JP6400672B2 - アルカフタジンの製造方法 - Google Patents

アルカフタジンの製造方法 Download PDF

Info

Publication number
JP6400672B2
JP6400672B2 JP2016504606A JP2016504606A JP6400672B2 JP 6400672 B2 JP6400672 B2 JP 6400672B2 JP 2016504606 A JP2016504606 A JP 2016504606A JP 2016504606 A JP2016504606 A JP 2016504606A JP 6400672 B2 JP6400672 B2 JP 6400672B2
Authority
JP
Japan
Prior art keywords
acid
formula
compound
salt
addition salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016504606A
Other languages
English (en)
Other versions
JP2016515555A (ja
JP2016515555A5 (ja
Inventor
ロレンテ ボンデ−ラルセン,アントニオ
ロレンテ ボンデ−ラルセン,アントニオ
ミゲル イグレシアス レトゥエルト,ヘスス
ミゲル イグレシアス レトゥエルト,ヘスス
ハビエル ガージョ ニエト,フランシソ
ハビエル ガージョ ニエト,フランシソ
ホセ フェレイロ ヒル,フアン
ホセ フェレイロ ヒル,フアン
Original Assignee
クリスタル ファーマ エセ.ア.ウ.
クリスタル ファーマ エセ.ア.ウ.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クリスタル ファーマ エセ.ア.ウ., クリスタル ファーマ エセ.ア.ウ. filed Critical クリスタル ファーマ エセ.ア.ウ.
Publication of JP2016515555A publication Critical patent/JP2016515555A/ja
Publication of JP2016515555A5 publication Critical patent/JP2016515555A5/ja
Application granted granted Critical
Publication of JP6400672B2 publication Critical patent/JP6400672B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Description

本発明は、アルカフタジンおよび薬学的に許容されるその塩を製造するための新規かつ改良された方法ならびにアルカフタジンを製造するための中間体に関する。
アルカフタジン(INN)として知られている化合物、6,11−ジヒドロ−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]ベンザゼピン−3−カルボキシアルデヒドとその塩は、アレルギー性結膜炎によるそう痒の予防に用いられるH1ヒスタミン受容体拮抗薬であり、アルカフタジン(0.25%)を含有する点眼液がラスタカフトという商品名で市販されている。
下記の経路によるアルカフタジンの製造は、EP 0 588 858において初めて報告された。
Figure 0006400672
EP 0 588 858では、式1の出発化合物から式7の中間体(遊離塩基)を得るために多数の工程を要し、その収率も比較的低いことが分かる。さらに、式7の中間体(遊離塩基)にヒドロキシメチル置換基を導入し、次いで酸化を行いアルカフタジンとするには、エチルカルボキシレート保護基を用いた煩雑で収率の低い保護工程と脱保護工程が必要とされる。
また、EP 0 588 858の実施例20a)によれば、ヒドロキシメチル基を導入するには、22当量のホルムアルデヒドと共に少なくとも1週間撹拌する必要がある。これによって反応時間が長くなるため、ジヒドロキシメチル不純物が生成する恐れが高くなる(実施例20b))。
従って、従来公知の方法に付随する課題の一部またはそのすべてを解決することが可能な、アルカフタジンやその塩を得るための改良された方法の開発が望まれている。具体的には、従来よりも高い収率および/または少ない反応工程でアルカフタジンや薬学的に許容されるその塩を得ることができる方法が必要とされている。
本発明の一態様において、本発明は、アルカフタジンまたは薬学的に許容されるその塩の製造方法であって、
式7の酸付加塩とホルムアルデヒドとを反応させて式11の化合物またはその塩を得ること、
式11の化合物またはその塩を酸化させてアルカフタジンを得ること、および
任意にアルカフタジンを薬学的に許容されるその塩に変換することを含み、
式7の酸付加塩が、フマル酸、マレイン酸、コハク酸、酒石酸などのジカルボン酸(HA)との塩である方法に関する。
Figure 0006400672
本発明の方法では、エチルカルボキシレートによる保護を必要とせず、式7の酸付加塩を式11の化合物に直接変換するため、3つの反応工程が不要となる。さらに、収率が顕著に向上し、ヒドロキシメチル基の導入に要する反応時間は2日未満に短縮され、ひいては、第2のヒドロキシメチル基が化合物に導入される恐れが定量的に減少する。
本発明のさらなる一態様は、アルカフタジンまたは薬学的に許容されるその塩の製造方法であって、
式1の化合物と1−メチルピペリジン−4−カルボン酸エチルとを強塩基の存在下で反応させて式4の化合物を得ること、
式4の化合物をトリフルオロメタンスルホン酸と反応させ、次いで上記で定義されたジカルボン酸(HA)と反応させて式7の酸付加塩を得ること、および
式7の酸付加塩を反応させてアルカフタジンまたは任意に薬学的に許容されるその塩を得ることを含む方法に関する。
Figure 0006400672
本発明の方法によれば、当技術分野で公知の方法よりも高い収率および純度でアルカフタジンを製造することができる。さらに、結晶化溶媒を慎重に選択することにより99%を超える純度でアルカフタジンを製造できることが明らかとなった。従って、本発明のさらに別の一態様は、アルカフタジンの単離精製方法であって、イソプロピルアルコールまたは酢酸エチル中で結晶化させることを含む方法に関する。
本発明の別の一態様において、本発明は、式7
Figure 0006400672
(式中、ジカルボン酸(HA)は上記で定義された通りである)
の酸付加塩に関する。
式7の酸付加塩の中性形態(neutral form)はEP 0 588 858により公知であるが、式7の酸付加塩は新規化合物である。
定義
本明細書において「強塩基」は、式1の化合物のイミダゾール環の2位から水素を取り除くのに十分な強さを持った塩基を意味するものとする。このような塩基は当業者に公知であり、リチウムジイソプロピルアミド、ヘキシルリチウム、ブチルリチウムおよびリチウムヘキサメチルジシラジドなどが挙げられる。
本明細書において、「式7の酸付加塩」、「式7の化合物」または「中間体7」に言及する場合、遊離塩基ではなく酸付加塩を意味するものとする。ただし、遊離塩基と明示している場合や、遊離塩基を意味していることが文脈から明らかである場合を除く。
本明細書において「ジカルボン酸」は、分子中に2つ以上のカルボン酸基を有する総炭素原子数2〜10の有機酸を意味するものとする。従って、「ジカルボン酸」の例としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、酒石酸、EDTA、クエン酸、フマル酸、マレイン酸、グルタコン酸、ムコン酸、フタル酸、イソフタル酸、テレフタル酸およびリンゴ酸が挙げられる。
方法
本発明の一態様において、本発明は、アルカフタジンまたは薬学的に許容されるその塩の製造方法であって、
式7の酸付加塩とホルムアルデヒドとを必要に応じて塩基の存在下で反応させて式11の化合物またはその塩を得ること、
式11の化合物またはその塩を酸化させてアルカフタジンを得ること、および
任意にアルカフタジンを薬学的に許容されるその塩に変換することを含み、
式7の酸付加塩が、フマル酸、マレイン酸、コハク酸、酒石酸などのジカルボン酸(HA)との塩である方法に関する。
Figure 0006400672
一実施形態において、式7の酸付加塩は、式1の化合物と1−メチルピペリジン−4−カルボン酸エチルとを強塩基の存在下で反応させて式4の化合物とし、式4の化合物をさらにトリフルオロメタンスルホン酸と反応させ、次いで上記で定義されたジカルボン酸(HA)と反応させて式7の酸付加塩とすることにより形成される。
Figure 0006400672
さらなる一実施形態において、上記強塩基はリチウムジイソプロピルアミドまたはヘキシルリチウムである。
本発明のさらなる一態様は、アルカフタジンまたは薬学的に許容されるその塩の製造方法であって、
式1の化合物と1−メチルピペリジン−4−カルボン酸エチルとを強塩基の存在下で反応させて式4の化合物を得ること、
式4の化合物をトリフルオロメタンスルホン酸と反応させ、次いで上記で定義されたジカルボン酸(HA)と反応させて式7の酸付加塩を得ること、および
式7の酸付加塩を反応させてアルカフタジンまたは任意に薬学的に許容されるその塩を得ることを含む方法に関する。
Figure 0006400672
一実施形態において、上記強塩基はリチウムジイソプロピルアミドまたはヘキシルリチウムである。
本発明のさらに別の一態様は、アルカフタジンの単離精製方法であって、イソプロピルアルコールまたは酢酸エチル中で結晶化させることを含む方法に関する。
本発明の別の一態様において、本発明は、式7
Figure 0006400672
(式中、ジカルボン酸(HA)は上記で定義された通りである)
の酸付加塩に関する。
ジカルボン酸
ジカルボン酸は、結晶化による式7の酸付加塩の精製を容易にすると共に、該酸付加塩に対応する中性化合物(neutral compound)よりもさらに有利に、ヒドロキシメチル基を分子内に導入するための出発点を提供するという二つの機能を有する。従来の反応では式7の酸付加塩に対応する中性塩基(neutral base)から式11の化合物を得るには反応を少なくとも1週間継続させる必要があったが、式7の酸付加塩を出発点として用いることでわずか約20〜40時間で反応を完了させることができる。
一実施形態において、ジカルボン酸は、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、酒石酸、EDTA、クエン酸、フマル酸、マレイン酸、グルタコン酸、ムコン酸、フタル酸、イソフタル酸、テレフタル酸およびリンゴ酸からなる群から選択してもよい。別の一実施形態において、ジカルボン酸は、フマル酸、マレイン酸、コハク酸および酒石酸からなる群から選択される。さらなる一実施形態において、ジカルボン酸はフマル酸またはコハク酸である。さらに別の一実施形態において、ジカルボン酸はフマル酸である。さらに別の一実施形態において、ジカルボン酸はコハク酸である。
酸化試薬
当業者であれば、第一級アルコールを対応するアルデヒドに選択的に酸化するために当技術分野において使用される酸化試薬を熟知しているであろう。これらの酸化試薬としては、Collins試薬(CrO・Py)、重クロム酸ピリジニウム、クロロクロム酸ピリジニウムなどのクロム系試薬;塩化オキサリル(Swern酸化)、カルボジイミド(Pfitzner−Moffatt酸化)、SO・Py錯体(Parikh−Doering酸化)などの求電子試薬とDMSOとの反応によるDMSOの活性化;Dess−Martinペルヨージナンや2−ヨードキシ安息香酸などの超原子価ヨウ素化合物;過剰量のN−メチルモルホリンN−オキシド存在下での触媒量の過ルテニウム酸テトラプロピルアンモニウム(Ley酸化);過剰量の次亜塩素酸ナトリウム存在下での触媒量のTEMPO(Anelli酸化);または二酸化マンガンが挙げられる。
一実施形態において、式11の化合物から式12の化合物(アルカフタジン)への反応における酸化試薬は、二酸化マンガン(MnO)である。
式4の化合物を形成する反応
出発化合物である式1の化合物(CAS番号49823−14−5)および1−メチルピペリジン−4−カルボン酸エステル(CAS番号24252−37−7)は市販されている。
式1の化合物と1−メチルピペリジン−4−カルボン酸エステルの反応は、上記で定義された強塩基の存在下で行われる。上記の定義を満たす塩基は当業者に公知であり、ヘキシルリチウム、ブチルリチウム、リチウムヘキサメチルジシラジドおよび水素化ナトリウムが挙げられる。一実施形態において、強塩基はリチウムジイソプロピルアミドである。
反応温度を−80℃〜−30℃の範囲、例えば−80℃〜−40℃の範囲、例えば−80℃〜−60℃の範囲に保つと有利である。
反応中の不純物の増加を防ぐために、1〜3当量、例えば1.5〜2.6当量の1−メチルピペリジン−4−カルボン酸エステルを添加すると有利である。従って一実施形態においては、1〜3当量の1−メチルピペリジン−4−カルボン酸エステルを式1の化合物に添加する。別の一実施形態においては、1.5〜2.6当量の1−メチルピペリジン−4−カルボン酸エステルを式1の化合物に添加する。
使用する反応溶媒は非プロトン性溶媒であると有利である。一実施形態において、反応溶媒はテトラヒドロフラン、トルエンまたはこれらの混合物である。
生成物である式4の化合物は、アセトン、酢酸エチルまたはジクロロメタンを用いて塩酸塩または臭化水素酸塩の形態で単離してもよい。
この反応の全収率は最大で85%である。
式7の酸付加塩を形成する反応
式4の化合物の閉環は、トリフルオロメタンスルホン酸を酸成分として単独で加えることによって行ってもよい。70〜130℃の温度で4〜20倍容量のトリフルオロメタンスルホン酸を用いて反応を行うと有利である。従って一実施形態においては、70〜130℃の温度、例えば90〜130℃の温度、例えば110〜130℃の温度で反応を行う。別の一実施形態においては、4〜20倍容量、例えば10〜20倍容量、例えば15〜20倍容量のトリフルオロメタンスルホン酸を用いて反応を行う。
得られた生成物は、ジカルボン酸(HA)を加えて式7の酸付加塩を形成させ結晶化することにより精製してもよい。結晶化に適した溶媒としては、アセトン、メタノール、酢酸エチル、イソプロピルアルコールおよびこれらの混合物が挙げられる。一実施形態において、式7の酸付加塩の結晶化溶媒は、アセトン、イソプロピルアルコールおよびこれらの混合物から選択される。
式11の化合物を形成する反応
式7の酸付加塩は、精製した形態で出発点として用いてもよいし、精製せずに出発点として用いてもよい。いずれの形態で用いても、該酸付加塩に対応する中性塩基(neutral base)を出発点として用いた場合と比較して反応時間はかなり短縮され、精製された中性化合物(neutral compound)を用いた場合と比較しても反応時間はかなり短縮される。
式7の酸付加塩とホルムアルデヒドの反応は、水性溶媒中またはトルエン、キシレン、ヘプタンなどの有機溶媒との混合溶媒中において、加熱下、例えば80〜100℃の温度で行うと有利である。
さらに、式7の酸付加塩とホルムアルデヒドの反応は、塩基の存在下で行うと有利である。しかし、塩基の非存在下で反応を行ったとしても、この反応は式7の酸付加塩の中性形態(neutral form)を用いて行う従来の反応(比較例12)よりも極めて効率がよい。一実施形態において、塩基は、カルボン酸塩(酢酸塩など)、炭酸塩または炭酸水素塩、ピリジン、およびベンジルトリメチルアンモニウムヒドロキシドからなる群から選択される。さらなる一実施形態において、塩基はカルボン酸塩または炭酸水素塩である。さらに別の一実施形態において、塩基は酢酸塩である。さらに別の一実施形態において、塩基は酢酸ナトリウムである。さらにまた別の一実施形態において、塩基は酢酸ナトリウム、炭酸水素ナトリウムまたはピリジンである。
この反応の全収率は70〜75%である。この反応の直接生成物である式11の化合物がこのような収率や純度で得られることで、工業規模での精製、例えばアセトン溶媒中でのフマル酸塩の結晶化や酢酸エチル溶媒中でのコハク酸塩の結晶化による精製が容易になる。アセトニトリルは、塩基としての式11の化合物の結晶化に適した溶媒である。
式11の化合物の酸化
酸化反応の反応条件は選択する酸化試薬によって異なりうる。二酸化マンガンを使用する場合、EP 0 588 858(実施例51)に記載の条件と類似の条件下で反応を行ってもよい。
アルカフタジンの精製
生成物(アルカフタジン)は、イソプロパノール、酢酸エチル、イソプロピルエーテルなどの溶媒から単離精製することができる。イソプロパノールや酢酸エチルを溶媒として用い、最終収率50〜65%で精製すると有利である。
従って、本発明のさらに別の一態様は、アルカフタジンの単離精製方法であって、イソプロピルアルコールまたは酢酸エチル中で結晶化させることを含む方法に関する。
薬学的に許容される塩
当業者であれば、アルカフタジンの薬学的に許容される酸付加塩を容易に選択することができるであろう。薬学的に許容される酸付加塩として有用なものは、Bergeら、"Pharmaceutical Salts", Journal of Pharmaceutical Sciences, vol. 66, no. 1, 1 January 1977, pages 1-19に見出すことができる。
中間化合物
本発明の方法には新規の中間体が包含されるが、この新規中間体はアルカフタジンの製造に今まで使用されていなかった。従って、本発明のさらなる一態様は式7の酸付加塩に関する。
実施例1
[1−(2−フェニルエチル)−1H−イミダゾール−2−イル](1−メチル−4−ピペリジニル)−メタノン(中間体4)の製造
Figure 0006400672
N−(2−フェニル)−エチルイミダゾール(20g,0.12mol)をトルエン(100ml)とテトラヒドロフラン(60ml)の混合溶媒に溶解した。得られた溶液を−50℃に冷却後、2M LDA(リチウムジイソプロピルアミド)のテトラヒドロフラン溶液(128ml,0.26mol)を加えた。温度を−50℃で15分間維持した後、N−メチルイソニペコチン酸エチル(48.1g,0.28mol)のトルエン(50ml)溶液を加えた。−50℃で1時間反応後、水(200ml)を添加して反応を停止させた。
温度を20℃に調整し、層を分離した。水層をトルエンで抽出し、溶媒を留去して最終容量を60mlとした。
5〜6N HClイソプロパノール溶液(74ml)を加え、次いでアセトン1200mlを加えた。生じた固体をろ取し、アセトン(100ml)で洗浄後、乾燥して[1−(2−フェニルエチル)−1H−イミダゾール−2−イル](1−メチル−4−ピペリジニル)−メタノン(中間体4)28.5g(収率74%)を塩酸塩として得た。
中間体4(塩酸塩)のスペクトルデータ
1H-NMR (400 MHz, DMSO-d6), δ: 1.80-2.00 (4H, m), 2.67 (3H, d, J= 4.8 Hz), 2.95 (2H, t, J=7.2 Hz), 2.95-3.10 (2H, m), 3.39 (2H, d, J=11.2 Hz), 3.70-3.80 (1H, m), 4.56 (2H, t, J= 7.2 Hz), 7.13 (1H, s), 7.15-7.25 (5H, m), 7.50 (1H, s), 11.0 (1H, broad s).
13C-NMR (100 MHz, DMSO-d6), δ: 25.4 (2 x CH2), 36.7 (CH2), 41.0 (CH), 42.5 (CH3), 49.0 (CH2), 52.3 (2 x CH2), 126.5 (CH), 127.6 (CH), 128.4 (2 x CH), 128.7 (2 x CH), 137.6 (C), 137.7 (C), 140.3 (C), 191.9 (C=O)
固体試料(1g)をジクロロメタンと水に溶解し、50%NaOH水溶液でpHを9〜10に調整した。生成物をジクロロメタンで抽出し、溶媒を留去して[1−(2−フェニルエチル)−1H−イミダゾール−2−イル](1−メチル−4−ピペリジニル)−メタノン(中間体4)(遊離塩基)0.85gを無色油状物として得た。
中間体4(遊離塩基)のスペクトルデータ
1H-NMR (400 MHz, DMSO-d6), δ: 1.56 (2H, dq, J= 3.6, 12.4 Hz), 1.71 (1H, d, J= 12.0 Hz), 1.87 (1H, t, J= 11.2 Hz), 2.11 (3H, s), 2.75 (1H, d, J= 11.2 Hz), 2.94 (2H, t, J= 7.2 Hz), 3.50 (1H, tt, J= 3.6, 12.0 Hz), 4.55 (2H, t, J= 7.2 Hz), 7.04 (1H, s), 7.10-7.25 (5H, m), 7.36 (1H, s).
13C-NMR (100 MHz, DMSO-d6), δ: 28.1 (2 x CH2), 36.8 (CH2), 43.3 (CH), 46.1 (CH3), 48.9 (CH2), 54.8 (2 x CH2), 126.3 (CH), 126.9 (CH), 128.2 (2 x CH), 128.6 (2 x CH), 137.7 (C), 141.1 (C), 194.3 (C=O).
実施例2
[1−(2−フェニルエチル)−1H−イミダゾール−2−イル](1−メチル−4−ピペリジニル)−メタノン(中間体4)の臭化水素酸塩としての製造
Figure 0006400672
N−(2−フェニル)−エチルイミダゾール(7.9g,0.046mol)をトルエン(40ml)とテトラヒドロフラン(24ml)の混合溶媒に溶解した。得られた溶液を−50℃に冷却後、2.7Mヘキシルリチウムのヘキサン溶液(37.5ml,0.101mol)を加えた。温度を−50℃で15分間維持した後、N−メチルイソニペコチン酸エチル(19.0g,0.11mol)のトルエン(20ml)溶液を加えた。−50℃で1時間反応後、水(80ml)を添加して反応を停止させた。
温度を20℃に調整し、層を分離した。水層をトルエンで抽出し、溶媒を留去して最終容量を24mlとした。
33%HBr酢酸溶液(7.8ml)を加え、次いで酢酸エチル(160ml)を加えた。固体をろ取し、酢酸エチル(40ml)で洗浄後、乾燥して11.6g(収率67%)の中間体4を臭化水素酸塩として得た。
中間体4(臭化水素酸塩)のスペクトルデータ
1H-NMR (400 MHz, DMSO-d6), δ: 1.80 (2H, m, J= 12.4 Hz), 1.98 (2H, d, J= 12.0 Hz), 2.75 (3H, d, J=4.8 Hz), 2.95 (2H, t, J= 7.2 Hz), 3.08 (2H, qd, J= 3.8, 12.0 Hz), 3.46 (2H, d, J= 12.0 Hz), 3.75 (1H, tt, J= 3.2, 12.0 Hz), 4.57 (2H, t, J= 7.6 Hz), 7.11 (2H, d, J= 7.2 Hz), 7.15 (1H, s), 7.15-7.30 (3H, m), 7.54 (1H, s), 9.57 (1H, broad s).
13C-NMR (100 MHz, DMSO-d6), δ: 25.2 (2 x CH2), 36.6 (CH2), 40.9 (CH), 42.6 (CH3), 49.0 (CH2), 52.5 (2 x CH2), 126.5 (CH), 127.6 (CH) 128.2 (CH), 128.4 (2 x CH), 128.7 (2 x CH), 128.8 (C), 137.6 (C), 140.1 (C), 191.6 (C=O).
実施例3
6,11−ジヒドロ−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体7)のフマル酸塩としての製造
Figure 0006400672
トリフルオロメタンスルホン酸(600ml)と中間体4・HCl(塩酸塩74g,0.22mol)の混合物を95℃で6時間加熱した。反応が完了した後、溶液を25℃まで冷却し、1.5Lの冷水(0〜5℃)に注いだ。50%NaOH水溶液を添加することによりpHを9〜10に調整し、生成物をジクロロメタンで抽出した。
溶媒を留去してアセトンに置換し、容量を590mlに調整した。フマル酸(25.7g,0.22mol)を加え、混合物を50〜55℃で1時間加温した。溶媒を留去して最終容量を295mlとした。懸濁液を20℃まで冷却し、ろ取し、冷アセトンで洗浄後、乾燥して、6,11−ジヒドロ−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体7、フマル酸塩)60.5g(収率69%)を得た。
中間体7(フマル酸塩)のスペクトルデータ
1H-NMR (400 MHz, DMSO-d6), δ: 2.25-2.35 (1H, m), 2.49 (3H, s, CH3), 2.45-2.55 (1H, m), 2.67 (1H, t, J=8.4 Hz), 2.75-2.85 (1H, m), 2.85-3.10 (5H, m), 3.39 (1H, td, J= 3.6, 14.0 Hz), 3.91 (1H, t, J=12.8 Hz), 4.36 (1H, d, J= 12.8 Hz), 6.53 (2H, s, 2 x CH fumaric acid), 6.90 (1H, s), 7.02 (1H, s), 7.09 (1H, d, J=6.8 Hz), 7.23 (2H, quint, J=7.2 Hz), 7.34 (1H, d, J=6.8 Hz), 10.4 (3H, broad s, 2 x COOH + NH).
13C-NMR (100 MHz, DMSO-d6), δ: 28.6 (CH2), 28.7 (CH2), 30.3 (CH2), 43.1 (CH3), 48.3 (CH2), 54.2 (CH2), 54.4 (CH2), 121.2 (CH), 125.5 (C), 126.6 (CH), 127.1 (CH), 127.9 (CH), 128.4 (CH), 128.6 (CH), 134.8 (2 x CH, fumaric acid), 136.8 (C), 137.1 (C), 139.1 (C), 142.6 (C), 167.6 (2 x COO).
実施例4
6,11−ジヒドロ−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体7)のフマル酸塩としての製造
Figure 0006400672
トリフルオロメタンスルホン酸(150ml)と中間体4・HBr(臭化水素酸塩14.5g,0.04mol)の混合物を105℃で6時間加熱した。反応が完了した後、溶液を25℃まで冷却し、0〜5℃の水(450ml)に注いだ。50%NaOH水溶液を添加することによりpHを9〜10に調整し、生成物をジクロロメタンで抽出した。
溶媒を留去してアセトンに置換し、容量を110mlに調整した。フマル酸(4.4g,0.04mol)を加え、混合物を50〜55℃で1時間加温した。懸濁液を0℃まで冷却し、ろ取し、冷アセトンで洗浄後、乾燥して、6,11−ジヒドロ−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体7、フマル酸塩)9.9g(収率65%)を得た。
実施例5
6,11−ジヒドロ−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体7)のフマル酸塩としての製造
Figure 0006400672
中間体4(塩酸塩3.53gまたは臭化水素酸塩4.0g,0.011mol)を水(20ml)とジクロロメタン(20ml)に溶解した。50%NaOH水溶液を添加することによりpHを9〜10に調整し、生成物をジクロロメタンで抽出した。
溶媒を留去し、得られた油状物にトリフルオロメタンスルホン酸(30ml)を加え、反応液を105℃で6時間加熱した。溶液を25℃まで冷却し、0〜5℃の水(30ml)に注いだ。50%NaOH水溶液を添加することによりpHを9〜10に調整し、生成物をジクロロメタンで抽出した。
溶媒を留去してアセトンに置換し、容量を110mlに調整した。フマル酸(1.2g,0.011mol)を加え、混合物を50〜55℃で1時間加温した。懸濁液を0℃まで冷却し、ろ取し、冷アセトンで洗浄後、乾燥して、6,11−ジヒドロ−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体7、フマル酸塩)2.5g(収率58%)を得た。
上記実施例による反応後、中間体7は以下の形態でも単離した。
・遊離塩基:最終的に得られた有機相を蒸留し、溶媒を酢酸エチル/ヘプタンに置換した。生成物をろ過により単離した。
中間体7(遊離塩基)のスペクトルデータ
1H-NMR (400 MHz, DMSO-d6), δ: 1.98 (1H, td, J=3.2, 9.6 Hz), 2.05-2.20 (2H, m), 2.11 (3H, s, CH3), 2.29 (1H, ddd, J= 5.2, 9.2, 13.6 Hz), 2.45-2.55 (1H, m), 2.55-2.75 (3H, m), 2.92 (1H, dt, J= 3.2, 13.6 Hz), 3.33 (1H, td, J= 4.0, 13.6 Hz), 3.89 (1H, td, J= 3.2, 13.6 Hz), 4.35 (1H, dt, J= 4.0, 13.6 Hz), 6.85 (1H, s), 6.97 (1H, s), 7.05 (1H, d, J= 6.8 Hz), 7.15-7.25 (2H, m), 7.32 (1H, d, J= 6.8 Hz).
13C-NMR (100 MHz, DMSO-d6), δ: 30.4 (CH2), 30.7 (CH2), 30.8 (CH2), 45.6 (CH3), 48.2 (CH2), 56.4 (CH2), 56.5 (CH2), 120.8 (CH), 124.0 (C), 126.4 (CH), 127.0 (CH), 127.5 (CH), 128.4 (CH), 128.5 (CH), 137.0 (C), 139.7 (C), 140.5 (C), 143.1 (C).
・コハク酸塩:最終的に得られた有機相を蒸留し、溶媒をアセトンまたは酢酸エチルに置換した。コハク酸(1モル当量)を加え、懸濁液を撹拌し、生成物をろ過により単離した。
中間体7(コハク酸塩)のスペクトルデータ
1H-NMR (400 MHz, DMSO-d6), δ: 2.15-2.25 (1H, m), 2.30 (3H, s, CH3), 2.25-2.45 (3H, m), 2.37 (4H, s, succinic acid), 2.70-2.85 (4H, m), 2.93 (1H, d, J= 14.0 Hz), 3.36 (1H, td, J= 4.0, 14.0 Hz), 3.90 (1H, td, J=2.8, 12.8 Hz), 4.36 (1H, d, J= 12.0 Hz), 6.53 (2H, s, 2 x CH fumaric acid), 6.89 (1H, s), 7.00 (1H, s), 7.07 (1H, d, J=6.4 Hz), 7.15-7.25 (2H, m), 7.33 (1H, d, J=6.4 Hz), 9.1 (3H, broad s, 2 x COOH + NH).
13C-NMR (100 MHz, DMSO-d6), δ: 29.5 (CH2), 29.6 (2 x CH2, succinic acid), 29.7 (CH2), 30.4 (CH2), 44.4 (CH3), 48.3 (CH2), 55.3 (CH2), 55.5 (CH2), 121.1 (CH), 124.7 (C), 126.6 (CH), 127.0 (CH), 127.7 (CH), 128.5 (CH), 128.6 (CH), 137.1 (C), 138.6 (C), 139.4 (C), 142.8 (C), 174.2 (2 x COO).
・マレイン酸塩:最終的に得られた有機相を蒸留し、溶媒をアセトンに置換した。マレイン酸(1モル当量)を加え、懸濁液を撹拌し、生成物をろ過により単離した。
中間体7(マレイン酸塩)のスペクトルデータ
1H-NMR (400 MHz, DMSO-d6), δ: 2.35-2.60 (2H, m), 2.47 (3H, s, CH3), 2.77 (2H, 2), 3.01 (1H, d, J= 14.0 Hz), 3.25-3.55 (4H, m), 4.02 (1H, td, J=3.2, 12.8 Hz), 4.45 (1H, d, J= 13.2 Hz), 6.07 (2H, s, 2 x CH maleic acid), 7.14 (1H, d, J=6.8 Hz), 7.26 (1H, s), 7.28 (1H, s), 7.25-7.35 (2H, m), 7.40 (1H, d, J=6.8 Hz).
13C-NMR (100 MHz, DMSO-d6), δ: 27.7 (CH2), 27.9 (CH2), 30.0 (CH2), 42.3 (CH3), 48.8 (CH2), 53.2 (CH2), 53.5 (CH2), 122.5 (CH), 127.0 (C), 128.3 (CH), 128.6 (CH), 128.9 (CH), 134.5 (2 x CH, maleic acid), 137.0 (C), 138.4 (C), 139.7 (C), 141.9 (C), 167.1 (2 x COO).
・酒石酸塩:最終的に得られた有機相を蒸留し、溶媒をアセトンに置換した。酒石酸(1モル当量)を加え、懸濁液を撹拌し、生成物をろ過により単離した。
中間体7(酒石酸塩)のスペクトルデータ
1H-NMR (400 MHz, DMSO-d6), δ: 2.25-2.35 (1H, m), 2.47 (3H, s, CH3), 2.50-2.60 (1H, m), 2.64 (2H, s), 2.80-3.05 (3H, m), 3.10-3.20 (2H, m), 3.41 (1H, td, J= 3.6, 14.0 Hz), 3.92 (1H, td, J=3.2, 12.8 Hz), 4.19 (2H, s, tartaric acid), 4.37 (1H, d, J= 12.8 Hz), 6.82 (5 H, broad s, 2 x COOH + 2 x OH + NH), 6.92 (1H, s), 7.05 (1H, s), 7.10 (1H, d, J=7.2 Hz), 7.24 (2H, quint, J= 7.2 Hz), 7.35 (1H, d, J=7.2 Hz).
13C-NMR (100 MHz, DMSO-d6), δ: 28.0 (CH2), 30.3 (CH2), 30.8 (CH2), 42.6 (CH3), 48.4 (CH2), 53.8 (CH2), 54.0 (CH2), 72.2 (2 x CH, tartaric acid), 121.5 (CH), 125.8 (C), 126.8 (CH), 126.9 (CH), 128.1 (CH), 128.4 (CH), 128.7 (CH), 135.7 (C), 137.8 (C), 138.9 (C), 142.4 (C), 173.9 (2 x COO).
実施例6
Figure 0006400672
トリフルオロメタンスルホン酸(160ml)と中間体4・HCl(塩酸塩20g,0.06mol)の混合物を95℃で6時間加熱した。反応が完了した後、溶液を25℃まで冷却し、400mlの冷水(0〜5℃)に注いだ。50%NaOH水溶液を添加することによりpHを9〜10に調整し、生成物をジクロロメタンで抽出した。
溶媒を留去してアセトンに置換し、容量を60mlに調整した。コハク酸(17.0g,0.14mol)を加え、混合物を50〜55℃で1時間加温した。懸濁液を0℃まで冷却し、ろ取し、冷アセトンで洗浄後、乾燥して、6,11−ジヒドロ−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体7、コハク酸塩)22.0g(収率71%)を得た。
実施例7
Figure 0006400672
トリフルオロメタンスルホン酸(80ml)と中間体4・HCl(塩酸塩10g,0.03mol)の混合物を95℃で6時間加熱した。反応が完了した後、溶液を25℃まで冷却し、200mlの冷水(0〜5℃)に注いだ。50%NaOH水溶液を添加することによりpHを9〜10に調整し、生成物をジクロロメタンで抽出した。
溶媒を留去してアセトンに置換し、容量を60mlに調整した。イソプロパノール(7ml)とコハク酸(8.5g,0.07mol)を加え、混合物を50〜55℃で1時間加温した。懸濁液を0℃まで冷却し、ろ取し、冷アセトンで洗浄後、乾燥して、6,11−ジヒドロ−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体7、コハク酸塩)9.5g(収率61%)を得た。
実施例8
Figure 0006400672
トリフルオロメタンスルホン酸(40ml)と中間体4・HCl(塩酸塩5.0g,0.015mol)の混合物を95℃で6時間加熱した。反応が完了した後、溶液を25℃まで冷却し、100mlの冷水(0〜5℃)に注いだ。50%NaOH水溶液を添加することによりpHを9〜10に調整し、生成物をジクロロメタンで抽出した。
溶媒を留去してアセトンに置換し、容量を60mlに調整した。メタノール(2.5ml)とコハク酸(4.3g,0.036mol)を加え、混合物を50〜55℃で1時間加温した。懸濁液を0℃まで冷却し、ろ取し、冷アセトンで洗浄後、乾燥して、6,11−ジヒドロ−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体7、コハク酸塩)3.2g(収率41%)を得た。
実施例9
酢酸ナトリウム存在下での、6,11−ジヒドロ−3−ヒドロキシメチル−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピンのフマル酸塩としての製造(中間体11、フマル酸塩)
Figure 0006400672
中間体7(フマル酸塩5.0g,0.013mol)、40%ホルムアルデヒド水溶液(22.5ml)および酢酸ナトリウム(1.5g,0.02mol)の混合物を95℃で20時間加熱した。反応終了後のHPLC分析より、6,11−ジヒドロ−3−ヒドロキシメチル−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体11)(約70%)、中間体7(約15%)および2,3−ジヒドロキシメチル不純物である6,11−ジヒドロ−2,3−ジヒドロキシメチル−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(約15%)の混合物が得られたことが分かった。
反応液を20℃まで冷却し、50%NaOH水溶液を添加することによりpHを9〜10に調整し、生成物をジクロロメタンで抽出した。
溶媒を留去してアセトンに置換し、最終容量を40mlとした。フマル酸(1.5g,0.013mol)を加え、混合物を1時間加熱還流した。懸濁液を0℃まで冷却後、ろ取し、洗浄して、6,11−ジヒドロ−3−ヒドロキシメチル−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体11)(約70%)、中間体7(約15%)および2,3−ジヒドロキシメチル不純物である6,11−ジヒドロ−2,3−ジヒドロキシメチル−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(約15%)の混合物からなる固体(4.7g,収率85%)を得た。
実施例10
酢酸ナトリウム存在下での、6,11−ジヒドロ−3−ヒドロキシメチル−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピンのフマル酸塩としての製造(中間体11、フマル酸塩)
Figure 0006400672
中間体7(フマル酸塩138g,0.32mol)、キシレン(270ml)、40%ホルムアルデヒド水溶液(540ml)および酢酸ナトリウム三水和物(59.5g)の混合物を95℃で20時間加熱した。反応終了後のHPLC分析より、6,11−ジヒドロ−3−ヒドロキシメチル−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体11)(約70%)、中間体7(約15%)および上記2,3−ジヒドロキシメチル不純物(約15%)の混合物が得られたことが分かった。
反応液を20℃まで冷却し、二相を分離した。生成物を含む水相に50%NaOH水溶液を添加してpHを9〜10に調整し、生成物をジクロロメタンで抽出した。
溶媒を留去してアセトンに置換し、最終容量を550mlとした。フマル酸(41.4g,0.36mol)を加え、混合物を1時間加熱還流した。懸濁液を0℃まで冷却後、ろ取し、洗浄して、6,11−ジヒドロ−3−ヒドロキシメチル−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体11)(約70%)、中間体7(約18%)および上記2,3−ジヒドロキシメチル不純物(約12%)の混合物からなる固体98.1g(収率71%)を得た。
実施例11
炭酸水素ナトリウム存在下での、6,11−ジヒドロ−3−ヒドロキシメチル−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピンのフマル酸塩としての製造
酢酸ナトリウムの代わりにNaHCOを用いたこと以外は実施例10と同じ条件で反応を行った。
混合物を95℃で40時間加熱した。反応終了後のHPLC分析より、6,11−ジヒドロ−3−ヒドロキシメチル−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体11)(約62%)、中間体7(約32%)および上記2,3−ジヒドロキシメチル不純物(約5%)の混合物が得られたことが分かった。
実施例12
炭酸水素ナトリウム存在下での、6,11−ジヒドロ−3−ヒドロキシメチル−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体11)のフマル酸塩としての製造
Figure 0006400672
中間体7(フマル酸塩2g,0.0049mol)、キシレン(4ml)、40%ホルムアルデヒド水溶液(8ml)および炭酸水素ナトリウム(0.6g)の混合物を95℃で数時間加熱した。出発物質(中間体7)、最終生成物(中間体11)および上記2,3−ジヒドロキシメチル不純物の関係を経時的に観察したところ、以下の結果が得られた。
Figure 0006400672
実施例13
ピリジン存在下での、6,11−ジヒドロ−3−ヒドロキシメチル−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体11)のフマル酸塩としての製造
Figure 0006400672
中間体7(フマル酸塩2g,0.0049mol)、キシレン(4ml)、40%ホルムアルデヒド水溶液(8ml)およびピリジン(0.46g)の混合物を95℃で数時間加熱した。出発物質(中間体7)、最終生成物(中間体11)および上記2,3−ジヒドロキシメチル不純物の関係を経時的に観察したところ、以下の結果が得られた。
Figure 0006400672
実施例14
マレイン酸塩としての中間体7からの、6,11−ジヒドロ−3−ヒドロキシメチル−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体11)の製造
Figure 0006400672
中間体7(マレイン酸塩として2.2g,0.0056mol)、キシレン(4ml)、40%ホルムアルデヒド水溶液(8ml)および酢酸ナトリウム三水和物(0.91g)の混合物を95℃で数時間加熱した。出発物質(中間体7)、最終生成物(中間体11)および上記2,3−ジヒドロキシメチル不純物の関係を経時的に観察したところ、以下の結果が得られた。
Figure 0006400672
実施例15
コハク酸塩としての中間体7からの、6,11−ジヒドロ−3−ヒドロキシメチル−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体11)の製造
Figure 0006400672
中間体7(コハク酸塩として2.2g,0.0056mol)、キシレン(4ml)、40%ホルムアルデヒド水溶液(8ml)および酢酸ナトリウム三水和物(0.91g)の混合物を95℃で数時間加熱した。出発物質(中間体7)、最終生成物(中間体11)および上記2,3−ジヒドロキシメチル不純物の関係を経時的に観察したところ、以下の結果が得られた。
Figure 0006400672
実施例16
(+)−酒石酸塩としての中間体7からの、6,11−ジヒドロ−3−ヒドロキシメチル−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体11)の製造
Figure 0006400672
中間体7(酒石酸塩として2.4g,0.0056mol)、キシレン(4ml)、40%ホルムアルデヒド水溶液(8ml)および酢酸ナトリウム三水和物(0.91g)の混合物を95℃で数時間加熱した。出発物質(中間体7)、最終生成物(中間体11)および上記2,3−ジヒドロキシメチル不純物の関係を経時的に観察したところ、以下の結果が得られた。
Figure 0006400672
実施例17
塩基非存在下での、6,11−ジヒドロ−3−ヒドロキシメチル−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体11)のフマル酸塩としての製造
塩基を添加しないこと以外は実施例10と同じ条件で反応を行った。
混合物を95℃で32時間加熱した。反応終了後のHPLC分析より、6,11−ジヒドロ−3−ヒドロキシメチル−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体11)(約42%)、中間体7(約50%)および上記2,3−ジヒドロキシメチル不純物(約8%)の混合物が得られたことが分かった。
実施例18
ピリジン存在下での、6,11−ジヒドロ−3−ヒドロキシメチル−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体11)のフマル酸塩としての製造
酢酸ナトリウムの代わりにピリジンを用いたこと以外は実施例10と同じ条件で反応を行った。
混合物を95℃で32時間加熱した。反応終了後のHPLC分析より、6,11−ジヒドロ−3−ヒドロキシメチル−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体11)(約68%)、中間体7(約20%)および上記2,3−ジヒドロキシメチル不純物(約5%)の混合物が得られたことが分かった。
実施例19
TritonB存在下での、6,11−ジヒドロ−3−ヒドロキシメチル−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体11)のフマル酸塩としての製造
酢酸ナトリウムの代わりにTritonBを用いたこと以外は実施例10と同じ条件で反応を行った。
混合物を95℃で32時間加熱した。反応終了後のHPLC分析より、6,11−ジヒドロ−3−ヒドロキシメチル−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体11)(約48%)、中間体7(約48%)および上記2,3−ジヒドロキシメチル不純物(約4%)の混合物が得られたことが分かった。
実施例20(比較例)
先行技術であるEP 0 588 858に記載の方法による、6,11−ジヒドロ−3−ヒドロキシメチル−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体11)の製造
Figure 0006400672
遊離塩基である中間体7(5g)と40%ホルムアルデヒド水溶液の混合物を1週間加熱還流した。反応終了後のHPLC分析より、出発物質(中間体7、遊離塩基)と最終生成物(中間体11)とを50%ずつ含む混合物が得られたことが分かった。
反応液を20℃まで冷却し、50%NaOH水溶液を添加することによりpHを9〜10に調整し、生成物をジクロロメタンで抽出した。
溶媒を留去し、油状残渣をフラッシュクロマトグラフィーにより精製して、6,11−ジヒドロ−3−ヒドロキシメチル−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン(中間体11)1gを遊離塩基として得た。
中間体11(遊離塩基)のスペクトルデータ
1H-NMR (400 MHz, DMSO-d6), δ: (1.95-2.05, 1H, m), 2.05-2.20 (1H, m), 2.13 (3H, s, CH3), 2.25-2.35 (1H, m), 2.45-2.55 (1H, m), 2.55-2.65 (1H, m), 2.65-2.70 (1H, m), 2.70-2.80 (1H, m). 2.98 (1H, d, J= 14.0 Hz), 3.37 (1H, dt, J= 4.0, 14.0 Hz), 3.89 (1H, dt, J= 4.0, 14.0 Hz), 4.30-4.40 (1H, m), 4.36 (2H, s), 4.90 (1H, broad s, OH), 6.77 (1H, s), 7.05 (1H, d, J= 6.4 Hz), 7.15-7.25 (2H, m), 7.33 (1H, s, J= 6.4 Hz).
13C-NMR (100 MHz, DMSO-d6), δ: 30.0 (CH2), 30.6 (CH2), 30.7 (CH2), 45.5 (CH3), 46.0 (CH2), 52.9 (CH2), 56.2 (CH2), 56.4 (CH2), 124.2 (C), 125.8 (CH), 126.3 (CH), 127.4 (CH), 128.1 (CH), 128.2 (CH),132.0 (C), 136.9 (C), 139.7 (C), 140.2 (C), 143.7 (C).
実施例21
6,11−ジヒドロ−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン−3−カルボキシアルデヒド(アルカフタジン)の製造
Figure 0006400672
中間体11(フマル酸塩88.4g)をジクロロメタン(440ml)と水(440ml)に溶解し、50%NaOH水溶液を添加することによりpHを9〜10に調整し、生成物をジクロロメタンで抽出した。
有機相を蒸留し、溶媒をトルエンに置換して、最終容量を440mlとした。酸化マンガン(IV)(440g)を加え、反応液を60℃で2時間加熱した。
反応混合物を20℃まで冷却した。固体をろ去し、トルエン(880ml)で洗浄した。ろ液を濃縮して最終容量を150mlとし、ジイソプロピルエーテル(880ml)を加えた。固体をろ取し、ジイソプロピルエーテルで洗浄した。粗アルカフタジン(49.5g,85%)を90%の純度で得た。
実施例22
フマル酸塩としての中間体7からの、ワンポット法による6,11−ジヒドロ−11−(1−メチル−4−ピペリジニリデン)−5H−イミダゾ[2,1−b][3]−ベンザゼピン−3−カルボキシアルデヒド(アルカフタジン)の製造
Figure 0006400672
中間体7(フマル酸塩5g)、キシレン(10ml)、40%ホルムアルデヒド水溶液(20ml)および酢酸ナトリウム三水和物(0.15g)の混合物を95℃で20時間加熱した。反応終了後のHPLC分析より、中間体11(約70%)、中間体7(約15%)および上記2,3−ジヒドロキシメチル不純物(約15%)の混合物が得られたことが分かった。
反応液を20℃まで冷却し、二相を分離した。生成物を含む水相に50%NaOH水溶液を添加してpHを9〜10に調整し、生成物をジクロロメタンで抽出した。
有機相を濃縮して最終容量を25mlとし、酸化マンガン(IV)(25g)を加え、懸濁液を2時間還流した。
反応混合物を20℃まで冷却した。固体をろ去し、ジクロロメタン(50ml)で洗浄した。ろ液を濃縮して最終容量を15mlとし、ジイソプロピルエーテル(100ml)を加えた。固体をろ取し、ジイソプロピルエーテルで洗浄した。粗アルカフタジン(2.4g)を>90%の純度で得た。
実施例23
コハク酸塩としての中間体7からの、ワンポット法による6,11−ジヒドロ−11−(1−メチル−4−ピペリジニリデン)−5 5H−イミダゾ[2,1−b][3]−ベンザゼピン−3−カルボキシアルデヒド(アルカフタジン)の製造
Figure 0006400672
中間体7(コハク酸塩10g)とホルムアルデヒド水溶液(40ml)の混合物を95℃で20時間加熱した。反応終了後のHPLC分析より、中間体11(約70%)、中間体7(約15%)および上記2,3−ジヒドロキシメチル不純物(約15%)の混合物が得られたことが分かった。
反応液を20℃まで冷却した。50%NaOH水溶液を添加することによりpHを9〜10に調整し、生成物をジクロロメタンで抽出した。有機相を濃縮して最終容量を30mlとし、酸化マンガン(IV)(25g)と水(3ml)を加え、懸濁液を2時間還流した。
反応混合物を20℃まで冷却した。固体をろ去し、ジクロロメタン(50ml)で洗浄した。ろ液を濃縮して最終容量を15mlとし、ジイソプロピルエーテル(100ml)を加えた。固体をろ取し、ジイソプロピルエーテルで洗浄した。粗アルカフタジン(4.7g)を>90%の純度で得た。
実施例24−アルカフタジンの精製
酢酸エチルによる精製
粗アルカフタジン(2.3g)をジクロロメタン/酢酸エチルに溶解した。ジクロロメタン溶媒を留去し、酢酸エチルに置換して、最終容量を11mlとした。懸濁液を20℃まで冷却し、固体をろ取し、酢酸エチルで洗浄後、乾燥した。アルカフタジン(1.5g,収率65%)を>99%の純度で得た。
イソプロピルアルコールによる精製
粗アルカフタジン(2.5g)をイソプロピルアルコール(25ml)に懸濁し、アルカフタジンが全て溶けるまで混合物を45〜50℃で加熱した。溶媒を留去して最終容量を7.5mlとし、得られた懸濁液を20℃まで冷却した。固体をろ取し、イソプロパノールで洗浄後、乾燥した。アルカフタジン(1.7g,収率68%)を>99%の純度で得た。
アルカフタジンのスペクトルデータ
1H-NMR (400 MHz, DMSO-d6), δ: 2.05-2.30 (2H, m), 2.19 (3H, s, CH3), 2.30-2.40 (1H, m), 2.47 (1H, s), 2.55-2.75 (4H, m), 3.03 (1H, d, J= 14.0 Hz), 3.39 (1H, td, J= 3.6, 14.0 Hz), 4.15 (1H, td, J= 2.8, 14.0 Hz), 4.62 (1H, d, J= 14.0 Hz), 7.10 (1H, d, J= 7.2 Hz), 7.24 (2H, quint, J= 7.2 Hz), 7.35 (1H, d, J= 7.2 Hz), 7.87 (1H, s), 9.60 (1H, s, CHO).
13C-NMR (100 MHz, DMSO-d6), δ: 30.0 (CH2), 30.6 (CH2), 30.7 (CH2), 45.1 (CH3), 49.2 (CH2), 55.8 (CH2), 56.0 (CH2), 123.3 (C), 126.7 (CH), 128.1 (CH), 128.5 (2 x CH), 131.9 (C), 136.7 (C), 138.5 (C), 142.3 (CH), 143.7 (C), 149.6 (C), 179.5 (CHO).

Claims (15)

  1. アルカフタジンまたは薬学的に許容されるその塩の製造方法であって、
    式7の酸付加塩とホルムアルデヒドとを反応させて式11の化合物またはその塩を得ること、
    式11の化合物またはその塩を酸化させてアルカフタジンを得ること、および
    任意にアルカフタジンを薬学的に許容されるその塩に変換することを含み、
    式7の酸付加塩がジカルボン酸との塩である方法。
    Figure 0006400672
    (式中、式7の酸付加塩において、HAはジカルボン酸を示す)
  2. 前記ジカルボン酸が、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、酒石酸、エチレンジアミン四酢酸(EDTA、クエン酸、フマル酸、マレイン酸、グルタコン酸、ムコン酸、フタル酸、イソフタル酸、テレフタル酸およびリンゴ酸からなる群から選択される、請求項1に記載の方法。
  3. 前記ジカルボン酸が、フマル酸、マレイン酸、コハク酸および酒石酸からなる群から選択される、請求項2に記載の方法。
  4. 前記ジカルボン酸がフマル酸またはコハク酸である、請求項3に記載の方法。
  5. 式7の酸付加塩とホルムアルデヒドとを塩基の存在下で反応させる、請求項1〜4のいずれか一項に記載の方法。
  6. 前記塩基が、カルボン酸塩、炭酸塩もしくは炭酸水素塩、または有機塩基から選択される、請求項5に記載の方法。
  7. 前記塩基が酢酸ナトリウム、ピリジンまたは炭酸水素ナトリウムである、請求項6に記載の方法。
  8. 前記塩基が酢酸ナトリウムである、請求項7に記載の方法。
  9. 二酸化マンガンとの反応により式11の化合物を酸化させる、請求項1〜8のいずれか一項に記載の方法。
  10. 式7の酸付加塩が、式1の化合物と1−メチルピペリジン−4−カルボン酸エチルとを強塩基の存在下で反応させて式4の化合物とし、式4の化合物をさらにトリフルオロメタンスルホン酸と反応させ、次いで請求項1〜4で定義されたジカルボン酸と反応させて式7の酸付加塩とすることにより形成される、請求項1〜9のいずれか一項に記載の方法。
    Figure 0006400672
    (式中、式7の酸付加塩において、HAはジカルボン酸を示す)
  11. 前記強塩基がリチウムジイソプロピルアミドまたはヘキシルリチウムである、請求項10に記載の方法。
  12. アルカフタジンまたは薬学的に許容されるその塩の製造方法であって、
    式1の化合物と1−メチルピペリジン−4−カルボン酸エチルとを強塩基の存在下で反応させて式4の化合物を得ること、
    式4の化合物をトリフルオロメタンスルホン酸と反応させ、次いで請求項1〜4で定義されたジカルボン酸と反応させて式7の酸付加塩を得ること、および
    式7の酸付加塩を反応させてアルカフタジンまたは任意に薬学的に許容されるその塩を得ることを含む方法。
    Figure 0006400672
    (式中、式7の酸付加塩において、HAはジカルボン酸を示す)
  13. 前記強塩基がリチウムジイソプロピルアミドまたはヘキシルリチウムである、請求項12に記載の方法。
  14. アルカフタジンを単離精製することをさらに含み、該単離精製がイソプロピルアルコールまたは酢酸エチル中でアルカフタジンを結晶化させることを含む、請求項1〜13のいずれか一項に記載の方法。
  15. 式7
    Figure 0006400672
    (式中、HAは請求項1〜4で定義されたジカルボン酸である)
    の酸付加塩。
JP2016504606A 2013-03-25 2014-03-24 アルカフタジンの製造方法 Active JP6400672B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13160829 2013-03-25
EP13160829.1 2013-03-25
PCT/EP2014/055815 WO2014154620A1 (en) 2013-03-25 2014-03-24 Methods for the preparation of alcaftadine

Publications (3)

Publication Number Publication Date
JP2016515555A JP2016515555A (ja) 2016-05-30
JP2016515555A5 JP2016515555A5 (ja) 2017-03-30
JP6400672B2 true JP6400672B2 (ja) 2018-10-03

Family

ID=47913271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016504606A Active JP6400672B2 (ja) 2013-03-25 2014-03-24 アルカフタジンの製造方法

Country Status (7)

Country Link
US (1) US9682984B2 (ja)
EP (1) EP2978765B1 (ja)
JP (1) JP6400672B2 (ja)
KR (1) KR102204578B1 (ja)
CA (1) CA2907396C (ja)
ES (1) ES2680933T3 (ja)
WO (1) WO2014154620A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104860920B (zh) * 2015-04-15 2017-08-25 武汉武药科技有限公司 一种阿卡他定中间体的制备方法
CN104860888B (zh) * 2015-05-26 2018-07-27 南京华威医药科技开发有限公司 阿卡他定中间体及阿卡他定的合成方法
CN104987337B (zh) * 2015-07-28 2018-01-12 武汉武药科技有限公司 一种制备阿卡他定的氧化方法
US11951165B2 (en) 2016-12-30 2024-04-09 Vaxcyte, Inc. Conjugated vaccine carrier proteins

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4070381A (en) * 1972-07-12 1978-01-24 Lever Brothers Company Certain 2-(hydroxyalkyl)-2,5-dialkyl-4-hydroxy-4,5-dihydrofuran-3-ones and method for their preparation
IL101850A (en) * 1991-06-13 1996-01-31 Janssen Pharmaceutica Nv History 11-) 4-Pipridinyl (-Imidazo] B-1, 2 [] 3 [Benzazepine, their preparation and pharmaceutical preparations containing them
TW527186B (en) 1996-03-19 2003-04-11 Janssen Pharmaceutica Nv Fused imidazole derivatives as multidrug resistance modulators
US20080139531A1 (en) 2006-12-04 2008-06-12 Alcon Manufacturing Ltd. Use of connective tissue mast cell stabilizers to facilitate ocular surface re-epithelization and wound repair
WO2014083571A1 (en) 2012-11-29 2014-06-05 Neuland Laboratories Limited A process for the preparation of alcaftadine

Also Published As

Publication number Publication date
EP2978765B1 (en) 2018-05-02
WO2014154620A1 (en) 2014-10-02
EP2978765A1 (en) 2016-02-03
JP2016515555A (ja) 2016-05-30
US9682984B2 (en) 2017-06-20
KR20160018472A (ko) 2016-02-17
US20160280709A1 (en) 2016-09-29
CA2907396C (en) 2021-11-02
CA2907396A1 (en) 2014-10-02
ES2680933T3 (es) 2018-09-11
KR102204578B1 (ko) 2021-01-20

Similar Documents

Publication Publication Date Title
JP6389174B2 (ja) 化学的方法
JP6400672B2 (ja) アルカフタジンの製造方法
WO2018148361A1 (en) Process for the preparation of remimazolam and solid state forms of remimazolam salts
JP6081450B2 (ja) アセナピンの結晶塩
WO2016055918A1 (en) Novel stable polymorphs of isavuconazole or its salt thereof
JP5736313B2 (ja) 8−[{1−(3,5−ビス−(トリフルオロメチル)フェニル)−エトキシ}−メチル]−8−フェニル−1,7−ジアザ−スピロ[4.5]デカン−2−オン化合物の合成のためのプロセスおよび中間体
EP3424908A1 (en) Process for preparation of levosimendan
MXPA06000325A (es) Un metodo para la preparacion de mirtazapina enantiomericamente pura.
WO1998050367A1 (en) Processes and intermediates for preparing substituted indazole derivatives
EP2867210A1 (en) A process for the preparation of solifenacin or a salt thereof
JP7252978B2 (ja) 2-(1-(tert-ブトキシカルボニル)ピペリジン-4-イル)安息香酸を調製するためのプロセス
KR101686087B1 (ko) 광학 활성을 갖는 인돌린 유도체 또는 이의 염의 신규 제조 방법
US11286254B2 (en) Process for the synthesis of 2-benzhydryl-3 quinuclidinone
TW201531478A (zh) 啶類之製造方法
KR100856133B1 (ko) 아토르바스타틴의 개선된 제조방법
WO1987006230A1 (en) Method for preparing penicillanic acid derivatives
CN114478536A (zh) 四氢吡嗪稠环衍生物的制备方法
KR100408431B1 (ko) 1,2,3,9-테트라히드로-9-메틸-3-[(2-메틸-1h-이미다졸-1-일)메틸]-4h-카바졸-4-온 또는 그의 약제학적으로허용가능한 염의 제조 방법
US20120267533A1 (en) Processes for the preparation of form i and form ii of palonosetron hydrochloride
Fan et al. Improved Synthesis and Crystallographic Analysis of (E)-Ethyl 2-(Hydroxyimino)-3-(4-methoxyphenyl)-3-oxopropanoate and erythro-N-Acetyl-[Beta]-(4-methoxyphenyl) serine Ethyl Ester
JPS60224672A (ja) β−ラクタム誘導体の製造法
HU183896B (en) Process for preparing new 10-halo-14-oxo-e-homo-eburnan derivatives
EA024004B1 (ru) СПОСОБ ПОЛУЧЕНИЯ (1-ЦИКЛОПРОПИЛ-6-ФТОР-1,4-ДИГИДРО-8-МЕТОКСИ-7-[(4aS,7aS)-ОКТАГИДРО-6H-ПИРРОЛО[3,4-b]ПИРИДИН-6-ИЛ]-4-ОКСО-3-ХИНОЛИНКАРБОНОВОЙ КИСЛОТЫ
JPH07133258A (ja) 2,5−ピロリジンジオン誘導体

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171214

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180905

R150 Certificate of patent or registration of utility model

Ref document number: 6400672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250