JP5724686B2 - Combustion heater - Google Patents

Combustion heater Download PDF

Info

Publication number
JP5724686B2
JP5724686B2 JP2011147897A JP2011147897A JP5724686B2 JP 5724686 B2 JP5724686 B2 JP 5724686B2 JP 2011147897 A JP2011147897 A JP 2011147897A JP 2011147897 A JP2011147897 A JP 2011147897A JP 5724686 B2 JP5724686 B2 JP 5724686B2
Authority
JP
Japan
Prior art keywords
plate
combustion chamber
combustion
fuel gas
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011147897A
Other languages
Japanese (ja)
Other versions
JP2013015251A5 (en
JP2013015251A (en
Inventor
佐藤 公美
公美 佐藤
加藤 壮一郎
壮一郎 加藤
琢 水谷
琢 水谷
正雄 相原
正雄 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011147897A priority Critical patent/JP5724686B2/en
Publication of JP2013015251A publication Critical patent/JP2013015251A/en
Publication of JP2013015251A5 publication Critical patent/JP2013015251A5/ja
Application granted granted Critical
Publication of JP5724686B2 publication Critical patent/JP5724686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Gas Burners (AREA)

Description

本発明は、燃料を燃焼させて被加熱物を加熱する燃焼加熱器に関する。   The present invention relates to a combustion heater that heats an object to be heated by burning fuel.

従来、燃料ガスを燃焼させた燃焼熱で輻射体を加熱し、輻射体の輻射面からの輻射熱で、工業材料や食品等を加熱する燃焼加熱器が広く普及している。このような燃焼加熱器について、例えば、輻射強度を向上させるために輻射面に輻射率の高い材料、形状を適用する技術が提案されている(例えば特許文献1)。   2. Description of the Related Art Conventionally, a combustion heater that heats a radiator with combustion heat obtained by burning fuel gas and heats industrial materials, foods, and the like with radiation heat from a radiation surface of the radiator has been widely used. For such a combustion heater, for example, a technique of applying a material and shape having a high emissivity to the radiation surface in order to improve the radiation intensity has been proposed (for example, Patent Document 1).

また、燃料ガスが流出して燃焼する炎孔の出口近傍に、燃料ガスの流路が拡大するように渦流部を設けて渦流を発生させることで、保炎効果を増大させる技術も提案されている(例えば特許文献2)。   In addition, a technique for increasing the flame holding effect by providing a vortex portion in the vicinity of the outlet of the flame hole where the fuel gas flows out and burns so that the flow path of the fuel gas expands to generate a vortex is proposed. (For example, Patent Document 2).

さらに、熱効率を向上させた燃焼加熱器が提案されている。この燃焼加熱器は、燃料ガスの導入路から、燃焼室および燃焼後の排気ガスの導出路までを密閉構造とし、導入路と導出路とを隣接させることで、排気ガスの熱で燃焼前の燃料ガスを予熱して熱効率を高めている(例えば、特許文献3)。   Furthermore, a combustion heater with improved thermal efficiency has been proposed. This combustion heater has a sealed structure from the fuel gas introduction path to the combustion chamber and the exhaust gas outlet path after combustion, and the introduction path and the outlet path are adjacent to each other, so that the heat of the exhaust gas before combustion The fuel gas is preheated to increase the thermal efficiency (for example, Patent Document 3).

特開2004−324925号公報JP 2004-324925 A 特開平6−147431号公報Japanese Patent Laid-Open No. 6-147431 特開2007−212082号公報JP 2007-212082 A

上述した特許文献3のような燃焼加熱器では、燃焼室近傍の燃料ガスの導入路において、複数の突起部が流路を狭めることで、消炎距離を短くして逆火を防止している。そして、燃焼室に流出した燃料ガスは、燃焼室の壁面に衝突して壁面に沿って上方へ流れた後、壁面から離れる向きに折り返す。この折り返しにおいて燃料ガスの流速が低下することで、保炎性を向上させている。   In the combustion heater as in Patent Document 3 described above, in the fuel gas introduction path in the vicinity of the combustion chamber, a plurality of protrusions narrow the flow path, thereby shortening the extinguishing distance and preventing backfire. The fuel gas flowing out into the combustion chamber collides with the wall surface of the combustion chamber, flows upward along the wall surface, and then turns back in a direction away from the wall surface. The flame holding property is improved by reducing the flow rate of the fuel gas in this folding.

しかし、燃料ガスが壁面に衝突するより以前に、複数の突起部の隙間から燃焼室に流入する際、流路が段階的に拡大するため、特許文献2と同様、渦流が形成される。しかし、特許文献3のような燃焼加熱器では、燃焼室に流入するとき発生する渦流は、燃料ガスの壁面への衝突が弱まる要因となる。そのため、本来、保炎すべき壁面近傍において折り返す燃料ガスの流れが安定せず、燃焼加熱器の保炎性が低下してしまう。   However, when the fuel gas flows into the combustion chamber through the gaps between the plurality of protrusions before the fuel gas collides with the wall surface, the flow path gradually expands, so that a vortex is formed as in Patent Document 2. However, in the combustion heater as in Patent Document 3, the vortex generated when entering the combustion chamber becomes a factor that weakens the collision of the fuel gas with the wall surface. For this reason, the flow of the fuel gas that is folded back in the vicinity of the wall surface that should originally be flame-stabilized is not stable, and the flame-holding property of the combustion heater is reduced.

本発明は、このような課題に鑑み、保炎性を向上し安定した燃焼加熱を実現可能な、燃焼加熱器を提供することを目的としている。   In view of such a problem, an object of the present invention is to provide a combustion heater capable of improving flame holding properties and realizing stable combustion heating.

上記課題を解決するために、本発明の燃焼加熱器は、加熱板と、加熱板に対向配置された配置板と、加熱板と配置板の外周に沿って配され、加熱板と配置板とで空間を囲繞する外周壁と、加熱板と配置板の間に配置された仕切板と、加熱板、配置板、および外周壁で囲繞される空間内に配置された燃焼室と、配置板と仕切板とを側壁とし燃焼室に連続して燃料ガスを導く導入路と、加熱板と仕切板とを側壁とし燃焼室に連続して燃焼室から排気ガスを当該燃焼加熱器外に導くと共に、仕切板を通じて排気ガスの熱で燃料ガスを予熱する導出路と、導入路と燃焼室とが連続する位置において、燃料ガスの流路を狭める突起部と、を備え、突起部は、導入路から燃焼室への燃料ガスの流れ方向に厚みが漸減する漸減部位を有することを特徴とする。   In order to solve the above problems, a combustion heater of the present invention is arranged along the outer periphery of a heating plate, an arrangement plate disposed opposite to the heating plate, the heating plate and the arrangement plate, the heating plate and the arrangement plate, The outer wall surrounding the space, the partition plate arranged between the heating plate and the arrangement plate, the heating plate, the arrangement plate, the combustion chamber arranged in the space enclosed by the outer wall, the arrangement plate and the partition plate And an inlet passage that leads the fuel gas continuously to the combustion chamber with the side wall as a side wall, and guides the exhaust gas from the combustion chamber to the outside of the combustion heater continuously from the combustion chamber with the heating plate and the partition plate as the side wall. A lead-out path for preheating the fuel gas with the heat of the exhaust gas through, and a protrusion that narrows the flow path of the fuel gas at a position where the introduction path and the combustion chamber are continuous, the protrusion from the introduction path to the combustion chamber It has a gradual decrease part where the thickness gradually decreases in the flow direction of the fuel gas to

突起部は、導入路において仕切板にのみ設けられてもよい。   The protrusion may be provided only on the partition plate in the introduction path.

突起部は、導入路において配置板にのみ設けられてもよい。   The protrusion may be provided only on the arrangement plate in the introduction path.

本発明の燃焼加熱器によれば、保炎性を向上し安定した燃焼加熱を実現可能となる。   According to the combustion heater of the present invention, flame holding property can be improved and stable combustion heating can be realized.

燃焼加熱器の構造を説明するための組立図である。It is an assembly drawing for demonstrating the structure of a combustion heater. 図1のAA断面図である。It is AA sectional drawing of FIG. 複数の突起部を説明するための説明図である。It is explanatory drawing for demonstrating a some projection part. 渦流を説明するための説明図である。It is explanatory drawing for demonstrating an eddy current. CO排出濃度の低下を説明するための説明図である。It is explanatory drawing for demonstrating the fall of CO discharge density | concentration. 複数の突起部に関する他の例を説明するための説明図である。It is explanatory drawing for demonstrating the other example regarding a some projection part. 複数の突起部を説明するための説明図である。It is explanatory drawing for demonstrating a some projection part.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

従来の燃焼加熱器では、燃焼を終えた排気ガス(燃焼ガス:燃焼後のガス)を回収せずにそのまま周囲の環境に排気しており、排気ガスの熱を利用できないため熱効率が低く、また、排気ガスの熱によって装置周辺の環境の温度が上昇したり、排気ガスが充満してしまったりして、労働環境の改善を図れない場合があった。これに対して、密閉式の燃焼加熱器は、本体容器内に、燃焼室と、燃料ガス(未燃焼ガス:燃焼前のガス)の導入路と、排気ガスの導出路とが密閉された状態で形成され、導出路を流れる排気ガスの熱で導入路を流れる燃料ガスを予熱することで、燃焼室において超過エンタルピ燃焼を実現する。このような燃焼加熱器は、排気ガスの熱を回収しているので、熱効率が高く、排気ガス自体も回収されるため、労働環境を損なわない。また、炎口が不要なため、輻射面の面積は減少せず輻射強度が高いといった利点も有する。   In conventional combustion heaters, exhausted exhaust gas (combustion gas: gas after combustion) is exhausted to the surrounding environment without being recovered, and the heat efficiency of the exhaust gas is low because the heat of the exhaust gas cannot be used. In some cases, the heat of the exhaust gas increases the temperature of the environment around the device or the exhaust gas fills up, making it impossible to improve the working environment. On the other hand, in the closed combustion heater, the combustion chamber, the introduction path of the fuel gas (unburned gas: gas before combustion), and the exhaust gas outlet path are sealed in the main body container. Excess enthalpy combustion is realized in the combustion chamber by preheating the fuel gas flowing through the inlet passage with the heat of the exhaust gas flowing through the outlet passage. Since such a combustion heater recovers the heat of the exhaust gas, the heat efficiency is high and the exhaust gas itself is also recovered, so that the working environment is not impaired. In addition, since the flame opening is unnecessary, there is an advantage that the area of the radiation surface is not reduced and the radiation intensity is high.

このような密閉式の燃焼加熱器には、スイスロール型やディスク型が提案されている。スイスロール型では、本体容器の中心に燃焼室が形成され、導入路と導出路とが渦巻状に並列して配置される。このスイスロール型の燃焼加熱器は、形状が複雑なため製造コストが高くなってしまうといった難点がある。これに対して、ディスク型の燃焼加熱器は、伝熱を担う仕切板が、本体容器を構成する一対の薄板(加熱板、配置板)よりも小型の薄板からなり、加熱板と配置板の間に空隙を設けて配置するといった簡易な構成で、導入路と導出路とに熱交換をさせている。また、ディスク型の燃焼加熱器は、スイスロール型に比べ、輻射面を有する加熱板の形状の自由度が高く、スイスロール型のように略円形に限られず、用途に応じて、楕円形や矩形に形成することができる。さらに、ディスク型の燃焼加熱器は、燃焼室の配置が本体容器の中央に限られないため、スイスロール型よりも燃焼室自体の体積を大きくでき、燃焼負荷率(燃焼室内の単位体積あたりの発熱)を抑えることができる。   As such a hermetic combustion heater, a Swiss roll type or a disk type has been proposed. In the Swiss roll type, a combustion chamber is formed at the center of the main body container, and the introduction path and the discharge path are arranged in parallel in a spiral shape. This Swiss roll type combustion heater has a difficulty in that the manufacturing cost becomes high due to its complicated shape. On the other hand, in the disk-type combustion heater, the partition plate responsible for heat transfer is a thin plate that is smaller than the pair of thin plates (heating plate, arrangement plate) constituting the main body container, and between the heating plate and the arrangement plate. Heat is exchanged between the introduction path and the outlet path with a simple configuration in which a gap is provided. In addition, the disc-type combustion heater has a higher degree of freedom in the shape of the heating plate having a radiation surface than the Swiss roll type, and is not limited to a substantially circular shape like the Swiss roll type, but can be an oval or It can be formed in a rectangular shape. Furthermore, since the arrangement of the combustion chamber is not limited to the center of the main body container, the disk type combustion heater can increase the volume of the combustion chamber itself as compared to the Swiss roll type, and the combustion load factor (per unit volume in the combustion chamber) (Heat generation) can be suppressed.

ところで、燃焼室近傍の燃料ガスの導入路では、複数の突起部が流路を狭め、代表距離を消炎距離より短くすることで逆火を防止している。しかし、複数の突起部の隙間から燃焼室に流入する際、流路が段階的に拡大するため、渦流が形成される。このような渦流は、本来、保炎すべき外周壁の壁面近傍における燃料ガスの流れを不安定にするため、外周壁の壁面近傍における保炎性が低下してしまう。   By the way, in the introduction path of the fuel gas in the vicinity of the combustion chamber, a plurality of protrusions narrow the flow path, and the representative distance is made shorter than the extinguishing distance to prevent backfire. However, when the gas flows into the combustion chamber from the gaps between the plurality of protrusions, the flow path expands stepwise, so that a vortex is formed. Such a vortex inherently destabilizes the flow of the fuel gas in the vicinity of the wall surface of the outer peripheral wall to be flame-fixed, so that the flame holding performance in the vicinity of the wall surface of the outer peripheral wall is degraded.

そこで、本実施形態の燃焼加熱器100では、保炎性を向上し安定した燃焼加熱を目的とする。以下、このような目的を実現可能な燃焼加熱器100の詳細な構成を説明する。   Therefore, the combustion heater 100 of the present embodiment aims to improve the flame holding property and stabilize the combustion heating. Hereinafter, a detailed configuration of the combustion heater 100 capable of realizing such an object will be described.

(第1の実施形態:燃焼加熱器100)
図1は、燃焼加熱器100の構造を説明するための組立図であり、図2は、図1のAA断面図である。図2(a)に示すように、燃焼加熱器100は、加熱板118と、配置板120と、外周壁122と、仕切板124と、燃焼室126と、導入路128と、導出路130と、第1配管部132と、第2配管部134とを含んで構成される。なお、本実施形態では、燃焼加熱器100は、外形が220mm×140mm程度のものを例に挙げて説明する。ただし、燃焼加熱器100の外形は、かかる大きさに限定されず、任意の大きさに設定することができる。
(First embodiment: combustion heater 100)
FIG. 1 is an assembly diagram for explaining the structure of the combustion heater 100, and FIG. 2 is a cross-sectional view taken along line AA in FIG. As shown in FIG. 2A, the combustion heater 100 includes a heating plate 118, an arrangement plate 120, an outer peripheral wall 122, a partition plate 124, a combustion chamber 126, an introduction path 128, and a lead-out path 130. The first piping part 132 and the second piping part 134 are configured. In the present embodiment, the combustion heater 100 will be described by taking an example in which the outer shape is about 220 mm × 140 mm. However, the external shape of the combustion heater 100 is not limited to such a size, and can be set to an arbitrary size.

本実施形態における燃焼加熱器100は、本体容器に、都市ガス等と燃焼用酸化剤ガスとしての空気とが予め混合された燃料ガス(予混合ガス)が供給される予混合タイプとするが、かかる場合に限定されず、燃焼室126や燃焼室126の直前の導入路128において両者が混合して拡散燃焼を行う拡散タイプであってもよい。   The combustion heater 100 in the present embodiment is a premixed type in which a main body container is supplied with a fuel gas (premixed gas) in which city gas or the like and air as a combustion oxidant gas are mixed in advance. It is not limited to such a case, but may be a diffusion type in which both are mixed to perform diffusion combustion in the combustion chamber 126 or the introduction path 128 immediately before the combustion chamber 126.

加熱板118および配置板120は、対向して配置され、耐熱性および耐酸化性が高い素材、例えば、ステンレス鋼(SUS:Stainless Used Steel)や、熱伝導率が高い素材、例えば、黄銅(真鍮)等で形成され、互いに略平行(本実施形態における超過エンタルピ燃焼を起こさせるための実質的な平行)に配置される。また、加熱板118および配置板120は、燃焼室126で生成された燃焼熱で加熱される輻射体としても機能する。ただし、配置板120は、輻射体として機能する構成に限らず、例えば、断熱構造としてもよい。   The heating plate 118 and the arrangement plate 120 are arranged to face each other and are made of a material having high heat resistance and oxidation resistance, such as stainless steel (SUS: Stainless Used Steel), or a material having high thermal conductivity, such as brass (brass). ) And the like, and are arranged substantially parallel to each other (substantially parallel for causing excess enthalpy combustion in the present embodiment). The heating plate 118 and the arrangement plate 120 also function as a radiator that is heated by the combustion heat generated in the combustion chamber 126. However, the arrangement | positioning board 120 is not restricted to the structure which functions as a radiator, For example, it is good also as a heat insulation structure.

外周壁122は、上面視において、内周がトラック形状(略平行な2つの線分と、その2つの線分をつなぐ2つの円弧(半円)からなる形状)に、外周が矩形に形成され、加熱板118と配置板120の外周に沿って配され、加熱板122と配置板120とで空間を囲繞する。また、外周壁122の外周面を輻射面として用いることもできる。   The outer peripheral wall 122 has an inner periphery formed into a track shape (a shape composed of two substantially parallel line segments and two arcs (semicircles) connecting the two line segments) and a rectangular outer periphery when viewed from above. The heating plate 118 and the arrangement plate 120 are arranged along the outer periphery, and the heating plate 122 and the arrangement plate 120 surround the space. Moreover, the outer peripheral surface of the outer peripheral wall 122 can also be used as a radiation surface.

燃焼加熱器100の本体容器は、外周壁122と、外周壁122の上下を加熱板118および配置板120で閉塞してなるもので、外周面(外周壁122の外表面)の面積より上下壁面(加熱板118および配置板120の外表面)の面積の方が大きい。つまり、上下壁面は、本体容器の外表面の大部分を占める。そして、この上下壁面のうち、例えば上側の面が輻射面となり、燃焼室126で燃料ガスが燃焼すると、輻射や空気の対流によって輻射面から熱が伝達して被加熱物が加熱される。本実施形態においては、上下壁面のうち上側の面(加熱板118の上面)を輻射面とするが、かかる場合に限定されず、下側の面(配置板120の下面)を輻射面としたり上下壁面の両面を輻射面としたりしてもよい。   The main body container of the combustion heater 100 is formed by closing the outer peripheral wall 122 and the upper and lower sides of the outer peripheral wall 122 with the heating plate 118 and the arrangement plate 120, and the upper and lower wall surfaces from the area of the outer peripheral surface (the outer surface of the outer peripheral wall 122). The area of (the outer surface of the heating plate 118 and the arrangement plate 120) is larger. That is, the upper and lower wall surfaces occupy most of the outer surface of the main body container. Of these upper and lower wall surfaces, for example, the upper surface becomes a radiation surface, and when the fuel gas burns in the combustion chamber 126, heat is transmitted from the radiation surface by radiation or air convection to heat the object to be heated. In the present embodiment, the upper surface (the upper surface of the heating plate 118) of the upper and lower wall surfaces is the radiation surface. However, the present invention is not limited to this, and the lower surface (the lower surface of the arrangement plate 120) is the radiation surface. Both the upper and lower wall surfaces may be radiation surfaces.

仕切板124は、加熱板118および配置板120よりも外形が小さく、外周壁122の内周面に沿った形状に形成され、加熱板118および配置板120の間で、加熱板118および配置板120と略平行に配置される。仕切板124と加熱板118および配置板120との間にはそれぞれ空隙が形成される。また、仕切板124は、耐熱性および耐酸化性が高い素材、例えば、ステンレス鋼や、熱伝導率が高い素材、例えば、黄銅等で形成される。かかる仕切板124と加熱板118および配置板120は、間に空隙が形成されれば、傾いて対向配置されてもよい。また、仕切板124、加熱板118および配置板120は、その厚みに制限はなく、平板に限らず凹凸に形成されてもよい。   The partition plate 124 has a smaller outer shape than the heating plate 118 and the arrangement plate 120, and is formed in a shape along the inner peripheral surface of the outer peripheral wall 122, and the heating plate 118 and the arrangement plate are interposed between the heating plate 118 and the arrangement plate 120. 120 is arranged substantially parallel to 120. Gaps are formed between the partition plate 124, the heating plate 118, and the arrangement plate 120, respectively. The partition plate 124 is formed of a material having high heat resistance and oxidation resistance, such as stainless steel, or a material having high thermal conductivity, such as brass. The partition plate 124, the heating plate 118, and the arrangement plate 120 may be disposed to face each other as long as a gap is formed therebetween. In addition, the partition plate 124, the heating plate 118, and the arrangement plate 120 are not limited in thickness, and may be formed in an uneven shape without being limited to a flat plate.

ここで、図1の組立図を用いて、加熱板118、配置板120、外周壁122および仕切板124の位置関係を説明する。配置板120には仕切板124が配置され、外周壁122が仕切板124と重畳しないように配置板120に重ねられる。詳細には、図2(a)に示すように、配置板120が第1配管部132の端部に固定されるのに対し、仕切板124は第1配管部132より突出している第2配管部134の端部に固定され、第1配管部132の端部と第2配管部134の端部の差分だけ、配置板120と仕切板124とが離隔することとなる。このとき、仕切板124の側面と、外周壁122の円筒状の内周面との間には燃焼室126としての空隙が形成される。最後に、外周壁122に、加熱板118が重ねられる。   Here, the positional relationship among the heating plate 118, the arrangement plate 120, the outer peripheral wall 122, and the partition plate 124 will be described with reference to the assembly diagram of FIG. A partition plate 124 is disposed on the placement plate 120, and the outer peripheral wall 122 is overlaid on the placement plate 120 so as not to overlap the partition plate 124. Specifically, as shown in FIG. 2A, the arrangement plate 120 is fixed to the end of the first piping portion 132, while the partition plate 124 protrudes from the first piping portion 132. The arrangement plate 120 and the partition plate 124 are separated by the difference between the end portion of the first piping portion 132 and the end portion of the second piping portion 134. At this time, a gap as a combustion chamber 126 is formed between the side surface of the partition plate 124 and the cylindrical inner peripheral surface of the outer peripheral wall 122. Finally, the heating plate 118 is overlaid on the outer peripheral wall 122.

燃焼室126は、外周壁122、加熱板118、および、配置板120で囲繞される空間内に配置される。また、燃焼室126は、仕切板124の外周端部に面しており、外周壁122より内側に外周壁122に沿って形成される。このように外周壁122に沿って燃焼室126を形成する構成により燃焼室126の体積を十分に確保でき、また、スイスロール型に比べ燃焼負荷率を低くできる。燃焼室126の任意の位置には、着火装置(図示せず)が設けられる。   The combustion chamber 126 is arranged in a space surrounded by the outer peripheral wall 122, the heating plate 118, and the arrangement plate 120. The combustion chamber 126 faces the outer peripheral end of the partition plate 124, and is formed along the outer peripheral wall 122 inside the outer peripheral wall 122. Thus, by the structure which forms the combustion chamber 126 along the outer peripheral wall 122, the volume of the combustion chamber 126 can fully be ensured, and a combustion load factor can be made low compared with a Swiss roll type. An ignition device (not shown) is provided at an arbitrary position of the combustion chamber 126.

図2(a)に示すように、本体容器内では、厚み方向(加熱板118の上面に直交する方向)に、導入路128と導出路130とが重ねて形成される。   As shown in FIG. 2A, in the main body container, the introduction path 128 and the lead-out path 130 are formed so as to overlap in the thickness direction (the direction orthogonal to the upper surface of the heating plate 118).

導入路128は、配置板120と、仕切板124とを側壁とする、配置板120と仕切板124に挟まれた空間であり、燃焼室126に連続して配され、本体容器中央に流入した燃料ガスを燃焼室126に放射状に導く。   The introduction path 128 is a space sandwiched between the placement plate 120 and the partition plate 124 with the placement plate 120 and the partition plate 124 as side walls, and is continuously disposed in the combustion chamber 126 and flows into the center of the main body container. The fuel gas is guided radially to the combustion chamber 126.

導出路130は、加熱板118と、仕切板124とを側壁とし、燃焼室126に連続して配され、燃焼室126から排気ガスを本体容器の中央に集約して当該燃焼加熱器100外に導く。また、図2(a)に示すように、本体容器内では、厚み方向に、導入路128と導出路130とが重なって形成されているので、仕切板124を通じて排気ガスの熱を伝達し、燃料ガスを予熱することができる。   The lead-out path 130 has a heating plate 118 and a partition plate 124 as side walls, and is continuously arranged in the combustion chamber 126. The exhaust gas is concentrated from the combustion chamber 126 to the center of the main body container and out of the combustion heater 100. Lead. Further, as shown in FIG. 2A, in the main body container, the introduction path 128 and the outlet path 130 are formed so as to overlap in the thickness direction, so that the heat of the exhaust gas is transmitted through the partition plate 124, The fuel gas can be preheated.

第1配管部132は、導入路128に挿通し、燃料ガスを当該燃焼加熱器100内に導く。具体的に、配置板120の中心部には、第1配管部132の内径と同一径の孔158が設けられており、この孔158の内周部分に第1配管部132が接続されている。   The first piping part 132 is inserted into the introduction path 128 and guides the fuel gas into the combustion heater 100. Specifically, a hole 158 having the same diameter as the inner diameter of the first piping portion 132 is provided at the center of the arrangement plate 120, and the first piping portion 132 is connected to the inner peripheral portion of the hole 158. .

第2配管部134は、第1配管部132内部に配される。すなわち、第1配管部132と第2配管部134とで二重管を形成する。また、第2配管部134は、導出路130に挿通し、排気ガスを当該燃焼加熱器100外に導く。具体的に、仕切板124の中心部には、第2配管部134の外径と同一径の孔160が設けられており、この孔160の内周部分に第2配管部134が嵌合される。さらに、第2配管部134は、排気ガスの熱を、第1配管部132を流れる燃料ガスに伝達する役割も担う。   The second piping part 134 is arranged inside the first piping part 132. That is, the first pipe part 132 and the second pipe part 134 form a double pipe. Further, the second piping part 134 is inserted into the outlet path 130 and guides the exhaust gas to the outside of the combustion heater 100. Specifically, a hole 160 having the same diameter as the outer diameter of the second pipe part 134 is provided at the center of the partition plate 124, and the second pipe part 134 is fitted to the inner peripheral portion of the hole 160. The Furthermore, the second piping part 134 also plays a role of transmitting the heat of the exhaust gas to the fuel gas flowing through the first piping part 132.

本実施形態においては、第1配管部132の内部に第2配管部134が配されるが、かかる場合に限定されず、第1配管部132および第2配管部134を加熱板118側から導入路128および導出路130に挿通させ、第2配管部134の内部に第1配管部132が配されてもよい。   In the present embodiment, the second piping part 134 is arranged inside the first piping part 132, but the present invention is not limited to this, and the first piping part 132 and the second piping part 134 are introduced from the heating plate 118 side. The first piping part 132 may be arranged inside the second piping part 134 by being inserted through the path 128 and the outlet path 130.

ここで、燃料ガスおよび排気ガスの流れを具体的に説明する。図2(a)の円部分を拡大した図2(b)中、白抜き矢印は燃料ガスの流れを、灰色で塗りつぶした矢印は排気ガスの流れを、黒色で塗りつぶした矢印は熱の移動を示す。第1配管部132に燃料ガスを供給すると、燃料ガスは配置板120の中心部から導入路128に流入し、水平方向に放射状に広がりながら燃焼室126に向けて流れる。そして、燃料ガスは、燃焼室126において外周壁122に衝突し、燃焼した後、高温の排気ガスとなり、排気ガスは加熱板118に伝熱した後、燃焼室126から導出路130を通じて第2配管部134に流入する。   Here, the flow of the fuel gas and the exhaust gas will be specifically described. In FIG. 2 (b) in which the circle portion of FIG. 2 (a) is enlarged, the white arrow indicates the flow of fuel gas, the gray arrow indicates the flow of exhaust gas, and the black arrow indicates heat transfer. Show. When the fuel gas is supplied to the first piping part 132, the fuel gas flows into the introduction path 128 from the center of the arrangement plate 120 and flows toward the combustion chamber 126 while spreading radially in the horizontal direction. Then, the fuel gas collides with the outer peripheral wall 122 in the combustion chamber 126 and burns to become high-temperature exhaust gas. After the heat is transferred to the heating plate 118, the exhaust gas is transferred from the combustion chamber 126 to the second pipe through the outlet passage 130. Flows into the section 134.

仕切板124は比較的、熱伝導し易い素材で形成されており、導出路130を通過する排気ガスの熱は、仕切板124を介して導入路128を通過する燃料ガスに伝わる。ここでは、導出路130を流れる排気ガスと導入路128を流れる燃料ガスとが、仕切板124を挟んで対向流(カウンタフロー)となっているため、排気ガスの熱で燃料ガスを効率的に予熱することが可能となり、高い熱効率を得ることができる。このように燃料ガスを予熱してから燃焼する、所謂、超過エンタルピ燃焼によって、燃料ガスの燃焼を安定化し、不完全燃焼によって生じるCO(一酸化炭素)の濃度を極低濃度に抑えることができる。   The partition plate 124 is formed of a material that is relatively easy to conduct heat, and the heat of the exhaust gas that passes through the outlet passage 130 is transmitted to the fuel gas that passes through the introduction passage 128 via the partition plate 124. Here, the exhaust gas flowing through the lead-out path 130 and the fuel gas flowing through the introduction path 128 are opposed to each other (counter flow) with the partition plate 124 interposed therebetween. Preheating is possible, and high thermal efficiency can be obtained. By so-called excess enthalpy combustion, in which fuel gas is preheated in this way, combustion of fuel gas can be stabilized and the concentration of CO (carbon monoxide) generated by incomplete combustion can be suppressed to an extremely low concentration. .

さらに、燃焼室126において安定した燃焼を可能とするために、導入路128と燃焼室126との境界において、排気ガスの流れに垂直な断面形状(以下、流路断面形状と称す)における代表寸法は、火炎を導入路128側に通さない(燃焼反応が導入路128の方に伝播されない)程度の消炎距離(消炎等価径を含む)を考慮し、消炎距離以下とするとよい。ここで、代表寸法は、燃料ガスが燃焼室126に流入する直前の流路の断面形状によって定まる寸法である。例えば、流路断面形状が円形状である場合には、代表寸法は円形断面の直径を指し、流路断面形状が円形状以外である場合には、代表寸法は断面の水力相当直径を指す。水力相当直径Dは、4×流路断面積/ぬれ縁長さで求められる。ぬれ縁長さは、流路断面における、燃料ガスが接触する壁(配置板120、仕切板124)部分の長さを示す。   Further, in order to enable stable combustion in the combustion chamber 126, a representative dimension in a cross-sectional shape perpendicular to the flow of exhaust gas (hereinafter referred to as a flow-path cross-sectional shape) at the boundary between the introduction passage 128 and the combustion chamber 126. In consideration of a flame extinguishing distance (including a flame extinguishing equivalent diameter) that does not allow a flame to pass through the introduction path 128 (a combustion reaction is not propagated toward the introduction path 128), it is preferable to set the flame extinguishing distance or less. Here, the representative dimension is a dimension determined by the cross-sectional shape of the flow channel immediately before the fuel gas flows into the combustion chamber 126. For example, when the channel cross-sectional shape is circular, the representative dimension indicates a diameter of a circular cross section, and when the channel cross-sectional shape is other than a circular shape, the representative dimension indicates a hydraulic equivalent diameter of the cross section. The hydraulic equivalent diameter D is obtained by 4 × channel cross-sectional area / wetting edge length. The wetting edge length indicates the length of the wall (arrangement plate 120, partition plate 124) portion in contact with the fuel gas in the cross section of the flow path.

例えば、配置板120と仕切板124との距離を消炎距離以下とすれば、火炎が導入路128内に侵入することがなくなり、燃焼が安定化される。しかし、配置板120と仕切板124との距離を消炎距離以下で均一にするためには、配置板120と仕切板124の面精度や取り付け精度を高める必要がある。そこで、本実施形態においては、配置板120と仕切板124との距離を消炎距離よりも大きくしてもよいこととし、仕切板124の下面(配置板120側)の燃焼室126近傍に配置板120と当接する複数の突起部152を所定の間隔Lを空けて配置する。   For example, if the distance between the arrangement plate 120 and the partition plate 124 is set to be equal to or less than the flame extinguishing distance, the flame does not enter the introduction path 128 and the combustion is stabilized. However, in order to make the distance between the arrangement plate 120 and the partition plate 124 equal to or less than the extinguishing distance, it is necessary to increase the surface accuracy and the mounting accuracy of the arrangement plate 120 and the partition plate 124. Therefore, in this embodiment, the distance between the arrangement plate 120 and the partition plate 124 may be made larger than the flame extinguishing distance, and the arrangement plate is located near the combustion chamber 126 on the lower surface of the partition plate 124 (on the arrangement plate 120 side). A plurality of protrusions 152 that are in contact with 120 are arranged at a predetermined interval L.

図3は、複数の突起部152を説明するための説明図である。図3(a)は、破線で示す加熱板118を透過した燃焼加熱器100の斜視図であり、図3(b)は、図3(a)のBB断面を矢印の方向から見た説明図である。図3(b)において、複数の突起部152の構造の理解を容易にするため、突起部152のうち、仕切板124で隠れている部分を破線で示す。また、矢印154は燃料ガスの流れの向きを示す。導入路128は、仕切板124に設けられた複数の突起部152によって、流路断面が狭められている。燃料ガスは、導入路128のうち、図2(b)の部分拡大図および、図3(b)の説明図で示すように、隣接する突起部152の間の空隙を通じて燃焼室126に流入する。このとき、突起部152同士の間隔Lが流路断面形状の代表寸法となる。   FIG. 3 is an explanatory diagram for explaining the plurality of protrusions 152. 3A is a perspective view of the combustion heater 100 that has passed through the heating plate 118 indicated by a broken line, and FIG. 3B is an explanatory view of the BB cross section of FIG. 3A viewed from the direction of the arrow. It is. In FIG. 3B, in order to facilitate understanding of the structure of the plurality of protrusions 152, a portion of the protrusion 152 hidden by the partition plate 124 is indicated by a broken line. An arrow 154 indicates the direction of fuel gas flow. The introduction channel 128 has a channel cross-section narrowed by a plurality of protrusions 152 provided on the partition plate 124. The fuel gas flows into the combustion chamber 126 through the gap between the adjacent projections 152 as shown in the partial enlarged view of FIG. 2B and the explanatory view of FIG. . At this time, the interval L between the protrusions 152 becomes the representative dimension of the cross-sectional shape of the flow path.

ここで、燃料ガスの消炎距離dは、管壁モデルの径の大きさで表されるものであり、式(1)により求められる。
d=2λ・Nu 1/2 Cp・ρu・Su …式(1)
式(1)において、λは熱伝導率、Nuはヌセルト数、Cpは定圧比熱、ρuは燃料ガスの密度、Suは燃焼速度である。
Here, the flame extinguishing distance d of the fuel gas is represented by the size of the diameter of the tube wall model, and is obtained by the equation (1).
d = 2λ · Nu 1/2 / ( Cp · ρu · Su ) (1)
In equation (1), λ is the thermal conductivity, Nu is the Nusselt number, Cp is the constant pressure specific heat, ρu is the density of the fuel gas, and Su is the combustion rate.

本実施形態の燃焼加熱器100は、上述した代表寸法(突起部152同士の間隔L)が消炎距離d以下となるように設計されているため、燃焼室126において安定した燃焼が可能となる。   The combustion heater 100 according to the present embodiment is designed so that the above-described representative dimension (interval L between the protrusions 152) is equal to or less than the extinguishing distance d, so that stable combustion is possible in the combustion chamber 126.

このような燃焼加熱器100において、本来保炎すべき外周壁122近傍とは異なる箇所における渦流の発生が保炎性を低下させる現象が生じていた。かかる現象を図4を用いて説明する。   In such a combustion heater 100, a phenomenon has occurred in which the generation of eddy currents at a location different from the vicinity of the outer peripheral wall 122 that should originally hold the flame reduces the flame holding properties. Such a phenomenon will be described with reference to FIG.

図4は、渦流を説明するための説明図である。図4(a)では、図2におけるCC断面図のうち、2つの突起部152の近傍部分のみを示す。また、図4(b)では、従来の燃焼加熱器における、図4(a)に対応する断面図を示す。さらに、図4(a)、(b)では燃料ガスの流れを矢印で示す。   FIG. 4 is an explanatory diagram for explaining the eddy current. 4A shows only the vicinity of the two protrusions 152 in the CC sectional view in FIG. Moreover, in FIG.4 (b), sectional drawing corresponding to Fig.4 (a) in the conventional combustion heater is shown. Further, in FIGS. 4A and 4B, the flow of the fuel gas is indicated by arrows.

図4(b)に示すように、従来の突起部10では、燃料ガスが、複数の突起部10の隙間から燃焼室126に流入するとき流路が急峻に拡大するため、渦流が形成されてしまう。そうすると、上述したように、本来、外周壁122に燃料ガスが衝突する前に流れが弱まってしまい、保炎性が低下する。その結果、不完全燃焼のCOの排出濃度が上昇してしまう可能性があった。   As shown in FIG. 4B, in the conventional protrusion 10, the flow path sharply expands when fuel gas flows into the combustion chamber 126 from the gaps between the plurality of protrusions 10, so that a vortex is formed. End up. If it does so, as mentioned above, before a fuel gas collides with the outer peripheral wall 122, a flow will weaken originally and flame holding property will fall. As a result, the exhaust concentration of incompletely burned CO may increase.

そこで、本実施形態の燃焼加熱器100は、図4(a)に示すような形状の突起部152を備える。突起部152は、導入路128と燃焼室126とが連続する位置において、燃料ガスの流路128aを狭める。また、突起部152は、突起部152の燃焼室126側において、導入路128から燃焼室126への燃料ガスの流れ方向に厚みが漸減する、図4(a)中破線で示した漸減部位156を有する。突起部152は、燃料ガスの流れ方向に対して流線形状を成している。   Therefore, the combustion heater 100 of the present embodiment includes a protrusion 152 having a shape as shown in FIG. The protrusion 152 narrows the fuel gas flow path 128 a at a position where the introduction path 128 and the combustion chamber 126 are continuous. Further, the protruding portion 152 gradually decreases in thickness in the flow direction of the fuel gas from the introduction path 128 to the combustion chamber 126 on the combustion chamber 126 side of the protruding portion 152, and a gradually decreasing portion 156 shown by a broken line in FIG. Have The protrusion 152 has a streamline shape with respect to the flow direction of the fuel gas.

かかる構成により、燃料ガスは、外周壁122に衝突するまで渦量が生じ難く、外周壁122に衝突後、外周壁122近傍(図4(a)に一点鎖線の楕円158で示す)において折り返す燃料ガスの流れが安定する。そのため、燃焼加熱器100は、外周壁122近傍において高い保炎性を有する。   With this configuration, the fuel gas is less likely to generate a vortex until it collides with the outer peripheral wall 122, and after it collides with the outer peripheral wall 122, the fuel gas is turned back in the vicinity of the outer peripheral wall 122 (shown by a dashed line ellipse 158 in FIG. The gas flow is stabilized. Therefore, the combustion heater 100 has a high flame holding property in the vicinity of the outer peripheral wall 122.

図5は、CO排出濃度の低下を説明するための説明図である。図5では、燃料ガスの当量比が一定の場合における燃料ガスの流速と、排出ガスにおけるCOの排出濃度との大凡の関係を示す。漸減部位156を有さない突起部を設けた場合、凡例170のように、燃料ガスの流速が低い低負荷になると、COの排出濃度は、自主規制値である100ppmに近づく、もしくは超えてしまう。   FIG. 5 is an explanatory diagram for explaining a decrease in the CO emission concentration. FIG. 5 shows an approximate relationship between the flow rate of the fuel gas and the CO emission concentration in the exhaust gas when the equivalence ratio of the fuel gas is constant. When a protrusion having no gradually decreasing portion 156 is provided, the CO emission concentration approaches or exceeds the self-regulated value of 100 ppm when the fuel gas flow rate is low and the load is low as in the legend 170. .

しかし、本実施形態のように漸減部位156を有する突起部152を設けた場合、凡例172に示すように、燃焼加熱器100は、特に低負荷においても安定して燃焼加熱を行うことが可能となり作動可能な負荷範囲を拡大できる。   However, when the protrusion 152 having the gradually decreasing portion 156 is provided as in the present embodiment, as shown in the legend 172, the combustion heater 100 can stably perform the combustion heating even at a low load. The operable load range can be expanded.

図6は、複数の突起部152に関する他の例を説明するための説明図である。図6(a)に示すように、突起部152は、燃焼室126側が燃焼室126と反対側よりも幅が細く形成されてもよい。また、図6(b)に示すように、燃焼室126と反対側が燃焼室126側よりも幅が細く形成されてもよい。さらに、図6(c)に示すように、突起部152は、コーナにRが設けられているのみでもよい。   FIG. 6 is an explanatory diagram for explaining another example of the plurality of protrusions 152. As shown in FIG. 6A, the protrusion 152 may be formed such that the width on the combustion chamber 126 side is narrower than the side opposite to the combustion chamber 126. Further, as shown in FIG. 6B, the width opposite to the combustion chamber 126 may be formed narrower than the combustion chamber 126 side. Further, as shown in FIG. 6C, the protrusion 152 may only be provided with an R at the corner.

いずれの場合であっても、突起部152は、突起部152の厚みが外周に垂直な方向に漸減する漸減部位156を有する。そのため、燃料ガスは、外周壁122に衝突するまで渦流が生じ難く、燃料ガスの流れが安定し保炎性が向上する。   In any case, the protrusion 152 has a gradually decreasing portion 156 where the thickness of the protrusion 152 gradually decreases in the direction perpendicular to the outer periphery. Therefore, it is difficult for the fuel gas to generate a vortex until it collides with the outer peripheral wall 122, the flow of the fuel gas is stabilized, and the flame holding property is improved.

図7は、複数の突起部152を説明するための説明図である。図7では、突起部152の形状を説明するため、仕切板124の突起部152が配される部位を切り出し、突起部152が上面となる向きの斜視図を示す。   FIG. 7 is an explanatory diagram for explaining the plurality of protrusions 152. In FIG. 7, in order to explain the shape of the protrusion 152, a portion of the partition plate 124 where the protrusion 152 is disposed is cut out, and a perspective view in which the protrusion 152 is an upper surface is shown.

突起152の先端部分の漸減部位156は、図7に示すように、複数の突起152の間の隙間が矢印158の方向に向かって漸増すると共に、突起152の高さが漸減するように丸みを帯びている。   As shown in FIG. 7, the gradually decreasing portion 156 of the tip portion of the protrusion 152 is rounded so that the gaps between the plurality of protrusions 152 gradually increase in the direction of the arrow 158 and the height of the protrusion 152 gradually decreases. I am tinged.

換言すれば、漸減部位156は、突起部152の幅方向に厚みが漸減する部分に限定されず、突起部152の高さ方向に厚みが漸減する部分であってもよい。また、漸減部位156は、突起部152の孔160側によって絞られた燃料ガスの流路を、当該漸減部位156に沿って燃焼室126側に向かって広げるものであればよい。   In other words, the gradually decreasing portion 156 is not limited to a portion where the thickness gradually decreases in the width direction of the protrusion 152, and may be a portion where the thickness gradually decreases in the height direction of the protrusion 152. Further, the gradual decrease portion 156 only needs to expand the flow path of the fuel gas constricted by the hole 160 side of the protrusion 152 toward the combustion chamber 126 side along the gradual decrease portion 156.

かかる構成により、燃料ガスの流れが、突起部152からより剥離しにくくなり、燃焼加熱器100は、不要な渦流の発生をさらに抑制し、本来保炎すべき外周壁122近傍における渦流の発生を安定化することが可能となる。   With such a configuration, the flow of the fuel gas is more difficult to separate from the protrusion 152, and the combustion heater 100 further suppresses the generation of unnecessary vortex flow, and the generation of vortex flow in the vicinity of the outer peripheral wall 122 that should originally hold the flame. It becomes possible to stabilize.

また、図4(b)に示す従来の突起部10に比べて、本実施形態における突起部152は角がないため、プレス加工によっても容易に形成可能となり、燃焼加熱器100は製造コストを低減できる。   Further, compared to the conventional protrusion 10 shown in FIG. 4B, the protrusion 152 in the present embodiment has no corners, and thus can be easily formed by pressing, and the combustion heater 100 reduces the manufacturing cost. it can.

本実施形態において、突起部152は、導入路128において仕切板124にのみ設けられている。そのため、突起部152を形成するための加工は仕切板124にのみ施せばよく、配置板120と仕切板124両方に設けられている場合に比べて、燃焼加熱器100は製造コストを低減できる。   In the present embodiment, the protrusion 152 is provided only on the partition plate 124 in the introduction path 128. Therefore, the process for forming the protrusion 152 may be performed only on the partition plate 124, and the manufacturing cost of the combustion heater 100 can be reduced as compared with the case where both are provided on the arrangement plate 120 and the partition plate 124.

また、突起部152は、導入路128において配置板120にのみ設けられてもよい。かかる構成により、仕切板124を薄板として容易に加工することができ、燃焼加熱器100は製造コストを低減することが可能となる。   Further, the protrusion 152 may be provided only on the arrangement plate 120 in the introduction path 128. With this configuration, the partition plate 124 can be easily processed as a thin plate, and the combustion heater 100 can reduce manufacturing costs.

以上、説明した燃焼加熱器100によって、保炎性を向上し安定した燃焼加熱を実現可能となる。   As described above, the combustion heater 100 described above can improve flame holding properties and realize stable combustion heating.

また、上述した実施形態では、燃焼室126は、外周壁122に沿って形成されるとしたが、かかる場合に限らず、燃焼室126は、外周壁122、加熱板118、および配置板120で囲繞される空間内であればよい。ただし、排気ガスによる燃料ガスの予熱効果を十分に確保するため、燃焼室126は、例えば、加熱板118と仕切板124との間の空間、または仕切板124と配置板120との間の空間のうち、配置板120に設けられた孔158から外周壁122までの中間位置より外周壁122に近い空間のいずれかの位置に設けられることが望ましい。   In the above-described embodiment, the combustion chamber 126 is formed along the outer peripheral wall 122. However, the combustion chamber 126 is not limited to this case, and the combustion chamber 126 includes the outer peripheral wall 122, the heating plate 118, and the arrangement plate 120. It suffices if it is within the enclosed space. However, in order to sufficiently secure the preheating effect of the fuel gas by the exhaust gas, the combustion chamber 126 is, for example, a space between the heating plate 118 and the partition plate 124 or a space between the partition plate 124 and the arrangement plate 120. Among them, it is desirable to be provided at any position in the space closer to the outer peripheral wall 122 than the intermediate position from the hole 158 provided in the arrangement plate 120 to the outer peripheral wall 122.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Is done.

本発明は、燃料を燃焼させて被加熱物を加熱する燃焼加熱器に利用することができる。   The present invention can be used in a combustion heater that heats an object to be heated by burning fuel.

100 …燃焼加熱器
118 …加熱板
120 …配置板
122 …外周壁
124 …仕切板
126 …燃焼室
128 …導入路
128a …流路
130 …導出路
152 …突起部
156 …漸減部位
DESCRIPTION OF SYMBOLS 100 ... Combustion heater 118 ... Heating plate 120 ... Arrangement plate 122 ... Outer peripheral wall 124 ... Partition plate 126 ... Combustion chamber 128 ... Introducing path 128a ... Flow path 130 ... Outlet path 152 ... Protruding part 156 ... Gradually decreasing part

Claims (3)

加熱板と、
前記加熱板に対向配置された配置板と、
前記加熱板と前記配置板の外周に沿って配され、該加熱板と該配置板とで空間を囲繞する外周壁と、
前記加熱板と前記配置板の間に配置された仕切板と、
前記加熱板、前記配置板、および前記外周壁で囲繞される空間内に配置された燃焼室と、
前記配置板と前記仕切板とを側壁とし前記燃焼室に連続して燃料ガスを導く導入路と、
前記加熱板と前記仕切板とを側壁とし前記燃焼室に連続して該燃焼室から排気ガスを当該燃焼加熱器外に導くと共に、該仕切板を通じて該排気ガスの熱で該燃料ガスを予熱する導出路と、
前記導入路と前記燃焼室とが連続する位置において、燃料ガスの流路を狭める突起部と、を備え、
前記突起部は、前記導入路から前記燃焼室への燃料ガスの流れ方向に厚みが漸減する漸減部位を有することを特徴とする燃焼加熱器。
A heating plate;
An arrangement plate disposed opposite to the heating plate;
An outer peripheral wall disposed along the outer periphery of the heating plate and the arrangement plate, and surrounding the space by the heating plate and the arrangement plate;
A partition plate disposed between the heating plate and the arrangement plate;
A combustion chamber arranged in a space surrounded by the heating plate, the arrangement plate, and the outer peripheral wall;
An introduction path that leads the fuel gas continuously to the combustion chamber using the arrangement plate and the partition plate as side walls;
Using the heating plate and the partition plate as side walls, the exhaust gas is led out of the combustion heater continuously from the combustion chamber to the combustion chamber, and the fuel gas is preheated by the heat of the exhaust gas through the partition plate. A lead-out path;
A protrusion that narrows the flow path of the fuel gas at a position where the introduction path and the combustion chamber are continuous;
The combustion heater according to claim 1, wherein the protrusion has a gradually decreasing portion whose thickness gradually decreases in the flow direction of the fuel gas from the introduction path to the combustion chamber.
前記突起部は、前記導入路において前記仕切板にのみ設けられていることを特徴とする請求項1に記載の燃焼加熱器。   The combustion heater according to claim 1, wherein the protrusion is provided only on the partition plate in the introduction path. 前記突起部は、前記導入路において前記配置板にのみ設けられていることを特徴とする請求項1に記載の燃焼加熱器。   The combustion heater according to claim 1, wherein the protrusion is provided only on the arrangement plate in the introduction path.
JP2011147897A 2011-07-04 2011-07-04 Combustion heater Active JP5724686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011147897A JP5724686B2 (en) 2011-07-04 2011-07-04 Combustion heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011147897A JP5724686B2 (en) 2011-07-04 2011-07-04 Combustion heater

Publications (3)

Publication Number Publication Date
JP2013015251A JP2013015251A (en) 2013-01-24
JP2013015251A5 JP2013015251A5 (en) 2013-06-13
JP5724686B2 true JP5724686B2 (en) 2015-05-27

Family

ID=47688084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011147897A Active JP5724686B2 (en) 2011-07-04 2011-07-04 Combustion heater

Country Status (1)

Country Link
JP (1) JP5724686B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7304804B2 (en) 2019-12-20 2023-07-07 株式会社Nippo Aggregate drying device and aggregate drying method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6427996B2 (en) * 2014-07-04 2018-11-28 株式会社Ihi Combustion heater

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3885907A (en) * 1970-10-06 1975-05-27 Columbia Gas Syst Infrared burner and apparatus for producing same
JPS5122364Y2 (en) * 1971-05-31 1976-06-09
JPS61268912A (en) * 1985-05-23 1986-11-28 Osaka Gas Co Ltd Multi-flame ports burner
US5249953A (en) * 1989-06-16 1993-10-05 Hercules Canada, Inc. Gas distributing and infrared radiating block assembly
JP4494346B2 (en) * 2006-02-10 2010-06-30 株式会社Ihi Combustion heater
JP4494345B2 (en) * 2006-02-10 2010-06-30 株式会社Ihi Combustion heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7304804B2 (en) 2019-12-20 2023-07-07 株式会社Nippo Aggregate drying device and aggregate drying method

Also Published As

Publication number Publication date
JP2013015251A (en) 2013-01-24

Similar Documents

Publication Publication Date Title
JP4494346B2 (en) Combustion heater
JP5445691B2 (en) Combustion heating system
JP5581979B2 (en) Combustion heater
JP4704900B2 (en) Combustion heater
US9410699B2 (en) Combustion heater
JP4720396B2 (en) Micro combustor
JP5724686B2 (en) Combustion heater
KR101544925B1 (en) Combustion heater
JP5909900B2 (en) Combustion heater and combustion heating system
JP2007093179A (en) Micro-combustor
JP2007085617A (en) Heat exchanger using micro-combuster
US9689613B2 (en) Continuous heating furnace
JP4494345B2 (en) Combustion heater
JP6782441B2 (en) Small vortex combustor
JP6175814B2 (en) Combustion heater
JP4689425B2 (en) Micro combustor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150316

R151 Written notification of patent or utility model registration

Ref document number: 5724686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250