JP6402481B2 - Combustion heater - Google Patents

Combustion heater Download PDF

Info

Publication number
JP6402481B2
JP6402481B2 JP2014093746A JP2014093746A JP6402481B2 JP 6402481 B2 JP6402481 B2 JP 6402481B2 JP 2014093746 A JP2014093746 A JP 2014093746A JP 2014093746 A JP2014093746 A JP 2014093746A JP 6402481 B2 JP6402481 B2 JP 6402481B2
Authority
JP
Japan
Prior art keywords
combustion
radiation
combustion chamber
radiant
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014093746A
Other languages
Japanese (ja)
Other versions
JP2015210060A (en
Inventor
佐藤 公美
公美 佐藤
貴弘 小崎
貴弘 小崎
裕樹 岩城
裕樹 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2014093746A priority Critical patent/JP6402481B2/en
Publication of JP2015210060A publication Critical patent/JP2015210060A/en
Application granted granted Critical
Publication of JP6402481B2 publication Critical patent/JP6402481B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、燃料を燃焼させて被加熱物を加熱する燃焼加熱器に関する。   The present invention relates to a combustion heater that heats an object to be heated by burning fuel.

従来、燃料ガスを燃焼させた燃焼熱で輻射部を加熱し、その輻射部からの輻射熱で、搬送される工業材料や食品等の被加熱物を加熱する燃焼加熱器が普及している。このような燃焼加熱器としては、例えば、密閉式の配管内で燃料ガスを燃焼させ、配管表面からの輻射熱で被加熱物を加熱するラジアントチューブバーナがある。   2. Description of the Related Art Conventionally, combustion heaters are widely used in which a radiant part is heated with combustion heat obtained by burning fuel gas, and heated objects such as industrial materials and foods to be conveyed are radiated from the radiant part. As such a combustion heater, for example, there is a radiant tube burner that burns fuel gas in a sealed pipe and heats an object to be heated by radiant heat from the pipe surface.

ラジアントチューブバーナにおいて、燃料ガスの燃焼に際し、供給空気量を少なく抑えて未燃の燃料ガスを生じさせ、下流側で追加の空気を供給して未燃の燃料ガスを燃焼させ、上流から下流まで連続的に燃焼熱を発生させることで、ガスの流れ方向の温度分布の均一化を図る技術が公開されている(例えば、特許文献1)。   In the radiant tube burner, when the fuel gas is burned, the amount of supplied air is reduced to generate unburned fuel gas, and additional air is supplied downstream to burn the unburned fuel gas, from upstream to downstream A technique for making the temperature distribution in the gas flow direction uniform by continuously generating combustion heat is disclosed (for example, Patent Document 1).

特開平8−28810号公報JP-A-8-28810

燃料ガスを燃焼させて輻射部を加熱する燃焼加熱器においては、燃料ガスが燃焼する火炎近傍の温度が局所的に高まることから、輻射部の温度に偏りが生じてしまう。上記の特許文献1に記載のラジアントチューブバーナの場合であっても、火炎近傍の配管温度が高く、火炎から遠ざかるほど配管の温度は低下し、輻射部の熱流束が低下してしまう。そのため、燃焼加熱器が連続炉ではなくバッチ炉に用いられる場合や、被加熱物の搬送速度が遅い連続炉に用いられる場合などは、被加熱物の移動による温度の均一化が期待できず、被加熱物の温度上昇にムラが生じてしまうおそれがある。   In the combustion heater that burns the fuel gas and heats the radiant part, the temperature in the vicinity of the flame in which the fuel gas burns locally increases, so that the temperature of the radiant part is biased. Even in the case of the radiant tube burner described in Patent Document 1, the pipe temperature in the vicinity of the flame is high, and as the distance from the flame increases, the temperature of the pipe decreases and the heat flux of the radiant section decreases. Therefore, when the combustion heater is used in a batch furnace instead of a continuous furnace, or when it is used in a continuous furnace where the conveyance speed of the object to be heated is low, temperature uniformity due to movement of the object to be heated cannot be expected. There is a risk of unevenness in the temperature rise of the article to be heated.

本発明は、このような課題に鑑み、被加熱物に輻射熱を伝熱する輻射部の熱流束の均一化を図ることが可能な燃焼加熱器を提供することを目的としている。   In view of such problems, an object of the present invention is to provide a combustion heater capable of achieving uniform heat flux of a radiant portion that transfers radiant heat to an object to be heated.

上記課題を解決するために、本発明の燃焼加熱器は、燃料ガスを燃焼する燃焼室と、燃焼室における燃焼によって生じた排気ガスが流通する流通部と、流通部に連通し、排気ガスが排出される配管部と、流通部の壁の一部を構成し、一部が燃焼室に隣接して、被加熱物に輻射熱を伝熱する輻射部と、輻射部に重畳され、輻射部の本体と輻射率の異なる付加物と、を備え、燃焼室の燃焼時において、輻射部のうち、燃焼室の裏側に位置する高温部は、輻射部のうち、燃焼室からの距離が高温部より大きい低温部に対して単位面積当たりの付加物の占有面積が異なることにより、低温部よりも輻射率が低くなっていることを特徴とする。


In order to solve the above-described problems, a combustion heater according to the present invention includes a combustion chamber that burns fuel gas, a circulation portion through which exhaust gas generated by combustion in the combustion chamber circulates, and an exhaust gas that communicates with the circulation portion. The exhaust pipe part and a part of the wall of the circulation part constitute a part , the part is adjacent to the combustion chamber, the radiant part for transferring radiant heat to the object to be heated, and the radiant part is superimposed on the radiant part. with a different adduct of the body with emissivity, was converted, have you during combustion in the combustion chamber, of the radiant section, high temperature portion which is located on the back side of the combustion chamber, of the radiant section, the distance from the combustion chamber high temperature portion for larger low-temperature portion, by the different occupation area of adducts per unit area, characterized in that the spokes morphism rate is lower than the low temperature portion.


輻射部には、輻射部の本体とそれぞれ輻射率の異なる複数の付加物が重畳されており、輻射部は、高温部に重畳する付加物と、低温部に重畳する付加物との輻射率を異ならせることによって、高温部の輻射率を、低温部の輻射率よりも低くしてもよい。   A plurality of adducts having different emissivities from the main body of the radiating unit are superimposed on the radiating unit, and the radiating unit calculates the emissivity of the adducts superimposed on the high temperature portion and the adducts superimposed on the low temperature portion. By making it different, the emissivity of the high temperature part may be lower than the emissivity of the low temperature part.

本発明によれば、被加熱物に輻射熱を伝熱する輻射部の熱流束の均一化を図ることが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to aim at equalization of the heat flux of the radiation part which transfers radiant heat to a to-be-heated material.

燃焼加熱システムの外観例を示した外観斜視図である。It is the external appearance perspective view which showed the external appearance example of the combustion heating system. 燃焼加熱器を説明するための説明図である。It is explanatory drawing for demonstrating a combustion heater. 突起部を説明するための説明図である。It is explanatory drawing for demonstrating a projection part. 加熱板の輻射面を正面に捉えた正面図である。It is the front view which caught the radiation surface of the heating plate in the front. 輻射面の温度と熱流束の関係を説明するための説明図である。It is explanatory drawing for demonstrating the relationship between the temperature of a radiation surface, and a heat flux. 本実施形態の輻射面の温度と熱流束の関係を説明するための説明図である。It is explanatory drawing for demonstrating the relationship between the temperature of the radiation surface of this embodiment, and a heat flux. 変形例における加熱板の輻射面を正面に捉えた正面図である。It is the front view which caught the radiation surface of the heating plate in a modification in front.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

(燃焼加熱システム100)
図1は、燃焼加熱システム100の外観例を示した外観斜視図である。本実施形態における燃焼加熱システム100は、都市ガス等の燃料と燃焼用酸化剤ガスとしての空気とが本体容器に供給される前に混合される予混合タイプとするが、かかる場合に限定されず、所謂、拡散燃焼を行う拡散タイプであってもよい。
(Combustion heating system 100)
FIG. 1 is an external perspective view showing an external appearance example of the combustion heating system 100. The combustion heating system 100 in the present embodiment is a premix type in which fuel such as city gas and air as combustion oxidant gas are mixed before being supplied to the main body container. However, the present invention is not limited to such a case. A so-called diffusion type that performs diffusion combustion may be used.

図1に示すように、燃焼加熱システム100は、複数(ここでは2つ)の燃焼加熱器110を水平方向に連設してなり、燃料と空気との混合ガス(以下、「燃料ガス」という)の供給を受けて、それぞれの燃焼加熱器110で燃料ガスが燃焼することで加熱される。そして、燃焼加熱システム100では、その燃焼によって生じた排気ガスが回収されて排出される。   As shown in FIG. 1, the combustion heating system 100 includes a plurality of (in this case, two) combustion heaters 110 connected in a horizontal direction, and is a mixed gas of fuel and air (hereinafter referred to as “fuel gas”). ) And the fuel gas burns in each combustion heater 110 to be heated. In the combustion heating system 100, the exhaust gas generated by the combustion is recovered and discharged.

また、両燃焼加熱器110間の接続部位には、連設された燃焼加熱器110内の密閉空間を連通する不図示の連通部が形成されている。ただし、密閉空間といっても、気体中で用いる場合、必ずしも完全密閉する必要はない。本実施形態の燃焼加熱システム100では、例えば、イグナイタ(図示せず)等の点火装置による1回の点火によって、連通部を通じて連設する燃焼加熱器110に火炎が広がって点火される。上記したように、燃焼加熱システム100には2つの燃焼加熱器110が設けられるが、両燃焼加熱器110は同一の構成であるため、以下では、一方の燃焼加熱器110についてのみ説明する。   In addition, a communication portion (not shown) that communicates with the sealed space in the combustion heater 110 that is provided continuously is formed at a connection portion between the two combustion heaters 110. However, even if it is a sealed space, it is not always necessary to completely seal it when used in a gas. In the combustion heating system 100 of the present embodiment, for example, a single flame is ignited by an ignition device such as an igniter (not shown), and the flame is spread and ignited in the combustion heater 110 continuously provided through the communication portion. As described above, the combustion heating system 100 is provided with the two combustion heaters 110. Since both the combustion heaters 110 have the same configuration, only one of the combustion heaters 110 will be described below.

図2は、燃焼加熱器110を説明するための説明図である。図2(a)は、図1のII(a)−II(a)線断面図であり、図2(b)は、図2(a)の破線で囲った部分の拡大図である。図2(b)中、白抜き矢印は燃料ガスの流れを、ハッチングした矢印は排気ガスの流れを、黒色で塗りつぶした矢印は熱の移動を示す。   FIG. 2 is an explanatory diagram for explaining the combustion heater 110. 2A is a cross-sectional view taken along the line II (a) -II (a) in FIG. 1, and FIG. 2B is an enlarged view of a portion surrounded by a broken line in FIG. In FIG. 2B, the white arrow indicates the fuel gas flow, the hatched arrow indicates the exhaust gas flow, and the black arrow indicates heat transfer.

図2(a)、(b)に示すように、燃焼加熱器110は、加熱板(輻射部)120と、配置板122と、仕切板124と、断熱部126と、燃焼室128と、密閉部130と、封止部132と、断熱材134と、第1配管部136と、第2配管部138と、導入部140と、導出部142(流通部)とを含んで構成される。   As shown in FIGS. 2A and 2B, the combustion heater 110 includes a heating plate (radiation unit) 120, an arrangement plate 122, a partition plate 124, a heat insulating unit 126, a combustion chamber 128, and a hermetic seal. The part 130, the sealing part 132, the heat insulating material 134, the 1st piping part 136, the 2nd piping part 138, the introducing | transducing part 140, and the derivation | leading-out part 142 (circulation part) are comprised.

加熱板120は、耐熱性および耐酸化性が高い素材、例えば、ステンレス鋼(SUS:Stainless Used Steel)や、熱伝導率が高い素材、例えば、黄銅等で形成される薄板部材であって輻射面120aを有する。輻射面120aは、略矩形に形成され(図1参照)、燃焼によって生じる熱によって加熱され、被加熱物に輻射熱を伝熱する。   The heating plate 120 is a thin plate member formed of a material having high heat resistance and oxidation resistance, for example, stainless steel (SUS: Stainless Used Steel) or a material having high thermal conductivity, for example, brass, and has a radiation surface. 120a. The radiation surface 120a is formed in a substantially rectangular shape (see FIG. 1), is heated by heat generated by combustion, and transfers radiant heat to the object to be heated.

加熱板120の外壁部120bは、輻射面120aの外周で屈曲して輻射面120aに垂直かつ輻射面120aから離隔する方向(図2(a)中、下方向)に起立(延在)し、燃焼加熱システム100の側面を形成する。   The outer wall portion 120b of the heating plate 120 is bent (extended) in a direction perpendicular to the radiation surface 120a and away from the radiation surface 120a (downward in FIG. 2A) by bending at the outer periphery of the radiation surface 120a. Forms the sides of the combustion heating system 100.

本実施形態においては、2つの燃焼加熱器110の加熱板120を一体に成形している。そして、加熱板120は、外壁部120bの内面を側面とし、輻射面120aの裏面120cを底面とする箱を形成し、この箱の内部に、燃焼加熱器110の構成要素が配される。   In the present embodiment, the heating plates 120 of the two combustion heaters 110 are integrally formed. And the heating plate 120 forms the box which makes the inner surface of the outer wall part 120b a side surface, and makes the back surface 120c of the radiation surface 120a a bottom face, The component of the combustion heater 110 is distribute | arranged inside this box.

配置板122は、耐熱性および耐酸化性が高い素材、例えば、ステンレス鋼や、熱伝導率が低い素材等で形成される平板部材である。配置板122は、加熱板120の外壁部120bの内側において、加熱板120の輻射面120aの裏面120cと略平行に対向配置される。   The arrangement plate 122 is a flat plate member formed of a material having high heat resistance and oxidation resistance, such as stainless steel or a material having low thermal conductivity. The arrangement plate 122 is disposed to face the rear surface 120c of the radiating surface 120a of the heating plate 120 substantially parallel to the inner side of the outer wall portion 120b of the heating plate 120.

仕切板124は、加熱板120と同様、耐熱性および耐酸化性が高い素材、例えば、ステンレス鋼や、熱伝導率が高い素材、例えば、黄銅等で形成される薄板部材である。仕切板124は、加熱板120の外壁部120bの内側において、加熱板120の輻射面120aの裏面120cと、配置板122との間に、配置板122と略平行に対向配置される。   Like the heating plate 120, the partition plate 124 is a thin plate member formed of a material having high heat resistance and oxidation resistance, such as stainless steel, or a material having high thermal conductivity, such as brass. The partition plate 124 is disposed so as to face the arrangement plate 122 substantially parallel to the rear surface 120 c of the radiation surface 120 a of the heating plate 120 and the arrangement plate 122 inside the outer wall portion 120 b of the heating plate 120.

配置板122と仕切板124は、互いに対向する面の外周(外形)の輪郭が大凡等しく、それぞれ、トラック形状(長方形の2つの短辺それぞれを線対称な円弧(半円)に変えた形状)をなしている。   The arrangement plate 122 and the partition plate 124 have substantially the same outer peripheries (outer shapes) of the opposing surfaces, and each has a track shape (a shape in which the two short sides of the rectangle are changed to line-symmetrical arcs (semicircles)). I am doing.

加熱板120、配置板122、および、仕切板124は、間に空隙が形成されれば、相対的に傾いて対向配置されてもよい。また、加熱板120、配置板122、および、仕切板124は、その厚みに制限はなく、平板に限らず凹凸に形成されてもよい。   The heating plate 120, the arrangement plate 122, and the partition plate 124 may be opposed to each other with a relative inclination as long as a gap is formed therebetween. Moreover, the heating plate 120, the arrangement | positioning plate 122, and the partition plate 124 do not have a restriction | limiting in the thickness, You may form in unevenness not only in a flat plate.

断熱部126は、断熱性が高い(断熱性を有する)素材、例えば、セラミックなどで形成される薄板部材である。断熱部126は、外周部126aと、底面部126bとを有する。   The heat insulating portion 126 is a thin plate member formed of a material having high heat insulating properties (having heat insulating properties), for example, ceramic. The heat insulating portion 126 has an outer peripheral portion 126a and a bottom surface portion 126b.

外周部126aは、仕切板124の外周側に位置し、仕切板124の外周に沿って、加熱板120と配置板122の対向方向(図2(a)中、上下方向)に延在する。底面部126bは、外周部126aのうち、図2(a)中、下側の部位から屈曲して連続する部位であって、配置板122の中心に向かって延在し、加熱板120と対向配置される。   The outer peripheral portion 126 a is located on the outer peripheral side of the partition plate 124, and extends in the facing direction of the heating plate 120 and the arrangement plate 122 (up and down direction in FIG. 2A) along the outer periphery of the partition plate 124. The bottom surface portion 126b is a portion of the outer peripheral portion 126a that is bent and continuous from the lower portion in FIG. 2A, extends toward the center of the arrangement plate 122, and faces the heating plate 120. Be placed.

配置板122の外周面122aには、配置板122の中心に向かって図2(b)中、右側に延在する切り欠き122bが形成されており、底面部126bは、配置板122の切り欠き122bに嵌まる。底面部126bの先端と配置板122との間には、底面部126bと配置板122との寸法関係によって空隙Sが形成されており、底面部126bが熱膨張すると空隙Sによって変形が吸収され、応力抑制が可能な機構となっている。   On the outer peripheral surface 122 a of the arrangement plate 122, a notch 122 b extending to the right side in FIG. 2B toward the center of the arrangement plate 122 is formed, and the bottom surface portion 126 b is formed on the notch of the arrangement plate 122. It fits in 122b. A gap S is formed between the tip of the bottom surface portion 126b and the arrangement plate 122 due to the dimensional relationship between the bottom surface portion 126b and the arrangement plate 122. When the bottom surface portion 126b is thermally expanded, deformation is absorbed by the gap S. The mechanism is capable of suppressing stress.

なお、断熱部126の外周部126aの輪郭は、配置板122および仕切板124の外形と相似となるトラック形状をなしている。そして、外周部126aは、配置板122の外周面122aおよび仕切板124の外周面124aと、一定間隔を維持して離隔している。   The outline of the outer peripheral portion 126 a of the heat insulating portion 126 has a track shape similar to the outer shapes of the arrangement plate 122 and the partition plate 124. And the outer peripheral part 126a is spaced apart from the outer peripheral surface 122a of the arrangement | positioning board 122, and the outer peripheral surface 124a of the partition plate 124, maintaining a fixed space | interval.

燃焼室128は、図2(b)に示すように、外周部126aと、配置板122および仕切板124それぞれの外周面122a、124aとの間に位置し、当該外周面122a、124aに面する。すなわち、燃焼室128は、外周面122a、124a、加熱板120、および、断熱部126で囲繞され、外周部126aに沿った外周部126a内の空間となっている。   As shown in FIG. 2B, the combustion chamber 128 is located between the outer peripheral portion 126a and the outer peripheral surfaces 122a and 124a of the arrangement plate 122 and the partition plate 124, and faces the outer peripheral surfaces 122a and 124a. . That is, the combustion chamber 128 is surrounded by the outer peripheral surfaces 122a and 124a, the heating plate 120, and the heat insulating portion 126, and is a space in the outer peripheral portion 126a along the outer peripheral portion 126a.

密閉部130は、断熱部126よりも断熱性が低い素材、例えば、ステンレス鋼などで形成される薄板部材で構成することができる。本実施形態においては、2つの燃焼加熱器110の密閉部130を一体に成形している。   The sealing part 130 can be composed of a thin plate member made of a material having a lower heat insulating property than the heat insulating part 126, for example, stainless steel. In this embodiment, the sealing part 130 of the two combustion heaters 110 is integrally formed.

また、密閉部130は、図2(b)に示すように、輻射面120aの裏面120cとの接触部分に、裏面120cの面方向(以下、単に「面方向」と称す)に延在する屈曲部130aを有し、屈曲部130aが、加熱板120の輻射面120aの裏面120cに溶接やロウ付けなどで接合されている。そのため、密閉部130によって、燃焼室128の断熱部126側へのガス漏れが防止または抑制される。   Further, as shown in FIG. 2B, the sealing portion 130 is a bent portion extending in the surface direction of the back surface 120c (hereinafter simply referred to as “surface direction”) at the contact portion of the radiation surface 120a with the back surface 120c. The bent portion 130a is joined to the back surface 120c of the radiating surface 120a of the heating plate 120 by welding or brazing. Therefore, gas leakage to the heat insulation part 126 side of the combustion chamber 128 is prevented or suppressed by the sealing part 130.

一方、断熱部126は、接触するいずれの構成部材とも接合されておらず、密閉部130によって、断熱部126の外周部126aおよび底面部126bを、燃焼室128の反対側から覆われて支持されている。断熱部126は、接触するいずれの構成部材とも接合されていないものの、配置板122や密閉部130によって、密閉部130との相対的な位置ずれがないように規制されている。   On the other hand, the heat insulating portion 126 is not joined to any constituent member that comes into contact, and the outer peripheral portion 126a and the bottom surface portion 126b of the heat insulating portion 126 are covered and supported by the sealing portion 130 from the opposite side of the combustion chamber 128. ing. Although the heat insulating portion 126 is not joined to any constituent member that comes into contact, the heat insulating portion 126 is restricted by the arrangement plate 122 and the sealing portion 130 so as not to be displaced relative to the sealing portion 130.

封止部132は、当該燃焼加熱システム100において加熱板120の輻射面120aと反対側に配される平板部材である。本実施形態においては、加熱板120と同様、2つの燃焼加熱器110の封止部132を一体に形成している。そして、封止部132は、密閉部130と離隔した位置で、加熱板120の外壁部120bの延在方向(図2(a)中、下方向)の端部に固定され、密閉部130との間の空間に断熱材134を封止する。   The sealing portion 132 is a flat plate member disposed on the opposite side of the heating plate 120 from the radiation surface 120 a in the combustion heating system 100. In the present embodiment, like the heating plate 120, the sealing portions 132 of the two combustion heaters 110 are integrally formed. And the sealing part 132 is fixed to the edge part of the extension direction (downward direction in FIG. 2A) of the outer wall part 120b of the heating plate 120 at a position separated from the sealing part 130, and The heat insulating material 134 is sealed in the space between the two.

このように、燃焼加熱システム100の本体容器は、加熱板120の内側を封止部132で閉塞してなるもので、外周面(加熱板120の外壁部120bの外表面)の面積より上下壁面(加熱板120の輻射面120aおよび封止部132の外表面)の面積の方が大きい寸法関係に形成される。つまり、上下壁面は、本体容器の外表面の大部分を占めることとなる。   As described above, the main body container of the combustion heating system 100 is formed by closing the inside of the heating plate 120 with the sealing portion 132, and the upper and lower wall surfaces from the area of the outer peripheral surface (the outer surface of the outer wall portion 120b of the heating plate 120). The areas of the radiation surface 120a of the heating plate 120 and the outer surface of the sealing portion 132 are formed to have a larger dimensional relationship. That is, the upper and lower wall surfaces occupy most of the outer surface of the main body container.

第1配管部136は、燃料ガスが流通する配管であり、第2配管部138は、排気ガスが流通する配管である。第2配管部138は、第1配管部136内部に配される。すなわち、第1配管部136と第2配管部138は、燃焼加熱器110との接続部分において二重管を形成する。   The first piping portion 136 is a piping through which fuel gas flows, and the second piping portion 138 is a piping through which exhaust gas flows. The second piping unit 138 is disposed inside the first piping unit 136. That is, the first piping part 136 and the second piping part 138 form a double pipe at the connection part with the combustion heater 110.

配置板122、密閉部130、封止部132には、厚さ方向に貫通する貫通孔122c、130b、132aが設けられている。貫通孔122c、130b、132aは、配置板122、断熱部126、密閉部130、封止部132それぞれの面方向の中心部において、互いに対向する位置関係となっている。貫通孔122c、130b、132aには、第1配管部136が挿通される。そして、第1配管部136の端部は、配置板122の仕切板124側の面と面一となる位置で配置板122の貫通孔122cに固定され、第1配管部136のうち、密閉部130の貫通孔130bに挿通された部分は、貫通孔130bに溶接やロウ付けなどで接合される。   The arrangement plate 122, the sealing portion 130, and the sealing portion 132 are provided with through holes 122c, 130b, and 132a penetrating in the thickness direction. The through holes 122c, 130b, and 132a are in a positional relationship facing each other in the center portions in the surface direction of the arrangement plate 122, the heat insulating portion 126, the sealing portion 130, and the sealing portion 132, respectively. The first piping part 136 is inserted through the through holes 122c, 130b, and 132a. And the edge part of the 1st piping part 136 is fixed to the through-hole 122c of the arrangement | positioning board 122 in the position which becomes flush | planar with the surface at the side of the partition plate 124 of the arrangement | positioning board 122, and is a sealing part among the 1st piping parts 136. A portion inserted through the through hole 130b of 130 is joined to the through hole 130b by welding or brazing.

また、仕切板124には、配置板122の貫通孔122cと対向する位置に、貫通孔122cよりも径が小さく、厚さ方向に貫通する排気孔124bが設けられている。排気孔124bには、第2配管部138が挿通され、第2配管部138の端部が仕切板124の輻射面120a側の面と面一となる位置で排気孔124bに固定されている。   Further, the partition plate 124 is provided with an exhaust hole 124b having a diameter smaller than that of the through hole 122c and penetrating in the thickness direction at a position facing the through hole 122c of the arrangement plate 122. The second piping part 138 is inserted into the exhaust hole 124b, and is fixed to the exhaust hole 124b at a position where the end of the second piping part 138 is flush with the surface of the partition plate 124 on the radiation surface 120a side.

第2配管部138の端部は、第1配管部136の端部よりも輻射面120a側に突出し、かつ、加熱板120から離隔しており、仕切板124は、面方向の中心側において第2配管部138の端部に固定されることで、加熱板120および配置板122と一定間隔を維持して離隔している。   The end of the second piping part 138 protrudes to the radiation surface 120a side from the end of the first piping part 136, and is separated from the heating plate 120. The partition plate 124 is located on the center side in the surface direction. By being fixed to the end of the two piping parts 138, the heating plate 120 and the arrangement plate 122 are separated from each other while maintaining a certain distance.

導入部140は、配置板122と仕切板124との間の空隙によって形成され、第1配管部136に連通している。燃料ガスは、第1配管部136を通って配置板122の貫通孔122cから導入部140に流入される。すなわち、配置板122の貫通孔122cは、燃料ガスを導入部140に流入させる流入孔となっている。そして、導入部140は、配置板122の貫通孔122c(流入孔)から流入した燃料ガスを、燃焼室128に向けて放射状に導く。   The introduction part 140 is formed by a gap between the arrangement plate 122 and the partition plate 124 and communicates with the first piping part 136. The fuel gas flows into the introduction part 140 from the through hole 122c of the arrangement plate 122 through the first piping part 136. That is, the through hole 122 c of the arrangement plate 122 is an inflow hole through which the fuel gas flows into the introduction part 140. The introduction unit 140 guides the fuel gas flowing in from the through hole 122 c (inflow hole) of the arrangement plate 122 radially toward the combustion chamber 128.

また、導入部140の出口側(燃焼室128側)の流路は、仕切板124の外周端部に配された突起部124cによって複数に仕切られている。   Further, the flow path on the outlet side (combustion chamber 128 side) of the introduction part 140 is divided into a plurality of parts by a protruding part 124 c arranged on the outer peripheral end part of the partition plate 124.

図3は、突起部124cを説明するための説明図であり、燃焼室128の斜視図および燃焼室128を囲繞する構成部材の断面図を示す。なお、ここでは、理解を容易とするため、加熱板120および封止部132を取り除いて示し、仕切板124の隠れている部分の輪郭線を破線で示す。   FIG. 3 is an explanatory diagram for explaining the protrusion 124 c, and shows a perspective view of the combustion chamber 128 and a cross-sectional view of the components surrounding the combustion chamber 128. Here, for easy understanding, the heating plate 120 and the sealing portion 132 are removed, and the outline of the hidden portion of the partition plate 124 is indicated by a broken line.

図3に示すように、突起部124cは、仕切板124の周方向に一定間隔で設けられており、隣接する突起部124c間に流路124dが形成されている。これにより、導入部140と燃焼室128とは、その連通部分の断面積が狭められた流路124dによって連通することとなる。   As shown in FIG. 3, the protrusions 124c are provided at regular intervals in the circumferential direction of the partition plate 124, and a flow path 124d is formed between adjacent protrusions 124c. Thereby, the introducing | transducing part 140 and the combustion chamber 128 will be connected by the flow path 124d by which the cross-sectional area of the communication part was narrowed.

そして、流路124dから燃焼室128に流入した燃料ガスは、図2(b)に示すように、燃焼室128で衝突して一時的に滞留する。点火装置が導入部140から導入される燃料ガスに点火すると、燃焼室128では、流入孔(配置板122の貫通孔122c)から流入した燃料ガスが燃焼することとなる。そして、燃焼によって生成された排気ガスは、導出部142に導かれる。   Then, the fuel gas flowing into the combustion chamber 128 from the flow path 124d collides in the combustion chamber 128 and temporarily stays as shown in FIG. When the ignition device ignites the fuel gas introduced from the introduction unit 140, the fuel gas that has flowed from the inflow hole (the through hole 122c of the arrangement plate 122) is combusted in the combustion chamber 128. Then, the exhaust gas generated by the combustion is guided to the derivation unit 142.

導出部142は、加熱板120と仕切板124とを側壁とし、加熱板120と仕切板124との間の空隙によって形成された流路である。導出部142は、燃焼室128に連続するとともに第2配管部138に連通しており、燃焼室128における燃焼によって生じた排気ガスを、燃焼室128から面方向の中心側に集約し、仕切板124の排気孔124bから第2配管部138を介して当該燃焼加熱器110外に導く。   The lead-out part 142 is a flow path formed by a gap between the heating plate 120 and the partition plate 124 with the heating plate 120 and the partition plate 124 as side walls. The derivation unit 142 is continuous with the combustion chamber 128 and communicates with the second piping unit 138, and collects exhaust gas generated by combustion in the combustion chamber 128 from the combustion chamber 128 toward the center in the plane direction, From the exhaust hole 124b of 124, it guides out of the said combustion heater 110 through the 2nd piping part 138.

加熱板120は、輻射面120aの裏面120cから、燃焼室128における燃焼熱と、燃焼室128および導出部142を流通する排気ガスの熱によって加熱される。そして、輻射面120aからの輻射熱によって被加熱物が加熱されることとなる。   The heating plate 120 is heated from the back surface 120c of the radiation surface 120a by the combustion heat in the combustion chamber 128 and the heat of the exhaust gas flowing through the combustion chamber 128 and the outlet portion 142. And a to-be-heated material will be heated with the radiant heat from the radiation surface 120a.

また、仕切板124は比較的熱伝導し易い素材で形成されており、導出部142を流通する排気ガスは、仕切板124を介して導入部140を流通する燃料ガスに伝熱する(図2(b)参照)。ここでは、導出部142を流れる排気ガスと導入部140を流れる燃料ガスとが、仕切板124を挟んで対向流(カウンタフロー)となっているため、排気ガスの熱で燃料ガスを効率的に予熱することが可能となり、高い熱効率を得ることができる。   Further, the partition plate 124 is formed of a material that is relatively easy to conduct heat, and the exhaust gas flowing through the outlet portion 142 conducts heat to the fuel gas flowing through the introduction portion 140 via the partition plate 124 (FIG. 2). (See (b)). Here, the exhaust gas flowing through the lead-out part 142 and the fuel gas flowing through the introduction part 140 are counterflows with the partition plate 124 interposed therebetween, so that the fuel gas is efficiently removed by the heat of the exhaust gas. Preheating is possible, and high thermal efficiency can be obtained.

同様に、第2配管部138を流通する排気ガスは、第2配管部138を通じて第1配管部136を流れ、対向流となっている燃料ガスに伝熱して予熱する。このように燃料ガスを予熱してから燃焼する、所謂、超過エンタルピ燃焼によって、燃料ガスの燃焼を安定化し、不完全燃焼によって生じるCO(一酸化炭素)の濃度を極低濃度に抑えることができる。   Similarly, the exhaust gas flowing through the second piping section 138 flows through the first piping section 136 through the second piping section 138, transfers heat to the fuel gas in the counterflow, and preheats. By so-called excess enthalpy combustion, in which fuel gas is preheated in this way, combustion of fuel gas can be stabilized and the concentration of CO (carbon monoxide) generated by incomplete combustion can be suppressed to an extremely low concentration. .

ところで、加熱板120では、燃料ガスが燃焼する火炎近傍の温度が局所的に高まり、輻射面120aの温度に偏りが生じてしまうことから、そのままでは輻射面120aにおける熱流束が偏り、被加熱物の温度上昇にムラが生じてしまうおそれがある。かかる燃焼加熱システム100を連続炉に用いる場合、このような温度上昇のムラも時間方向に均されるので問題ないが、バッチ炉や、被加熱物の搬送速度が遅い連続炉に用いられる場合などは、被加熱物の移動による温度の均一化が期待できず、被加熱物の温度上昇にムラが生じてしまうおそれがある。   By the way, in the heating plate 120, the temperature in the vicinity of the flame where the fuel gas burns locally increases, and the temperature of the radiation surface 120a is biased. Therefore, the heat flux on the radiation surface 120a is biased as it is, and the heated object There is a risk of unevenness in the temperature rise. When such a combustion heating system 100 is used in a continuous furnace, such uneven temperature rise is also uniform in the time direction, but there is no problem, but when used in a batch furnace or a continuous furnace in which the conveyance speed of the object to be heated is low. Is not expected to be uniform in temperature due to the movement of the object to be heated, and may cause unevenness in the temperature rise of the object to be heated.

輻射による熱流束は、熱流束をq、輻射率(放射率)をε、ステファン・ボルツマン定数をσ、熱源温度をT、ワーク温度をTとすると、下記の数式1で導出される。
q=εσ(T−T ) …(数式1)
The heat flux due to radiation is derived from the following Equation 1, where q is the heat flux, ε is the emissivity (emissivity), σ is the Stefan-Boltzmann constant, T is the heat source temperature, and T 0 is the workpiece temperature.
q = εσ (T 4 −T 0 4 ) (Equation 1)

上記数式1を参照するとわかるように、熱流束を均一化するには、熱源温度T、すなわち、輻射面120aの温度を均一化すればよい。しかし、輻射面120aの温度は、燃焼室128からの距離など、複数の要因によって不均一となっている。   As can be seen from the above Equation 1, in order to make the heat flux uniform, the heat source temperature T, that is, the temperature of the radiation surface 120a may be made uniform. However, the temperature of the radiation surface 120a is non-uniform due to a plurality of factors such as the distance from the combustion chamber 128.

そこで、本実施形態では、輻射面120aの温度に応じて、輻射面120aの輻射率を調整することで熱流束の均一化を図る。   Therefore, in this embodiment, the heat flux is made uniform by adjusting the radiation rate of the radiation surface 120a according to the temperature of the radiation surface 120a.

図4は、加熱板120の輻射面120aを正面に捉えた正面図である。図4においてクロスハッチングは輻射塗料を示し、クロスハッチングの線の密度が高いほど輻射率が低い輻射塗料であって、クロスハッチングの線の密度が低いほど輻射率が高い輻射塗料であることを示す。   FIG. 4 is a front view in which the radiation surface 120a of the heating plate 120 is captured in front. In FIG. 4, the cross-hatching indicates a radiation paint, and the higher the cross-hatching line density, the lower the radiation efficiency, and the lower the cross-hatching line density, the higher the radiation efficiency. .

図4に示すように、輻射面120aには、輻射面120a(加熱板120の本体)と輻射率の異なる4種類の輻射塗料(付加物)Ya、Yb、Yc、Ydが塗布(重畳)されている。最もクロスハッチングの密度が高い、すなわち、輻射率が低い輻射塗料Yaは、輻射面120aのうち、裏面120cが燃焼室128に対向する部位に塗布されている。   As shown in FIG. 4, the radiation surface 120a is coated (superposed) with four types of radiation paints (additions) Ya, Yb, Yc, and Yd having a radiation rate different from that of the radiation surface 120a (the main body of the heating plate 120). ing. The radiation paint Ya having the highest cross-hatching density, that is, the low emissivity, is applied to a portion of the radiation surface 120a where the back surface 120c faces the combustion chamber 128.

そして、燃焼室128より排気ガスの流れの下流側、すなわち、輻射面120aの内周側には3種の輻射塗料Yb、Yc、Ydが塗布されており、輻射面120aの内周側ほど、塗布されている輻射塗料の輻射率が高くなる。また、輻射面120aのうち、燃焼室128よりも外周側は、最も内周側に塗布された輻射塗料Ydと同じく、最も輻射率の高い輻射塗料Ydが塗布されている。   Then, three types of radiation paints Yb, Yc, Yd are applied to the downstream side of the flow of the exhaust gas from the combustion chamber 128, that is, the inner peripheral side of the radiation surface 120a, and the inner peripheral side of the radiation surface 120a, The radiation rate of the applied radiation paint is increased. Further, in the radiant surface 120a, the outer peripheral side of the combustion chamber 128 is coated with the radiant paint Yd having the highest emissivity, similar to the radiant paint Yd applied on the innermost peripheral side.

このように、加熱板120の輻射面120aには、加熱板120本体と輻射率の異なる付加物(ここでは、加熱板120本体よりも輻射率が高い輻射塗料Ya、Yb、Yc、Yd)が重畳されている。   In this way, the radiation surface 120a of the heating plate 120 is provided with an additive having a radiation rate different from that of the heating plate 120 main body (here, radiation paints Ya, Yb, Yc, Yd having a higher radiation rate than the heating plate 120 main body). It is superimposed.

図5は、輻射面120aの温度と熱流束の関係を説明するための説明図である。図5(a)では、輻射面に輻射塗料を塗布せず輻射率が均一である比較例について、図4に示す輻射面120a上の中心側の部位Xから外周側の部位X’に対応する範囲で、部位X’における熱流束を1としたときの熱流束の比(以下、熱流束比と称す)と、表面温度との関係を示す。   FIG. 5 is an explanatory diagram for explaining the relationship between the temperature of the radiation surface 120a and the heat flux. In FIG. 5A, the comparative example in which the radiation paint is not applied to the radiation surface and the radiation rate is uniform corresponds from the center portion X on the radiation surface 120a shown in FIG. 4 to the outer portion X ′. In the range, the relationship between the heat flux ratio (hereinafter referred to as heat flux ratio) and the surface temperature when the heat flux at the site X ′ is 1 is shown.

図5(a)に示すように、比較例の輻射面においては、部位Xの温度が最も低く500℃程度、部位X’の温度が最も高く700℃程度となっている。輻射面のうち、裏面が燃焼室に対向する部位は温度が高い(高温部)。また、輻射面のうち、燃焼室より輻射面の内周側、すなわち、高温部より内周側の部位は温度が低い(低温部)。低温部は、燃焼室の燃焼時において高温部よりも低温となる。   As shown in FIG. 5A, on the radiation surface of the comparative example, the temperature of the part X is the lowest at about 500 ° C., and the temperature of the part X ′ is the highest at about 700 ° C. Of the radiating surface, the portion whose back surface faces the combustion chamber has a high temperature (high temperature portion). Moreover, among the radiant surfaces, the temperature at the inner peripheral side of the radiant surface from the combustion chamber, that is, the inner peripheral side from the high temperature portion is low (low temperature portion). The low temperature part is cooler than the high temperature part during combustion in the combustion chamber.

また、部位Xから部位X’まで、輻射面の温度が500℃から700℃まで漸増していると仮定した場合、図5(a)に示すグラフの横軸は、輻射面の部位Xから部位X’までの位置に大凡対応することとなる。   When it is assumed that the temperature of the radiation surface is gradually increased from 500 ° C. to 700 ° C. from the part X to the part X ′, the horizontal axis of the graph shown in FIG. The position up to X ′ will correspond roughly.

比較例においては、輻射面の輻射率が大凡均一であることから、部位Xでは、部位X’に対して熱流束比が0.4程度となってしてしまう。そこで、図5(b)に示すように、本実施形態では、輻射面120aの輻射率を、図5(a)に示す熱流束比に対して逆相関となるように(熱流束比を相殺するように)、変化させる。   In the comparative example, since the radiation rate of the radiation surface is approximately uniform, the heat flux ratio of the part X is about 0.4 with respect to the part X '. Therefore, as shown in FIG. 5B, in this embodiment, the radiation rate of the radiation surface 120a is inversely correlated with the heat flux ratio shown in FIG. To change).

図5(b)に示すように、部位X’における輻射率を1としたときの輻射率の比(以下、輻射率比と称す)は、部位Xにおいて2.5程度となるように、輻射面120aの温度に応じて輻射率を調整したとする。ここでは、図5(b)において、輻射率比を破線の凡例で示し、熱流束比を実線の凡例で示す。ここでは、熱流束比は、図5(b)に示すように、部位Xから部位X’まで輻射面120aの温度に拘わらず大凡一定となっているのが理解できる。   As shown in FIG. 5B, the radiation rate ratio (hereinafter referred to as the radiation rate ratio) when the radiation rate at the part X ′ is 1 is set to about 2.5 at the part X. It is assumed that the emissivity is adjusted according to the temperature of the surface 120a. Here, in FIG. 5B, the emissivity ratio is indicated by a broken line legend, and the heat flux ratio is indicated by a solid line legend. Here, as shown in FIG. 5B, it can be understood that the heat flux ratio is approximately constant from the portion X to the portion X ′ regardless of the temperature of the radiation surface 120a.

このように、図5(b)に示すような熱流束の状態が望まれる。しかし、図5(b)に示すように、輻射面120aの温度に応じて輻射率が線形的に変化する状態を形成するのは、コストを要するので、本実施形態では、上記のように、複数の輻射塗料Ya、Yb、Yc、Ydを併用して、図5(b)の状態に近づけることとする。   Thus, the heat flux state as shown in FIG. 5B is desired. However, as shown in FIG. 5B, since it takes cost to form a state in which the emissivity changes linearly according to the temperature of the radiation surface 120a, in the present embodiment, as described above, A plurality of radiation paints Ya, Yb, Yc, and Yd are used in combination to approximate the state of FIG.

図6は、本実施形態の輻射面120aの温度と熱流束の関係を説明するための説明図である。図6では、図4に示す輻射面120a上の中心側の部位Xから外周側の部位X’までの範囲について、比較例の部位X’における熱流束を1としたときの熱流束比と、温度との関係を示す。図6においても、輻射率比を破線の凡例で示し、熱流束比を実線の凡例で示す。   FIG. 6 is an explanatory diagram for explaining the relationship between the temperature of the radiation surface 120a and the heat flux of the present embodiment. In FIG. 6, the heat flux ratio when the heat flux at the part X ′ of the comparative example is set to 1 for the range from the center part X to the outer peripheral part X ′ on the radiation surface 120a shown in FIG. The relationship with temperature is shown. Also in FIG. 6, the emissivity ratio is indicated by a broken line legend, and the heat flux ratio is indicated by a solid line legend.

加熱板120は、輻射塗料Ya、Yb、Yc、Ydの輻射率を上記のように異ならせることによって、高温部の輻射率を、低温部の輻射率よりも低くする。詳細には、輻射面120aは、高温部に重畳する輻射塗料と、低温部に重畳する輻射塗料との輻射率を異ならせる。すなわち、図6に示すように、輻射面120aの温度が50℃上昇する毎に、輻射塗料Yd→輻射塗料Yc→輻射塗料Yb→輻射塗料Yaの順に、塗布される輻射塗料が変更されている。温度上昇に対応して、輻射率比が段階的に下がるため、熱流束比は所定範囲内で増減を繰り返すこととなる。   The heating plate 120 makes the emissivity of the high temperature part lower than the emissivity of the low temperature part by making the emissivities of the radiation paints Ya, Yb, Yc, Yd different as described above. Specifically, the radiation surface 120a makes the radiation rate of the radiation paint superimposed on the high temperature part different from that of the radiation paint superimposed on the low temperature part. That is, as shown in FIG. 6, every time the temperature of the radiation surface 120a increases by 50 ° C., the radiation paint to be applied is changed in the order of the radiation paint Yd → the radiation paint Yc → the radiation paint Yb → the radiation paint Ya. . Since the emissivity ratio decreases step by step in response to the temperature rise, the heat flux ratio repeatedly increases and decreases within a predetermined range.

このように、加熱板120の輻射面120aの高温部は低温部よりも輻射率が低くなっている。そのため、輻射面120aにおける熱流束を大凡均一にすることで、被加熱物の加熱の均一化を図ることが可能となる。その結果、燃焼加熱器110をバッチ炉に用いたり、搬送速度が遅い連続炉に用いたりしても、被加熱物を均一に加熱することが可能となる。   Thus, the high temperature part of the radiation surface 120a of the heating plate 120 has a lower emissivity than the low temperature part. Therefore, it is possible to achieve uniform heating of the object to be heated by making the heat flux on the radiation surface 120a substantially uniform. As a result, even if the combustion heater 110 is used in a batch furnace or a continuous furnace having a low conveyance speed, the object to be heated can be heated uniformly.

また、輻射面120aが金属の場合、酸化によって輻射率が上昇し、被加熱物への熱流束が時間経過とともに変化してしまうこともある。本実施形態では、輻射面120aに輻射塗料を塗布していることから、輻射面120aの酸化が抑えられ、安定した加熱性能を維持することが可能となる。   Moreover, when the radiation surface 120a is a metal, a radiation rate rises by oxidation and the heat flux to a to-be-heated object may change with progress of time. In this embodiment, since the radiation coating is applied to the radiation surface 120a, the oxidation of the radiation surface 120a is suppressed, and stable heating performance can be maintained.

(変形例)
図7は、変形例における加熱板220、320の輻射面220a、320aを正面に捉えた正面図であり、図7(a)には、第1変形例の加熱板220の輻射面220aを示し、図7(b)には、第2変形例の加熱板320の輻射面320aを示す。
(Modification)
FIG. 7 is a front view in which the radiation surfaces 220a and 320a of the heating plates 220 and 320 in the modification are captured in front, and FIG. 7A shows the radiation surface 220a of the heating plate 220 in the first modification. FIG. 7B shows a radiation surface 320a of the heating plate 320 of the second modification.

図7(a)に示すように、第1変形例における加熱板220の輻射面220aは、黒塗りの部位に、加熱板220本体よりも輻射率の高い輻射塗料が塗布されている。また、黒塗りのドットの密度は、輻射塗料の塗布密度を示す。ここで、塗布密度は、輻射面220aの単位面積当たりの、輻射塗料の塗布面積(配置面積)である。   As shown to Fig.7 (a), the radiation surface 220a of the heating plate 220 in a 1st modification is apply | coated with the radiation coating with a higher emissivity than the heating plate 220 main body in the black coating site | part. The density of black dots indicates the application density of the radiation paint. Here, the application density is an application area (arrangement area) of the radiation paint per unit area of the radiation surface 220a.

図7(a)に示すように、輻射面220aにおいては、裏面120cが燃焼室128に対向する高温部に対し、高温部より内周側の低温部の方が、輻射塗料の塗布密度が高い。言い換えれば、輻射面120aにおける単位面積当たりの輻射塗料の占有面積を異ならせることによって、高温部の輻射率を、低温部の輻射率よりも低くしている。   As shown in FIG. 7A, in the radiation surface 220a, the coating density of the radiation paint is higher in the low temperature portion on the inner peripheral side than in the high temperature portion with respect to the high temperature portion where the back surface 120c faces the combustion chamber 128. . In other words, by changing the occupation area of the radiation paint per unit area on the radiation surface 120a, the emissivity of the high temperature part is made lower than the emissivity of the low temperature part.

第1変形例においても、上述した実施形態と同様、輻射面220aにおける熱流束を大凡均一とし、被加熱物の加熱の均一化を図ることが可能となる。   Also in the first modified example, as in the above-described embodiment, the heat flux on the radiation surface 220a can be made substantially uniform, and the heating of the object to be heated can be made uniform.

図7(b)に示すように、第2変形例における加熱板320の輻射面320aは、表面粗さが不均一となっている。図7(b)では、輻射面320aのうち、パターン模様の八角形が大きい程、表面粗さが小さく滑らかであって、パターン模様の八角形が小さい程、表面粗さが大きく粗い面となっていることを示す。   As shown in FIG. 7B, the radiation surface 320a of the heating plate 320 in the second modification has a nonuniform surface roughness. In FIG. 7B, of the radiating surface 320a, the larger the octagon of the pattern pattern, the smoother the surface roughness becomes. The smaller the octagon of the pattern pattern, the larger the surface roughness and the rougher the surface. Indicates that

すなわち、輻射面320aでは、裏面120cが燃焼室128に対向する高温部に対し、高温部より内周側の低温部の方が、表面粗さが大きく粗い面となっている。その結果、高温部において、対象範囲に含まれる表面積(単位領域当たりの表面積)は、低温部において、当該対象範囲と同じ大きさの対象範囲に含まれる表面積よりも小さいこととなる。換言すれば、輻射面320aに平行な平面に投影した投影面積の単位面積当たりの表面積である比表面積で比較すると、高温部の比表面積は、低温部の比表面積よりも小さい。   That is, in the radiating surface 320a, the low-temperature portion on the inner peripheral side of the high-temperature portion is a surface having a larger surface roughness than the high-temperature portion where the back surface 120c faces the combustion chamber 128. As a result, the surface area (surface area per unit region) included in the target range in the high temperature part is smaller than the surface area included in the target range having the same size as the target range in the low temperature part. In other words, the specific surface area of the high temperature part is smaller than the specific surface area of the low temperature part when compared with the specific surface area that is the surface area per unit area of the projected area projected onto the plane parallel to the radiation surface 320a.

そのため、輻射面320aは、低温部の方が高温部よりも、被加熱物に対する輻射に寄与する面積が大きくなり、温度の差の影響を相殺して、熱流束が大凡均一となることから、被加熱物の加熱の均一化を図ることが可能となる。   Therefore, the radiation surface 320a has a larger area contributing to radiation to the object to be heated in the low temperature portion than in the high temperature portion, offsetting the influence of the temperature difference, and the heat flux becomes substantially uniform. It becomes possible to make the heating of the article to be heated uniform.

上述した第1変形例および第2変形例では、輻射塗料の塗布密度や、輻射面320aの表面粗さを調整すればよいことから、輻射面220a、320aの温度に応じて、一層、滑らかに輻射率を設定できる。そのため、熱流束のさらなる均一化を図ることが可能となる。   In the first modification and the second modification described above, it is only necessary to adjust the application density of the radiation paint and the surface roughness of the radiation surface 320a, so that the smoothness can be further increased according to the temperature of the radiation surfaces 220a and 320a. The emissivity can be set. Therefore, it is possible to further uniform the heat flux.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Is done.

例えば、燃焼加熱器110は、上述した構成に限らず、ラジアントチューブバーナ、ラインバーナ、赤外線セラミックバーナなど、空気、都市ガス、および、空気と都市ガスの混合ガス(予混合ガス)が供給される他の燃焼加熱器を用いてもよい。   For example, the combustion heater 110 is not limited to the configuration described above, and is supplied with air, city gas, and a mixed gas (premixed gas) of air and city gas, such as a radiant tube burner, a line burner, and an infrared ceramic burner. Other combustion heaters may be used.

また、上述した実施形態および変形例では、燃焼加熱器110が2つ連設された燃焼加熱システム100を例に挙げたが、燃焼加熱器110を単体で用いてもよいし、燃焼加熱器110が3つ連設された燃焼加熱システムを適用してもよい。   Further, in the above-described embodiment and modification, the combustion heating system 100 in which the two combustion heaters 110 are connected is taken as an example, but the combustion heater 110 may be used alone or the combustion heater 110. Alternatively, a combustion heating system in which three are connected may be applied.

また、上述した実施形態および第1変形例では、加熱板120、220本体と輻射率の異なる付加物として、加熱板120、220本体よりも輻射率が高い輻射塗料を用いる場合について説明した。しかし、付加物としては、輻射塗料に限らず、例えば、加熱板120、220本体よりも輻射率が低い部材であってもよい。   Further, in the above-described embodiment and the first modification, a case has been described in which a radiant paint having a higher emissivity than that of the heating plates 120 and 220 is used as an additive having a different emissivity from that of the heating plates 120 and 220. However, the additive is not limited to the radiation paint, and may be a member having a lower emissivity than the heating plates 120 and 220, for example.

また、上述した第2変形例では、輻射面320aのうち、高温部と低温部との表面粗さを異ならせる場合について説明した。しかし、輻射面320aの低温部に溝や突起を設けることなどによって、被加熱物に対する輻射に寄与する面積を大きくし、熱流束の均一化を図ってもよい。いずれにしても、輻射面320aにおける高温部の方が低温部よりも、比表面積を小さくできればよい。   In the second modification described above, the case where the surface roughness of the high temperature portion and the low temperature portion of the radiating surface 320a is made different has been described. However, by providing grooves or protrusions in the low temperature portion of the radiating surface 320a, the area contributing to radiation to the object to be heated may be increased to make the heat flux uniform. In any case, it is only necessary that the high temperature portion on the radiation surface 320a can have a smaller specific surface area than the low temperature portion.

本発明は、燃料を燃焼させて被加熱物を加熱する燃焼加熱器に利用することができる。   The present invention can be used in a combustion heater that heats an object to be heated by burning fuel.

110 燃焼加熱器
120、220、320 加熱板(輻射部)
128 燃焼室
142 導出部(流通部)
110 Combustion heater 120, 220, 320 Heating plate (radiant part)
128 Combustion chamber 142 Lead-out part (circulation part)

Claims (2)

燃料ガスを燃焼する燃焼室と、
前記燃焼室における燃焼によって生じた排気ガスが流通する流通部と、
前記流通部に連通し、前記排気ガスが排出される配管部と、
前記流通部の壁の一部を構成し、一部が前記燃焼室に隣接して、被加熱物に輻射熱を伝熱する輻射部と、
前記輻射部に重畳され、該輻射部の本体と輻射率の異なる付加物と、
を備え、
前記燃焼室の燃焼時において、前記輻射部のうち、該燃焼室の裏側に位置する高温部は、該輻射部のうち、該燃焼室からの距離が該高温部より大きい低温部に対して単位面積当たりの前記付加物の占有面積が異なることにより、該低温部よりも輻射率が低くなっていることを特徴とする燃焼加熱器。
A combustion chamber for burning fuel gas;
A circulation part through which exhaust gas generated by combustion in the combustion chamber circulates;
A piping part communicating with the flow part and from which the exhaust gas is discharged;
A part of the wall of the flow part, a part of which is adjacent to the combustion chamber, and a radiant part for transferring radiant heat to an object to be heated;
An additive that is superimposed on the radiating portion and has a different emissivity from the main body of the radiating portion;
With
And have you during combustion of the combustion chamber, of the radiant section, high temperature portion which is located on the back side of the combustion chamber, of the radiant section, the distance from the combustion chamber to said high-temperature portion is greater than the low temperature portion by occupying area of the adduct per unit area is different, combustion heater, wherein the spokes morphism rate is lower than the low temperature portion.
前記輻射部には、該輻射部の本体とそれぞれ輻射率の異なる複数の付加物が重畳されており、
前記輻射部は、前記高温部に重畳する付加物と、前記低温部に重畳する付加物との輻射率を異ならせることによって、該高温部の輻射率を、該低温部の輻射率よりも低くしていることを特徴とする請求項1に記載の燃焼加熱器。
The radiating section is superimposed with a plurality of additional products having different emissivities from the main body of the radiating section,
The radiant part has a lower emissivity of the high temperature part than that of the low temperature part by making the emissivity of the adduct superimposed on the high temperature part different from that of the adduct superimposed on the low temperature part. The combustion heater according to claim 1, wherein
JP2014093746A 2014-04-30 2014-04-30 Combustion heater Active JP6402481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014093746A JP6402481B2 (en) 2014-04-30 2014-04-30 Combustion heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014093746A JP6402481B2 (en) 2014-04-30 2014-04-30 Combustion heater

Publications (2)

Publication Number Publication Date
JP2015210060A JP2015210060A (en) 2015-11-24
JP6402481B2 true JP6402481B2 (en) 2018-10-10

Family

ID=54612382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014093746A Active JP6402481B2 (en) 2014-04-30 2014-04-30 Combustion heater

Country Status (1)

Country Link
JP (1) JP6402481B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284019A (en) * 2005-03-31 2006-10-19 Jfe Steel Kk Direct-fired steel plate continuous heating furnace and heating method of steel plate
JP5451265B2 (en) * 2009-08-31 2014-03-26 キヤノン株式会社 Radiography equipment
CN102032481B (en) * 2009-09-25 2014-01-08 东芝照明技术株式会社 Lamp with base and lighting equipment
WO2011057897A1 (en) * 2009-11-13 2011-05-19 Nv Bekaert Sa Multiscreen radiant burner
JP5581979B2 (en) * 2010-11-04 2014-09-03 株式会社Ihi Combustion heater
JP2012246365A (en) * 2011-05-26 2012-12-13 Hitachi Chemical Co Ltd Thermal emission coating material, and light-emitting diode (led) illumination, heat sink, back sheet for solar cell module each coated therewith
JP5909900B2 (en) * 2011-07-12 2016-04-27 株式会社Ihi Combustion heater and combustion heating system
US9353948B2 (en) * 2011-12-22 2016-05-31 General Electric Company Gas turbine combustor including a coating having reflective characteristics for radiation heat and method for improved combustor temperature uniformity
JP5989357B2 (en) * 2012-02-24 2016-09-07 日本碍子株式会社 heating furnace

Also Published As

Publication number Publication date
JP2015210060A (en) 2015-11-24

Similar Documents

Publication Publication Date Title
US5458484A (en) Pre-mix flame type burner
JP4704900B2 (en) Combustion heater
US9410699B2 (en) Combustion heater
US9982943B2 (en) Continuous heating furnace
JP5866845B2 (en) Combustion heater
JP6402481B2 (en) Combustion heater
US9689613B2 (en) Continuous heating furnace
KR101215090B1 (en) combustion heater
WO2013015240A1 (en) Hermetically-sealed gas heater and continuous heating furnace using hermetically-sealed gas heater
JP6427996B2 (en) Combustion heater
US5375998A (en) Low NOx premix gas burner
JP5724686B2 (en) Combustion heater
JP4150685B2 (en) Gas stove
JPS61256113A (en) Surface combustion burner and heat exchanger utilizing this burner
JP6446958B2 (en) Continuous heating furnace and radiant heater
JP4689425B2 (en) Micro combustor
JP6175814B2 (en) Combustion heater
JPH0623606B2 (en) Combustion device
JP6171716B2 (en) Combustion heater
JPH0550647B2 (en)
JPH0468531B2 (en)
JP2006023047A (en) Gas cooking stove
JPH11182869A (en) Catalyst combustor
JP2005274024A (en) Gas range

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180827

R151 Written notification of patent or utility model registration

Ref document number: 6402481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151