JP6404288B2 - Engine test equipment - Google Patents

Engine test equipment Download PDF

Info

Publication number
JP6404288B2
JP6404288B2 JP2016181569A JP2016181569A JP6404288B2 JP 6404288 B2 JP6404288 B2 JP 6404288B2 JP 2016181569 A JP2016181569 A JP 2016181569A JP 2016181569 A JP2016181569 A JP 2016181569A JP 6404288 B2 JP6404288 B2 JP 6404288B2
Authority
JP
Japan
Prior art keywords
cooling water
pipe
expansion tank
engine
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016181569A
Other languages
Japanese (ja)
Other versions
JP2018044918A (en
Inventor
淳 永田
淳 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Daikin Applied Systems Co Ltd
Original Assignee
Daikin Industries Ltd
Daikin Applied Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Daikin Applied Systems Co Ltd filed Critical Daikin Industries Ltd
Priority to JP2016181569A priority Critical patent/JP6404288B2/en
Publication of JP2018044918A publication Critical patent/JP2018044918A/en
Application granted granted Critical
Publication of JP6404288B2 publication Critical patent/JP6404288B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、エンジン試験装置に関し、特に、エンジンの冷却水回路のエア抜き構造に関するものである。   The present invention relates to an engine test apparatus, and more particularly to an air bleeding structure of an engine coolant circuit.

従来、エンジンを台上で試験するエンジン試験装置(エンジンベンチ)では、エンジンにダイナモメータやトルクメータが接続され、エンジンの回転数やトルクその他の特性について、種々の試験が行われている(例えば、特許文献1,2参照)。この種のエンジン試験装置では、試験中にエンジンを冷却するために、冷却水回路の配管がエンジン(冷却用ジャケット)に接続される。   Conventionally, in an engine test apparatus (engine bench) for testing an engine on a table, a dynamometer and a torque meter are connected to the engine, and various tests are performed on the engine speed, torque, and other characteristics (for example, Patent Documents 1 and 2). In this type of engine test apparatus, a cooling water circuit pipe is connected to the engine (cooling jacket) in order to cool the engine during the test.

ここで、試験対象のエンジンを交換する場合には、エンジンを載せ替えた後に、冷却水回路の配管を新たなエンジンに接続して、冷却水回路に冷却水を流しながら試験の準備運転がおこなわれる。   Here, when replacing the engine to be tested, after replacing the engine, the piping of the cooling water circuit is connected to a new engine, and the test preparation operation is performed while flowing the cooling water through the cooling water circuit. It is.

ところで、冷却水回路の配管を新たに試験対象になったエンジンに接続するときには、どうしても配管中にエアが入ってしまう。このため、従来のエンジン試験装置では、エア抜きをするために、冷却水回路の最上部の配管に、一般に膨張タンクが接続されており、試験前の準備運転中に冷却水回路を流れる冷却水の中のエアを膨張タンクに逃がして、冷却水回路のエア抜きを行うようにしている。   By the way, when the piping of the cooling water circuit is connected to the engine which has been newly tested, air inevitably enters the piping. For this reason, in the conventional engine test apparatus, an expansion tank is generally connected to the uppermost piping of the cooling water circuit in order to remove air, and the cooling water flowing through the cooling water circuit during the preparatory operation before the test is performed. The air inside is released to the expansion tank and the cooling water circuit is vented.

実用新案登録第2603911号公報Utility Model Registration No. 2603911 特開2014−153058号公報JP 2014-153058 A

しかしながら、従来の構成では、膨張タンクとして、該タンクの内部での水の沸騰を防止するために加圧式の膨張タンクを用いていることも相まって、準備運転中に冷却水回路に冷却水を循環させながらエアを膨張タンクに逃がしてエア抜きをするのに、長時間を要することになっていた。   However, in the conventional configuration, as the expansion tank, a pressurized expansion tank is used to prevent boiling of water inside the tank, so that the cooling water is circulated in the cooling water circuit during the preparation operation. It took a long time for air to escape to the expansion tank and release air.

本発明は、このような問題点に鑑みてなされたものであり、その目的は、膨張タンクが接続された冷却水回路を備えたエンジン試験装置において、冷却水のエア抜きを迅速に行えるようにすることである。   The present invention has been made in view of such problems, and an object of the present invention is to quickly release air from cooling water in an engine test apparatus including a cooling water circuit to which an expansion tank is connected. It is to be.

第1の発明は、エンジン(10)に接続されたエンジン試験用機器(11)と、上記エンジン(10)に接続されて冷却水が流れる冷却水回路(20)と、該冷却水回路(20)を流れる冷却水の温度を調整する温度調整部(30)とを備え、上記冷却水回路(20)の最上部の冷却水配管(21)と膨張タンク(40)とが、該冷却水回路(20)から膨張タンク(40)へ向かって冷却水が流入可能な膨張配管(41)で接続されたエンジン試験装置を前提としている。 The first invention includes an engine test device (11) connected to an engine (10), a cooling water circuit (20) connected to the engine (10) through which cooling water flows, and the cooling water circuit (20 ), And a cooling water pipe (21) and an expansion tank (40) at the top of the cooling water circuit (20) are connected to the cooling water circuit. It is assumed that the engine test device is connected by an expansion pipe (41) through which cooling water can flow from (20) toward the expansion tank (40).

そして、このエンジン試験装置は、上記膨張タンク(40)と上記冷却水回路(20)とが、上記膨張配管(41)に加えてさらに、該膨張タンク(40)から冷却水回路(20)へ向かって冷却水が流通可能な循環配管(22)で接続されていることを特徴としている。 In the engine test apparatus, the expansion tank (40) and the cooling water circuit (20) are further supplied from the expansion tank (40) to the cooling water circuit (20) in addition to the expansion pipe (41 ) . It is characterized by being connected by a circulation pipe (22) through which cooling water can flow.

この第1の発明では、冷却水回路(20)内で循環する冷却水は、その途中で膨張配管(41)を通って膨張タンク(40)へ流入する。このとき、冷却水に含まれた空気(気泡)は、膨張タンク(40)内で水から分離され、膨張タンク(40)内に溜まる。一方、膨張タンク(40)から循環配管(22)を通じて冷却水回路(20)へ流出するのは、気泡を実質的に含まない冷却水である。したがって、冷却水が冷却水回路(20)を循環すればするほど、冷却水に含まれる空気が少なくなる。つまり、冷却水のエア抜きが効率よく行われる。   In the first aspect of the invention, the cooling water circulating in the cooling water circuit (20) flows into the expansion tank (40) through the expansion pipe (41) along the way. At this time, the air (bubbles) contained in the cooling water is separated from the water in the expansion tank (40) and collected in the expansion tank (40). On the other hand, what flows out of the expansion tank (40) through the circulation pipe (22) to the cooling water circuit (20) is cooling water substantially free of bubbles. Therefore, the more the coolant circulates through the coolant circuit (20), the less air is contained in the coolant. That is, the cooling water is efficiently vented.

第2の発明は、第1の発明において、上記冷却水回路(20)に、上記冷却水の流れを、該冷却水が冷却水配管(21)を通らずに上記循環配管(22)のみを通る第1流れと、上記冷却水が上記冷却水配管(21)を通る第2流れとに切り換える切り換え機構(50)が設けられていることを特徴としている。   According to a second aspect of the present invention, in the first aspect of the present invention, the flow of the cooling water is allowed to flow into the cooling water circuit (20), and only the circulation pipe (22) does not pass through the cooling water pipe (21). A switching mechanism (50) for switching between a first flow passing through and a second flow through which the cooling water passes through the cooling water pipe (21) is provided.

この第2の発明では、準備運転中は、切り換え機構(50)を、冷却水が循環配管(22)を通る第1流れに切り換えることにより、冷却回路内を循環する冷却水が必ず膨張タンク(40)を通るので、膨張タンク(40)において効率よく冷却水のエア抜きが行われる。一方、準備運転後に行う試験運転中は、切り換え機構(50)を、冷却水が上記冷却水配管(21)を通る第2流れに切り換えることにより、冷却水は、熱(冷熱)を膨張タンク(40)へほぼ逃がさずに冷却水回路(20)内を循環する。   In the second aspect of the invention, during the preparatory operation, the switching mechanism (50) is switched to the first flow in which the cooling water passes through the circulation pipe (22), so that the cooling water circulating in the cooling circuit is always expanded. 40), the cooling water is efficiently vented from the expansion tank (40). On the other hand, during the test operation performed after the preparatory operation, the switching mechanism (50) switches the cooling water to the second flow through the cooling water pipe (21), so that the cooling water transfers heat (cold heat) to the expansion tank ( It circulates in the cooling water circuit (20) with almost no escape to 40).

第3の発明は、第2の発明において、上記切り換え機構(50)が、上記冷却水配管(21)に接続された第1開閉弁(51)を備え、上記第1開閉弁(51)が、上記膨張配管(41)と上記冷却水配管(21)との接続部と、上記循環配管(22)と上記冷却水配管(21)との接続部との間に配置されていることを特徴としている。   In a third aspect based on the second aspect, the switching mechanism (50) includes a first on-off valve (51) connected to the cooling water pipe (21), and the first on-off valve (51) , Being arranged between the connection between the expansion pipe (41) and the cooling water pipe (21) and the connection between the circulation pipe (22) and the cooling water pipe (21) It is said.

この第3の発明では、第1開閉弁(51)を閉じると、冷却水は、冷却水回路(20)を流れるときに上記冷却水配管(21)を通らずに循環配管(22)を流れることになる(第1流れ)。したがって、冷却水の全量が膨張タンク(40)を経由して冷却水回路(20)を循環するので、準備運転中のエア抜きが効率よく行われる。また、第1開閉弁(51)を開くと、冷却水は、冷却水回路(20)を循環するときに、上記冷却水配管(21)を通るとともに循環配管(22)も流れる(第2流れ)。このときは冷却水が循環配管(22)も流れるが、上記膨張タンク(40)は冷却水回路(20)の最上部の冷却水配管(21)の上方に接続されるため、膨張タンク(40)を経由する冷却水の量は冷却水回路(20)内を循環する冷却水の全体量の一部となり、試験運転中に膨張タンク(40)へ伝達される冷却水の熱量は、冷却水の全体の熱量のごく一部となる。   In the third aspect of the invention, when the first on-off valve (51) is closed, the cooling water flows through the circulation pipe (22) without passing through the cooling water pipe (21) when flowing through the cooling water circuit (20). (First flow). Accordingly, since the entire amount of the cooling water circulates through the cooling water circuit (20) via the expansion tank (40), the air is efficiently vented during the preparation operation. When the first on-off valve (51) is opened, the cooling water flows through the cooling water pipe (21) and the circulation pipe (22) when circulating through the cooling water circuit (20) (second flow). ). At this time, the cooling water also flows through the circulation pipe (22), but the expansion tank (40) is connected to the upper part of the cooling water pipe (21) at the top of the cooling water circuit (20). ) Is a part of the total amount of cooling water circulating in the cooling water circuit (20), and the amount of cooling water transferred to the expansion tank (40) during the test operation is the cooling water It becomes a small part of the total amount of heat.

第4の発明は、第3の発明において、上記切り換え機構(50)が、上記第1開閉弁(51)に加えてさらに、上記循環配管(22)に接続された第2開閉弁(52)を備えていることを特徴としている。   In a fourth aspect based on the third aspect, the switching mechanism (50) further includes a second on-off valve (52) connected to the circulation pipe (22) in addition to the first on-off valve (51). It is characterized by having.

この第4の発明では、第1開閉弁(51)を閉じるとともに第2開閉弁(52)を開くと、冷却水は、冷却水回路(20)を流れるときに上記冷却水配管(21)を通らずに循環配管(22)を流れることになる(第1流れ)。したがって、冷却水の全量が膨張タンク(40)を経由して冷却水回路(20)を循環するので、準備運転中のエア抜きが効率よく行われる。また、第1開閉弁(51)を開くとともに第2開閉弁(52)を閉じると、冷却水は、冷却水回路(20)を循環するときに上記冷却水配管(21)のみを通過する(第2流れ)。したがって、冷却水が膨張タンク(40)へは実質的に流れていかなくなるので、試験運転中に膨張タンク(40)へ熱が伝達するのを効果的に抑えられる。   In the fourth aspect of the invention, when the first on-off valve (51) is closed and the second on-off valve (52) is opened, the cooling water flows through the cooling water pipe (21) when flowing through the cooling water circuit (20). It will flow through the circulation pipe (22) without passing (first flow). Accordingly, since the entire amount of the cooling water circulates through the cooling water circuit (20) via the expansion tank (40), the air is efficiently vented during the preparation operation. When the first on-off valve (51) is opened and the second on-off valve (52) is closed, the cooling water passes only through the cooling water pipe (21) when circulating through the cooling water circuit (20) ( Second flow). Therefore, since the cooling water does not substantially flow to the expansion tank (40), heat transfer to the expansion tank (40) during the test operation can be effectively suppressed.

第5の発明は、第1から第4の発明において、上記膨張タンク(40)内での上記膨張配管(41)の開口端(41a)が、該膨張タンク(40)と上記循環配管(22)との接続端(22a)よりも、高い位置に配置されていることを特徴としている。   In a fifth aspect based on the first to fourth aspects, the opening end (41a) of the expansion pipe (41) in the expansion tank (40) is connected to the expansion tank (40) and the circulation pipe (22 ) And the connection end (22a).

この第5の発明では、上記膨張タンク(40)内での上記膨張配管(41)の開口端(41a)を、該膨張タンク(40)と上記循環配管(22)との接続端(22a)よりも高い位置に配置したことにより、試験運転中に膨張タンク(40)に流入した冷却水の気泡が、膨張タンク(40)と循環配管(22)との接続端(22a)よりも高い位置で冷却水から分離される。したがって、循環配管(22)へは気泡が実質的に流入しないので、エア抜きの効率を高められる。   In the fifth aspect of the invention, the open end (41a) of the expansion pipe (41) in the expansion tank (40) is connected to the connection end (22a) between the expansion tank (40) and the circulation pipe (22). Because of the higher position, the bubbles of cooling water flowing into the expansion tank (40) during the test operation are higher than the connection end (22a) between the expansion tank (40) and the circulation pipe (22). Separated from the cooling water. Therefore, since air bubbles do not substantially flow into the circulation pipe (22), the efficiency of air bleeding can be improved.

本発明によれば、冷却水回路(20)と膨張タンク(40)とを、膨張配管(41)に加えて、膨張タンク(40)から冷却水回路(20)へ向かって冷却水が流通可能な循環配管(22)も使って接続し、冷却水が冷却水回路(20)を循環するときにエア抜きが効率的に行われるようにしているので、循環配管(22)を設けない場合に比べて、準備運転中に冷却水回路(20)で冷却水を循環させながらエアを膨張タンク(40)に逃がすエア抜きを迅速に行うことが可能になる。 According to the present invention, the cooling water circuit (20) and the expansion tank (40) can be added to the expansion pipe (41) , and the cooling water can flow from the expansion tank (40) to the cooling water circuit (20) . If the circulation pipe (22) is not provided, the air circulation is efficiently performed when the cooling water circulates through the cooling water circuit (20). In comparison, during the preparatory operation, it is possible to quickly release the air that causes the air to escape to the expansion tank (40) while circulating the cooling water in the cooling water circuit (20).

上記第2の発明によれば、上記冷却水回路(20)に、上記冷却水が冷却水配管(21)を通らずに上記循環配管(22)のみを通る第1流れと、上記冷却水が上記冷却水配管(22)を通る第2流れとに切り換える切り換え機構(50)を設け、準備運転中は、上記切り換え機構(50)を第1流れに切り換えてエア抜きを効率よく迅速に行うことができ、試験運転中は第2流れに切り換えることにより、冷却水の熱(冷熱)を膨張タンク(40)に逃がさずにエンジン(10)を効率よく冷却できる。   According to the second aspect of the invention, the cooling water circuit (20) includes a first flow in which the cooling water does not pass through the cooling water pipe (21) but only through the circulation pipe (22), and the cooling water A switching mechanism (50) for switching to the second flow through the cooling water pipe (22) is provided, and during the preparatory operation, the switching mechanism (50) is switched to the first flow for efficient and quick air bleeding. By switching to the second flow during the test operation, the engine (10) can be efficiently cooled without letting the heat of the cooling water (cold heat) escape to the expansion tank (40).

上記第3の発明によれば、上記切り換え機構(50)として、上記冷却水配管(21)に接続された第1開閉弁(51)を設け、この第1開閉弁(51)を、上記膨張配管(41)と上記冷却水回路(20)との接続部と、上記循環配管(22)と上記冷却水回路(20)との接続部との間に配置したことにより、第1開閉弁(51)を閉じると第1流れに切り換わって準備運転中のエア抜きを効率よく迅速に行うことができ、第1開閉弁(51)を開くと第2流れに切り換わってエンジン(10)の冷却効率をほとんど落とさずに試験運転を行うことができる。また、この第3の発明では、上記切り換え機構(50)として第1開閉弁(51)を設けるだけでよいので、回路構成が複雑になるのを抑えられる。 According to the third invention, the switching mechanism (50) is provided with the first on-off valve (51) connected to the cooling water pipe (21), and the first on-off valve (51) is connected to the expansion valve. By arranging between the connection part of the pipe (41) and the cooling water circuit (20) and the connection part of the circulation pipe (22) and the cooling water circuit (20) , the first on-off valve ( When 51) is closed, the flow is switched to the first flow and air can be vented efficiently and quickly during the preparatory operation. When the first on-off valve (51) is opened, the flow is switched to the second flow and the engine (10) Test operation can be performed with almost no decrease in cooling efficiency. Further, in the third aspect of the invention, it is only necessary to provide the first on-off valve (51) as the switching mechanism (50), so that the circuit configuration can be prevented from becoming complicated.

上記第4の発明によれば、上記第1開閉弁(51)に加えて、循環配管(22)に接続された第2開閉弁(52)を上記切り換え機構(50)として設けたことにより、第1開閉弁(51)を閉じるとともに第2開閉弁(52)を開くと第1流れに切り換わって準備運転中のエア抜きを効率よく迅速に行い、第1開閉弁(51)を開くとともに第2開閉弁(52)を閉じると第2流れに切り換わってエンジン(10)の冷却効率を実質的に落とさずに試験運転を行うことが可能になる。   According to the fourth invention, in addition to the first on-off valve (51), the second on-off valve (52) connected to the circulation pipe (22) is provided as the switching mechanism (50). When the first on-off valve (51) is closed and the second on-off valve (52) is opened, the flow is switched to the first flow so that the air can be efficiently and quickly released during the preparation operation, and the first on-off valve (51) is opened. When the second on-off valve (52) is closed, the operation is switched to the second flow, and the test operation can be performed without substantially reducing the cooling efficiency of the engine (10).

上記第5の発明によれば、上記膨張タンク(40)内での上記膨張配管(41)の開口端(41a)を、該膨張タンク(40)と上記循環配管(22)との接続端(22a)よりも高い位置に配置したことにより、試験運転中に膨張タンク(40)に流入した冷却水の気泡が、膨張タンク(40)と循環配管(22)との接続端(22a)よりも高い位置で冷却水から分離されて、循環配管(22)へは気泡が実質的に流入せずにエア抜きの効率を高められるから、エア抜きをより迅速に行うことが可能になる。   According to the fifth aspect of the invention, the opening end (41a) of the expansion pipe (41) in the expansion tank (40) is connected to the connection end of the expansion tank (40) and the circulation pipe (22) ( Because of the higher position than 22a), the cooling water bubbles that flow into the expansion tank (40) during the test operation are more than the connection end (22a) between the expansion tank (40) and the circulation pipe (22). Since it is separated from the cooling water at a high position and the air venting efficiency is increased without substantially introducing bubbles into the circulation pipe (22), the air can be vented more quickly.

図1は、本発明の実施形態に係るエンジン試験装置の概略構成図である。FIG. 1 is a schematic configuration diagram of an engine test apparatus according to an embodiment of the present invention.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本実施形態に係るエンジン試験装置(エンジンベンチ)(1)の概略構成図である。   FIG. 1 is a schematic configuration diagram of an engine test apparatus (engine bench) (1) according to the present embodiment.

このエンジン試験装置(1)は、エンジン(10)に接続されたダイナモメータ(エンジン試験用機器)(11)と、上記エンジン(10)に接続されるとともに該エンジン(10)のポンプ(12)の動作により冷却水が流れる冷却水回路(20)と、該冷却水回路(20)を流れる冷却水の温度を調整する温度調整部(30)とを備えている。温度調整部(30)は、上記冷却水を冷却するようにブラインや水が流れる冷却用回路(31)と、冷却水の温度が低いときに冷却水を加熱するヒータ(32)とを備えている。上記冷却用回路(31)は、プレート熱交換器などの冷却用熱交換器(33)を介して冷却水回路(20)に接続されている。また、上記冷却用回路(31)は、図示していないが、冷却水の温度を低温にするときに用いるブライン(例えば温度が−20℃程度)が流れるブライン回路と、冷却水の温度を常温にするときに用いる水(例えば温度が30℃程度)が流れる水回路とを別々に設けておき、これらをエンジンの冷却温度に応じて切り換えて用いるようにしてもよい。   The engine test apparatus (1) includes a dynamometer (engine test equipment) (11) connected to the engine (10) and a pump (12) connected to the engine (10) and the engine (10). The cooling water circuit (20) through which the cooling water flows by the above operation and the temperature adjusting unit (30) for adjusting the temperature of the cooling water flowing through the cooling water circuit (20) are provided. The temperature adjustment unit (30) includes a cooling circuit (31) through which brine and water flow so as to cool the cooling water, and a heater (32) that heats the cooling water when the temperature of the cooling water is low. Yes. The cooling circuit (31) is connected to the cooling water circuit (20) via a cooling heat exchanger (33) such as a plate heat exchanger. Although not shown, the cooling circuit (31) has a brine circuit in which a brine (for example, a temperature of about −20 ° C.) used for lowering the temperature of the cooling water flows and the temperature of the cooling water at room temperature. It is also possible to separately provide a water circuit through which water (for example, the temperature is about 30 ° C.) used when the engine is used, and switch them according to the cooling temperature of the engine.

上記冷却水回路(20)の最上部の冷却水配管(21)には膨張タンク(40)が接続されている。この膨張タンク(40)は、上記冷却水回路(20)に、該冷却水回路(20)から膨張タンク(40)へ向かって冷却水が流入可能な膨張配管(41)で接続されている。膨張タンク(40)には、内部での水の沸騰を抑えるため、加圧式の膨張タンクが用いられる。 An expansion tank (40) is connected to the uppermost cooling water pipe (21) of the cooling water circuit (20). The expansion tank (40) is connected to the cooling water circuit (20) by an expansion pipe (41) through which cooling water can flow from the cooling water circuit (20) toward the expansion tank (40). A pressure type expansion tank is used for the expansion tank (40) in order to suppress boiling of water inside.

また、上記膨張タンク(40)と上記冷却水回路(20)とは、上記膨張配管(41)に加えて、さらに、該膨張タンク(40)から冷却水回路(20)へ向かって冷却水が流通可能な循環配管(22)で接続されている。 Further, the above expansion tank (40) and the cooling water circuit (20), in addition to the expansion pipe (41), further, the cooling water toward the cooling water circuit (20) from the expansion tank (40) It is connected with a circulation pipe (22) that can be circulated.

上記冷却水回路(20)には、上記冷却水の流れを、該冷却水が冷却水配管(21)を通らずに上記循環配管(22)のみを通る第1流れと、上記冷却水が上記冷却水配管(21)を通る第2流れとに切り換える切り換え機構(50)が設けられている。この切り換え機構(50)は、具体的には、上記冷却水配管(21)に接続された第1開閉弁(51)と、上記循環配管(22)に接続された第2開閉弁(52)とを備えている。上記第1開閉弁(51)は、上記膨張配管(41)と上記冷却水配管(21)との接続部と、上記循環配管(22)と上記冷却水配管(21)との接続部との間に配置されている。   The cooling water circuit (20) includes a flow of the cooling water, a first flow in which the cooling water does not pass through the cooling water pipe (21) but only through the circulation pipe (22), and the cooling water passes through the cooling water pipe (21). A switching mechanism (50) for switching to the second flow through the cooling water pipe (21) is provided. Specifically, the switching mechanism (50) includes a first on-off valve (51) connected to the cooling water pipe (21) and a second on-off valve (52) connected to the circulation pipe (22). And. The first on-off valve (51) includes a connection part between the expansion pipe (41) and the cooling water pipe (21), and a connection part between the circulation pipe (22) and the cooling water pipe (21). Arranged between.

また、上記膨張タンク(40)内での上記膨張配管(41)の開口端(41a)は、該膨張タンク(40)と上記循環配管(22)との接続端(22a)よりも高い位置に配置されている。   Further, the opening end (41a) of the expansion pipe (41) in the expansion tank (40) is positioned higher than the connection end (22a) between the expansion tank (40) and the circulation pipe (22). Has been placed.

−運転動作−
次に、このエンジン試験装置(1)の運転動作を説明する。
-Driving action-
Next, the operation of the engine test apparatus (1) will be described.

このエンジン試験装置(1)において、例えばエンジン(10)を交換した場合は、試験運転の前に準備運転を行って冷却水回路(20)内で冷却水を循環させる。これは、冷却水回路(20)の配管をエンジン(10)に繋ぎなおす際に、冷却水回路(20)の配管の中にどうしても空気が入ってしまう問題が生じるのに対して、この冷却水回路(20)中の空気を膨張タンク(40)で抜く、いわゆるエア抜きのために行う。   In the engine test apparatus (1), for example, when the engine (10) is replaced, a preparatory operation is performed before the test operation to circulate the cooling water in the cooling water circuit (20). This is because when the piping of the cooling water circuit (20) is reconnected to the engine (10), there is a problem that air will inevitably enter the piping of the cooling water circuit (20). The air in the circuit (20) is evacuated by the expansion tank (40).

この準備運転のときは、第1開閉弁(51)を閉じた状態にし、第2開閉弁(52)を開いた状態にする。この状態でエンジン(10)を動作させるとポンプ(12)が回転し、冷却水回路(20)内を冷却水が循環する。冷却水は、冷却水回路(20)に接続されている冷却用回路(31)とヒータ(32)とで所定の温度に調整される。このときは、ダイナモメータ(11)等の試験用機器は用いない。   During this preparatory operation, the first on-off valve (51) is closed and the second on-off valve (52) is opened. When the engine (10) is operated in this state, the pump (12) rotates and the cooling water circulates in the cooling water circuit (20). The cooling water is adjusted to a predetermined temperature by the cooling circuit (31) and the heater (32) connected to the cooling water circuit (20). At this time, test equipment such as a dynamometer (11) is not used.

準備運転中には、冷却水回路(20)を図1の矢印の方向へ流れる冷却水は、膨張配管(41)を通って膨張タンク(40)へ流入し、さらに膨張タンク(40)から循環配管(22)を通って冷却水回路(20)の冷却水配管(21)を流れる。このように、準備運転中は冷却水が膨張タンク(40)を経由して冷却水回路(20)を循環するので、冷却水の中に含まれる空気(気泡)は、膨張タンク(40)において水と分離されて膨張タンク(40)内に溜まる。   During the preparatory operation, the cooling water flowing in the direction of the arrow in FIG. 1 through the cooling water circuit (20) flows into the expansion tank (40) through the expansion pipe (41) and further circulates from the expansion tank (40). It flows through the piping (22) through the cooling water piping (21) of the cooling water circuit (20). Thus, during the preparatory operation, the cooling water circulates through the cooling water circuit (20) via the expansion tank (40), so that air (bubbles) contained in the cooling water is It is separated from water and collected in the expansion tank (40).

一方、膨張タンク(40)内での膨張配管(41)の開口端(41a)が、膨張タンク(40)と循環配管(22)との接続端(22a)よりも高い位置に配置されているので、膨張タンク(40)から循環配管(22)へ空気は流出せず、冷却水だけが流出する。したがって、冷却水が冷却水回路(20)を循環する際に膨張タンク(40)を通るたびに、冷却水の中の気泡が減少する。その結果、エア抜きが効率よく迅速に行われる。   On the other hand, the opening end (41a) of the expansion pipe (41) in the expansion tank (40) is arranged at a position higher than the connection end (22a) between the expansion tank (40) and the circulation pipe (22). Therefore, air does not flow out from the expansion tank (40) to the circulation pipe (22), but only cooling water flows out. Therefore, each time the cooling water passes through the expansion tank (40) as it circulates through the cooling water circuit (20), bubbles in the cooling water decrease. As a result, air bleeding is performed efficiently and quickly.

準備運転が終了すると、エンジン(10)の試験運転を行う。このとき、第1開閉弁(51)を開いた状態にし、第2開閉弁(52)を閉じた状態にする。この状態でエンジン(10)を動作させてポンプ(12)が回転すると、冷却水回路(20)内を循環する冷却水は、循環配管(22)を通らずに冷却水配管(21)だけを流れる。つまり、冷却水は、温度調整部(30)である冷却用回路(31)とヒータ(32)とで所望の温度に調整された状態を保って、膨張タンク(40)に熱を逃がすことなく冷却水回路(20)内を循環してエンジン(10)の冷却を行う。この試験運転中は、ダイナモメータ(11)などの試験用機器が用いられ、エンジン(10)の特性が測定される。   When the preparatory operation is completed, the test operation of the engine (10) is performed. At this time, the first on-off valve (51) is opened, and the second on-off valve (52) is closed. When the engine (10) is operated in this state and the pump (12) rotates, the cooling water circulating in the cooling water circuit (20) does not pass through the circulation piping (22) but only the cooling water piping (21). Flowing. In other words, the cooling water is maintained at a desired temperature by the cooling circuit (31) and the heater (32), which are the temperature adjusting unit (30), and the heat is not released to the expansion tank (40). The engine (10) is cooled by circulating in the cooling water circuit (20). During this test operation, test equipment such as a dynamometer (11) is used to measure the characteristics of the engine (10).

−実施形態の効果−
本実施形態によれば、冷却水回路(20)と膨張タンク(40)とを、膨張配管(41)に加えて、膨張タンク(40)から冷却水回路(20)へ向かって冷却水が流通可能な循環配管(22)も使って接続し、準備運転中に冷却水が冷却水回路(20)を循環するときにエア抜きが効率的に行われるようにしているので、循環配管(22)を設けない場合に比べて、エアを膨張タンク(40)に逃がすエア抜きを迅速に行うことが可能になる。
-Effect of the embodiment-
According to this embodiment, the cooling water circuit (20) and the expansion tank (40 ) are added to the expansion pipe (41) , and the cooling water flows from the expansion tank (40) toward the cooling water circuit (20) . Possible circulation piping (22) is also used for connection so that when the cooling water circulates through the cooling water circuit (20) during the preparatory operation, the air can be vented efficiently, so the circulation piping (22) As compared with the case where no air is provided, it is possible to quickly perform air venting to let air escape to the expansion tank (40).

具体的には、上記冷却水回路(20)に、上記冷却水が冷却水配管(21)を通らずに上記循環配管(22)のみを通る第1流れと、上記冷却水が上記冷却水配管(21)を通る第2流れとに切り換える切り換え機構(50)を設け、準備運転中は切り換え機構(50)を第1流れに切り換えてエア抜きを効率よく迅速に行うことができ、試験運転中は切り換え機構(50)を第2流れに切り換えることにより冷却水の熱(冷熱)を膨張タンク(40)に逃がさずにエンジン(10)を効率よく冷却できる。   Specifically, the cooling water circuit (20) has a first flow in which the cooling water does not pass through the cooling water pipe (21) but only through the circulation pipe (22), and the cooling water passes through the cooling water pipe. (21) A switching mechanism (50) that switches to the second flow passing through (21) is provided. During the preparatory operation, the switching mechanism (50) can be switched to the first flow and air can be vented efficiently and quickly. By switching the switching mechanism (50) to the second flow, the engine (10) can be efficiently cooled without releasing the cooling water heat (cold heat) to the expansion tank (40).

特に、上記実施形態によれば、上記切り換え機構(50)として、上記冷却水配管(21)に接続された第1開閉弁(51)を設けて、この第1開閉弁(51)を、上記膨張配管(41)と上記冷却水配管(21)との接続部と、上記循環配管(22)と上記冷却水配管(21)との接続部との間に配置し、さらに、循環配管(22)に接続された第2開閉弁(52)を設けている。そして、このことにより、第1開閉弁(51)を閉じるとともに第2開閉弁(52)を開くと第1流れに切り換わって準備運転中のエア抜きを効率よく迅速に行うことができ、第1開閉弁(51)を開くとともに第2開閉弁(52)を閉じると第2流れに切り換わってエンジン(10)の冷却効率を実質的に落とさずに試験運転を行うことが、簡単な切り換え操作で可能になる。   In particular, according to the embodiment, the switching mechanism (50) is provided with the first on-off valve (51) connected to the cooling water pipe (21), and the first on-off valve (51) It is arranged between the connection between the expansion pipe (41) and the cooling water pipe (21) and the connection between the circulation pipe (22) and the cooling water pipe (21). ) Is connected to the second on-off valve (52). As a result, when the first on-off valve (51) is closed and the second on-off valve (52) is opened, the first flow can be switched and the air can be vented efficiently during the preparatory operation. Easy switching is possible by opening the on-off valve (51) and closing the second on-off valve (52) to switch to the second flow and performing the test operation without substantially reducing the cooling efficiency of the engine (10). It becomes possible by operation.

また、上記実施形態によれば、上記膨張タンク(40)内での上記膨張配管(41)の開口端(41a)を、該膨張タンク(40)と上記循環配管(22)との接続端(22a)よりも高い位置に配置したことにより、試験運転中に膨張タンク(40)に流入した冷却水の気泡が、膨張タンク(40)と循環配管(22)との接続端(22a)よりも高い位置で冷却水から分離され、循環配管(22)へは気泡が実質的に流入せずにエア抜きの効率を高められるから、このこともエア抜きをより迅速に行うことを可能にするのに寄与する。   Further, according to the embodiment, the opening end (41a) of the expansion pipe (41) in the expansion tank (40) is connected to the connection end of the expansion tank (40) and the circulation pipe (22) ( Because of the higher position than 22a), the cooling water bubbles that flow into the expansion tank (40) during the test operation are more than the connection end (22a) between the expansion tank (40) and the circulation pipe (22). Since it is separated from the cooling water at a high position and the air venting efficiency is increased without substantially introducing air bubbles into the circulation pipe (22), this also allows air venting to be performed more quickly. Contribute to.

−実施形態の変形例−
上記実施形態では、切り換え機構(50)として第1開閉弁(51)と第2開閉弁(52)を設けるようにしているが、上記切り換え機構(50)としては、上記冷却水配管(21)に接続された第1開閉弁(51)だけを設け、第2開閉弁(52)を設けないようにしてもよい。
-Modification of the embodiment-
In the above embodiment, the first on-off valve (51) and the second on-off valve (52) are provided as the switching mechanism (50). However, as the switching mechanism (50), the cooling water pipe (21) is provided. Only the first on-off valve (51) connected to the second on-off valve (52) may be provided.

このように構成した場合、第1開閉弁(51)を閉じると、冷却水は、上記実施形態と同様に冷却水回路(20)を流れるときに上記冷却水配管(21)を通らずに循環配管(22)を流れることになる(第1流れ)。したがって、冷却水の全量が膨張タンク(40)を経由して冷却水回路(20)を循環するので、準備運転中のエア抜きを効率よく迅速に行うことができる。   In this case, when the first on-off valve (51) is closed, the cooling water circulates without passing through the cooling water pipe (21) when flowing through the cooling water circuit (20) as in the above embodiment. It will flow through the pipe (22) (first flow). Accordingly, since the entire amount of the cooling water circulates through the cooling water circuit (20) via the expansion tank (40), the air can be vented during the preparation operation efficiently and quickly.

また、第1開閉弁(51)を開くと、冷却水は、冷却水回路(20)を循環するときに上記冷却水配管(21)を通るとともに循環配管(22)も流れる(第2流れ)。しかしながら、膨張タンク(40)は冷却水回路(20)の最上部の冷却水配管(21)の上方に接続され、冷却水回路(20)から膨張タンク(40)へ流入する水の量は冷却水回路(20)内を循環する冷却水の量の一部であるから、試験運転中に膨張タンク(40)へ伝達される冷却水の熱量は、冷却水の全体の熱量のごく一部となる。したがって、この変形例においては、第1開閉弁(51)を開いたときに、エンジン(10)の冷却効率をほとんど落とさずに試験運転を行うことができる。   When the first on-off valve (51) is opened, the cooling water flows through the cooling water pipe (21) and the circulation pipe (22) when circulating through the cooling water circuit (20) (second flow). . However, the expansion tank (40) is connected above the uppermost cooling water pipe (21) of the cooling water circuit (20), and the amount of water flowing from the cooling water circuit (20) to the expansion tank (40) is cooled. Since it is a part of the amount of cooling water circulating in the water circuit (20), the amount of cooling water transferred to the expansion tank (40) during the test operation is a fraction of the total amount of cooling water. Become. Therefore, in this modified example, when the first on-off valve (51) is opened, the test operation can be performed without substantially reducing the cooling efficiency of the engine (10).

この変形例では、上記切り換え機構(50)として第1開閉弁(51)を設けるだけでよいので、上記実施形態と比べて構成を簡素化することができる。   In this modification, since only the first on-off valve (51) needs to be provided as the switching mechanism (50), the configuration can be simplified compared to the above embodiment.

《その他の実施形態》
上記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About the said embodiment, it is good also as the following structures.

例えば、上記実施形態では、上記切り換え機構(50)として第1開閉弁(51)と第2開閉弁(52)を用いているが、この2つの開閉弁に代えて、循環配管(22)と冷却水配管(21)の接続部に三方弁を設けて、冷却水の流れを第1流れと第2流れに切り換えるようにしてもよい。   For example, in the above embodiment, the first on-off valve (51) and the second on-off valve (52) are used as the switching mechanism (50), but instead of the two on-off valves, a circulation pipe (22) A three-way valve may be provided at the connection portion of the cooling water pipe (21) to switch the flow of the cooling water between the first flow and the second flow.

また、上記実施形態の変形例は、上記切り換え機構(50)のうちの第2開閉弁(52)を設けずに第1開閉弁(51)だけを設けた例であるが、さらにこの第1開閉弁(51)も設けない(切り換え機構(50)を設けない)ようにしてもよい。この場合、準備運転のときに膨張タンク(40)に流入する冷却水の量は第1開閉弁(51)を設けて該第1開閉弁(51)を閉じたときよりも少なくなるが、循環配管(22)を設けない従来の回路よりは多くなる。したがって、従来と比較すれば、膨張タンク(40)内でのエア抜きが促進され、エア抜きに要する時間が短縮される。   The modification of the above embodiment is an example in which only the first on-off valve (51) is provided without providing the second on-off valve (52) of the switching mechanism (50). The on-off valve (51) may not be provided (the switching mechanism (50) is not provided). In this case, the amount of cooling water flowing into the expansion tank (40) during the preparatory operation is less than when the first on-off valve (51) is provided and the first on-off valve (51) is closed. More than the conventional circuit without the pipe (22). Therefore, as compared with the conventional case, the air venting in the expansion tank (40) is promoted, and the time required for air venting is shortened.

また、上記実施形態では、冷却水回路(20)内で冷却水を循環させるのにエンジン(10)のポンプ(12)を利用しているが、専用の循環ポンプ(12)を冷却水回路(20)に設けてもよい。   In the above embodiment, the pump (12) of the engine (10) is used to circulate the cooling water in the cooling water circuit (20). However, the dedicated circulation pump (12) is connected to the cooling water circuit (12). 20).

さらに、膨張タンク(40)の構成も、上記実施形態で説明したものに限らず、適宜変更してもよい。   Furthermore, the configuration of the expansion tank (40) is not limited to that described in the above embodiment, and may be changed as appropriate.

なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。   In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

以上説明したように、本発明は、エンジン試験装置におけるエンジンの冷却水回路のエア抜き構造について有用である。   As described above, the present invention is useful for the air vent structure of the engine coolant circuit in the engine test apparatus.

1 エンジン試験装置
10 エンジン
11 ダイナモメータ(エンジン試験用機器)
20 冷却水回路
21 冷却水配管
22 循環配管
22a 接続端
30 温度調整部
40 膨張タンク
41 膨張配管
41a 開口端
50 切り換え機構
51 第1開閉弁
52 第2開閉弁
1 Engine test equipment
10 engine
11 Dynamometer (engine testing equipment)
20 Cooling water circuit
21 Cooling water piping
22 Circulating piping
22a Connection end
30 Temperature adjuster
40 Expansion tank
41 Expansion piping
41a Open end
50 switching mechanism
51 First on-off valve
52 Second on-off valve

Claims (5)

エンジン(10)に接続されたエンジン試験用機器(11)と、上記エンジン(10)に接続されて冷却水が流れる冷却水回路(20)と、該冷却水回路(20)を流れる冷却水の温度を調整する温度調整部(30)とを備え、
上記冷却水回路(20)の最上部の冷却水配管(21)に、膨張タンク(40)が、該冷却水回路(20)から該膨張タンク(40)へ向かって冷却水が流入可能な膨張配管(41)で接続されたエンジン試験装置であって、
上記膨張タンク(40)と上記冷却水回路(20)とが、さらに、該膨張タンク(40)から冷却水回路(20)へ向かって冷却水が流通可能な循環配管(22)で接続されていることを特徴とするエンジン試験装置。
Engine test equipment (11) connected to the engine (10), a cooling water circuit (20) connected to the engine (10) through which cooling water flows, and cooling water flowing through the cooling water circuit (20) A temperature adjustment unit (30) for adjusting the temperature,
The expansion tank (40) expands into the cooling water pipe (21) at the top of the cooling water circuit (20) so that the cooling water can flow from the cooling water circuit (20) to the expansion tank (40). An engine test device connected by piping (41),
The expansion tank (40) and the cooling water circuit (20) are further connected by a circulation pipe (22) through which cooling water can flow from the expansion tank (40) toward the cooling water circuit (20) . An engine test apparatus.
請求項1において、
上記冷却水回路(20)に、上記冷却水の流れを、該冷却水が冷却水配管(21)を通らずに上記循環配管(22)のみを通る第1流れと、上記冷却水が上記冷却水配管(21)を通る第2流れとに切り換える切り換え機構(50)が設けられていることを特徴とするエンジン試験装置。
In claim 1,
The cooling water flow into the cooling water circuit (20), the first flow through which the cooling water does not pass through the cooling water pipe (21) but only through the circulation pipe (22), and the cooling water is cooled down. An engine test apparatus characterized in that a switching mechanism (50) for switching to the second flow through the water pipe (21) is provided.
請求項2において、
上記切り換え機構(50)は、上記冷却水配管(21)に接続された第1開閉弁(51)を備え、
上記第1開閉弁(51)は、上記膨張配管(41)と上記冷却水配管(21)との接続部と、上記循環配管(22)と上記冷却水配管(21)との接続部との間に配置されていることを特徴とするエンジン試験装置。
In claim 2,
The switching mechanism (50) includes a first on-off valve (51) connected to the cooling water pipe (21),
The first on-off valve (51) includes a connection part between the expansion pipe (41) and the cooling water pipe (21), and a connection part between the circulation pipe (22) and the cooling water pipe (21). An engine test apparatus, which is disposed between the engine test apparatuses.
請求項3において、
上記切り換え機構(50)は、さらに、上記循環配管(22)に接続された第2開閉弁(52)を備えていることを特徴とするエンジン試験装置。
In claim 3,
The engine switching device (50), wherein the switching mechanism (50) further includes a second on-off valve (52) connected to the circulation pipe (22).
請求項1から4の何れか1つにおいて、
上記膨張タンク(40)内での上記膨張配管(41)の開口端(41a)が、該膨張タンク(40)と上記循環配管(22)との接続端(22a)よりも、高い位置に配置されていることを特徴とするエンジン試験装置。
In any one of Claims 1-4,
The opening end (41a) of the expansion pipe (41) in the expansion tank (40) is positioned higher than the connection end (22a) between the expansion tank (40) and the circulation pipe (22). An engine test apparatus characterized by the above.
JP2016181569A 2016-09-16 2016-09-16 Engine test equipment Active JP6404288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016181569A JP6404288B2 (en) 2016-09-16 2016-09-16 Engine test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016181569A JP6404288B2 (en) 2016-09-16 2016-09-16 Engine test equipment

Publications (2)

Publication Number Publication Date
JP2018044918A JP2018044918A (en) 2018-03-22
JP6404288B2 true JP6404288B2 (en) 2018-10-10

Family

ID=61694571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016181569A Active JP6404288B2 (en) 2016-09-16 2016-09-16 Engine test equipment

Country Status (1)

Country Link
JP (1) JP6404288B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT17087U1 (en) * 2020-01-20 2021-05-15 Ivd Prof Hohenberg Gmbh THERMAL EMULATION DEVICE
CN113008535B (en) * 2021-02-08 2022-10-04 东风柳州汽车有限公司 Testing method and testing device for expansion water tank

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0457624U (en) * 1990-09-21 1992-05-18
JP4586562B2 (en) * 2005-02-18 2010-11-24 日産自動車株式会社 Vehicle cooling system
JP2007009752A (en) * 2005-06-29 2007-01-18 Toyota Motor Corp Reserve tank
CN101968401B (en) * 2009-07-28 2012-09-26 北汽福田汽车股份有限公司 Cooling fluid temperature control system for testing engine performance

Also Published As

Publication number Publication date
JP2018044918A (en) 2018-03-22

Similar Documents

Publication Publication Date Title
JP6404288B2 (en) Engine test equipment
AU2010278454B2 (en) Coolant temperature controlling system for engine performance test
TWI436024B (en) Thermal controller for electronic devices
JP2018140720A5 (en)
KR101866523B1 (en) Testing device and the method thereof that the water&#39;s temperature change having gradient to time can be carried out
TW200716927A (en) Water removal apparatus and inspection apparatus including the same
JP2007010531A (en) Cold impact testing device
KR101489486B1 (en) Apparatus and method for thermal shock test of pump using cut off heat chamber
JP5484289B2 (en) Engine cooling water circulation system for testing
CA2656380C (en) Apparatus for providing coolant fluid
JP2013205955A (en) Temperature control system and temperature control method
WO2017208393A1 (en) Cooling device for semiconductor inspection apparatus
JP2008249248A (en) Heat pump type hot water supply system
KR20130111898A (en) Cooling system for test of heat exchange by both cooling air and liquid
JP2019047588A5 (en)
JP2011040588A (en) Oil-immersed transformer
JP2010140658A5 (en)
KR100802627B1 (en) Oil forced cooling apparatus for oil type high voltage transformer
JP4503652B2 (en) Automotive engine thermal energy control system with switching means with time delay
JP2015232410A (en) Heat interchanging facility
JP2018070027A (en) Heat storage device
JP6480293B2 (en) Heating system
JP2019206261A (en) Vehicular air conditioner
JP2010032112A (en) Hot water supply device
KR102209347B1 (en) Cooling apparatus for hot stamping dies

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180912

R150 Certificate of patent or registration of utility model

Ref document number: 6404288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150