the time delay to be generated by a damper.
  7. The mechanical switchgear stop device for switchgear according to claim 6, wherein there are a plurality of dampers, and each of these dampers has the same structure. apparatus.
  8. The mechanical opening / closing body stopping device for an opening / closing device according to any one of claims 1 to 7 , wherein a vertical direction is provided between the thickness direction separation extending portion and the mechanical control device in the tension transmitting member . A mechanical opening / closing body stopping device for an opening / closing device, characterized in that there is a vertically extending portion extending in a direction having the above component.
  9. The mechanical opening / closing body stopping device for an opening / closing device according to any one of claims 1 to 8 , wherein a part of the tension transmitting member is slidably inserted into an outer cable. Mechanical opening / closing body stop device for equipment.
  10. The mechanical opening / closing body stopping device for an opening / closing device according to claim 9 , wherein an end portion on the mechanical control device side of both ends of the outer cable is attached to a machine frame of the mechanical control device. A mechanical opening / closing body stopping device for an opening / closing device.
  11. The mechanical opening / closing body stopping device for an opening / closing device according to any one of claims 1 to 10 , wherein a sliding member for switching the brake means from OFF to ON by the tension is freely slidable in the mechanical control device. A mechanical opening / closing body stopping device for an opening / closing device, wherein the other end of the tension transmitting member is connected to the slide member.
  12. The mechanical opening / closing body stopping device for switchgear according to any one of claims 1 to 11 , wherein the mechanical control device is disposed on an upper portion of the drive device. Body stop device.
JP2017089906A 2008-08-07 2017-04-28 Mechanical switching body stop device for switchgear Active JP6404990B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008204051 2008-08-07
JP2008204051 2008-08-07

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014217900 Division 2014-10-27

Publications (2)

Publication Number Publication Date
JP2017129005A JP2017129005A (en) 2017-07-27
JP6404990B2 true JP6404990B2 (en) 2018-10-17

Family

ID=42186853

Family Applications (16)

Application Number Title Priority Date Filing Date
JP2008318195A Active JP5652998B2 (en) 2008-08-07 2008-12-15 Opening / closing member stop device for opening / closing device
JP2009027368A Active JP5286103B2 (en) 2008-08-07 2009-02-09 Construction method of mechanical switching body stop device for switchgear
JP2009054483A Active JP5308873B2 (en) 2008-08-07 2009-03-09 Mechanical switching body stop device for switchgear
JP2009098615A Active JP5297866B2 (en) 2008-08-07 2009-04-15 Mechanical switching body stop device for switchgear
JP2009152103A Active JP5297915B2 (en) 2008-08-07 2009-06-26 Selection device for mechanical switching body stop device for switchgear
JP2013116751A Active JP5571825B2 (en) 2008-08-07 2013-06-03 Construction method of mechanical switching body stop device for switchgear
JP2013138081A Active JP5640118B2 (en) 2008-08-07 2013-07-01 Mechanical switching body stop device for switchgear
JP2013138641A Active JP5521093B2 (en) 2008-08-07 2013-07-02 Opening / closing member stop device for opening / closing device
JP2014083802A Active JP5849122B2 (en) 2008-08-07 2014-04-15 Opening / closing member stop device for opening / closing device
JP2014131131A Active JP5781200B2 (en) 2008-08-07 2014-06-26 Construction method of mechanical switching body stop device for switchgear
JP2014180707A Active JP6215799B2 (en) 2008-08-07 2014-09-05 Opening / closing member stop device for opening / closing device
JP2014217900A Active JP6140124B2 (en) 2008-08-07 2014-10-27 Mechanical switching body stop device for switchgear
JP2015232674A Active JP6072208B2 (en) 2008-08-07 2015-11-30 Opening / closing member stop device for opening / closing device
JP2016135699A Active JP6307117B2 (en) 2008-08-07 2016-07-08 Opening / closing member stop device for opening / closing device
JP2016252311A Active JP6360548B2 (en) 2008-08-07 2016-12-27 Opening / closing member stop device for opening / closing device
JP2017089906A Active JP6404990B2 (en) 2008-08-07 2017-04-28 Mechanical switching body stop device for switchgear

Family Applications Before (15)

Application Number Title Priority Date Filing Date
JP2008318195A Active JP5652998B2 (en) 2008-08-07 2008-12-15 Opening / closing member stop device for opening / closing device
JP2009027368A Active JP5286103B2 (en) 2008-08-07 2009-02-09 Construction method of mechanical switching body stop device for switchgear
JP2009054483A Active JP5308873B2 (en) 2008-08-07 2009-03-09 Mechanical switching body stop device for switchgear
JP2009098615A Active JP5297866B2 (en) 2008-08-07 2009-04-15 Mechanical switching body stop device for switchgear
JP2009152103A Active JP5297915B2 (en) 2008-08-07 2009-06-26 Selection device for mechanical switching body stop device for switchgear
JP2013116751A Active JP5571825B2 (en) 2008-08-07 2013-06-03 Construction method of mechanical switching body stop device for switchgear
JP2013138081A Active JP5640118B2 (en) 2008-08-07 2013-07-01 Mechanical switching body stop device for switchgear
JP2013138641A Active JP5521093B2 (en) 2008-08-07 2013-07-02 Opening / closing member stop device for opening / closing device
JP2014083802A Active JP5849122B2 (en) 2008-08-07 2014-04-15 Opening / closing member stop device for opening / closing device
JP2014131131A Active JP5781200B2 (en) 2008-08-07 2014-06-26 Construction method of mechanical switching body stop device for switchgear
JP2014180707A Active JP6215799B2 (en) 2008-08-07 2014-09-05 Opening / closing member stop device for opening / closing device
JP2014217900A Active JP6140124B2 (en) 2008-08-07 2014-10-27 Mechanical switching body stop device for switchgear
JP2015232674A Active JP6072208B2 (en) 2008-08-07 2015-11-30 Opening / closing member stop device for opening / closing device
JP2016135699A Active JP6307117B2 (en) 2008-08-07 2016-07-08 Opening / closing member stop device for opening / closing device
JP2016252311A Active JP6360548B2 (en) 2008-08-07 2016-12-27 Opening / closing member stop device for opening / closing device

Country Status (1)

Country Link
JP (16) JP5652998B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5815960B2 (en) * 2011-02-28 2015-11-17 文化シヤッター株式会社 switchgear
JP5827041B2 (en) * 2011-06-23 2015-12-02 文化シヤッター株式会社 Opening / closing member stop device for opening / closing device
WO2013011867A1 (en) 2011-07-20 2013-01-24 文化シヤッター株式会社 Opening/closing body stop device for opening/closing device
JP5945134B2 (en) * 2012-03-05 2016-07-05 文化シヤッター株式会社 Opening / closing member stop device for opening / closing device
JP6228417B2 (en) * 2013-09-30 2017-11-08 三和シヤッター工業株式会社 Shutter with mechanical evacuation stop device
JP5756536B2 (en) * 2014-01-15 2015-07-29 文化シヤッター株式会社 Opening / closing member stop device for opening / closing device
JP6375184B2 (en) * 2014-09-04 2018-08-15 文化シヤッター株式会社 How to repair switchgear
JP6389711B2 (en) * 2014-09-04 2018-09-12 文化シヤッター株式会社 How to repair switchgear
JP6480164B2 (en) * 2014-11-28 2019-03-06 文化シヤッター株式会社 Repairing method of switchgear
CN110700748B (en) * 2018-04-27 2020-09-11 浙江金蝉布艺股份有限公司 Intelligent curtain driving mechanism
KR102155859B1 (en) * 2020-04-28 2020-09-14 오세록 Awning apparatus for outside

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526238Y2 (en) * 1985-07-02 1993-07-01
JPH055032B2 (en) * 1985-09-06 1993-01-21 Toko Shatsutaa Kk
JPS6367199U (en) * 1986-10-20 1988-05-06
JP2509164Y2 (en) * 1989-10-04 1996-08-28 三和シヤッター工業株式会社 Breaker release device for architectural shutter
US5022452A (en) * 1989-12-08 1991-06-11 Burrell Jere S Rolling fire door
JPH0581498U (en) * 1992-04-06 1993-11-05 鈴木シャッター工業株式会社 Shutter guide roller
JP2638509B2 (en) * 1994-10-04 1997-08-06 文化シヤッター株式会社 Obstacle sensing device for open / close body
JP2807422B2 (en) * 1994-12-26 1998-10-08 三協アルミニウム工業株式会社 Safety device for electric shutter
JPH09324590A (en) * 1996-06-05 1997-12-16 Sanwa Shutter Corp Manual operation device for releasing brake in shutter for building
JP3046547B2 (en) * 1996-08-13 2000-05-29 株式会社篠田製作所 Safety mechanism of lifting device
JP3937115B2 (en) * 1998-06-29 2007-06-27 東工シャッター株式会社 Fire shutter safety device
JP2000096961A (en) * 1998-09-21 2000-04-04 Sanwa Shutter Corp Safety device for fire shutter
JP2000096960A (en) * 1998-09-25 2000-04-04 Sanwa Shutter Corp Obstacle detecting mechanism for shutter
JP3991175B2 (en) * 1998-09-29 2007-10-17 三和シヤッター工業株式会社 Architectural shirter descent detector
JP3881464B2 (en) * 1998-11-06 2007-02-14 東洋シヤッター株式会社 Fire shutter
JP3507051B2 (en) * 2001-09-28 2004-03-15 新生精機株式会社 Automatic shutter closing device
JP2003106077A (en) * 2001-10-02 2003-04-09 Bunka Shutter Co Ltd Manual releasing mechanism
JP2003176679A (en) * 2002-08-29 2003-06-27 Sanwa Shutter Corp Safety device for gravity-dependent falling shutter
JP3624191B2 (en) * 2002-10-21 2005-03-02 新生精機株式会社 Lower limit stop mechanism of shutter automatic closing device
US7034682B2 (en) * 2003-06-20 2006-04-25 Rite-Hite Holding Corporation Door with a safety antenna
JP2006052576A (en) * 2004-08-11 2006-02-23 Bunka Shutter Co Ltd Opening and closing device
JP2006225922A (en) * 2005-02-16 2006-08-31 Koichi Kawasaki Shutter obstruct detector
JP2006336324A (en) * 2005-06-02 2006-12-14 Bunka Shutter Co Ltd Shutter device and its construction method
JP2008025189A (en) * 2006-07-20 2008-02-07 Nippon Shutter Seisakusho:Kk Fire preventive shutter having safety mechanism
JP5301797B2 (en) * 2007-02-15 2013-09-25 文化シヤッター株式会社 Obstacle detection structure of switchgear
JP4906612B2 (en) * 2007-07-04 2012-03-28 三和シヤッター工業株式会社 Mechanical evacuation stop device for self-weighting shutter
JP5107755B2 (en) * 2008-03-14 2012-12-26 株式会社Lixil鈴木シャッター Shutter device

Also Published As

Publication number Publication date
JP5286103B2 (en) 2013-09-11
JP6307117B2 (en) 2018-04-04
JP2010059772A (en) 2010-03-18
JP2010059777A (en) 2010-03-18
JP5849122B2 (en) 2016-01-27
JP2015042838A (en) 2015-03-05
JP2016048028A (en) 2016-04-07
JP2014148889A (en) 2014-08-21
JP5640118B2 (en) 2014-12-10
JP5571825B2 (en) 2014-08-13
JP2017129005A (en) 2017-07-27
JP2013189857A (en) 2013-09-26
JP2014222020A (en) 2014-11-27
JP6072208B2 (en) 2017-02-01
JP2017082583A (en) 2017-05-18
JP2014198996A (en) 2014-10-23
JP5781200B2 (en) 2015-09-16
JP6360548B2 (en) 2018-07-18
JP2013167152A (en) 2013-08-29
JP2010059775A (en) 2010-03-18
JP2010059773A (en) 2010-03-18
JP5297866B2 (en) 2013-09-25
JP5652998B2 (en) 2015-01-14
JP2016188572A (en) 2016-11-04
JP5521093B2 (en) 2014-06-11
JP6140124B2 (en) 2017-05-31
JP6215799B2 (en) 2017-10-18
JP5308873B2 (en) 2013-10-09
JP2013189859A (en) 2013-09-26
JP2010059767A (en) 2010-03-18
JP5297915B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
EP1825093B1 (en) Vertically movable door with safety barrier
US5975185A (en) Pop up safety device for rolling shutters
KR101469910B1 (en) A Shade Drive Apparatus having the function in which the driving wheel can be returned
TWI509146B (en) A shielding device and a clutch for a shielding device
US5141044A (en) Breakaway roll-up door
US2099191A (en) Sliding door
CA1269115A (en) Safety and emergency actuator device for a concertina type door
US20080216972A1 (en) Automatically actuable side window roller blind
US6923238B2 (en) Multi-panel door with an auxiliary drive mechanism
US5222541A (en) Industrial door having releasable beam and tension bracket retention mechanism
JP4107728B2 (en) Elevator equipment
CN102884273B (en) Horizontal type louver
JP4648729B2 (en) Home door device
US9217284B2 (en) Anti-drop transmission device for a service door with a flexible curtain
KR100761035B1 (en) Jointing structure of arrange type defense door
US9267326B2 (en) Drive assisted roller assembly for rolling door
JP2005351082A (en) Guide rail structure for closed body
JP2009113976A (en) Door device of elevator
JP2009013647A (en) Mechanical escape-time stop device of self-weight-descending type shutter
US3439454A (en) Power-operated sliding door gear
JP5796238B2 (en) Opening and closing device for vehicle door
EP1681435A2 (en) Sun protection system with emergency gathering device
JP2005120760A (en) Control device for opening/closing body
US20080127560A1 (en) Garage door opener
JP4875265B2 (en) Disaster prevention equipment for elevators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180913

R150 Certificate of patent or registration of utility model

Ref document number: 6404990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150