JP6400210B2 - Air conditioner indoor unit - Google Patents

Air conditioner indoor unit Download PDF

Info

Publication number
JP6400210B2
JP6400210B2 JP2017532346A JP2017532346A JP6400210B2 JP 6400210 B2 JP6400210 B2 JP 6400210B2 JP 2017532346 A JP2017532346 A JP 2017532346A JP 2017532346 A JP2017532346 A JP 2017532346A JP 6400210 B2 JP6400210 B2 JP 6400210B2
Authority
JP
Japan
Prior art keywords
air
air passage
heat exchanger
drain pan
indoor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017532346A
Other languages
Japanese (ja)
Other versions
JPWO2017022131A1 (en
Inventor
卓哉 後藤
卓哉 後藤
大石 雅之
雅之 大石
周平 横田
周平 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2017022131A1 publication Critical patent/JPWO2017022131A1/en
Application granted granted Critical
Publication of JP6400210B2 publication Critical patent/JP6400210B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Description

本発明は、空気調和機の室内機に関するもので、詳しくは、室内機の風路における結露抑制構造に関するものである。   The present invention relates to an indoor unit of an air conditioner, and more particularly to a dew condensation suppressing structure in an air path of the indoor unit.

室内壁面に据え付ける壁掛け型の空気調和機では、本体内部に熱交換器を有しており、本体の上方などにある吸込口から室内の空気を吸い込み、熱交換器を通過させることで空気を冷やしたり、暖めたりして、空気の温度を変えるようにしている。そして、温度が変えられた空気は、本体下方などに設けられた吹出口から室内へ吹き出される。この繰り返しにより、室内環境を調整する。   A wall-mounted air conditioner installed on an indoor wall surface has a heat exchanger inside the main unit, and the air is cooled by sucking indoor air from the suction port located above the main unit and passing it through the heat exchanger. The temperature of the air is changed by heating or warming. Then, the air whose temperature has been changed is blown into the room from a blow-out port provided below the main body. By repeating this, the indoor environment is adjusted.

このような空気調和機には、クロスフローファンを用いるタイプと、プロペラファンを用いるタイプとがある。クロスフローファンを用いるタイプにおいて、吸込口から吹出口に至る風路の数は、吸込口から流入した空気流が、熱交換器を通過後、一つにまとまって吹出口に至ることから1つである。一方、プロペラファンを用いるタイプにおける風路の数は、吸込口から流入した空気流が熱交換器を通過後の時点で複数に分流され、各空気流が吹出口に向かって流れることから、複数ある(例えば、特許文献1参照)。   Such air conditioners include a type using a cross flow fan and a type using a propeller fan. In the type using the cross flow fan, the number of air passages from the suction port to the blowout port is one because the air flow flowing in from the suction port passes through the heat exchanger and then reaches the blowout port. It is. On the other hand, the number of air paths in the type using the propeller fan is divided into a plurality of air flows flowing from the suction port after passing through the heat exchanger, and each air flow flows toward the outlet, Yes (see, for example, Patent Document 1).

特許文献1の空気調和機の室内機は、複数の分割熱交換器を逆V字形状(特許文献1の図9)や、N字形状(特許文献1の図10)、M字形状(特許文献1の図13)、W字形状(特許文献1の図11)などの形状に組み合わせて熱交換器を搭載している。逆V字形状では風路は1つであるが、N字形状やM字形状では2つ、W字形状については3つある。そして、室内機上部などから吸い込んだ室内の空気に、多くの分割熱交換器を触れさせることで熱交換の効率を上げていた。   In the indoor unit of the air conditioner of Patent Document 1, a plurality of divided heat exchangers are inverted V-shaped (FIG. 9 of Patent Document 1), N-shaped (FIG. 10 of Patent Document 1), M-shaped (Patent) The heat exchanger is mounted in combination with a shape such as FIG. 13 of Document 1) or a W shape (FIG. 11 of Patent Document 1). In the inverted V shape, there is one air passage, but there are two for the N shape and the M shape, and three for the W shape. And the efficiency of heat exchange was raised by making many division | segmentation heat exchangers contact the indoor air inhaled from the indoor unit upper part.

特開2012−37085号公報JP 2012-37085 A

特許文献1において、複数の分割熱交換器は全て同じ温度にあるわけではないため、各分割熱交換器を通過後の各風路の空気流には温度差が生じる。このため、熱交換器の形状によっては、冷房運転時に風路内に結露が生じ、その結露によるドレン水が、熱交換後の空気流と共に吹出口から室内に落下してしまう恐れがあった。この点について、以下、熱交換器の各形状のそれぞれの場合について説明する。   In Patent Document 1, since the plurality of divided heat exchangers are not all at the same temperature, a temperature difference occurs in the airflow of each air passage after passing through each divided heat exchanger. For this reason, depending on the shape of the heat exchanger, condensation may occur in the air passage during the cooling operation, and drain water due to the condensation may fall into the room from the air outlet with the air flow after heat exchange. In this regard, each case of each shape of the heat exchanger will be described below.

熱交換器が逆V字形状(特許文献1の図9)の場合は、風路は1つのため、分流がなく、温度差による結露発生はない。   When the heat exchanger has an inverted V shape (FIG. 9 of Patent Document 1), since there is one air passage, there is no shunt and no condensation occurs due to a temperature difference.

熱交換器がN字形状(特許文献1の図10)やM字形状(特許文献1の図13)の場合は、風路は2つで分流が生じる。しかし、2つの風路の真下に大きな開口の吹出口があるため、各空気流は、各空気流間の温度差の影響が出る前に室内(室内機の外)へ吹き出される。このため、結露発生の可能性は低い。   When the heat exchanger is N-shaped (FIG. 10 of Patent Document 1) or M-shaped (FIG. 13 of Patent Document 1), the air flow is divided into two air paths. However, since there is a large opening outlet directly under the two air paths, each air flow is blown into the room (outside the indoor unit) before being affected by the temperature difference between the air flows. For this reason, the possibility of dew condensation is low.

熱交換器がW字形状(特許文献1の図11)の場合は、風路は3つで分流が生じる。室内機前方の2つの風路については、N字形状及びM字形状の場合と同様、2つの風路直下に吹出口があるため、結露発生の可能性は低い。しかし、室内機と室外機とを接続するための配管や、ドレン水を排水するためのパイプなどを収納する配管スペースを筐体背面下部に設ける必要がある関係上、室内機後方の3つ目の風路については、風路直下に吹出口が位置しない構成となる。このため、3つ目の風路は、配管スペースを避ける風路となっており、3つ目の風路の空気流は背面側から前方下方へと導かれ、吹出口から室内(室内機の外)へと吹き出されることになる。このため、3つ目の風路において前方下方に向けて流れる空気流と、2つ目の風路において直下方向に流れる空気流とに接点が生じ、この2つの空気流に温度差がある場合に、接点付近に結露が生じる。   When the heat exchanger is W-shaped (FIG. 11 of Patent Document 1), the air flow is divided into three air paths. As for the two air passages in front of the indoor unit, as in the case of the N-shaped and M-shaped, there is a blow outlet directly under the two air passages, so the possibility of dew condensation is low. However, since it is necessary to provide piping space for storing piping for connecting the indoor unit and outdoor unit, pipe for draining drain water, etc. in the lower part of the back of the casing, The air passage is configured such that the air outlet is not located immediately below the air passage. For this reason, the third air passage is an air passage that avoids the piping space, and the air flow of the third air passage is guided from the back side to the front lower side, and from the air outlet to the room (in the indoor unit). To the outside). For this reason, when a contact point is formed between the air flow that flows forward and downward in the third air passage and the air flow that flows directly downward in the second air passage, there is a temperature difference between the two air flows. In addition, condensation occurs near the contact.

このように、熱交換器を通過後の各空気流の温度差により風路内に生じた結露は、基本的には回収できないため、熱交換後の空気と共に吹出口から落下してしまう。   As described above, the dew condensation generated in the air passage due to the temperature difference of each air flow after passing through the heat exchanger cannot be basically recovered, and thus falls from the air outlet together with the air after heat exchange.

本発明は、上記のような課題を解決するためになされたもので、熱交換器を通過後の風路が複数ある空気調和機の室内機において、冷房運転時、室内機内部で熱交換器を通過後の各空気流に温度差が生じた場合でも、風路内の結露を防止できる空気調和機の室内機を提供することを目的とする。   The present invention has been made in order to solve the above-described problems. In an indoor unit of an air conditioner having a plurality of air paths after passing through a heat exchanger, the heat exchanger is provided inside the indoor unit during cooling operation. An object of the present invention is to provide an indoor unit of an air conditioner that can prevent dew condensation in an air passage even when a temperature difference occurs in each air flow after passing through the air channel.

本発明に係る空気調和機の室内機は、上部に吸込口、下部に吹出口を有する本体と、本体内に設置されたファンと、本体内に設置された熱交換器と、熱交換器で生じたドレン水を受け止めるドレンパンとを備え、ドレンパンは、熱交換器の下方に配置された熱交換器側ドレンパンと熱交換器側ドレンパンの下方に配置された風路側ドレンパンとを重ねて構成されており、本体は、熱交換器側ドレンパンを風路壁とする第1風路と、風路側ドレンパンを風路壁とする第2風路とを有し、吸込口から吸い込まれたファンからの空気流を、熱交換器を通過後に複数に分流し、分割した各空気流を第1風路と第2風路とに流した後、合流して吹出口から吹き出すように構成され、第1風路と第2風路とのうち、冷房運転時に温度が低い方の空気流が流れる風路側を構成する風路壁が、温度が高い方の空気流が流れる風路に露出しないものである。 An indoor unit of an air conditioner according to the present invention includes a main body having a suction port at an upper part and a blower outlet at a lower part, a fan installed in the main body, a heat exchanger installed in the main body, and a heat exchanger. A drain pan that receives the generated drain water. The main body has a first air passage using the heat exchanger side drain pan as the air passage wall and a second air passage using the air passage side drain pan as the air passage wall, and air from the fan sucked from the air inlet The flow is divided into a plurality of air flows after passing through the heat exchanger, and each divided air flow is flowed to the first air passage and the second air passage, and then merged and blown out from the outlet. Of the road and the second wind path, the air flow with the lower temperature flows during cooling operation Air passage walls constituting the air path side that is, the temperature is the higher potato such exposed air path where the air flow flows in.

本発明によれば、熱交換器を通過後の風路が複数ある空気調和機の室内機において、冷房運転時、室内機内部で熱交換器を通過後の各空気流に温度差が生じた場合でも、風路内の結露を防止することができる。   According to the present invention, in an indoor unit of an air conditioner having a plurality of air paths after passing through a heat exchanger, a temperature difference has occurred in each air flow after passing through the heat exchanger inside the indoor unit during cooling operation. Even in this case, condensation in the air passage can be prevented.

本発明の実施の形態1に係る空気調和機の室内機100の全体の斜視図である。1 is an overall perspective view of an indoor unit 100 for an air conditioner according to Embodiment 1 of the present invention. 図1の概略縦断面図である。It is a schematic longitudinal cross-sectional view of FIG. 図2のドレンパン40の斜視図である。It is a perspective view of the drain pan 40 of FIG. 図2のドレンパン40の分解斜視図である。FIG. 3 is an exploded perspective view of the drain pan 40 of FIG. 2. 図3のA−A断面で切断したドレンパン40の斜視図と、この斜視図の部分拡大図とを併せて示した図である。It is the figure which combined and showed the perspective view of the drain pan 40 cut | disconnected by the AA cross section of FIG. 3, and the partial enlarged view of this perspective view. 本発明の実施の形態1に係る空気調和機の室内機100の風路の説明図である。It is explanatory drawing of the air path of the indoor unit 100 of the air conditioner which concerns on Embodiment 1 of this invention. 逆V字形状の熱交換器200を備えた従来の空気調和機の室内機概略断面図である。It is an indoor unit schematic sectional drawing of the conventional air conditioner provided with the reverse V-shaped heat exchanger 200. N字形状の熱交換器210を備えた従来の空気調和機の室内機の概略断面図である。It is a schematic sectional drawing of the indoor unit of the conventional air conditioner provided with the N-shaped heat exchanger 210. M字形状の熱交換器220を備えた従来の空気調和機の室内機の概略断面図である。It is a schematic sectional drawing of the indoor unit of the conventional air conditioner provided with the M-shaped heat exchanger 220. 図6の風路6bと風路6cとが交差する部分を含むドレンパン周囲の拡大斜視図と、この斜視図の一部を拡大して略式化した図とを併せて示した図である。It is the figure which combined and showed the enlarged perspective view around a drain pan including the part which the air path 6b and the air path 6c of FIG. 6 cross | intersect, and the figure which expanded and simplified the part of this perspective view. 比較例を示す図で、結露が生じる構造例を示した図である。It is a figure which shows a comparative example, and is the figure which showed the structural example in which dew condensation occurs. 図6の風路6bと風路6cとが交差する部分を含むドレンパン周囲を拡大しつつ略式化した図である。It is the figure simplified while expanding the drain pan circumference | surroundings including the part which the air path 6b and the air path 6c of FIG. 6 cross | intersect.

実施の形態1.
図1は、本発明の実施の形態1に係る空気調和機の室内機100の全体の斜視図である。図2は、図1の概略縦断面図である。なお、本実施の形態1では、図1の手前側を前面側(前側)、奥側を背面側(後側)として説明する。
この室内機100は、冷媒を循環させる冷凍サイクルを利用することで、室内等の空調対象域に空調空気(後述の熱交換器30で熱交換された空気)を供給するものである。室内機100の本体100aは、室内壁面に固定される背面ケース1と、背面ケース1の前面にネジで取り付けられた筐体2と、筐体2の前面に開閉及び取り外し可能に取り付けられた前面意匠パネル3とを有している。筐体2の上面には、室内空気を内部に吸い込むための吸込口4が形成され、筐体2の下面には、後述の熱交換器30で熱交換された空気を室内へ吹き出すための吹出口5が形成されている。
Embodiment 1 FIG.
FIG. 1 is an overall perspective view of an indoor unit 100 for an air conditioner according to Embodiment 1 of the present invention. FIG. 2 is a schematic longitudinal sectional view of FIG. In the first embodiment, the front side in FIG. 1 is described as the front side (front side), and the back side is described as the back side (rear side).
The indoor unit 100 supplies conditioned air (air that has been heat-exchanged by a heat exchanger 30 described later) to an air-conditioning target area such as a room by using a refrigeration cycle that circulates refrigerant. A main body 100a of the indoor unit 100 includes a rear case 1 fixed to an indoor wall surface, a housing 2 attached to the front surface of the rear case 1 with screws, and a front surface removably attached to the front surface of the housing 2. It has a design panel 3. A suction port 4 for sucking indoor air into the interior is formed on the upper surface of the housing 2, and a blower for blowing out the air heat-exchanged by a heat exchanger 30 described later on the lower surface of the housing 2. An outlet 5 is formed.

本体100a内には、吸込口4から室内空気を吸い込むためのファン10と、それを駆動するファンモータ20と、電気品箱(図示せず)と、ファン10から吹出口5までの風路6に配設され、冷媒と室内空気との熱交換を行う熱交換器30とを備えている。   In the main body 100 a, a fan 10 for sucking room air from the suction port 4, a fan motor 20 that drives the fan 10, an electrical component box (not shown), and an air path 6 from the fan 10 to the outlet 5. And a heat exchanger 30 for exchanging heat between the refrigerant and the room air.

ファン10は、吸込口4の下流側で且つ熱交換器30の上流側に配置されており、例えばプロペラファンである軸流ファン又は斜流ファン等で構成されている。   The fan 10 is disposed on the downstream side of the suction port 4 and on the upstream side of the heat exchanger 30, and is configured by, for example, an axial flow fan or a mixed flow fan that is a propeller fan.

熱交換器30は、間隔を空けて配置された複数のフィン31と、複数のフィン31を貫通し、内部を冷媒が通過する複数の伝熱管32とを備えている。本実施の形態1では、熱交換器30は、複数の分割熱交換器30a〜30dを、本体100aの右又は左側方から見てW字形状に組み合わせた構成を有している。   The heat exchanger 30 includes a plurality of fins 31 arranged at intervals, and a plurality of heat transfer tubes 32 that pass through the plurality of fins 31 and through which the refrigerant passes. In the first embodiment, the heat exchanger 30 has a configuration in which a plurality of divided heat exchangers 30a to 30d are combined in a W shape when viewed from the right or left side of the main body 100a.

ファン10、ファンモータ20、電気品箱(図示せず)及び熱交換器30は、背面ケース1に装着されている。   The fan 10, the fan motor 20, the electrical component box (not shown) and the heat exchanger 30 are mounted on the back case 1.

本体100a内には更に、熱交換器30の表面における結露により生じたドレン水を受け止めて排水するドレンパン40を備えている。   The main body 100 a further includes a drain pan 40 that receives and drains drain water generated by condensation on the surface of the heat exchanger 30.

図3は、図2のドレンパン40の斜視図である。図4は、図2のドレンパン40の分解斜視図である。
ドレンパン40は、ドレン水を受け止めて排水する機能の他、熱交換器30を通過後の空気流の風路壁としても機能するものである。ドレンパン40は、熱交換器30の下方に配置されてドレン水を受け止める熱交換器側ドレンパン41と、熱交換器側ドレンパン41の下方に配置される風路側ドレンパン42とを上下に重ねて構成されている。
FIG. 3 is a perspective view of the drain pan 40 of FIG. FIG. 4 is an exploded perspective view of the drain pan 40 of FIG.
In addition to the function of receiving and draining drain water, the drain pan 40 also functions as a wind path wall for the air flow after passing through the heat exchanger 30. The drain pan 40 is configured by vertically stacking a heat exchanger side drain pan 41 disposed below the heat exchanger 30 and receiving drain water, and an air passage side drain pan 42 disposed below the heat exchanger side drain pan 41. ing.

熱交換器側ドレンパン41は、2つの水受け部41a及び水受け部41bと、2つの水受け部41a及び水受け部41b同士を連結する連結部41cとを有し、これらが一体に形成された構成を有する。水受け部41aは、複数の分割熱交換器30a〜30dのうち最前方に配置された分割熱交換器30aとその後方に配置された分割熱交換器30bとの下方に位置して、分割熱交換器30a及び分割熱交換器30bで発生したドレン水を受け止めるものである。水受け部41bは、分割熱交換器30bの後方に配置された分割熱交換器30cと分割熱交換器30cの後方に配置された分割熱交換器30dとの下方に位置して、分割熱交換器30c及び分割熱交換器30dで発生したドレン水を受け止めるものである。   The heat exchanger side drain pan 41 has two water receiving portions 41a and 41b and a connecting portion 41c that connects the two water receiving portions 41a and 41b, and these are integrally formed. Have a configuration. The water receiving portion 41a is located below the divided heat exchanger 30a disposed in the forefront among the divided heat exchangers 30a to 30d and the divided heat exchanger 30b disposed behind the divided heat exchanger 30a, thereby dividing heat. The drain water generated in the exchanger 30a and the divided heat exchanger 30b is received. The water receiver 41b is located below the divided heat exchanger 30c disposed behind the divided heat exchanger 30b and the divided heat exchanger 30d disposed behind the divided heat exchanger 30c, and divided heat exchange is performed. The drain water generated in the vessel 30c and the divided heat exchanger 30d is received.

後方側の水受け部41bは図2に示すように前側端部41baから一旦下方に延出した後、前方に向けて傾斜する風路壁41dを有している。この風路壁41dは、主として分割熱交換器30cを通過した空気流を吹出口5に導く作用を有する。   As shown in FIG. 2, the rear water receiving portion 41 b has an air passage wall 41 d that extends downward from the front end portion 41 ba and then inclines toward the front. The air passage wall 41d mainly has an effect of guiding the air flow that has passed through the divided heat exchanger 30c to the air outlet 5.

風路側ドレンパン42は、図4に示すように、2つの風路部42a及び風路部42bと、2つの風路部42a及び風路部42b同士を連結する連結部42cとを有し、これらが一体に形成された構成を有する。風路部42aは、水受け部41aの下方に位置し、風路部42bは水受け部41bの下方に位置している。そして、水受け部41a、41bと風路部42a、42bとの間には断熱層である空間が形成され、この空間には断熱材43(図2参照)が配置されている。なお、断熱材43は必須のものではなく、省略可能である。   As shown in FIG. 4, the airway side drain pan 42 has two airway portions 42a and airway portions 42b, and a connecting portion 42c that connects the two airway portions 42a and the airway portions 42b. Has a structure formed integrally. The air passage portion 42a is located below the water receiving portion 41a, and the air passage portion 42b is located below the water receiving portion 41b. And the space which is a heat insulation layer is formed between the water receiving parts 41a and 41b and the air path parts 42a and 42b, and the heat insulating material 43 (refer FIG. 2) is arrange | positioned in this space. The heat insulating material 43 is not essential and can be omitted.

ドレンパン40は、以上のように構成された熱交換器側ドレンパン41と風路側ドレンパン42とを上下に重ね、互いに係止された状態で背面ケース1に固定されている。この係止部分の構成について次の図5を用いて説明する。   The drain pan 40 is fixed to the back case 1 in such a manner that the heat exchanger side drain pan 41 and the air channel side drain pan 42 configured as described above are vertically stacked and locked together. The structure of the locking portion will be described with reference to FIG.

図5は、図3のA−A断面で切断したドレンパン40の斜視図と、この斜視図の部分拡大図とを併せて示した図である。
熱交換器側ドレンパン41の風路壁41dの下端側には、室内機100の長手方向に間隔を空けて複数の係止穴44が設けられている。そして、風路側ドレンパン42には係止穴44に係止する係止爪45が設けられており、係止穴44と係止爪45とにより、熱交換器側ドレンパン41と風路側ドレンパン42とが互いに係止されている。
FIG. 5 is a view showing a perspective view of the drain pan 40 cut along the AA cross section of FIG. 3 and a partially enlarged view of the perspective view.
On the lower end side of the air passage wall 41 d of the heat exchanger side drain pan 41, a plurality of locking holes 44 are provided at intervals in the longitudinal direction of the indoor unit 100. The air channel side drain pan 42 is provided with a locking claw 45 that locks in the locking hole 44, and the heat hole side drain pan 41 and the air path side drain pan 42 are connected by the locking hole 44 and the locking claw 45. Are locked together.

ここで、室内機100の組み立て時にドレンパン40を持ち運ぶにあたり、係止爪45が意図せず奥側に押し込まれると、係止爪45と係止穴44との係止が外れて風路側ドレンパン42が熱交換器側ドレンパン41から脱落してしまう可能性がある。このような不都合を防止するため、熱交換器側ドレンパン41には、係止爪45の係止方向とは反対方向の押し込み量を規制して、係止爪45が係止穴44から外れるのを阻止するリブ46が設けられている。   Here, when carrying the drain pan 40 when assembling the indoor unit 100, if the locking claw 45 is unintentionally pushed into the back side, the locking claw 45 and the locking hole 44 are unlocked, and the airway side drain pan 42. May fall off from the heat exchanger side drain pan 41. In order to prevent such inconvenience, the amount of pushing in the direction opposite to the locking direction of the locking claw 45 is regulated in the heat exchanger side drain pan 41 so that the locking claw 45 comes off the locking hole 44. A rib 46 is provided to prevent this.

以上のように構成された室内機100において、ファンモータ20の回転によりファン10が回転すると、本体100a上面の吸込口4より室内空気が吸い込まれ、熱交換器30で冷媒と熱交換して吸い込み空気が冷気又は暖気とされる。そして、その冷気又は暖気が、風路6(図1参照)を通り、上下風向調整板7を備える吹出口5から室内へ吹き出されるようになっている。この時、上下風向調整板7は回動することで、ファン10によって送られる熱交換された空気の上下方向の風向を調整している。   In the indoor unit 100 configured as described above, when the fan 10 is rotated by the rotation of the fan motor 20, the indoor air is sucked from the suction port 4 on the upper surface of the main body 100a, and the heat exchanger 30 exchanges heat with the refrigerant and sucks it. The air is cool or warm. Then, the cold air or warm air passes through the air passage 6 (see FIG. 1) and is blown out into the room from the air outlet 5 provided with the vertical air direction adjusting plate 7. At this time, the vertical air direction adjusting plate 7 is rotated to adjust the vertical air direction of the heat-exchanged air sent by the fan 10.

次に、室内機100の風路について説明する。
図6は、本発明の実施の形態1に係る空気調和機の室内機100の風路の説明図である。
本実施の形態1の熱交換器30は、上述したようにW字形状を成しており、熱交換器30を通過後の空気流の風路は、図6の矢印に示すように、風路6a、風路6b及び風路6cの3つある。風路6aは、分割熱交換器30aを通過後の空気流を真下方向へ向けて流す風路である。風路6bは、分割熱交換器30b、30cを通過後の空気流を真下方向へ向けて流す風路であり、熱交換器側ドレンパン41の一部(風路壁41d)を風路壁としている。風路6cは、分割熱交換器30dを通過後の空気流を本体100aの背面側から前方下方に向けて流す風路であり、風路側ドレンパン42を風路壁としている。なお、風路6bは本発明に係る第1風路を構成し、風路6cは本発明に係る第2風路を構成している。
Next, the air path of the indoor unit 100 will be described.
FIG. 6 is an explanatory diagram of the air path of the indoor unit 100 of the air conditioner according to Embodiment 1 of the present invention.
The heat exchanger 30 of the first embodiment has a W shape as described above, and the airflow path after passing through the heat exchanger 30 is as shown by the arrows in FIG. There are three paths 6a, 6b and 6c. The air path 6a is an air path through which the air flow after passing through the divided heat exchanger 30a flows in the downward direction. The air passage 6b is an air passage through which the air flow that has passed through the divided heat exchangers 30b and 30c flows downward, and a part of the heat exchanger side drain pan 41 (the air passage wall 41d) is used as the air passage wall. Yes. The air passage 6c is an air passage through which the air flow after passing through the divided heat exchanger 30d flows from the back side of the main body 100a toward the front lower side, and the air passage side drain pan 42 is used as the air passage wall. The air passage 6b constitutes a first air passage according to the present invention, and the air passage 6c constitutes a second air passage according to the present invention.

ここで、比較のため、逆V字形状、N字形状及びM字形状の熱交換器を備えた従来の空気調和機における風路について図7〜図9を用いて説明する。   Here, for comparison, an air path in a conventional air conditioner including an inverted V-shaped, N-shaped, and M-shaped heat exchanger will be described with reference to FIGS.

図7は、逆V字形状の熱交換器200を備えた従来の空気調和機の室内機の概略断面図である。
この空気調和機の場合、逆V字形状の熱交換器200を通過後の空気流の風路は風路201の1つである。
FIG. 7 is a schematic cross-sectional view of a conventional air conditioner indoor unit equipped with an inverted V-shaped heat exchanger 200.
In the case of this air conditioner, the air path of the air flow after passing through the inverted V-shaped heat exchanger 200 is one of the air paths 201.

図8は、N字形状の熱交換器210を備えた従来の空気調和機の室内機の概略断面図である。図9は、M字形状の熱交換器220を備えた従来の空気調和機の室内機の概略断面図である。
図7及び図8の空気調和機の場合、N字形状の熱交換器210及びM字形状の熱交換器220を通過後の空気流の風路は、風路211aと風路211bとの2つである。
FIG. 8 is a schematic cross-sectional view of a conventional air conditioner indoor unit including an N-shaped heat exchanger 210. FIG. 9 is a schematic cross-sectional view of a conventional air conditioner indoor unit provided with an M-shaped heat exchanger 220.
In the case of the air conditioner of FIG.7 and FIG.8, the airflow path of the airflow after passing through the N-shaped heat exchanger 210 and the M-shaped heat exchanger 220 is two of the airflow path 211a and the airflow path 211b. One.

図7〜図9に示した逆V字形状、N字形状、M字形状の熱交換器の場合は、各風路の真下に大きな開口の吹出口50があるため、各空気流同士の温度差の影響が出る前に室内(室内機100の外)へ空気が吹き出されるので、結露発生の可能性は低い。   In the case of the inverted V-shaped, N-shaped, and M-shaped heat exchangers shown in FIGS. 7 to 9, since there is a large opening outlet 50 immediately below each air passage, the temperature of each air flow Since air is blown out into the room (outside the indoor unit 100) before the influence of the difference appears, the possibility of dew condensation is low.

これに対し、図6に示した本実施の形態1のW字形状の熱交換器30の場合、上述したように風路が3つ形成される。そして、風路6aの空気は、直下の吹出口5から室内に吹き出される。また、風路6bの空気の大半も直下の吹出口5から吹き出される。そして、風路6cの空気は、背面側から円弧状に流れて前方下方に導かれ、吹出口5から室内(室内機100の外)へと吹き出される。風路6cにおいてこのような流れとなるのは、室内機100と室外機とを接続するための配管や、ドレン水の排水のためのパイプなどを収納する配管スペースが筐体背面下部に設けられており、分割熱交換器30dの直下に吹出口5を配置できない配置上の制約があるためである。   In contrast, in the case of the W-shaped heat exchanger 30 of the first embodiment shown in FIG. 6, three air paths are formed as described above. And the air of the air path 6a is blown out indoors from the blower outlet 5 directly under. Further, most of the air in the air passage 6b is also blown out from the outlet 5 directly below. And the air of the air path 6c flows circularly from the back side, is guide | induced to the front downward direction, and is blown off from the blower outlet 5 indoors (outside the indoor unit 100). Such a flow in the air passage 6c is provided in the lower part of the back of the housing for a piping space for storing piping for connecting the indoor unit 100 and the outdoor unit, pipes for drain water drainage, and the like. This is because there is a restriction in arrangement in which the blowout port 5 cannot be arranged immediately below the split heat exchanger 30d.

このように、3つ目の風路6cの空気流は背面側から前方下方に向けて流れ、また、2つ目の風路6bの空気流は直下方向に流れることから、2つの空気流は吹出口5に至る手前で接触することになる。このため、2つの空気流に温度差がある場合には、何らかの対策を施さないと、気流接点11付近に結露が生じる。   In this way, the air flow in the third air passage 6c flows from the back side toward the front lower side, and the air flow in the second air passage 6b flows in the direct downward direction. Contact is made before reaching the outlet 5. For this reason, when there is a temperature difference between the two airflows, dew condensation occurs near the airflow contact 11 unless any countermeasure is taken.

ところで、冷房運転時に蒸発器として機能する複数の分割熱交換器30a〜30dのそれぞれを通過した後の各空気流の温度は、各分割熱交換器30a〜30dにおける熱交換量の影響を受けたものとなる。各分割熱交換器30a〜30dにおける熱交換量は、各分割熱交換器における冷媒の状態や、パス(配管パターン)の組み方の違いが関係してくる。それ故、分割熱交換器30b及び分割熱交換器30cで冷媒と熱交換して風路6bを通過する空気流の温度と、分割熱交換器30dで冷媒と熱交換して風路6cを通過する空気流の温度との関係は、パスの組み方によって変わってくる。すなわち、風路6bを通過する空気流の温度と、風路6cを通過する空気流の温度とは、同じ温度の場合もあれば、異なる場合もあり、また、異なる場合においても、風路6bを通過する空気流の温度が風路6cを通過する空気流の温度よりも高い場合もあれば、逆の場合もある。   By the way, the temperature of each airflow after passing through each of the plurality of divided heat exchangers 30a to 30d functioning as an evaporator during the cooling operation is affected by the amount of heat exchange in each divided heat exchanger 30a to 30d. It will be a thing. The amount of heat exchange in each of the divided heat exchangers 30a to 30d is related to the state of the refrigerant in each divided heat exchanger and the difference in how the paths (piping patterns) are assembled. Therefore, the temperature of the air flow passing through the air path 6b after exchanging heat with the refrigerant in the divided heat exchanger 30b and the divided heat exchanger 30c, and passing through the air path 6c after exchanging heat with the refrigerant in the divided heat exchanger 30d. The relationship between the temperature of the air flow and the temperature varies depending on how the paths are assembled. In other words, the temperature of the air flow passing through the air passage 6b and the temperature of the air flow passing through the air passage 6c may be the same temperature, may be different, or may be different. The temperature of the air flow passing through the air path may be higher than the temperature of the air flow passing through the air passage 6c, or vice versa.

このような理由で風路6bと風路6cとを通過する2つの空気流には温度差が生じるため、本実施の形態1では、以下の構造を採用して結露を防ぐことを可能としている。   For this reason, a temperature difference occurs between the two airflows passing through the airway 6b and the airway 6c. Therefore, in the first embodiment, it is possible to prevent condensation by adopting the following structure. .

ここではまず、風路6bを通過する空気流の温度が風路6cを通過する空気流の温度よりも高い場合における、結露防止構造について次の図10を用いて説明する。   Here, first, a dew condensation prevention structure when the temperature of the airflow passing through the air passage 6b is higher than the temperature of the airflow passing through the air passage 6c will be described with reference to FIG.

なお、図10と、後述の図11及び図12において、「冷風」及び「温風」の表記は、冷房又は暖房の空気を意味するものではなく、例えば0〜2℃程度の温度差において低い方を「冷風」、高い方を「温風」としたものである。   In FIG. 10 and FIGS. 11 and 12 to be described later, the expressions “cold air” and “warm air” do not mean air for cooling or heating, and are low in a temperature difference of about 0 to 2 ° C., for example. The direction is “cold air” and the higher one is “warm air”.

図10は、図6の風路6bと風路6cとが交差する部分を含むドレンパン周囲の拡大斜視図と、この斜視図の一部を拡大して略式化した図とを併せて示した図で、風路6bに冷風が通過し、風路6cに温風が通過する場合の結露抑制構造の説明図である。また、図11は、比較例を示す図で、結露が生じる構造例を示した図である。なお、図10の熱交換器30は、図6に示した熱交換器30と比較して配管数が異なる上、分割熱交換器30a〜30dの他に補助熱交換器を更に備えた構成を図示しているが、本発明の熱交換器はどちらの構成も含むものである。   FIG. 10 is a diagram showing an enlarged perspective view around the drain pan including a portion where the air passage 6b and the air passage 6c in FIG. 6 intersect with each other, and an enlarged schematic view of a part of the perspective view. FIG. 6 is an explanatory diagram of a dew condensation suppressing structure when cold air passes through the air passage 6b and hot air passes through the air passage 6c. Moreover, FIG. 11 is a figure which shows a comparative example, and is the figure which showed the structural example in which dew condensation occurs. In addition, the heat exchanger 30 of FIG. 10 differs in the number of piping compared with the heat exchanger 30 shown in FIG. 6, and is further equipped with the auxiliary | assistant heat exchanger other than the division | segmentation heat exchangers 30a-30d. Although illustrated, the heat exchanger of the present invention includes both configurations.

熱交換器側ドレンパン41の風路壁41dは、風路6bを通過する冷風にさらされて冷えており、一方、風路壁41dの下方には、風路6cを通過する温風が通過している。このため、図11に示すように、冷風にさらされて冷えている風路壁41dが、温風の通過する風路6cに露出していると、冷風と温風との温度差の影響を受けて風路壁41dの風路6cへの露出部分、具体的には風路壁41dの下端面41eに結露が生じることになる。   The air passage wall 41d of the heat exchanger side drain pan 41 is cooled by being exposed to the cold air passing through the air passage 6b, while the hot air passing through the air passage 6c passes below the air passage wall 41d. ing. For this reason, as shown in FIG. 11, if the air passage wall 41d that is cooled by being exposed to the cold air is exposed to the air passage 6c through which the hot air passes, the influence of the temperature difference between the cold air and the hot air is affected. As a result, condensation occurs on the exposed portion of the air passage wall 41d to the air passage 6c, specifically, the lower end surface 41e of the air passage wall 41d.

しかし、図10に示す構造では、風路壁41dの下方に風路側ドレンパン42が配置され、冷風にさらされて冷えている風路壁41dを風路側ドレンパン42で下側から覆っており、風路壁41dの下端面41eが風路6cに露出しない構成としている。このため、風路壁41dにおける結露を防止できる。また、風路壁41dと風路壁41dの下方に位置する風路側ドレンパン42との間には断熱材43が配置されているため、風路側ドレンパン42が風路6bを通過する冷風で冷却されることがない。このため、風路側ドレンパン42が風路6cを通過する温風との温度差により結露することがない。   However, in the structure shown in FIG. 10, the air channel side drain pan 42 is disposed below the air channel wall 41d, and the air channel wall 41d that has been cooled by being exposed to the cold air is covered with the air channel side drain pan 42 from below. The lower end surface 41e of the road wall 41d is configured not to be exposed to the air passage 6c. For this reason, dew condensation on the air passage wall 41d can be prevented. Further, since the heat insulating material 43 is disposed between the air passage wall 41d and the air passage side drain pan 42 located below the air passage wall 41d, the air passage side drain pan 42 is cooled by the cold air passing through the air passage 6b. There is nothing to do. For this reason, the air path side drain pan 42 is not condensed due to a temperature difference from the warm air passing through the air path 6c.

図12は、図6の風路6bと風路6cとが交差する部分を含むドレンパン周囲を拡大しつつ略式化した図で、風路6bに温風が通過し、風路6cに冷風が通過する場合の結露抑制構造の説明図である。
図12に示す構造では、風路6cの冷風にさらされて冷えている風路側ドレンパン42は、温風にさらされて暖められている熱交換器側ドレンパン41を越えて風路6bに露出していない。具体的には、温度が低い方の空気流が流れる風路6b側の風路側ドレンパン42の端面を、温度が高い方の空気流が流れる熱交換器側ドレンパン41で風路6b側から覆う構成としている。このため、風路6bの空気流と風路6cの空気流との温度差による結露は生じない。
FIG. 12 is an enlarged schematic view of the periphery of the drain pan including the portion where the air passage 6b and the air passage 6c in FIG. 6 intersect. Hot air passes through the air passage 6b and cold air passes through the air passage 6c. It is explanatory drawing of the dew condensation suppression structure in the case of doing.
In the structure shown in FIG. 12, the air channel side drain pan 42 that is cooled by being exposed to the cold air of the air channel 6c is exposed to the air channel 6b beyond the heat exchanger side drain pan 41 that is heated by being exposed to the hot air. Not. Specifically, a configuration in which the end surface of the air passage side drain pan 42 on the air passage 6b side through which the air flow having a lower temperature flows is covered from the air passage 6b side by the heat exchanger side drain pan 41 through which the air flow having a higher temperature flows. It is said. For this reason, the dew condensation by the temperature difference of the airflow of the air path 6b and the airflow of the air path 6c does not arise.

風路6bを通過する空気流の温度と風路6cを通過する空気流の温度との関係は、上述したように、分割熱交換器30b、30cと分割熱交換器30dとにおけるパスの組み方によって変わってくる。このため、熱交換器30の性能評価を行い、空気流の温度関係を確認した上で、ドレンパン40において図10の構造と図12の構造のどちらを採用するかを決めればよい。   As described above, the relationship between the temperature of the air flow passing through the air passage 6b and the temperature of the air flow passing through the air passage 6c depends on how the paths in the divided heat exchangers 30b and 30c and the divided heat exchanger 30d are assembled. It will change. For this reason, after evaluating the performance of the heat exchanger 30 and confirming the temperature relationship of the air flow, it may be determined which of the structure of FIG. 10 and the structure of FIG.

また、機種によっては、例えば6畳用、10畳用等といった能力帯やその他条件に応じて図10の構造と図12の構造とを使い分ける必要がある。このため、熱交換器30の性能毎に図10と図12との両タイプを用意しておくのも良い。   Further, depending on the model, for example, it is necessary to use the structure of FIG. 10 and the structure of FIG. For this reason, it is also possible to prepare both types of FIG. 10 and FIG. 12 for each performance of the heat exchanger 30.

以上説明したように本実施の形態1では、ドレンパン40が、熱交換器30の下方に配置されてドレン水を受け止める熱交換器側ドレンパン41と、熱交換器側ドレンパン41の下方に配置される風路側ドレンパン42とで構成されている。そして、熱交換器側ドレンパン41を風路壁とする風路6bと、風路側ドレンパン42を風路壁とする風路6cとを有し、風路6b、6cのうち、冷房運転時に温度が低い方の空気流が流れる風路側を構成する風路壁を、温度が高い方の空気流が流れる風路に露出しない構成とした。このため、熱交換器30を通過後の風路が複数ある空気調和機の室内機100において、風路内の結露を防止できる。また、結露の恐れがないため、搭載した熱交換器30の能力を最大限に活かせる熱交換率の高い空気調和機の室内機を得ることができる。   As described above, in the first embodiment, the drain pan 40 is disposed below the heat exchanger 30 and receives the drain water, and is disposed below the heat exchanger side drain pan 41. The air channel side drain pan 42 is used. And it has the air path 6b which uses the heat exchanger side drain pan 41 as an air path wall, and the air path 6c which uses the air path side drain pan 42 as an air path wall, and temperature is air_conditioning | cooling operation among air paths 6b and 6c. The air passage wall constituting the air passage side through which the lower air flow flows was configured not to be exposed to the air passage through which the air flow having a higher temperature flows. For this reason, in the indoor unit 100 of the air conditioner having a plurality of air paths after passing through the heat exchanger 30, condensation in the air paths can be prevented. Moreover, since there is no possibility of dew condensation, an indoor unit of an air conditioner having a high heat exchange rate that can make full use of the capability of the mounted heat exchanger 30 can be obtained.

ここで、冷房運転時に温度が低い方の空気流が流れる風路側を構成する風路壁が、温度が高い方の空気流が流れる風路に露出しない構成は、具体的には以下のようにすればよい。すなわち、温度が低い方の空気流が面する熱交換器側ドレンパン41の風路壁41dの下端面41e(図10参照)を、温度が高い方の空気流が面する風路側ドレンパン42の風路壁で下側から覆うようにすればよい。また、温度が低い方の空気流が面する風路側ドレンパン42の風路壁の風路6bの端面41f(図12参照)を、温度が高い方の空気流が面する熱交換器側ドレンパン41の風路壁41dで風路6b側から覆うように構成すればよい。以上のように構成することで、熱交換器30がW字形状を有する構成において、結露防止を図ることができる。   Here, the configuration in which the air passage wall constituting the air passage side through which the air flow having the lower temperature flows during cooling operation is not exposed to the air passage through which the air flow having the higher temperature flows is specifically as follows. do it. That is, the wind of the air channel side drain pan 42 facing the lower end surface 41e (see FIG. 10) of the air channel wall 41d of the heat exchanger side drain pan 41 facing the lower temperature air flow faces the air channel side drain pan 42 facing the higher temperature air flow. What is necessary is just to make it cover from a lower side with a road wall. Further, the end surface 41f (see FIG. 12) of the air passage 6b on the air passage wall of the air passage side drain pan 42 facing the air flow having the lower temperature faces the heat exchanger side drain pan 41 facing the air flow having the higher temperature. What is necessary is just to comprise so that it may cover from the air path 6b side by 41 d of air path walls. By configuring as described above, it is possible to prevent condensation in the configuration in which the heat exchanger 30 has a W shape.

また、ドレンパン40を構成する熱交換器側ドレンパン41と風路側ドレンパン42とは、熱交換器側ドレンパン41に設けた複数の係止穴44と、風路側ドレンパン42に設けた係止爪45とが係止することで互いに係止される。そして、熱交換器側ドレンパン41には、係止爪45の係止方向とは反対方向の押し込み量を規制して、係止爪45が係止穴44から外れるのを阻止するリブ46を設けたので、ドレンパン40を持ち運ぶ際に、係止爪45と係止穴44との係止が外れて風路側ドレンパン42が熱交換器側ドレンパン41から脱落してしまう不都合を防止できる。   Further, the heat exchanger side drain pan 41 and the air path side drain pan 42 constituting the drain pan 40 are a plurality of locking holes 44 provided in the heat exchanger side drain pan 41, and locking claws 45 provided in the air path side drain pan 42. Are locked to each other. The heat exchanger side drain pan 41 is provided with a rib 46 that restricts the pushing amount of the locking claw 45 in the direction opposite to the locking direction and prevents the locking claw 45 from coming off the locking hole 44. Therefore, when carrying the drain pan 40, it is possible to prevent the inconvenience that the locking claw 45 and the locking hole 44 are unlocked and the air channel side drain pan 42 is dropped from the heat exchanger side drain pan 41.

なお、本実施の形態1では、熱交換器30がW字形状で、風路が3つの例を示したが、熱交換器30の形状及び風路の数はこれに限られたものではなく、要するに温度差の異なる2つの空気流が接触する箇所における結露防止構造として本発明を適用できる。   In the first embodiment, the heat exchanger 30 is W-shaped and has three air paths. However, the shape of the heat exchanger 30 and the number of air paths are not limited to this. In short, the present invention can be applied as a dew condensation prevention structure at a location where two air flows having different temperature differences contact each other.

1 背面ケース、2 筐体、3 前面意匠パネル、4 吸込口、5 吹出口、6 風路、6a 風路、6b 風路、6c 風路、7 上下風向調整板、10 ファン、11 気流接点、20 ファンモータ、30 熱交換器、30a 分割熱交換器、30b 分割熱交換器、30c 分割熱交換器、30d 分割熱交換器、31 フィン、32 伝熱管、40 ドレンパン、41 熱交換器側ドレンパン、41a 水受け部、41b 水受け部、41ba 前側端部、41c 連結部、41d 風路壁、41e 下端面、41f 端面、42 風路側ドレンパン、42a 風路部、42b 風路部、42c 連結部、43 断熱材、44 係止穴、45 係止爪、46 リブ、50 吹出口、100 室内機、100a 本体、200 熱交換器、201 風路、210 熱交換器、211a 風路、211b 風路、220 熱交換器。   DESCRIPTION OF SYMBOLS 1 Back case, 2 housing | casing, 3 front design panel, 4 suction inlet, 5 blower outlet, 6 air path, 6a air path, 6b air path, 6c air path, 7 up-and-down air direction adjusting plate, 10 fan, 11 airflow contact, 20 fan motor, 30 heat exchanger, 30a split heat exchanger, 30b split heat exchanger, 30c split heat exchanger, 30d split heat exchanger, 31 fin, 32 heat transfer tube, 40 drain pan, 41 heat exchanger side drain pan, 41a water receiving portion, 41b water receiving portion, 41ba front side end portion, 41c connecting portion, 41d air passage wall, 41e lower end surface, 41f end surface, 42 air passage side drain pan, 42a air passage portion, 42b air passage portion, 42c connecting portion, 43 heat insulating material, 44 locking hole, 45 locking claw, 46 rib, 50 outlet, 100 indoor unit, 100a body, 200 heat exchanger, 201 air path, 210 Exchanger, 211a air passages, 211b air passage, 220 heat exchanger.

Claims (5)

上部に吸込口、下部に吹出口を有する本体と、
前記本体内に設置されたファンと、
前記本体内に設置された熱交換器と、
前記熱交換器で生じたドレン水を受け止めるドレンパンとを備え、
前記ドレンパンは、前記熱交換器の下方に配置された熱交換器側ドレンパンと前記熱交換器側ドレンパンの下方に配置された風路側ドレンパンとを重ねて構成されており、
前記本体は、前記熱交換器側ドレンパンを風路壁とする第1風路と、前記風路側ドレンパンを風路壁とする第2風路とを有し、前記吸込口から吸い込まれた前記ファンからの空気流を、前記熱交換器を通過後に複数に分流し、分割した各空気流を前記第1風路と前記第2風路とに流した後、合流して前記吹出口から吹き出すように構成され、
前記第1風路と前記第2風路とのうち、冷房運転時に温度が低い方の空気流が流れる風路側を構成する前記風路壁が、温度が高い方の空気流が流れる風路に露出しない空気調和機の室内機。
A main body having a suction port at the top and a blow-off port at the bottom;
A fan installed in the main body;
A heat exchanger installed in the main body;
A drain pan for receiving drain water generated in the heat exchanger,
The drain pan is configured by stacking a heat exchanger side drain pan disposed below the heat exchanger and an air passage side drain pan disposed below the heat exchanger side drain pan.
The main body has a first air passage having the heat exchanger side drain pan as an air passage wall and a second air passage having the air passage side drain pan as an air passage wall, and the fan sucked from the suction port The air flow from is divided into a plurality of air flows after passing through the heat exchanger, and the divided air flows are passed through the first air passage and the second air passage, and then merged and blown out from the outlet. Composed of
Of the first air passage and the second air passage, the air passage wall constituting the air passage side through which the air flow having a lower temperature flows during cooling operation is an air passage through which the air flow having a higher temperature flows. the indoor unit of the exposed have such air conditioner.
温度が低い方の空気流に面する前記熱交換器側ドレンパンの風路壁の下端面、温度が高い方の空気流に面する前記風路側ドレンパンの風路壁で下側から覆われている請求項1記載の空気調和機の室内機。 The lower end face of the air passage wall of the heat exchanger-side drain pan temperature faces the lower air flow is we covered from below by the air passage wall of the air path side drain pan facing the air flow the higher the temperature, An indoor unit of an air conditioner according to claim 1, wherein there. 温度が低い方の空気流に面する前記風路側ドレンパンの風路壁の前記第1風路側の端面、温度が高い方の空気流に面する前記熱交換器側ドレンパンの風路壁で前記第1風路側から覆われている請求項1記載の空気調和機の室内機。 The end surface of the first wind roadside air passage wall of the air path side drain pan temperature faces the lower air flow, the wind path wall of the heat exchanger side drain pan facing the air flow the higher the temperature, An indoor unit of an air conditioner according to claim 1 wherein the cracking covered from the first wind roadside. 前記熱交換器は、4つの分割熱交換器を前記本体の右又は左側方から見てW字形状に組み合わせた構成を有し、
前記第1風路は4つの前記分割熱交換器のうち、真ん中の2つの前記分割熱交換器を通過した空気流を真下方向へ向けて流す風路であり、
前記第2風路は最背面側の前記分割熱交換器を通過後の空気流を前記本体の背面側から前方下方に向けて流す風路である請求項1〜請求項3の何れか一項に記載の空気調和機の室内機。
The heat exchanger has a configuration in which four divided heat exchangers are combined in a W shape when viewed from the right or left side of the main body,
The first air passage is an air passage through which the air flow that has passed through the two divided heat exchangers in the middle of the four divided heat exchangers flows downward.
4. The air passage according to claim 1, wherein the second air passage is an air passage through which an air flow after passing through the split heat exchanger on the backmost side flows from the back side of the main body toward the front lower side. 5. The indoor unit of the air conditioner described in 1.
前記風路側ドレンパンは複数の係止爪を有し、
前記熱交換器側ドレンパンは、前記本体の長手方向に間隔を空けて形成され、前記複数の係止爪が係止される複数の係止穴と、前記係止穴に係止された前記係止爪が前記係止爪の係止方向とは反対方向に押し込まれた際に前記係止爪の移動を規制して前記係止爪が前記係止穴から外れるのを阻止するリブとを有する請求項1〜請求項4の何れか一項に記載の空気調和機の室内機。
The airway side drain pan has a plurality of locking claws,
The heat exchanger side drain pan is formed at intervals in the longitudinal direction of the main body, and a plurality of locking holes for locking the plurality of locking claws, and the engagement locked by the locking holes. A rib that restricts movement of the locking claw and prevents the locking claw from coming off the locking hole when the locking claw is pushed in a direction opposite to the locking direction of the locking claw. The indoor unit of the air conditioner as described in any one of Claims 1-4.
JP2017532346A 2015-08-06 2015-08-06 Air conditioner indoor unit Active JP6400210B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/072411 WO2017022131A1 (en) 2015-08-06 2015-08-06 Indoor unit of air conditioners

Publications (2)

Publication Number Publication Date
JPWO2017022131A1 JPWO2017022131A1 (en) 2018-03-01
JP6400210B2 true JP6400210B2 (en) 2018-10-03

Family

ID=57942682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017532346A Active JP6400210B2 (en) 2015-08-06 2015-08-06 Air conditioner indoor unit

Country Status (3)

Country Link
JP (1) JP6400210B2 (en)
CN (1) CN206469462U (en)
WO (1) WO2017022131A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023230227A1 (en) * 2022-05-26 2023-11-30 Rheem Manufacturing Company Drain assembly for heat exchanger system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911318Y2 (en) * 1980-08-14 1984-04-07 木村工機株式会社 Condensation prevention device at ceiling-mounted cooling outlet
JPS57116307U (en) * 1981-12-25 1982-07-19
JPS59103119U (en) * 1982-12-27 1984-07-11 ダイキン工業株式会社 air conditioner
JP5409544B2 (en) * 2010-08-04 2014-02-05 三菱電機株式会社 Air conditioner indoor unit and air conditioner
JP2015055419A (en) * 2013-09-12 2015-03-23 パナソニック株式会社 Air conditioner

Also Published As

Publication number Publication date
JPWO2017022131A1 (en) 2018-03-01
CN206469462U (en) 2017-09-05
WO2017022131A1 (en) 2017-02-09

Similar Documents

Publication Publication Date Title
JP4628380B2 (en) Air conditioner
JP6223596B2 (en) Air conditioner indoor unit
KR102227419B1 (en) Heat exchanger and air conditioner having the same
EP2835587B1 (en) Heat exchanger for air-conditioning device and air-conditioning device
US20160084520A1 (en) Indoor unit for air-conditioning apparatus, and air-conditioning apparatus
JP2017040389A (en) Heat exchanger of heat pump application apparatus
JP2006336909A (en) Condenser, and indoor unit for air conditioner using it
WO2016063397A1 (en) Air conditioner
JP6370399B2 (en) Air conditioner indoor unit
WO2017068725A1 (en) Indoor unit for air conditioner
JP6400378B2 (en) Air conditioner
JP6400210B2 (en) Air conditioner indoor unit
JP6253513B2 (en) Air conditioner indoor unit
JP2008256311A (en) Air conditioning device
JP2001296037A (en) Air conditioner
JP2015021676A (en) Indoor heat exchanger, indoor equipment, outdoor heat exchanger, outdoor equipment, and air conditioner
JP2014081150A (en) Air conditioner
JP6614876B2 (en) Air conditioner indoor unit
JP6316458B2 (en) Air conditioner
JP5455817B2 (en) Air conditioner indoor unit and air conditioner equipped with the indoor unit
JP6486718B2 (en) Heat exchanger
JP5430527B2 (en) Air conditioner indoor unit and air conditioner equipped with the indoor unit
CN102679793A (en) Heat exchanger fin
JP2011047600A (en) Heat exchanger and air conditioner mounted with the same
JP2008215758A (en) Heat exchanger

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180904

R150 Certificate of patent or registration of utility model

Ref document number: 6400210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250