JP5909900B2 - Combustion heater and combustion heating system - Google Patents
Combustion heater and combustion heating system Download PDFInfo
- Publication number
- JP5909900B2 JP5909900B2 JP2011153583A JP2011153583A JP5909900B2 JP 5909900 B2 JP5909900 B2 JP 5909900B2 JP 2011153583 A JP2011153583 A JP 2011153583A JP 2011153583 A JP2011153583 A JP 2011153583A JP 5909900 B2 JP5909900 B2 JP 5909900B2
- Authority
- JP
- Japan
- Prior art keywords
- plate
- combustion
- arrangement
- outer peripheral
- peripheral wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/34—Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
Landscapes
- Gas Burners (AREA)
Description
本発明は、燃料を燃焼させて被加熱物を加熱する燃焼加熱器および複数の燃焼加熱器を連接した燃焼加熱システムに関する。 The present invention relates to a combustion heater that burns fuel and heats an object to be heated, and a combustion heating system that connects a plurality of combustion heaters.
従来、燃料ガスを燃焼させた燃焼熱で輻射体を加熱し、輻射体の輻射面からの輻射熱で、工業材料や食品等を加熱する燃焼加熱器が広く普及している。このような燃焼加熱器について、例えば、輻射強度を向上させるために輻射面に輻射率の高い材料、形状を適用する技術が提案されている(例えば特許文献1)。 2. Description of the Related Art Conventionally, a combustion heater that heats a radiator with combustion heat obtained by burning fuel gas and heats industrial materials, foods, and the like with radiation heat from a radiation surface of the radiator has been widely used. For such a combustion heater, for example, a technique of applying a material and shape having a high emissivity to the radiation surface in order to improve the radiation intensity has been proposed (for example, Patent Document 1).
上述した従来の燃焼加熱器では、輻射面の表面に設けた炎口で燃料ガスを燃焼させ、排気ガスを回収せずに周囲の環境に排気していた。したがって、排熱を回収できず熱効率が低下し、また、炎口の面積分、輻射面の面積が小さくなって輻射強度を高くできなかった。さらに、排気ガスの熱によって装置周辺の環境温度が上昇したり、排気ガスが充満してしまったりして、労働環境の改善を図れない場合があった。 In the conventional combustion heater described above, the fuel gas is burned at the flame opening provided on the surface of the radiation surface, and the exhaust gas is exhausted to the surrounding environment without being recovered. Therefore, the exhaust heat cannot be recovered, the thermal efficiency is lowered, and the area of the radiation surface is reduced by the area of the flame opening, so that the radiation intensity cannot be increased. Furthermore, the environmental temperature around the device rises due to the heat of the exhaust gas, or the exhaust gas is full, and the working environment may not be improved.
そこで、熱効率を向上させた燃焼加熱器が提案されている。この燃焼加熱器は、燃料ガスの導入路から、燃焼室および燃焼後の排気ガスの導出路までを密閉構造とし、導入路と導出路とを隣接させ、排気ガスの熱で燃焼前の燃料ガスを予熱して熱効率を高めている(例えば、特許文献2)。 Therefore, a combustion heater with improved thermal efficiency has been proposed. This combustion heater has a sealed structure from the fuel gas introduction path to the combustion chamber and the exhaust gas outlet path after combustion, the introduction path and the outlet path are adjacent to each other, and the fuel gas before combustion is heated by the heat of the exhaust gas. Is preheated to increase thermal efficiency (for example, Patent Document 2).
上述した特許文献2のような燃焼加熱器は、輻射面を有する加熱板、加熱板と対向配置された配置板、および加熱板と配置板の間に配置された仕切板等で構成され、配置板と仕切板とで挟まれた空間が燃料ガスの導入路となる。この配置板は、燃料ガスの導入路を形成するための高い面精度や高温耐酸化性が必要とされると共に、筐体の一部を成すため剛性も要求される。燃焼加熱器は、配置板としてこのような複数の要求を満たす部材を使用するため、製造コストが高くなってしまっていた。 The combustion heater as in Patent Document 2 described above is composed of a heating plate having a radiation surface, an arrangement plate arranged to face the heating plate, a partition plate arranged between the heating plate and the arrangement plate, and the like. A space sandwiched between the partition plates serves as a fuel gas introduction path. This arrangement plate is required to have high surface accuracy and high-temperature oxidation resistance for forming a fuel gas introduction path, and also requires rigidity to form a part of the casing. Since the combustion heater uses a member that satisfies such a plurality of requirements as the arrangement plate, the manufacturing cost has been increased.
本発明は、このような課題に鑑み、安価な構成で、燃料ガスを燃焼室に導入する導入路を高精度に形成しつつ筐体の十分な剛性を確保することが可能な、燃焼加熱器および燃焼加熱システムを提供することを目的としている。 In view of such a problem, the present invention provides a combustion heater capable of ensuring sufficient rigidity of a casing while forming an introduction path for introducing fuel gas into a combustion chamber with high accuracy with an inexpensive configuration. And to provide a combustion heating system.
上記課題を解決するために、本発明の燃焼加熱器は、加熱板と、加熱板に対向配置された配置板と、加熱板と配置板の外周に沿って配され、加熱板と配置板とで空間を囲繞する外周壁と、加熱板と配置板の間に配置された仕切板と、加熱板、配置板、および外周壁で囲繞される空間内に、外周壁の内側に外周壁に沿って配置された燃焼室と、燃焼室の外周壁側の面および配置板側の面に連続配置される第1断熱部と、配置板と仕切板とを側壁とし燃焼室に連続して燃料ガスを導く導入路と、加熱板と仕切板とを側壁とし燃焼室に連続して燃焼室から排気ガスを当該燃焼加熱器外に導くと共に、仕切板を通じて排気ガスの熱で燃料ガスを予熱する導出路と、配置板の導入路に対して逆側から配置板を支持する支持板と、を備え、外周壁と、配置板との間には、燃焼室への燃料ガスの導入方向に延在する空間が形成されることを特徴とする。 In order to solve the above problems, a combustion heater of the present invention is arranged along the outer periphery of a heating plate, an arrangement plate disposed opposite to the heating plate, the heating plate and the arrangement plate, the heating plate and the arrangement plate, In the space surrounded by the outer peripheral wall surrounding the space, the partition plate arranged between the heating plate and the arrangement plate, the heating plate, the arrangement plate, and the outer peripheral wall, arranged along the outer peripheral wall inside the outer peripheral wall The combustion chamber, the first heat insulating portion arranged continuously on the outer peripheral wall side surface and the arrangement plate side surface of the combustion chamber, and the arrangement plate and the partition plate are used as side walls to continuously guide the fuel gas to the combustion chamber. An introduction path, a heating plate and a partition plate as side walls, and a lead-out path that leads exhaust gas from the combustion chamber to the outside of the combustion heater continuously to the combustion chamber and preheats the fuel gas with the heat of the exhaust gas through the partition plate; A support plate for supporting the placement plate from the opposite side with respect to the introduction path of the placement plate, and an outer peripheral wall Between, and a space extending in the direction of introduction of the fuel gas to the combustion chamber is formed.
配置板には、第1断熱部が嵌合するとともに、配置板と第1断熱部との間に間隙を形成する切り欠き部が設けられてもよい。
第1断熱部は、支持板よりも高温耐酸化性に優れる材料で形成されていてもよい。
配置板は、支持板よりも高温耐酸化性に優れる材料で形成されていてもよい。
The arrangement plate may be provided with a notch that fits the first heat insulating portion and forms a gap between the arrangement plate and the first heat insulating portion.
The 1st heat insulation part may be formed with the material which is excellent in high temperature oxidation resistance rather than a support plate.
The arrangement plate may be made of a material that has better high-temperature oxidation resistance than the support plate.
配置板と支持板との間に狭持され、断熱性を有する第2断熱部をさらに備えてもよい。 You may further provide the 2nd heat insulation part which is pinched between the arrangement | positioning board and the support plate, and has heat insulation.
上記課題を解決するために、本発明の燃焼加熱システムは、加熱板と、加熱板に対向配置された配置板と、加熱板と配置板の外周に沿って配され、加熱板と配置板とで空間を囲繞する外周壁と、加熱板と配置板の間に配置された仕切板と、加熱板、配置板、および外周壁で囲繞される空間内に、外周壁の内側に外周壁に沿って配置された燃焼室と、燃焼室の外周壁側の面および配置板側の面に連続配置される第1断熱部と、配置板と仕切板とを側壁とし燃焼室に連続して燃料ガスを導く導入路と、加熱板と仕切板とを側壁とし燃焼室に連続して燃焼室から排気ガスを当該燃焼加熱器外に導くと共に、仕切板を通じて排気ガスの熱で燃料ガスを予熱する導出路とを備える燃焼加熱器を複数連接した燃焼加熱システムであって、配置板の導入路に対して逆側から、連接する複数の燃焼加熱器における複数の配置板を支持する一連の板部材である支持板を備え、外周壁と、配置板との間には、燃焼室への燃料ガスの導入方向に延在する空間が形成されることを特徴とする。 In order to solve the above problems, a combustion heating system of the present invention includes a heating plate, a placement plate disposed opposite to the heating plate, and arranged along the outer periphery of the heating plate and the placement plate. In the space surrounded by the outer peripheral wall surrounding the space, the partition plate arranged between the heating plate and the arrangement plate, the heating plate, the arrangement plate, and the outer peripheral wall, arranged along the outer peripheral wall inside the outer peripheral wall The combustion chamber, the first heat insulating portion arranged continuously on the outer peripheral wall side surface and the arrangement plate side surface of the combustion chamber, and the arrangement plate and the partition plate are used as side walls to continuously guide the fuel gas to the combustion chamber. An introduction path, a heating plate and a partition plate as side walls, and a lead-out path that leads exhaust gas from the combustion chamber to the outside of the combustion heater continuously to the combustion chamber and preheats the fuel gas with the heat of the exhaust gas through the partition plate; A combustion heating system in which a plurality of combustion heaters are connected to the introduction path of the arrangement plate And a support plate which is a series of plate members for supporting a plurality of arrangement plates in the plurality of combustion heaters connected from the opposite side, and a fuel gas to the combustion chamber is provided between the outer peripheral wall and the arrangement plates. A space extending in the introduction direction is formed.
本発明によれば、安価な構成で、燃料ガスを燃焼室に導入する導入路を高精度に形成しつつ筐体の十分な剛性を確保可能となる。 According to the present invention, it is possible to ensure sufficient rigidity of the casing while forming an introduction path for introducing the fuel gas into the combustion chamber with high accuracy with an inexpensive configuration.
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.
燃焼加熱器は、本体容器内に、燃焼室と、燃料ガス(未燃焼ガス:燃焼前のガス)の導入路と、排気ガス(燃焼ガス:燃焼後のガス)の導出路とが密閉された状態で形成され、導出路を流れる排気ガスの熱で導入路を流れる燃料ガスを予熱することで、燃焼室において超過エンタルピ燃焼を実現する。このような燃焼加熱器は、排気ガスの熱を回収しているので、熱効率が高く、排気ガス自体も回収されるため、労働環境を損なわない。また、炎口が不要なため、輻射面の面積を縮小しなくて済み輻射強度が高いといった利点も有する。 The combustion heater has a combustion chamber, a fuel gas (unburned gas: gas before combustion) introduction path, and an exhaust gas (combustion gas: gas after combustion) outlet path sealed in a main body container. Excess enthalpy combustion is realized in the combustion chamber by preheating the fuel gas that is formed in the state and that flows through the inlet passage with the heat of the exhaust gas that flows through the outlet passage. Since such a combustion heater recovers the heat of the exhaust gas, the heat efficiency is high and the exhaust gas itself is also recovered, so that the working environment is not impaired. Further, since no flame opening is required, there is an advantage that the radiation area is not reduced and the radiation intensity is high.
このような燃焼加熱器のうち、特に、ディスク型の燃焼加熱器は、伝熱を担う仕切板が、一対の薄板(加熱板、配置板)よりも小型の薄板からなり、一対の薄板の間に空隙を設けて配置するといった簡易な構成で、導入路と導出路とに熱交換をさせている。さらに、ディスク型の燃焼加熱器は、輻射面を有する薄板の形状の自由度が高く、燃焼室の配置の自由度も高いため、燃焼室を大きくとることで燃焼負荷率(燃焼室内の単位体積あたりの発熱)を抑え、局所的な劣化や損傷を回避できる。 Among such combustion heaters, in particular, in the disk-type combustion heater, the partition plate responsible for heat transfer is a thin plate smaller than a pair of thin plates (heating plate, arrangement plate), and between the pair of thin plates. Heat is exchanged between the introduction path and the lead-out path with a simple configuration in which a gap is provided in the arrangement. Furthermore, since the disk-type combustion heater has a high degree of freedom in the shape of a thin plate having a radiation surface and a high degree of freedom in the arrangement of the combustion chamber, the combustion load factor (unit volume in the combustion chamber can be increased by taking a larger combustion chamber. Heat generation) and local deterioration and damage can be avoided.
このような高い熱効率と排気ガスの回収機能を両立する使い勝手の良さから、今後、燃焼を終えた排気ガスをそのまま周囲の環境に排気する従来の燃焼加熱器を、本実施形態のディスク型の燃焼加熱器に置き換える機会が増えることが見込まれる。しかし、現在のディスク型燃焼加熱器は比較的小型のものが多く、大きさの制約により、従来の大型燃焼加熱器をディスク型燃焼加熱器にすぐに置き換えるということができなかった。 Due to the ease of use that achieves both high thermal efficiency and exhaust gas recovery function, the conventional combustion heater that exhausts the exhaust gas after combustion to the surrounding environment as it is will be used in the disc-type combustion of this embodiment. Opportunities to replace with heaters are expected to increase. However, many of the current disk-type combustion heaters are relatively small, and due to size restrictions, conventional large-sized combustion heaters cannot be immediately replaced with disk-type combustion heaters.
ここで、ディスク型燃焼加熱器の熱量や加熱面積の増加を試みて、単純に2次元方向に燃焼加熱器を大きくしようとすると、密閉性を安定的に維持するために製造コストが膨らみ、また、燃焼加熱器内の導入路と導出路を仕切っている仕切板の熱変形が大きくなって、温度分布が偏ったり、不完全燃焼によるCO排出濃度が高まったりしてしまい、燃焼加熱器がその性能を十分に発揮できないおそれが生じる。そこで、本願発明者は、複数の燃焼加熱器を連設する燃焼加熱システムに着目した。ここで、連設は、燃焼加熱器を連なった状態に設けることを言い、複数の燃焼加熱器を一体的に形成することも含む。 Here, if an attempt is made to increase the amount of heat and the heating area of the disk-type combustion heater and the combustion heater is simply increased in a two-dimensional direction, the manufacturing cost increases in order to stably maintain the sealing property. , The thermal deformation of the partition plate separating the introduction path and the outlet path in the combustion heater is increased, the temperature distribution is biased, and the CO emission concentration due to incomplete combustion is increased. There is a risk that the performance cannot be fully exhibited. Therefore, the inventor of the present application paid attention to a combustion heating system in which a plurality of combustion heaters are connected in series. Here, the continuous arrangement means that the combustion heaters are provided in a continuous state, and includes that a plurality of combustion heaters are integrally formed.
このような燃焼加熱システムを構成する燃焼加熱器において、配置板と仕切板とで挟まれた空間が燃料ガスの導入路となる。そのため、配置板は、燃料ガスの導入路を形成するための高い面精度や高温耐酸化性が必要とされ、さらに、筐体の一部を成す場合、剛性も要求される。そのような高機能材料を用いると、燃焼加熱器の製造コストが高くなってしまっていた。 In the combustion heater constituting such a combustion heating system, a space sandwiched between the arrangement plate and the partition plate is a fuel gas introduction path. Therefore, the arrangement plate is required to have high surface accuracy and high-temperature oxidation resistance for forming a fuel gas introduction path, and further, when it forms a part of the housing, rigidity is also required. When such a highly functional material is used, the manufacturing cost of the combustion heater has been increased.
本実施形態における複数の燃焼加熱器を連設した燃焼加熱システムは、安価な構成で、燃料ガスを燃焼室に導入する導入路を高精度で形成しつつ筐体の十分な剛性を確保することを可能とする。 The combustion heating system in which a plurality of combustion heaters in the present embodiment are connected in series has an inexpensive configuration and ensures sufficient rigidity of the casing while forming an introduction path for introducing fuel gas into the combustion chamber with high accuracy. Is possible.
(燃焼加熱システム100)
図1は、燃焼加熱システム100の外観例を示した外観斜視図であり、図2は、図1のAA断面を示した斜視図であり、図3は、燃焼加熱システム100の内部状態を示した斜視図である。図3では、燃焼加熱システム100の内側を説明するため、加熱板を取り外した状態を示す。
(Combustion heating system 100)
1 is an external perspective view showing an external appearance example of the combustion heating system 100, FIG. 2 is a perspective view showing an AA cross section of FIG. 1, and FIG. 3 shows an internal state of the combustion heating system 100. FIG. In FIG. 3, in order to demonstrate the inner side of the combustion heating system 100, the state which removed the heating plate is shown.
図1〜図3に示すように、燃焼加熱システム100は、複数(ここでは2つ)の燃焼加熱器110を連設してなり、燃料ガスの供給を受けて、それぞれの燃焼加熱器110を加熱し、その排気ガスを回収する。 As shown in FIGS. 1 to 3, the combustion heating system 100 includes a plurality of (in this case, two) combustion heaters 110 connected in series. Heat and collect the exhaust gas.
また、図2、図3に示すように、燃焼加熱器110間の接続部位には、連設された燃焼加熱器110内の密閉空間を連通する火移り部102が形成されている。ただし、密閉空間といっても、気体中で用いる場合、必ずしも完全密閉する必要はない。本実施形態の燃焼加熱システム100では、例えば、イグナイタ(図示せず)等の点火装置による1回の点火によって、火移り部102を通じ連設するすべての燃焼加熱器110に火炎が広がって点火される。 Further, as shown in FIGS. 2 and 3, a fire transfer portion 102 that communicates with the sealed space in the combustion heater 110 provided continuously is formed at a connection portion between the combustion heaters 110. However, even if it is a sealed space, it is not always necessary to completely seal it when used in a gas. In the combustion heating system 100 of the present embodiment, for example, a single flame is ignited by an ignition device such as an igniter (not shown), and the flame spreads and is ignited in all the combustion heaters 110 connected through the fire transfer section 102. The
ここでは、大きな熱量や加熱面積を実現するため、熱量や加熱面積が比較的小さい燃焼加熱器110を複数組み合わせる。こうして、燃焼加熱器110単体を大きく設計した場合と比較して、個々の熱変形を抑制することができる。また、熱量や加熱面積の増加要求に伴って、燃焼加熱器110をさらに連設したとしても、個々の燃焼能力は、燃焼加熱器110の増加の影響を受けないため、その安定性や耐久性を維持することができる。ここでは、説明の便宜のため、燃焼加熱器110を2つのみ連設する場合を挙げているが、燃焼加熱器110の長手方向および短手方向に任意に燃焼加熱器110を連設することができ、様々な縦横比の燃焼加熱システム100を形成することができる。 Here, in order to realize a large amount of heat and a heating area, a plurality of combustion heaters 110 having a relatively small amount of heat and a heating area are combined. In this way, individual thermal deformation can be suppressed as compared with the case where the combustion heater 110 alone is designed to be large. In addition, even if the combustion heater 110 is further connected in accordance with the demand for an increase in the amount of heat and the heating area, the individual combustion capacity is not affected by the increase in the combustion heater 110. Can be maintained. Here, for convenience of explanation, the case where only two combustion heaters 110 are connected is described, but the combustion heater 110 is arbitrarily connected in the longitudinal direction and the short direction of the combustion heater 110. The combustion heating system 100 with various aspect ratios can be formed.
(燃焼加熱器110)
図4は、図1のBB断面図である。図4(a)に示すように、燃焼加熱器110は、加熱板118と、配置板120と、外周壁122と、仕切板124と、燃焼室126と、導入路128と、導出路130と、支持板132と、第1断熱部134と、第2断熱部136と、第3断熱部138と、第1配管部140と、第2配管部142とを含んで構成される。なお、本実施形態では、燃焼加熱器110は、外形が220mm×140mm(長手方向に2つ連設すると440mm×140mm)程度のものを例に挙げて説明する。ただし、燃焼加熱器110の外形は、かかる大きさに限定されず、任意の大きさに設定することができる。
(Combustion heater 110)
4 is a cross-sectional view taken along the line BB in FIG. As shown in FIG. 4A, the combustion heater 110 includes a heating plate 118, an arrangement plate 120, an outer peripheral wall 122, a partition plate 124, a combustion chamber 126, an introduction path 128, and a lead-out path 130. The support plate 132, the first heat insulating part 134, the second heat insulating part 136, the third heat insulating part 138, the first pipe part 140, and the second pipe part 142 are configured. In the present embodiment, the combustion heater 110 will be described as an example having an outer shape of about 220 mm × 140 mm (440 mm × 140 mm when two are provided in the longitudinal direction). However, the external shape of the combustion heater 110 is not limited to this size, and can be set to an arbitrary size.
本実施形態における燃焼加熱器110は、本体容器に、都市ガス等と燃焼用酸化剤ガスとしての空気とが予め混合された燃料ガス(予混合ガス)が供給される予混合タイプとするが、かかる場合に限定されず、燃焼室126や燃焼室126の直前の導入路128において両者が混合して拡散燃焼を行う拡散タイプであってもよい。 The combustion heater 110 in the present embodiment is a premixed type in which a fuel gas (premixed gas) in which a city gas or the like and air as a combustion oxidant gas are mixed in advance is supplied to the main body container. It is not limited to such a case, but may be a diffusion type in which both are mixed to perform diffusion combustion in the combustion chamber 126 or the introduction path 128 immediately before the combustion chamber 126.
加熱板118および配置板120は、対向して配置され、耐熱性および高温耐酸化性が高い素材、例えば、ステンレス鋼(SUS:Stainless Used Steel)や、熱伝導率が高い素材、例えば、黄銅(真鍮)等で形成され、互いに略平行(本実施形態における超過エンタルピ燃焼を起こさせるための実質的な平行)に配置される。また、加熱板118は、燃焼室126で生成された燃焼熱で加熱される輻射体としても機能する。 The heating plate 118 and the arrangement plate 120 are arranged to face each other and are made of a material having high heat resistance and high temperature oxidation resistance, for example, stainless steel (SUS: Stainless Used Steel), or a material having high heat conductivity, for example, brass ( Brass) or the like, and arranged substantially parallel to each other (substantially parallel for causing excess enthalpy combustion in the present embodiment). The heating plate 118 also functions as a radiator that is heated by the combustion heat generated in the combustion chamber 126.
さらに、加熱板118には、凹凸が形成された凹凸部118aが設けられている。かかる構成により、加熱板118および配置板120の温度差や加熱板118および配置板120の素材の違いによる熱膨張の変形量の差を凹凸部118aで吸収し、外周壁122との結合部分等に生じる応力が小さくなるため、加熱と冷却を繰り返すことによる熱疲労および高温クリープを抑えることができる。また、加熱板118の輻射面の面積が大きくなるため、輻射強度を高めることも可能となる。 Further, the heating plate 118 is provided with a concavo-convex portion 118a in which concavo-convex portions are formed. With this configuration, the unevenness 118a absorbs the difference in thermal expansion due to the temperature difference between the heating plate 118 and the arrangement plate 120 and the difference between the materials of the heating plate 118 and the arrangement plate 120, and the coupling portion with the outer peripheral wall 122, etc. Therefore, thermal fatigue and high temperature creep due to repeated heating and cooling can be suppressed. Moreover, since the area of the radiation surface of the heating plate 118 is increased, the radiation intensity can be increased.
外周壁122は、上面視において、内周がトラック形状(略平行な2つの線分と、その2つの線分をつなぐ2つの円弧(半円)からなる形状)に、外周が矩形に形成され(図3参照)、加熱板118と配置板120の外周に沿って配され、加熱板122と配置板120とで空間を囲繞する。また、外周壁122の外周面を輻射面として用いることもできる。本実施形態において、外周壁122は後述する支持板132と一体に形成されるが、別体に形成してもよい。 The outer peripheral wall 122 has an inner periphery formed into a track shape (a shape composed of two substantially parallel line segments and two arcs (semicircles) connecting the two line segments) and a rectangular outer periphery when viewed from above. (See FIG. 3), arranged along the outer periphery of the heating plate 118 and the arrangement plate 120, and the heating plate 122 and the arrangement plate 120 surround the space. Moreover, the outer peripheral surface of the outer peripheral wall 122 can also be used as a radiation surface. In this embodiment, the outer peripheral wall 122 is formed integrally with a support plate 132 described later, but may be formed separately.
燃焼加熱器110は、外周壁122の外表面の面積より加熱板118の面積の方が大きい。この加熱板118が輻射面となり、燃焼室126で燃料ガスが燃焼すると、輻射や空気の対流によって輻射面から熱が伝達して被加熱物が加熱される。また、燃焼加熱システム100のように燃焼加熱器110が複数連設される場合、その複数の燃焼加熱器110すべての輻射面において、ほぼ同等の輻射熱を得ることができる。本実施形態においては、燃焼加熱器110の上下壁面のうち上側の面(加熱板118の上面)を輻射面とするが、かかる場合に限定されず、下側の面(後述する支持板132の下面)を輻射面としたり上下壁面の両面を輻射面としたりしてもよい。 In the combustion heater 110, the area of the heating plate 118 is larger than the area of the outer surface of the outer peripheral wall 122. When the heating plate 118 becomes a radiation surface and the fuel gas burns in the combustion chamber 126, heat is transmitted from the radiation surface by radiation or air convection to heat the object to be heated. Further, when a plurality of combustion heaters 110 are connected in series as in the combustion heating system 100, substantially the same radiant heat can be obtained on the radiation surfaces of the plurality of combustion heaters 110. In the present embodiment, the upper surface (the upper surface of the heating plate 118) of the upper and lower wall surfaces of the combustion heater 110 is a radiation surface. However, the present invention is not limited to this case, and the lower surface (the support plate 132 described later). The lower surface may be a radiating surface, or both the upper and lower wall surfaces may be radiating surfaces.
仕切板124は、加熱板118よりも外形が小さく、外周壁122の内周面に沿った形状に形成され(図3参照)、加熱板118および配置板120の間で、加熱板118および配置板120と略平行に配置される。仕切板124と加熱板118および配置板120との間にはそれぞれ空隙が形成される。また、仕切板124は、耐熱性および高温耐酸化性が高い素材、例えば、ステンレス鋼や、熱伝導率が高い素材、例えば、黄銅等で形成される。かかる仕切板124と加熱板118および配置板120は、間に空隙が形成されれば、傾いて対向配置されてもよい。また、仕切板124、加熱板118および配置板120は、その厚みに制限はなく、平板に限らず凹凸に形成されてもよい。 The partition plate 124 has a smaller outer shape than the heating plate 118 and is formed in a shape along the inner peripheral surface of the outer peripheral wall 122 (see FIG. 3), and the heating plate 118 and the arrangement plate 120 are arranged between the heating plate 118 and the arrangement plate 120. Arranged substantially parallel to the plate 120. Gaps are formed between the partition plate 124, the heating plate 118, and the arrangement plate 120, respectively. The partition plate 124 is made of a material having high heat resistance and high temperature oxidation resistance, such as stainless steel, or a material having high heat conductivity, such as brass. The partition plate 124, the heating plate 118, and the arrangement plate 120 may be disposed to face each other as long as a gap is formed therebetween. In addition, the partition plate 124, the heating plate 118, and the arrangement plate 120 are not limited in thickness, and may be formed in an uneven shape without being limited to a flat plate.
燃焼室126は、外周壁122、加熱板118、および配置板120で囲繞される空間内に配置される。また、燃焼室126は、仕切板124の外周端部に面しており、外周壁122より内側に外周壁122に沿って形成される。このように外周壁122に沿って燃焼室126を形成する構成により燃焼室126の体積を十分に確保でき、燃焼負荷率を低くできる。 The combustion chamber 126 is arranged in a space surrounded by the outer peripheral wall 122, the heating plate 118, and the arrangement plate 120. The combustion chamber 126 faces the outer peripheral end of the partition plate 124, and is formed along the outer peripheral wall 122 inside the outer peripheral wall 122. Thus, the structure which forms the combustion chamber 126 along the outer peripheral wall 122 can ensure the volume of the combustion chamber 126 enough, and can reduce a combustion load factor.
図4(a)に示すように、本体容器内では、厚み方向(加熱板118の上面に直交する方向)に、導入路128と導出路130とが重ねて形成される。導入路128は、配置板120と、仕切板124とを側壁とする、配置板120と仕切板124に挟まれた空間であり、燃焼室126に連続して配され、本体容器中央に流入した燃料ガスを燃焼室126に放射状に導く。 As shown in FIG. 4A, in the main body container, the introduction path 128 and the lead-out path 130 are formed so as to overlap in the thickness direction (the direction orthogonal to the upper surface of the heating plate 118). The introduction path 128 is a space sandwiched between the placement plate 120 and the partition plate 124 with the placement plate 120 and the partition plate 124 as side walls, and is continuously disposed in the combustion chamber 126 and flows into the center of the main body container. The fuel gas is guided radially to the combustion chamber 126.
導出路130は、加熱板118と、仕切板124とを側壁とし、燃焼室126に連続して配され、燃焼室126から排気ガスを本体容器中央に集約して当該燃焼加熱器110外に導く。また、図4(a)に示すように、本体容器内では、厚み方向に、導入路128と導出路130とが重なって形成されているので、仕切板124を通じて排気ガスの熱を伝達し、燃料ガスを予熱することができる。 The lead-out path 130 has a heating plate 118 and a partition plate 124 as side walls, and is continuously arranged in the combustion chamber 126, and exhaust gas is concentrated from the combustion chamber 126 to the center of the main body container and led out of the combustion heater 110. . In addition, as shown in FIG. 4A, in the main body container, the introduction path 128 and the outlet path 130 are formed so as to overlap in the thickness direction, so that the heat of the exhaust gas is transmitted through the partition plate 124, The fuel gas can be preheated.
支持板132は、配置板120の導入路128と逆側から配置板120を支持する。また、配置板120は、支持板132よりも高温耐酸化性に優れる材料で形成されている。換言すれば、支持板132は、配置板120と比較して高温耐酸化性が劣る材料、例えば、SUS304等で形成されても、少なくとも筺体として燃焼加熱システム100全体を支持する剛性を備えればよい。 The support plate 132 supports the placement plate 120 from the side opposite to the introduction path 128 of the placement plate 120. Further, the arrangement plate 120 is formed of a material that is superior in high-temperature oxidation resistance than the support plate 132. In other words, even if the support plate 132 is formed of a material that is inferior in high-temperature oxidation resistance compared to the arrangement plate 120, for example, SUS304, the support plate 132 has at least rigidity to support the entire combustion heating system 100 as a casing. Good.
配置板120に高温耐酸化性を持たせ、配置板120より低温側に支持板132を配する構成により、燃焼加熱器110は、支持板132に廉価な部材を用いることができ、製造コストを低減することが可能となる。 By providing the arrangement plate 120 with high-temperature oxidation resistance and arranging the support plate 132 on a lower temperature side than the arrangement plate 120, the combustion heater 110 can use an inexpensive member for the support plate 132, thereby reducing the manufacturing cost. It becomes possible to reduce.
第1断熱部134は、燃焼室126の外周壁122側の面および配置板120側の面に連続配置され、断熱性を有する。 The 1st heat insulation part 134 is continuously arrange | positioned on the surface by the side of the outer peripheral wall 122 of the combustion chamber 126, and the surface by the side of the arrangement | positioning board 120, and has heat insulation.
第1断熱部134を備える構成により、外周壁122が直接火炎に接触することがなくなる。そのため、火炎の接触に耐えるため高温耐酸化性を確保する役割を第1断熱部134に、筐体の剛性を確保する役割を外周壁122(支持板132)に、それぞれ機能分担しているため、高温耐酸化性、剛性を同時に満たす部材を用いる必要がなく製造コストを抑えることができる。 With the configuration including the first heat insulating portion 134, the outer peripheral wall 122 does not directly contact the flame. Therefore, the role of ensuring high-temperature oxidation resistance in order to withstand the contact with the flame is assigned to the first heat insulating portion 134, and the role of ensuring the rigidity of the housing is assigned to the outer peripheral wall 122 (support plate 132). In addition, it is not necessary to use a member that simultaneously satisfies high-temperature oxidation resistance and rigidity, and the manufacturing cost can be reduced.
第1断熱部134は、支持板132よりも高温耐酸化性に優れる材料で形成されている。換言すれば、支持板132は、第1断熱部134と比較して高温耐酸化性が劣る材料で形成されてもよい。 The first heat insulating portion 134 is formed of a material that has better high-temperature oxidation resistance than the support plate 132. In other words, the support plate 132 may be formed of a material that is inferior in high-temperature oxidation resistance as compared to the first heat insulating portion 134.
第1断熱部134に高温耐酸化性を持たせ、第1断熱部134より低温側に支持板132を配する構成により、燃焼加熱器110は、支持板132に廉価な部材を用いることができ、製造コストを低減することが可能となる。 The combustion heater 110 can use an inexpensive member for the support plate 132 by providing the first heat insulation portion 134 with high temperature oxidation resistance and arranging the support plate 132 on the lower temperature side than the first heat insulation portion 134. The manufacturing cost can be reduced.
図5は、変形例における図1のBB断面図である。上記実施形態における第1断熱部134と配置板120とを一体形成し、図5に示すような配置板220としてもよい。かかる構成により、部品点数を削減し、製造コストを抑制することが可能となる。 FIG. 5 is a BB cross-sectional view of FIG. 1 in a modification. The first heat insulating portion 134 and the arrangement plate 120 in the above embodiment may be integrally formed to form the arrangement plate 220 as shown in FIG. With this configuration, it is possible to reduce the number of parts and suppress the manufacturing cost.
図4に戻って、第2断熱部136は、配置板120と支持板132との間に狭持され、断熱性を有する。第3断熱部138は、外周壁122(支持板132)と第1断熱部134および第2断熱部136との間に狭持され、断熱性を有する。 Returning to FIG. 4, the second heat insulating portion 136 is sandwiched between the arrangement plate 120 and the support plate 132 and has a heat insulating property. The 3rd heat insulation part 138 is pinched between the outer peripheral wall 122 (support board 132), the 1st heat insulation part 134, and the 2nd heat insulation part 136, and has heat insulation.
第2断熱部136および第3断熱部138を設ける構成により、第1断熱部134の温度が高く維持され、燃焼室126における火炎の温度が上昇する。その結果、不完全燃焼の発生が抑えられ、燃焼加熱器110は、CO排出濃度を抑制することが可能となる。 By providing the second heat insulating part 136 and the third heat insulating part 138, the temperature of the first heat insulating part 134 is maintained high, and the temperature of the flame in the combustion chamber 126 increases. As a result, the occurrence of incomplete combustion is suppressed, and the combustion heater 110 can suppress the CO emission concentration.
第1配管部140は、導入路128に挿通し、燃料ガスを当該燃焼加熱器110内に導く。具体的に、支持板132の中心部には、第1配管部140の外径と同一径の孔132aが設けられ、配置板120の中心部には、第1配管部140の内径と同一径の孔120aが設けられている。この支持板132の孔132aを第1配管部140が貫通し、配置板120の孔120aの内周部分に第1配管部140の内周部分が連続するように接続されている。また、第2断熱部136の中心部にも第1配管部140を通すための孔136aが設けられている。ここでは、孔132a、136aの内径と第1配管部140の外径とが等しくなる。 The first piping part 140 is inserted into the introduction path 128 and guides the fuel gas into the combustion heater 110. Specifically, a hole 132 a having the same diameter as the outer diameter of the first piping part 140 is provided at the center of the support plate 132, and the same diameter as the inner diameter of the first piping part 140 is provided at the center of the arrangement plate 120. Holes 120a are provided. The first piping part 140 passes through the hole 132a of the support plate 132, and is connected to the inner peripheral part of the hole 120a of the arrangement plate 120 so that the inner peripheral part of the first piping part 140 continues. Further, a hole 136 a for allowing the first piping part 140 to pass therethrough is also provided at the center of the second heat insulating part 136. Here, the inner diameters of the holes 132a and 136a are equal to the outer diameter of the first piping part 140.
第2配管部142は、第1配管部140内部に配される。即ち、第1配管部140と第2配管部142とで二重管を形成する。また、第2配管部142は、導出路130に挿通し、排気ガスを当該燃焼加熱器110外に導く。具体的に、仕切板124の中心部には、第2配管部142の外径と同一径の孔124aが設けられており、この孔124aの内周部分に第2配管部142が嵌合される。さらに、第2配管部142は、排気ガスの熱を、第1配管部140を流れる燃料ガスに伝達する役割も担う。 The second piping part 142 is arranged inside the first piping part 140. That is, the first piping part 140 and the second piping part 142 form a double pipe. Further, the second piping part 142 is inserted into the outlet path 130 and guides the exhaust gas to the outside of the combustion heater 110. Specifically, a hole 124a having the same diameter as the outer diameter of the second piping portion 142 is provided at the center of the partition plate 124, and the second piping portion 142 is fitted to the inner peripheral portion of the hole 124a. The Further, the second piping part 142 also plays a role of transferring the heat of the exhaust gas to the fuel gas flowing through the first piping part 140.
また、第2配管部142には、蛇腹部142aが設けられている。第2配管部142の熱膨張による変形量を、蛇腹部142aの部分が流路方向に縮むことで吸収でき、加熱と冷却を繰り返すことによる熱疲労および高温クリープを抑えることができる。 In addition, the second piping part 142 is provided with a bellows part 142a. The deformation due to the thermal expansion of the second piping part 142 can be absorbed by the portion of the bellows part 142a contracting in the flow path direction, and thermal fatigue and high temperature creep due to repeated heating and cooling can be suppressed.
図6は、燃焼加熱器110の構造を説明するための組立図である。ここで、図6の組立図を用いて、各構成要素の位置関係を説明する。まず、支持板132の第1切り抜き部132bに、第2断熱部136が挿入される。そして、第1断熱部134が第2断熱部136の上から重ねられる。 FIG. 6 is an assembly diagram for explaining the structure of the combustion heater 110. Here, the positional relationship of each component is demonstrated using the assembly drawing of FIG. First, the second heat insulating part 136 is inserted into the first cutout part 132 b of the support plate 132. And the 1st heat insulation part 134 is accumulated on the 2nd heat insulation part 136 from.
図4(a)の円部分を拡大した図4(b)に示すように、支持板132には、第1断熱部134を嵌合するための切り欠き部132cが設けられている。第1断熱部134は、支持板132の切り抜き部132bおよび配置板120の切り欠き部120bに嵌合して水平方向の位置ずれが制限される。また、切り抜き部132bは第1断熱部134が嵌合した際、支持板132と第1断熱部134との間で遊びができるように大きめに設けられている。そのため、第1断熱部134が熱膨張しても膨張に伴う応力の発生を回避できる。 As shown in FIG. 4B in which the circular portion of FIG. 4A is enlarged, the support plate 132 is provided with a notch 132c for fitting the first heat insulating part 134. The first heat insulating portion 134 is fitted into the cutout portion 132b of the support plate 132 and the cutout portion 120b of the arrangement plate 120, so that the displacement in the horizontal direction is limited. Further, the cutout portion 132b is provided large so that play can be made between the support plate 132 and the first heat insulation portion 134 when the first heat insulation portion 134 is fitted. Therefore, even if the 1st heat insulation part 134 is thermally expanded, generation | occurrence | production of the stress accompanying expansion can be avoided.
続いて、配置板120が第1断熱部134の上から重ねられる。図4(b)に示すように、配置板120にも切り欠き部120bが設けられており、第1断熱部134と嵌合する。したがって、第1断熱部134の水平方向の位置ずれが制限される。また、配置板120の切り欠き部120bも大きめに設けられており、第1断熱部134が熱膨張しても膨張に伴う応力の発生を回避できる。 Then, the arrangement | positioning board 120 is piled up on the 1st heat insulation part 134. FIG. As shown in FIG. 4B, the arrangement plate 120 is also provided with a notch 120 b and fits with the first heat insulating part 134. Accordingly, the horizontal displacement of the first heat insulating portion 134 is limited. Moreover, the notch part 120b of the arrangement | positioning board 120 is also provided large, and generation | occurrence | production of the stress accompanying expansion can be avoided even if the 1st heat insulation part 134 expands thermally.
そして、仕切板124が重ねられ、最後に、加熱板118が全体を覆う。加熱板118は、支持板132より外形が一回り大きく、支持板132を覆いこんで、折り返し部118bが折り返すことで、支持板132と固着される。 Then, the partition plates 124 are stacked, and finally, the heating plate 118 covers the whole. The outer shape of the heating plate 118 is slightly larger than that of the support plate 132. The heating plate 118 covers the support plate 132, and the folded portion 118b is folded back to be fixed to the support plate 132.
また、配置板120は、第1配管部140の端部に固定されるのに対し、仕切板124は第1配管部140より突出している第2配管部142の端部に固定され、第1配管部140の端部と第2配管部142の端部の差分だけ、配置板120と仕切板124とが離隔することとなる。このとき、仕切板124の側面と、外周壁122の円筒状の内周面との間には燃焼室126としての空隙が形成される。 In addition, the arrangement plate 120 is fixed to the end of the first piping part 140, while the partition plate 124 is fixed to the end of the second piping part 142 protruding from the first piping part 140, The arrangement plate 120 and the partition plate 124 are separated by the difference between the end portion of the piping portion 140 and the end portion of the second piping portion 142. At this time, a gap as a combustion chamber 126 is formed between the side surface of the partition plate 124 and the cylindrical inner peripheral surface of the outer peripheral wall 122.
本実施形態においては、第1配管部140の内部に第2配管部142が配されるが、かかる場合に限定されず、第1配管部140および第2配管部142を加熱板118側から導入路128および導出路130に挿通させ、第2配管部142の内部に第1配管部140が配されてもよい。 In the present embodiment, the second piping part 142 is arranged inside the first piping part 140, but is not limited to this case, and the first piping part 140 and the second piping part 142 are introduced from the heating plate 118 side. The first piping unit 140 may be disposed inside the second piping unit 142 by being inserted through the channel 128 and the outlet channel 130.
ここで、燃料ガスおよび排気ガスの流れを具体的に説明する。図4(b)中、白抜き矢印は燃料ガスの流れを、濃い灰色で塗りつぶした矢印は排気ガスの流れを、黒色で塗りつぶした矢印は熱の移動を示す。第1配管部140に燃料ガスを供給すると、燃料ガスは配置板120の中心部から導入路128に流入し、水平方向に放射状に広がりながら燃焼室126に向けて流れる。そして、燃料ガスは、燃焼室126において外周壁122に衝突し、燃焼した後、高温の排気ガスとなり、排気ガスは加熱板118に伝熱した後、燃焼室126から導出路130を通じて第2配管部142に流入する。 Here, the flow of the fuel gas and the exhaust gas will be specifically described. In FIG. 4B, the white arrow indicates the fuel gas flow, the dark gray arrow indicates the exhaust gas flow, and the black arrow indicates the heat transfer. When the fuel gas is supplied to the first piping part 140, the fuel gas flows into the introduction path 128 from the central part of the arrangement plate 120 and flows toward the combustion chamber 126 while spreading radially in the horizontal direction. Then, the fuel gas collides with the outer peripheral wall 122 in the combustion chamber 126 and burns to become high-temperature exhaust gas. After the heat is transferred to the heating plate 118, the exhaust gas is transferred from the combustion chamber 126 to the second pipe through the outlet passage 130. Flows into the portion 142.
仕切板124は比較的熱伝導し易い素材で形成されており、導出路130を通過する排気ガスの熱は、仕切板124を介して導入路128を通過する燃料ガスに伝わる(伝熱する)。ここでは、導出路130を流れる排気ガスと導入路128を流れる燃料ガスとが、仕切板124を挟んで対向流(カウンタフロー)となっているため、排気ガスの熱で燃料ガスを効率的に予熱することが可能となり、高い熱効率を得ることができる。このように燃料ガスを予熱してから燃焼する、所謂、超過エンタルピ燃焼によって、燃料ガスの燃焼を安定化し、不完全燃焼によって生じるCOの濃度を極低濃度に抑えることができる。 The partition plate 124 is formed of a material that is relatively easy to conduct heat, and the heat of the exhaust gas that passes through the lead-out path 130 is transferred to the fuel gas that passes through the introduction path 128 via the partition plate 124 (heat transfer). . Here, the exhaust gas flowing through the lead-out path 130 and the fuel gas flowing through the introduction path 128 are opposed to each other (counter flow) with the partition plate 124 interposed therebetween. Preheating is possible, and high thermal efficiency can be obtained. By so-called excess enthalpy combustion, in which fuel gas is preheated in this way, combustion of the fuel gas can be stabilized, and the concentration of CO generated by incomplete combustion can be suppressed to an extremely low concentration.
さらに、燃焼室126において安定した燃焼を可能とするために、導入路128と燃焼室126との境界において、燃料ガスの流れに垂直な断面形状(以下、流路断面形状と称す)における代表寸法は、火炎を導入路128側に通さない(燃焼反応が導入路128の方に伝播されない)程度の消炎距離(消炎等価径を含む)を考慮し、消炎距離以下とするとよい。ここで、代表寸法は、燃料ガスが燃焼室126に流入する直前の流路の断面形状によって定まる寸法である。例えば、流路断面形状が円形状である場合には、代表寸法は円形断面の直径を指し、流路断面形状が円形状以外である場合には、代表寸法は断面の水力相当直径を指す。水力相当直径Dは、4×流路断面積/ぬれ縁長さで求められる。ぬれ縁長さは、流路断面における、燃料ガスが接触する壁(配置板120、仕切板124)部分の長さを示す。 Further, in order to enable stable combustion in the combustion chamber 126, representative dimensions in a cross-sectional shape perpendicular to the flow of the fuel gas (hereinafter referred to as a flow passage cross-sectional shape) at the boundary between the introduction path 128 and the combustion chamber 126. In consideration of a flame extinguishing distance (including a flame extinguishing equivalent diameter) that does not allow a flame to pass through the introduction path 128 (a combustion reaction is not propagated toward the introduction path 128), it is preferable to set the flame extinguishing distance or less. Here, the representative dimension is a dimension determined by the cross-sectional shape of the flow channel immediately before the fuel gas flows into the combustion chamber 126. For example, when the channel cross-sectional shape is circular, the representative dimension indicates a diameter of a circular cross section, and when the channel cross-sectional shape is other than a circular shape, the representative dimension indicates a hydraulic equivalent diameter of the cross section. The hydraulic equivalent diameter D is obtained by 4 × channel cross-sectional area / wetting edge length. The wetting edge length indicates the length of the wall (arrangement plate 120, partition plate 124) portion in contact with the fuel gas in the cross section of the flow path.
例えば、配置板120と仕切板124との距離を消炎距離以下とすれば、火炎が導入路128内に侵入することがなくなり、燃焼が安定化される。しかし、配置板120と仕切板124との距離を消炎距離以下で均一にするためには、配置板120と仕切板124の面精度や取り付け精度を高める必要がある。そこで、本実施形態においては、配置板120と仕切板124との距離を消炎距離よりも大きくしてもよいこととし、仕切板124の下面(配置板120側)の燃焼室126近傍に配置板120と当接する複数の突起部152を所定の間隔Lを空けて配置する。 For example, if the distance between the arrangement plate 120 and the partition plate 124 is set to be equal to or less than the flame extinguishing distance, the flame does not enter the introduction path 128 and the combustion is stabilized. However, in order to make the distance between the arrangement plate 120 and the partition plate 124 equal to or less than the extinguishing distance, it is necessary to increase the surface accuracy and the mounting accuracy of the arrangement plate 120 and the partition plate 124. Therefore, in this embodiment, the distance between the arrangement plate 120 and the partition plate 124 may be made larger than the flame extinguishing distance, and the arrangement plate is located near the combustion chamber 126 on the lower surface of the partition plate 124 (on the arrangement plate 120 side). A plurality of protrusions 152 that are in contact with 120 are arranged at a predetermined interval L.
図7は、複数の突起部152を説明するための説明図である。図7では、図3のCC断面からの斜視図を示す。図7において、複数の突起部152の構造の理解を容易にするため、突起部152のうち、仕切板124で隠れている部分を破線で示す。また、矢印154は燃料ガスの流れの向きを示す。導入路128は、仕切板124に設けられた複数の突起部152によって、流路断面が狭められている。燃料ガスは、導入路128のうち、図6(b)の部分拡大図および、図7で示すように、隣接する突起部152の間の空隙を通じて燃焼室126に流入する。このとき、突起部152同士の間隔Lが流路断面形状の代表寸法となる。 FIG. 7 is an explanatory diagram for explaining the plurality of protrusions 152. In FIG. 7, the perspective view from CC cross section of FIG. 3 is shown. In FIG. 7, in order to facilitate understanding of the structure of the plurality of protrusions 152, portions of the protrusions 152 that are hidden by the partition plate 124 are indicated by broken lines. An arrow 154 indicates the direction of fuel gas flow. The introduction channel 128 has a channel cross-section narrowed by a plurality of protrusions 152 provided on the partition plate 124. The fuel gas flows into the combustion chamber 126 through the gap between the adjacent projections 152 as shown in the partial enlarged view of FIG. At this time, the interval L between the protrusions 152 becomes the representative dimension of the cross-sectional shape of the flow path.
ここで、燃料ガスの消炎距離dは、管壁モデルの径の大きさで表されるものであり、式(1)により求められる。
d=2λ・Nu 1/2 /(Cp・ρu・Su) …式(1)
式(1)において、λは熱伝導率、Nuはヌセルト数、Cpは定圧比熱、ρuは燃料ガスの密度、Suは燃焼速度である。
Here, the flame extinguishing distance d of the fuel gas is represented by the size of the diameter of the tube wall model, and is obtained by the equation (1).
d = 2λ · Nu 1/2 / ( Cp · ρu · Su ) (1)
In equation (1), λ is the thermal conductivity, Nu is the Nusselt number, Cp is the constant pressure specific heat, ρu is the density of the fuel gas, and Su is the combustion rate.
本実施形態の燃焼加熱器110は、上述した代表寸法(突起部152同士の間隔L)が消炎距離d以下となるように設計されているため、燃焼室126において安定した燃焼が可能となる。また、複数の突起部152を設ける構成に限定されず、仕切板124の下面の燃焼室126近傍に、1つの円環形の突起部を設けてもよい。この場合、突起部と配置板120との距離が代表寸法となる。かかる構成により、より簡易な構造で導入路128の代表寸法を消炎距離d以下とすることができる。 The combustion heater 110 according to the present embodiment is designed so that the above-described representative dimension (interval L between the protrusions 152) is equal to or less than the extinguishing distance d, so that stable combustion is possible in the combustion chamber 126. In addition, the configuration is not limited to the configuration in which the plurality of projections 152 are provided, and one annular projection may be provided in the vicinity of the combustion chamber 126 on the lower surface of the partition plate 124. In this case, the distance between the protrusion and the arrangement plate 120 is a representative dimension. With this configuration, the representative dimension of the introduction path 128 can be set to the extinguishing distance d or less with a simpler structure.
以上、説明したように、燃焼加熱器110は、導出路130から導入路128に対して熱を伝達するので熱効率を非常に高くでき、第2配管部142を通じて排気ガスを回収するので、労働環境を損なうこともない。 As described above, the combustion heater 110 transmits heat from the outlet path 130 to the inlet path 128, so that the thermal efficiency can be very high, and the exhaust gas is recovered through the second piping part 142. Will not be damaged.
また、燃焼加熱器110は、導入路128を形成するための面精度、高温耐酸化性を確保する役割を配置板120に、筐体の剛性を確保する役割を支持板132に、それぞれ機能分担しているため、高温耐酸化性、剛性の両方を満たす高価な部材を使用する必要がなく、また支持板132が配置板120と同等の面精度を満たす必要がないため、製造コストを抑えることができる。 In addition, the combustion heater 110 functions as a placement plate 120 for ensuring surface accuracy and high-temperature oxidation resistance for forming the introduction passage 128, and a support plate 132 for ensuring the rigidity of the housing. Therefore, it is not necessary to use an expensive member that satisfies both high-temperature oxidation resistance and rigidity, and the support plate 132 does not need to satisfy the same surface accuracy as the placement plate 120, thereby reducing the manufacturing cost. Can do.
また、複数の燃焼加熱器110で筐体を一体形成する場合、筐体は比較的面積が大きくなり、より剛性が求められる。しかし、配置板が筐体の一部を成す場合、燃料ガスの導入路を形成するための高い面精度や高温耐酸化性も必要とされている。そのため、燃焼加熱システムは、配置板としてこのような複数の要求を満たす部材、加工精度が必要となるため、製造コストが高くなってしまっていた。 Further, when the housing is integrally formed with the plurality of combustion heaters 110, the housing has a relatively large area and is required to be more rigid. However, when the arrangement plate forms a part of the housing, high surface accuracy and high-temperature oxidation resistance for forming a fuel gas introduction path are also required. For this reason, the combustion heating system requires a member that satisfies such a plurality of requirements and processing accuracy as the arrangement plate, and thus the manufacturing cost has been increased.
本実施形態の燃焼加熱システム100は、配置板120が筐体としての役割を成す必要がなく、支持板132は燃焼加熱システム100全体で一体形成し、配置板120は燃焼加熱器110毎に分割して配置することができる。そのため、配置板120の面積を比較的小さく抑えることができ、製造時において面精度や仕切板124との平行度の確保が容易となる。また、使用時においても、燃焼加熱システム100に衝撃があったり、熱変形を起こしたりしても、配置板120の面積が比較的小さいことから、配置板120と仕切板124との平行度の低下を抑制できる。 In the combustion heating system 100 of this embodiment, the arrangement plate 120 does not need to serve as a housing, the support plate 132 is integrally formed in the entire combustion heating system 100, and the arrangement plate 120 is divided for each combustion heater 110. Can be arranged. Therefore, the area of the arrangement plate 120 can be kept relatively small, and it becomes easy to ensure surface accuracy and parallelism with the partition plate 124 during manufacturing. Further, even during use, even if the combustion heating system 100 has an impact or undergoes thermal deformation, since the area of the arrangement plate 120 is relatively small, the parallelism between the arrangement plate 120 and the partition plate 124 is reduced. Reduction can be suppressed.
また、上述した実施形態では、燃焼室126は、外周壁122に沿って形成されるとしたが、かかる場合に限らず、燃焼室126は、外周壁122、加熱板118、および配置板120で囲繞される空間内であればよい。ただし、排気ガスによる燃料ガスの予熱効果を十分に確保するため、燃焼室126は、例えば、加熱板118と仕切板124との間の空間、または仕切板124と配置板120との間の空間のうち、配置板120に設けられた孔120aから外周壁122までの中間位置より外周壁122に近い空間のいずれかの位置に設けられることが望ましい。 In the above-described embodiment, the combustion chamber 126 is formed along the outer peripheral wall 122. However, the combustion chamber 126 is not limited to this case, and the combustion chamber 126 includes the outer peripheral wall 122, the heating plate 118, and the arrangement plate 120. It suffices if it is within the enclosed space. However, in order to sufficiently secure the preheating effect of the fuel gas by the exhaust gas, the combustion chamber 126 is, for example, a space between the heating plate 118 and the partition plate 124 or a space between the partition plate 124 and the arrangement plate 120. Among these, it is desirable to be provided at any position in the space closer to the outer peripheral wall 122 than the intermediate position from the hole 120 a provided in the arrangement plate 120 to the outer peripheral wall 122.
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Is done.
本発明は、燃料を燃焼させて被加熱物を加熱する燃焼加熱器および複数の燃焼加熱器を連接した燃焼加熱システムに利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used for a combustion heater that burns fuel and heats an object to be heated, and a combustion heating system that connects a plurality of combustion heaters.
110 …燃焼加熱器
118 …加熱板
120、220 …配置板
122 …外周壁
124 …仕切板
126 …燃焼室
128 …導入路
130 …導出路
132 …支持板
134 …第1断熱部
136 …第2断熱部
DESCRIPTION OF SYMBOLS 110 ... Combustion heater 118 ... Heating plate 120, 220 ... Arrangement plate 122 ... Outer peripheral wall 124 ... Partition plate 126 ... Combustion chamber 128 ... Inlet path 130 ... Derivation path 132 ... Support plate 134 ... 1st heat insulation part 136 ... 2nd heat insulation Part
Claims (6)
前記加熱板に対向配置された配置板と、
前記加熱板と前記配置板の外周に沿って配され、該加熱板と該配置板とで空間を囲繞する外周壁と、
前記加熱板と前記配置板の間に配置された仕切板と、
前記加熱板、前記配置板、および前記外周壁で囲繞される空間内に、該外周壁の内側に該外周壁に沿って配置された燃焼室と、
前記燃焼室の前記外周壁側の面および前記配置板側の面に連続配置される第1断熱部と、
前記配置板と前記仕切板とを側壁とし前記燃焼室に連続して燃料ガスを導く導入路と、
前記加熱板と前記仕切板とを側壁とし前記燃焼室に連続して該燃焼室から排気ガスを当該燃焼加熱器外に導くと共に、該仕切板を通じて該排気ガスの熱で前記燃料ガスを予熱する導出路と、
前記配置板の前記導入路に対して逆側から前記配置板を支持する支持板と、
を備え、
前記外周壁と、前記配置板との間には、前記燃焼室への前記燃料ガスの導入方向に延在する空間が形成されることを特徴とする燃焼加熱器。 A heating plate;
An arrangement plate disposed opposite to the heating plate;
An outer peripheral wall disposed along the outer periphery of the heating plate and the arrangement plate, and surrounding the space by the heating plate and the arrangement plate;
A partition plate disposed between the heating plate and the arrangement plate;
A combustion chamber disposed along the outer peripheral wall inside the outer peripheral wall in a space surrounded by the heating plate, the arrangement plate, and the outer peripheral wall;
A first heat insulating portion continuously disposed on a surface on the outer peripheral wall side and a surface on the arrangement plate side of the combustion chamber;
An introduction path that leads the fuel gas continuously to the combustion chamber using the arrangement plate and the partition plate as side walls;
Using the heating plate and the partition plate as side walls, the exhaust gas is led out of the combustion heater continuously from the combustion chamber to the combustion chamber, and the fuel gas is preheated by the heat of the exhaust gas through the partition plate. A lead-out path;
A support plate for supporting the placement plate from the opposite side with respect to the introduction path of the placement plate;
With
A space between the outer peripheral wall and the arrangement plate is formed with a space extending in a direction in which the fuel gas is introduced into the combustion chamber.
前記配置板の前記導入路に対して逆側から、連接する複数の燃焼加熱器における複数の該配置板を支持する一連の板部材である支持板を備え、
前記外周壁と、前記配置板との間には、前記燃焼室への前記燃料ガスの導入方向に延在する空間が形成されることを特徴とする燃焼加熱システム。 A heating plate, an arrangement plate disposed opposite to the heating plate, an outer peripheral wall disposed along an outer periphery of the heating plate and the arrangement plate, and surrounding the space by the heating plate and the arrangement plate, and the heating A partition plate arranged between the plate and the arrangement plate, and a combustion chamber arranged along the outer peripheral wall inside the outer peripheral wall in a space surrounded by the heating plate, the arrangement plate, and the outer peripheral wall And a first heat insulating portion continuously disposed on the surface on the outer peripheral wall side and the surface on the arrangement plate side of the combustion chamber, and the fuel gas continuously in the combustion chamber with the arrangement plate and the partition plate as side walls. And the heating plate and the partition plate as side walls to guide the exhaust gas from the combustion chamber to the outside of the combustion heater and to the heat of the exhaust gas through the partition plate. A combustion heating system in which a plurality of combustion heaters including a lead-out path for preheating the fuel gas are connected,
From the opposite side to the introduction path of the arrangement plate, comprising a support plate that is a series of plate members that support the plurality of arrangement plates in a plurality of combustion heaters connected to each other,
A combustion heating system characterized in that a space extending in the direction of introduction of the fuel gas into the combustion chamber is formed between the outer peripheral wall and the arrangement plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011153583A JP5909900B2 (en) | 2011-07-12 | 2011-07-12 | Combustion heater and combustion heating system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011153583A JP5909900B2 (en) | 2011-07-12 | 2011-07-12 | Combustion heater and combustion heating system |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2013019603A JP2013019603A (en) | 2013-01-31 |
JP2013019603A5 JP2013019603A5 (en) | 2013-06-13 |
JP5909900B2 true JP5909900B2 (en) | 2016-04-27 |
Family
ID=47691206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011153583A Active JP5909900B2 (en) | 2011-07-12 | 2011-07-12 | Combustion heater and combustion heating system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5909900B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6175814B2 (en) * | 2013-03-08 | 2017-08-09 | 株式会社Ihi | Combustion heater |
JP6402481B2 (en) * | 2014-04-30 | 2018-10-10 | 株式会社Ihi | Combustion heater |
CN105841151B (en) * | 2016-05-20 | 2018-10-30 | 广东美的白色家电技术创新中心有限公司 | Burner for gas heater and the gas heater with it |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2697155B2 (en) * | 1989-06-27 | 1998-01-14 | 日本鋼管株式会社 | Burner plate |
JPH05172313A (en) * | 1991-12-24 | 1993-07-09 | Tokyo Gas Co Ltd | Surface combustion burner |
JP4694955B2 (en) * | 2005-12-06 | 2011-06-08 | 東邦瓦斯株式会社 | 2-layer combustor |
JP4704900B2 (en) * | 2005-12-06 | 2011-06-22 | リンナイ株式会社 | Combustion heater |
JP4779701B2 (en) * | 2006-02-27 | 2011-09-28 | 株式会社Ihi | Steam generator |
US7980850B2 (en) * | 2006-06-30 | 2011-07-19 | Gas Technology Institute | Self-recuperated, low NOx flat radiant panel heater |
-
2011
- 2011-07-12 JP JP2011153583A patent/JP5909900B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013019603A (en) | 2013-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5445691B2 (en) | Combustion heating system | |
TWI451049B (en) | Combustion heater | |
JP4494346B2 (en) | Combustion heater | |
JP5857502B2 (en) | Combustion heater | |
JP5909900B2 (en) | Combustion heater and combustion heating system | |
JP5866845B2 (en) | Combustion heater | |
JP4494345B2 (en) | Combustion heater | |
JP5724686B2 (en) | Combustion heater | |
JP6175814B2 (en) | Combustion heater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130425 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140528 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150303 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150721 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150918 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20151104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160127 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20160204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160301 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160314 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5909900 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |