JP6399352B2 - Methods for separating and recovering platinum group elements - Google Patents

Methods for separating and recovering platinum group elements Download PDF

Info

Publication number
JP6399352B2
JP6399352B2 JP2015006207A JP2015006207A JP6399352B2 JP 6399352 B2 JP6399352 B2 JP 6399352B2 JP 2015006207 A JP2015006207 A JP 2015006207A JP 2015006207 A JP2015006207 A JP 2015006207A JP 6399352 B2 JP6399352 B2 JP 6399352B2
Authority
JP
Japan
Prior art keywords
resin
platinum group
group element
hydrochloric acid
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015006207A
Other languages
Japanese (ja)
Other versions
JP2016132782A (en
Inventor
菊田 直子
直子 菊田
浅野 聡
聡 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2015006207A priority Critical patent/JP6399352B2/en
Publication of JP2016132782A publication Critical patent/JP2016132782A/en
Application granted granted Critical
Publication of JP6399352B2 publication Critical patent/JP6399352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、白金族元素(Platinum Group Metals:PGM)の分離回収方法に関し、更に詳しくは、比較的低濃度に白金族元素を含み、不純物元素が高濃度に共存する塩化物溶液から、クロロ錯体等の塩化物の形態としての白金族元素を、アミンを含有する合成樹脂を用いて選択的に吸着、溶離して、含まれる白金族元素を分離、回収する白金族元素の分離回収方法に関する。   The present invention relates to a method for separating and recovering platinum group metals (PGM), and more particularly, from a chloride solution containing a platinum group element at a relatively low concentration and a high concentration of impurity elements, from a chloro complex. The present invention relates to a platinum group element separation / recovery method in which platinum group elements in the form of chlorides, etc. are selectively adsorbed and eluted using a synthetic resin containing an amine to separate and recover the contained platinum group elements.

白金族元素は、資源的に希少な元素であり、白金族元素を高品位で含有する白金族元素単独の鉱石としての産出は少ない。また、工業的に生産される白金族元素は、銅、ニッケル、コバルトなどの鉱石中に付随して存在しているものを、これら非鉄金属の製錬過程で副産物として精製分離することにより産出されるものである。
また、自動車排ガス処理触媒など各種の使用済み廃触媒などからリサイクルされる白金族元素の比率も高い。
Platinum group elements are rare elements in terms of resources, and are rarely produced as ores containing only platinum group elements containing high quality platinum group elements. In addition, industrially produced platinum group elements are produced by refining and separating by-products in the smelting process of these non-ferrous metals that are incidental to ores such as copper, nickel and cobalt. Is.
In addition, the ratio of platinum group elements recycled from various used waste catalysts such as automobile exhaust gas treatment catalysts is also high.

この中で、非鉄金属製錬からの副産物として白金族元素を回収する場合は、製錬原料の中にごく微量含有されている白金、パラジウム、イリジウム、ロジウム、ルテニウム、及びオスミウムなどの白金族元素が、その化学的性質から主金属である銅、ニッケルなどの硫化濃縮物及び粗金属の中に濃縮され、さらに選択浸出、電解精製など主金属を回収する工程で二次濃縮され、最終的に残滓等として白金族元素を含む貴金属濃縮物が分離される。   Among these, when recovering platinum group elements as by-products from non-ferrous metal smelting, platinum group elements such as platinum, palladium, iridium, rhodium, ruthenium, and osmium contained in trace amounts in the smelting raw materials However, due to its chemical properties, it is concentrated in the main metals such as copper and nickel sulfide concentrates and crude metals, and further concentrated in the process of recovering the main metals such as selective leaching and electrolytic purification, and finally A noble metal concentrate containing a platinum group element as a residue or the like is separated.

分離された貴金属濃縮物には、主金属である銅、ニッケルなどと共に、他の構成元素である金、銀等の貴金属、セレン、テルル等の16族(旧称:VI族)元素、ビスマス、アンチモン、ヒ素などの15族(旧称:V族)元素が、白金族元素に比べて高い含有量で共存するのが通常である。その後、金、銀の回収を経て、白金族元素の回収が行われるが、通常は一旦液中に浸出してから溶媒抽出、イオン交換法などで精製分離して回収する方法が行われている。   The separated noble metal concentrate includes main metals such as copper and nickel, as well as other constituent elements such as gold and silver, group 16 (former name: group VI) elements such as selenium and tellurium, bismuth and antimony. In general, a group 15 (former name: group V) element such as arsenic coexists with a higher content than a platinum group element. After that, the platinum group element is recovered through recovery of gold and silver, but usually a method of leaching into the liquid and then purifying and recovering by solvent extraction, ion exchange method, etc. is performed. .

ところで、白金族元素を含む水溶液中の白金族元素濃度は、通常非常に低いことから、一次濃縮には溶媒抽出よりもイオン交換法が特に適している。また、白金族元素は通常塩化物水溶液に溶かして取り扱われ、塩化物水溶液中では白金族元素はクロロ錯体の陰イオンとして存在する。そのため陰イオン交換能力がある樹脂や吸着材により吸着、回収が可能である。   By the way, since the platinum group element concentration in the aqueous solution containing the platinum group element is usually very low, the ion exchange method is particularly suitable for primary concentration rather than solvent extraction. In addition, platinum group elements are usually handled by being dissolved in an aqueous chloride solution, and in the aqueous chloride solution, the platinum group element exists as an anion of a chloro complex. Therefore, it can be adsorbed and collected by a resin or adsorbent having anion exchange ability.

市販の陰イオン交換樹脂は、樹脂のスチレン、アクリルをベースとする基本骨格の炭素原子にアミノ基または第四アンモニウム基が直接結合しており、堅固な構造である。
そこで、陰イオンである白金族のクロロ錯体(例えば [MCl2−)は、樹脂中のアミン塩、または、第四アンモニウム塩を構成する陰イオンと交換することにより吸着される。
しかしながら、単純な陰イオン交換だけでは吸着力は弱く、実際には、隣接する炭素原子に連なって付いている複数のアミノ基で金属イオンを包み込むいわゆるキレート効果により吸着力を増大させている。
A commercially available anion exchange resin has a rigid structure in which an amino group or a quaternary ammonium group is directly bonded to a carbon atom of a basic skeleton based on styrene or acrylic of the resin.
Therefore, a platinum group chloro complex (for example, [MCl 6 ] 2− ) which is an anion is adsorbed by exchanging it with an anion constituting an amine salt or a quaternary ammonium salt in the resin.
However, the adsorption power is weak only by simple anion exchange, and in fact, the adsorption power is increased by a so-called chelate effect that wraps a metal ion with a plurality of amino groups attached to adjacent carbon atoms.

陰イオン交換樹脂の一種である、複数の種類のアミノ基を官能基とするポリアミン型アニオン交換樹脂は、アミノ基の密度が高いためキレート効果が高く、通常のアニオン交換樹脂より強い錯形成能力を有している。
また、一〜三級アミンを官能基として持つ陰イオン交換樹脂は、弱塩基性樹脂に相当するため、弱酸型の白金族のクロロ錯体(例えば[M(HO)Clなど)を吸着可能である。一方、塩化物溶液中で、陰イオンが不安定な銅等の多くの金属イオン、あるいは強酸型オキソ酸イオンを形成するヒ素、6価のセレンイオン、6価のテルルイオンなどは吸着しにくいという性質を有している。
したがって、この化学的性質を利用して、陰イオン交換樹脂は、不純物元素の存在下で白金族元素のみを選択的に吸着できる。
A polyamine type anion exchange resin, which is a kind of anion exchange resin and has multiple amino groups as functional groups, has a high chelating effect due to its high density of amino groups, and has a stronger complexing ability than ordinary anion exchange resins. Have.
An anion exchange resin having a primary to tertiary amine as a functional group corresponds to a weakly basic resin, and thus a weak acid type platinum group chloro complex (for example, [M (H 2 O) 2 Cl 4 ] etc. ) Can be adsorbed. On the other hand, it is difficult to adsorb many metal ions such as copper, whose anions are unstable, or arsenic, hexavalent selenium ions, hexavalent tellurium ions, etc. that form strong acid oxoacid ions in chloride solutions have.
Therefore, using this chemical property, the anion exchange resin can selectively adsorb only the platinum group element in the presence of the impurity element.

前記陰イオン交換樹脂を用いて白金族元素を含む水溶液から白金族元素を吸着する方法としては、多くの方法が知られているが、代表的な方法としては、下記のような例がある。
特許文献1には、白金族元素を含む水溶液とポリオレフィン、フッ素化ポリエチレン、セルロース、ビスコースにチオ尿素、尿素、アミン、ポリアミンを放射線グラフト化により結合させた吸着材とを接触させ、吸着した白金族元素を強酸、塩、錯化剤により溶離する方法が記載されている。
Many methods are known as a method for adsorbing a platinum group element from an aqueous solution containing a platinum group element using the anion exchange resin, and typical examples include the following examples.
In Patent Document 1, platinum that has been adsorbed by bringing an aqueous solution containing a platinum group element into contact with an adsorbent in which thiourea, urea, amine, or polyamine is bonded to polyolefin, fluorinated polyethylene, cellulose, or viscose by radiation grafting is disclosed. A method for eluting group elements with strong acids, salts and complexing agents is described.

特許文献2には、白金族元素と不純物元素を含む塩化物溶液から白金族元素を回収する方法において、塩化物溶液をポリアミン型アニオン交換樹脂と接触させて白金族元素を選択的に吸着させ、吸着処理後の樹脂を希塩酸、水で洗浄し、次いで、洗浄処理後の樹脂から白金族元素をチオ尿素、さらに必要に応じて塩酸で溶離させる方法が記述されている。
特許文献2の方法では、溶離に関しては、最適な溶離剤であるチオ尿素を用い、さらに60〜90℃の高温下で溶離を行うことにより、樹脂内でキレート効果により固定されやすい白金族元素を効果的に溶離することが可能であり、チオ尿素に次いで塩酸を用いて追加溶離することにより、溶離が特に困難とされるイリジウム、ルテニウム、ロジウムも溶離可能な方法が示されているものの、イリジウム、ルテニウム、及びロジウムの三元素の溶離率に関しては、さらなる改善の余地があった。
In Patent Document 2, in a method for recovering a platinum group element from a chloride solution containing a platinum group element and an impurity element, the platinum group element is selectively adsorbed by contacting the chloride solution with a polyamine type anion exchange resin, A method is described in which the resin after the adsorption treatment is washed with dilute hydrochloric acid and water, and then the platinum group element is eluted from the resin after the washing treatment with thiourea and, if necessary, hydrochloric acid.
In the method of Patent Document 2, with respect to elution, thiourea, which is an optimal eluent, is used, and further, elution is performed at a high temperature of 60 to 90 ° C. to thereby remove a platinum group element that is easily fixed by the chelate effect in the resin. Although iridium, ruthenium, and rhodium can be effectively eluted and iridium, ruthenium, and rhodium, which are considered to be particularly difficult to elute by additional elution with thiourea followed by hydrochloric acid, are shown, iridium There was room for further improvement in the elution rates of the three elements, ruthenium and rhodium.

特許文献3には、従来型の陰イオン交換樹脂・交換体よりも柔軟な構造を持つ、アミノ基を含むポリマーを他のポリマーとポリマーアロイ化した樹脂を使用した白金族元素の回収方法が記載されている。
この特許文献3に開示される方法では、一旦強く吸着した白金族元素や共存元素のクロロ錯体の溶離反応が進みやすい点で優れている。ただし、実用に耐え得る物理的・化学的安定性を備えたポリマーアロイとするためには、一定体積の樹脂内に含有するアミン量を制限せざるを得ず、その場合には白金族元素の吸着容量が制限される。
また、物理的にアミンを含むポリマーと他のポリマーを混合して製造されているため、使用するにつれて樹脂内のアミンが減少して白金族元素の吸着容量が減少するおそれがあった。
Patent Document 3 describes a platinum group element recovery method using a resin alloyed with a polymer containing an amino group and a polymer alloy, which has a more flexible structure than conventional anion exchange resins and exchangers. Has been.
The method disclosed in Patent Document 3 is excellent in that the elution reaction of a platinum group element or a coexisting element chloro complex once strongly adsorbed easily proceeds. However, in order to obtain a polymer alloy having physical and chemical stability that can withstand practical use, the amount of amine contained in a certain volume of resin must be limited. Adsorption capacity is limited.
In addition, since it is produced by physically mixing a polymer containing an amine with another polymer, the amine in the resin is reduced with use, and the adsorption capacity of the platinum group element may be reduced.

特許4198460号公報Japanese Patent No. 4198460 特許4144311号公報Japanese Patent No. 4144411 特開2014−181393号公報JP 2014-181393 A

本発明の目的は、上述のような従来技術の問題点に鑑み、塩化物水溶液中の白金族元素を高濃度の不純物元素の共存下において、高い選択性および吸着率で、かつ従来型の樹脂よりも高い吸着容量で白金族元素を吸着し、吸着された白金族元素を高い溶離率で溶離する、物理的にも化学的にも安定な方法を提供することにある。   An object of the present invention is to solve the above-mentioned problems of the prior art, and to achieve high selectivity and adsorption rate with a platinum group element in a chloride aqueous solution in the presence of a high concentration of impurity elements, and a conventional resin. An object of the present invention is to provide a physically and chemically stable method for adsorbing platinum group elements with a higher adsorption capacity and eluting the adsorbed platinum group elements at a high elution rate.

本発明者らは、上記の課題を解決するために鋭意研究を重ねた結果、比較的低濃度の白金族元素を含む塩化物溶液に、アミノ基を含むポリマーと親水性ポリマーを化学結合させた構造を有する水に不溶な樹脂を吸着材に適用したところ、塩化物溶液中に高濃度の不純物元素が共存するにもかかわらず、白金族元素を選択的にかつ高い吸着容量で吸着できるだけでなく、従来の陰イオン交換樹脂よりも溶離率が大幅に向上した、物理的にも化学的にも安定な方法となることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors chemically bonded a polymer containing an amino group and a hydrophilic polymer to a chloride solution containing a platinum group element at a relatively low concentration. When a water-insoluble resin having a structure is applied to the adsorbent, platinum group elements can be adsorbed selectively and with a high adsorption capacity, despite the presence of high-concentration impurity elements in the chloride solution. The present inventors have found that the elution rate is significantly improved as compared with conventional anion exchange resins and that the method is physically and chemically stable, and the present invention has been completed.

すなわち、本発明の第1の発明は、少なくとも白金又はルテニウムの白金族元素と不純物元素を含む酸性溶液から前記白金族元素を回収する方法において、下記工程(1)〜(3)を順に経ることを特徴とする白金族元素の分離回収方法である。 That is, the first invention of the present invention, there is provided a method of recovering the platinum group elements from acidic solutions containing at least platinum or ruthenium platinum group element and impurity elements, the following steps (1) to (3) in order undergoes that the This is a method for separating and recovering platinum group elements.

(1)前記酸性溶液を、アミノ基を含むポリマーが親水性ポリマーと化学結合した構造を有する水に不溶な樹脂と接触させ、前記樹脂に前記酸性溶液に含まれる白金族元素を吸着させる吸着処理する第一の工程。
(2)前記第一の工程を経て白金族元素を吸着した樹脂を、洗浄処理する第二の工程。
(3)前記第二の工程を経た樹脂に、液温度が60〜90℃のチオ尿素を含有する水溶液を接触させ、前記樹脂に吸着した白金族元素を溶離処理する第三の工程。
(1) Adsorption treatment in which the acidic solution is brought into contact with water-insoluble resin having a structure in which an amino group-containing polymer is chemically bonded to a hydrophilic polymer, and the platinum group element contained in the acidic solution is adsorbed on the resin. The first step to do.
(2) A second step of cleaning the resin that has adsorbed the platinum group element through the first step.
(3) A third step in which an aqueous solution containing thiourea having a liquid temperature of 60 to 90 ° C. is brought into contact with the resin having undergone the second step, and the platinum group element adsorbed on the resin is eluted.

本発明の第2の発明は、第1の発明の第一の工程における酸性溶液が、銀/塩化銀電極を規準(参照)電極とする酸化還元電位として、電位700〜1100mVに維持されることを特徴とする白金族元素の分離回収方法である。   In the second invention of the present invention, the acidic solution in the first step of the first invention is maintained at a potential of 700 to 1100 mV as a redox potential using a silver / silver chloride electrode as a reference (reference) electrode. This is a method for separating and recovering platinum group elements.

本発明の第3の発明は、第1及び第2の発明において第二の工程における洗浄処理が、吸着処理後の樹脂に塩酸溶液と水を順次接触させて、吸着処理後の樹脂を洗浄する処理であることを特徴とする白金族元素の分離回収方法である。   In the third invention of the present invention, in the first and second inventions, the washing process in the second step is to wash the resin after the adsorption treatment by sequentially bringing the hydrochloric acid solution and water into contact with the resin after the adsorption treatment. This is a method for separating and recovering a platinum group element, characterized by being a treatment.

本発明の第4の発明は、第3の発明おける塩酸溶液の塩素イオン濃度が、4mol/L未満であることを特徴とする白金族元素の分離回収方法である。   A fourth invention of the present invention is a method for separating and recovering platinum group elements, wherein the chlorine ion concentration of the hydrochloric acid solution in the third invention is less than 4 mol / L.

本発明の第5の発明は、第1から第4の発明の第三の工程における溶離処理が、洗浄処理後の樹脂にチオ尿素を含有する水溶液を接触させた後、濃度が2mol/L以上の塩酸を、その樹脂に接触させることを特徴とする白金族元素の分離回収方法である。   In the fifth invention of the present invention, after the elution treatment in the third step of the first to fourth inventions, after bringing the resin after washing treatment into contact with an aqueous solution containing thiourea, the concentration is 2 mol / L or more. This is a method for separating and recovering a platinum group element, wherein the hydrochloric acid is brought into contact with the resin.

本発明の第6の発明は、第1から第5の発明における酸性溶液が、白金、ルテニウムの群から選ばれる少なくとも1種の白金族元素と、銅、ニッケル、金、銀、セレン、テルル、ビスマス、アンチモン、ヒ素から選ばれる少なくとも1種の不純物元素を含む塩酸酸性もしくは塩化物溶液から構成されていることを特徴とする白金族元素の分離回収方法である。 Sixth aspect of the present invention, the acidic solution in the fifth invention of the first is at least one platinum group elements platinum, selected from the group consisting of Le ruthenium, copper, nickel, gold, silver, selenium, A platinum group element separation / recovery method comprising an acidic or chloride solution containing hydrochloric acid containing at least one impurity element selected from tellurium, bismuth, antimony, and arsenic.

本発明によれば、比較的低濃度に白金族元素を含む一方、高濃度に不純物元素を共存する塩化物溶液から、アミノ基を含むポリマーと親水性ポリマーを化学結合させた構造を有する水に不溶な樹脂を用いて、クロロ錯体等の塩化物の形態で存在する白金族元素を、選択的かつ高容量で吸着し、かつ高い溶離率で溶離することが、物理的・化学的に安定して出来るので、その工業的価値は極めて大きい。   According to the present invention, water having a structure in which a polymer containing an amino group and a hydrophilic polymer are chemically bonded from a chloride solution containing a platinum group element at a relatively low concentration and coexisting with an impurity element at a high concentration. Using an insoluble resin, it is physically and chemically stable to adsorb platinum group elements existing in the form of chlorides such as chloro complexes selectively and with a high capacity and to elute with a high elution rate. Therefore, its industrial value is extremely large.

実施例1における各吸着材(I〜III)のPtの吸着等温線を示す図である。FIG. 3 is a graph showing Pt adsorption isotherms of adsorbents (I to III) in Example 1. 実施例2における各サイクル毎のPt分配率[%]の推移を示す図である。It is a figure which shows transition of Pt distribution rate [%] for every cycle in Example 2. FIG. 実施例2における各サイクル毎のPd分配率[%]の推移を示す図である。It is a figure which shows transition of Pd distribution rate [%] for every cycle in Example 2. FIG. 実施例2における各サイクル毎のIr分配率[%]の推移を示す図である。It is a figure which shows transition of Ir distribution rate [%] for every cycle in Example 2. FIG. 実施例2における各サイクル毎のRu分配率[%]の推移を示す図である。It is a figure which shows transition of Ru distribution rate [%] for every cycle in Example 2. FIG. 実施例2における各サイクル毎のRh分配率[%]の推移を示す図である。It is a figure which shows transition of Rh distribution rate [%] for every cycle in Example 2. FIG. 実施例2における各サイクル毎のAu分配率[%]の推移を示す図である。It is a figure which shows transition of Au distribution rate [%] for every cycle in Example 2. FIG. 実施例2における各サイクル毎のPb分配率[%]の推移を示す図である。It is a figure which shows transition of Pb distribution rate [%] for every cycle in Example 2. FIG. 実施例2における各サイクル毎のSb分配率[%]の推移を示す図である。It is a figure which shows transition of Sb distribution rate [%] for every cycle in Example 2. FIG. 実施例2における各サイクル毎のAs分配率[%]の推移を示す図である。It is a figure which shows transition of As distribution rate [%] for every cycle in Example 2. FIG. 実施例2における各サイクル毎のSn分配率[%]の推移を示す図である。It is a figure which shows transition of Sn distribution rate [%] for every cycle in Example 2. FIG. 実施例2における各サイクル毎のTe分配率[%]の推移を示す図である。It is a figure which shows transition of Te distribution rate [%] for every cycle in Example 2. FIG. 実施例2における各サイクル毎のBi分配率[%]の推移を示す図である。It is a figure which shows transition of Bi distribution rate [%] for every cycle in Example 2. FIG. 実施例2における各サイクル毎のSe分配率[%]の推移を示す図である。It is a figure which shows transition of Se distribution rate [%] for every cycle in Example 2. FIG. 実施例2における各サイクル毎のCu分配率[%]の推移を示す図である。It is a figure which shows transition of Cu distribution rate [%] for every cycle in Example 2. FIG.

以下に、本発明の白金族元素の回収方法、特に樹脂の選定、吸着、洗浄、溶離、及び白金族元素の回収の各工程について詳細に説明する。   Hereinafter, the platinum group element recovery method of the present invention, particularly each step of resin selection, adsorption, washing, elution, and platinum group element recovery will be described in detail.

(1)白金族元素の吸着材
本発明に用いる吸着材は、アミノ基を含むポリマーを親水性ポリマーに化学結合させた構造を有する水に不溶な樹脂(以降、「吸着材I:含アミン親水性樹脂」あるいは単に「樹脂」と表記)で、母体となる親水性ポリマーにアミノ基を含むポリマーを化学結合させているため、従来型のイオン交換樹脂と比較すると、樹脂内部でのイオン拡散性が高く、しかも、樹脂内のアミンが減少しにくい利点を有する。
(1) Adsorbent of platinum group element The adsorbent used in the present invention is a resin insoluble in water (hereinafter referred to as “adsorbent I: amine-containing hydrophilic” having a structure in which a polymer containing an amino group is chemically bonded to a hydrophilic polymer. ”Resin or simply“ resin ”), a polymer containing an amino group is chemically bonded to the base hydrophilic polymer. Compared to conventional ion exchange resins, ion diffusivity inside the resin And the amine in the resin is less likely to decrease.

また吸着時においては、従来の陰イオン交換樹脂、特にポリアミン型樹脂のように、金属のクロロ錯体と一時的にキレート効果による強い結合を形成し、不純物に対する高い選択性も類似であるが、溶離時においては、高い樹脂内イオン拡散性により、一旦吸着したクロロ錯体が速やかに樹脂粒子外へ放出されるため、結果的に溶離率が上昇すると考えられる。   At the time of adsorption, like conventional anion exchange resin, especially polyamine type resin, it forms a strong bond with metal chloro complex temporarily due to chelate effect, and the high selectivity to impurities is similar, but elution In some cases, due to the high ion diffusibility in the resin, the once adsorbed chloro complex is rapidly released out of the resin particles, and as a result, the elution rate is considered to increase.

樹脂内部のイオン拡散性は、母体となるポリマーの親水性が強い程増大すると考えられるが、親水性が強すぎると母体自体の酸や水への溶解度が高くなって樹脂自体の寿命短縮を招くことになるため、母体は水や酸に溶解しないことが重要である。
官能基であるアミンは、これを含むポリマーが母体のポリマーに化学結合されている。化学結合されていることにより、樹脂には物理的・化学的安定性が備わるので、樹脂の吸着容量を制限する必要がない。また、化学結合により、樹脂内のアミンが減少しにくくなっている。
The ion diffusivity inside the resin is considered to increase as the hydrophilicity of the polymer as a base increases. However, if the hydrophilicity is too strong, the solubility of the base itself in acid and water increases and the life of the resin itself is shortened. Therefore, it is important that the matrix does not dissolve in water or acid.
The amine which is a functional group has a polymer containing the amine chemically bonded to the base polymer. By being chemically bonded, the resin is provided with physical and chemical stability, so that it is not necessary to limit the adsorption capacity of the resin. In addition, the amine in the resin is difficult to decrease due to the chemical bond.

このような特性を満たす含アミン親水性樹脂は、例えば、特開2014−111732号等の公報に記載されている公知の方法を用いて製造することができる。なお、母体となるポリマーは、親水性であれば特に制限はなく、セルロース系、アクリル酸系、スルホン酸系など、ヘテロ原子を有する公知のポリマーを使用できる。   An amine-containing hydrophilic resin satisfying such properties can be produced by using a known method described in, for example, Japanese Patent Application Laid-Open No. 2014-111732. The base polymer is not particularly limited as long as it is hydrophilic, and a known polymer having a hetero atom such as cellulose, acrylic acid, or sulfonic acid can be used.

(2)第一の工程(吸着工程)
本発明の第一の工程(吸着工程)は、上記(1)の含アミン親水性樹脂を使用し、白金族元素を含有する塩化物溶液から、白金族元素を選択的に吸着する工程である。この吸着工程は、既知のカラム式又はバッチ式で行える。
(2) First step (adsorption step)
The first step (adsorption step) of the present invention is a step of selectively adsorbing a platinum group element from a chloride solution containing the platinum group element using the amine-containing hydrophilic resin of (1). . This adsorption step can be performed by a known column type or batch type.

吸着工程における、白金族元素を含有する塩化物溶液の酸化還元電位(ORP)は、銀−塩化銀電極を参照電極に用いた場合の電位として、700〜1100mVの範囲が好ましく、より好ましくは、800〜1000mV、さらに好ましくは、850〜970mVである。
すなわち、白金族元素は、4価のイオンが最もクロロアニオン錯体を形成しやすいので、主要な白金族元素イオンが四価になる700mV以上であることが望ましく、1100mVを超えると樹脂の酸化劣化が懸念されるためである。
In the adsorption step, the oxidation-reduction potential (ORP) of the chloride solution containing a platinum group element is preferably in the range of 700 to 1100 mV, more preferably as the potential when a silver-silver chloride electrode is used as the reference electrode. 800 to 1000 mV, more preferably 850 to 970 mV.
That is, since a platinum group element is most likely to form a chloroanion complex with a tetravalent ion, it is preferably 700 mV or more, at which the main platinum group element ion is tetravalent, and if it exceeds 1100 mV, the resin is oxidized and deteriorated. This is because of concern.

塩化物溶液の酸化還元電位は、吸着工程前の段階で、処理原液に酸化剤を添加して酸化還元電位が調整される。また、樹脂を充填したカラムに原液を連続的に通液して吸着操作を行う場合、吸着されている還元物質などにより、カラムからの流出液の電位が低下したときは、再度処理原液の電位を上記範囲に上昇させて通液することにより、吸着率を向上させることが好ましい。なお、本発明における酸化還元電位は、銀/塩化銀電極を規準(参照)電極に用いた場合の電位で表示した。   The oxidation-reduction potential of the chloride solution is adjusted by adding an oxidizing agent to the processing stock solution at a stage before the adsorption step. In addition, when performing the adsorption operation by continuously passing the stock solution through the resin-filled column, if the potential of the effluent from the column decreases due to the adsorbed reducing substance, etc., the potential of the processing stock solution is again measured. It is preferable to improve the adsorption rate by raising the liquid to the above range. In addition, the oxidation-reduction potential in the present invention is expressed as a potential when a silver / silver chloride electrode is used as a reference (reference) electrode.

また、吸着工程での処理温度は、特に限定されないが、工業的に実現される室温から、樹脂の劣化を防止するため90℃以下の範囲で行うことが好ましい。   Further, the treatment temperature in the adsorption step is not particularly limited, but it is preferably carried out in the range of 90 ° C. or less from the industrially realized room temperature to prevent deterioration of the resin.

(3) 第二の工程(洗浄工程)
本発明の第二の工程の洗浄工程は、第一工程(吸着工程)での吸着処理後の含アミン親水性樹脂を、洗浄液を用いて洗浄する工程である。
(3) Second step (cleaning step)
The washing step of the second step of the present invention is a step of washing the amine-containing hydrophilic resin after the adsorption treatment in the first step (adsorption step) using a washing liquid.

吸着処理後の樹脂には、銅イオンなどのカチオン、及びセレン、テルルのオキソ酸イオンなどの強酸型陰イオンは殆ど吸着しないが、溶液が樹脂内部に物理的に含浸されて不純物成分が存在している。
したがって、第二の工程における溶離液として高い品質の白金族元素溶液を回収し、また、吸着後液と溶離液が混合して副反応が進行しないようにするため、溶離前にイオン交換樹脂を洗浄して物理的に含まれている含浸液を除去する必要がある。
The resin after adsorption treatment hardly adsorbs cations such as copper ions and strong acid type anions such as selenium and tellurium oxoacid ions, but the solution is physically impregnated inside the resin and contains impurity components. ing.
Therefore, a high-quality platinum group element solution is recovered as an eluent in the second step, and in order to prevent side reactions from proceeding by mixing the adsorbed solution and the eluent, an ion exchange resin is used before elution. It is necessary to remove the impregnating solution physically contained by washing.

洗浄に用いる溶液(洗浄液)としては、水が使用可能であるが、共存する不純物元素に加水分解しやすい元素が存在する場合は、塩酸を含有させた方が加水分解による沈澱生成を防止することができ効果的である。   Water can be used as the solution used for cleaning (cleaning solution), but when there are elements that are easily hydrolyzed in the coexisting impurity elements, it is better to contain hydrochloric acid to prevent precipitation due to hydrolysis. Can be effective.

しかし、塩酸濃度が過度に上昇するとイオン交換樹脂に吸着された白金族元素が溶離する割合が増加し、洗浄液中に白金族の損失となるので、洗浄液としては希塩酸が好ましく、その塩素イオン濃度は、4mol/L未満が好ましく、1mol/L以下が特に好ましい。
また、洗浄液として塩酸を使用した場合、次工程の溶離工程で塩酸と溶離液とが反応する恐れがあるため、水による再洗浄をおこなって、樹脂表面の残留塩酸分を置換除去しておくことが好ましい。
However, if the hydrochloric acid concentration rises excessively, the proportion of the platinum group element adsorbed on the ion exchange resin elutes and the platinum group is lost in the cleaning solution. Therefore, dilute hydrochloric acid is preferred as the cleaning solution, Less than 4 mol / L is preferable, and 1 mol / L or less is particularly preferable.
In addition, when hydrochloric acid is used as the cleaning solution, there is a risk of reaction between hydrochloric acid and the eluent in the next elution step, so re-washing with water to replace and remove residual hydrochloric acid on the resin surface. Is preferred.

さらに、第二の工程における洗浄剤の液温は、特に限定されないが、工業的に実現される常温から樹脂の劣化を防止するため90℃以下の範囲で行うことが好ましい。   Furthermore, although the liquid temperature of the cleaning agent in the second step is not particularly limited, it is preferably carried out in the range of 90 ° C. or less in order to prevent the deterioration of the resin from the industrially realized normal temperature.

(4)第三の工程(溶離工程)
本発明の第三の工程は、第二の工程で洗浄処理されたイオン交換樹脂から白金族元素を溶離剤(溶離液)を用いて脱着する溶離工程である。使用する溶離剤としては、例えばチオ尿素の水溶液が効果的に使用できる。
(4) Third step (elution step)
The third step of the present invention is an elution step in which a platinum group element is desorbed from the ion exchange resin washed in the second step using an eluent (eluent). As the eluent used, for example, an aqueous solution of thiourea can be used effectively.

溶離剤にチオ尿素水溶液を用いる場合、チオ尿素は、白金族元素と強力かつ安定した錯形成能力があるため、その広い濃度範囲で溶離が可能である。
そのチオ尿素水溶液の濃度は限定されないが、水への溶解度や樹脂内に僅かに残存した酸により分解されても溶離への影響を防げること、さらに経済性などを配慮すると、2.5〜10重量%程度の濃度とすることが好ましい。
When an aqueous thiourea solution is used as the eluent, thiourea has a strong and stable ability to form a complex with a platinum group element, and thus can be eluted in a wide concentration range.
The concentration of the aqueous thiourea solution is not limited. However, considering the solubility in water and the effect of elution even if it is decomposed by a slight amount of acid remaining in the resin, and considering the economy, it is 2.5 to 10%. The concentration is preferably about wt%.

また、第三の工程での溶離温度は、常温でも行えるが、樹脂の溶離反応は拡散律速であり、高い温度ほど溶離が迅速に行われるので、工業的には、60℃以上で溶離することが望ましい。しかしながら90℃を超えると樹脂の劣化が促進され、分解する懸念も高まるため、溶離工程の液温度は60〜90℃の範囲とすることが好ましい。   In addition, although the elution temperature in the third step can be performed at room temperature, the resin elution reaction is diffusion-controlled, and the higher the temperature, the faster the elution occurs. Is desirable. However, when the temperature exceeds 90 ° C., deterioration of the resin is promoted and the possibility of decomposition increases, so the liquid temperature in the elution step is preferably in the range of 60 to 90 ° C.

さらに第三の工程においては、樹脂を充填したカラムに溶離剤を通液した際、流出開始初期に白金族元素を含有する濃厚な液が得られ、その後急激に白金族元素の濃度が低下し、mg/Lオーダーの液がしばらく流出する状態となる。この後半の液を次回の溶離液として使用すれば経済的かつ高濃度の溶離液を得ることが可能である。   Furthermore, in the third step, when the eluent is passed through a resin-filled column, a concentrated liquid containing a platinum group element is obtained at the beginning of the outflow, and then the concentration of the platinum group element rapidly decreases. , Mg / L order liquid will flow out for a while. If this latter half of the solution is used as the next eluent, an economical and high concentration eluent can be obtained.

イリジウムなどの特にチオ尿素で溶離が不十分な元素は、塩酸により追加溶離することにより、さらに回収率を高めることができる。
吸着された元素の内、一部の金属錯体は樹脂中で水酸化物やポリマーに変化しており、これらはチオ尿素では溶離困難であるが、塩酸により水酸化物やポリマーが分解し、また、新たにクロロ錯体を形成する。塩酸濃度が高いほどクロロ錯体を形成しやすくなり、かつ、クロロ錯体が樹脂へ吸着するよりも水溶液に存在しやすくなるため、溶離率を高めることができる。
For elements that are not sufficiently eluted with thiourea, such as iridium, the recovery rate can be further increased by additional elution with hydrochloric acid.
Among the adsorbed elements, some metal complexes have changed to hydroxides and polymers in the resin, and these are difficult to elute with thiourea, but the hydroxides and polymers are decomposed by hydrochloric acid, and A new chloro complex is formed. The higher the concentration of hydrochloric acid, the easier it is to form a chloro complex, and the chloro complex is more likely to be present in the aqueous solution than adsorbed to the resin, so that the elution rate can be increased.

したがって、2mol/L以上の塩酸を使用することが望ましい。
また、チオ尿素溶離後、直ちに塩酸を使用すると、両者が混合して一部のチオ尿素が分解するため、樹脂を水で洗浄後、塩酸を使用することが望ましい。
Therefore, it is desirable to use 2 mol / L or more hydrochloric acid.
Also, if hydrochloric acid is used immediately after elution of thiourea, both will mix and some thiourea will decompose, so it is desirable to use hydrochloric acid after washing the resin with water.

以下に、本発明の実施例、比較例について説明するが、本発明は、この実施例によって何ら限定されるものではない。
金属イオンの分析法はICP発光分析法及びICP質量分析法により定量分析した。
Examples of the present invention and comparative examples will be described below, but the present invention is not limited to these examples.
The metal ions were analyzed quantitatively by ICP emission spectrometry and ICP mass spectrometry.

次に挙げる3種の吸着材について、白金元素の吸着等温線試験を実施した。
・吸着材I:含アミン親水性樹脂。
具体的には、エチレン−ビニルアルコール共重合体とビニルアルコール系重合体とを8:1の比率で混合し、加熱・融解することにより製造した母体樹脂を、ジエチレントリアミンと化学的に結合させて製造されたものである。
・吸着材II:含アミンポリマーアロイ。
具体的には、エチレン含有量44mol%のエチレン−ビニルアルコール共重合体と重量平均分子量15000のポリアリルアミンとをN品位6.2%になるように調合し、加熱、溶融することにより製造された、アミノ基を含むポリマーを他のポリマーとポリマーアロイ化したものである。
・吸着材III:市販のポリアミン型アニオン交換樹脂。
具体的には、住友化学工業株式会社製のPurolite A−830Wである。
The following three adsorbents were subjected to an adsorption isotherm test for platinum element.
Adsorbent I: Amine-containing hydrophilic resin.
Specifically, a base resin produced by mixing an ethylene-vinyl alcohol copolymer and a vinyl alcohol polymer in a ratio of 8: 1, heating and melting, and chemically bonding with diethylenetriamine is produced. It has been done.
Adsorbent II: Amine-containing polymer alloy.
Specifically, an ethylene-vinyl alcohol copolymer having an ethylene content of 44 mol% and a polyallylamine having a weight average molecular weight of 15000 were prepared so as to have an N grade of 6.2%, and were manufactured by heating and melting. A polymer containing an amino group is polymerized with another polymer.
Adsorbent III: Commercially available polyamine type anion exchange resin.
Specifically, it is Purolite A-830W manufactured by Sumitomo Chemical Co., Ltd.

なお、吸着材I、II、IIIはそれぞれ、使用する前に、粒径400〜700μmの粒子を篩を用いて選別し、選別後の樹脂100gを1Lの2mol/L塩酸で処理することにより、樹脂の末端の官能基をCl型とし、水洗後、吸引濾過により脱水処理するという前処理を施した。
さらに、試験用の原液としては、80g/Lの塩化水素が溶存した、表1に示す組成である水溶液を用いた。なお、この水溶液の総塩素濃度は132g/Lであった。
Adsorbents I, II, and III are each screened for particles having a particle size of 400 to 700 μm using a sieve before use, and 100 g of the sorted resin is treated with 1 L of 2 mol / L hydrochloric acid. The functional group at the end of the resin was made to be Cl-type, and after the washing, pretreatment was performed such as dehydration by suction filtration.
Further, as the test stock solution, an aqueous solution having the composition shown in Table 1 in which 80 g / L of hydrogen chloride was dissolved was used. The total chlorine concentration of this aqueous solution was 132 g / L.

次に、具体的な吸着等温線試験の手順としては、まず始めに、原液に、亜塩素酸ナトリウムを添加して、酸化還元電位を1012mV(銀/塩化銀電極規準、以下同じ)に調整した。その調整後の液に、前処理を施した吸着材I〜IIIの何れかを投入し、25℃にて1時間攪拌混合した。混合の途中、酸化還元電位は945〜1014mVを維持した。このときの、吸着材と原液との混合量比を、それぞれの吸着材毎に表2に示す。   Next, as a specific procedure of the adsorption isotherm test, first, sodium chlorite was added to the stock solution to adjust the oxidation-reduction potential to 1012 mV (silver / silver chloride electrode standard, the same applies hereinafter). . Any of the pretreated adsorbents I to III was added to the liquid after the adjustment, and the mixture was stirred and mixed at 25 ° C. for 1 hour. During the mixing, the oxidation-reduction potential was maintained at 945 to 1014 mV. The mixing ratio of the adsorbent and the stock solution at this time is shown in Table 2 for each adsorbent.

吸着処理後、吸引濾過にて樹脂を分離し、濾液(吸着後液)の白金元素濃度を分析するとともに、分離した樹脂を水洗した後、樹脂の白金元素品位も分析した。
これらの吸着後液と吸着後樹脂の白金元素分析結果を図1の吸着等温線として示す。
本発明で利用する含アミン親水性樹脂(吸着材I)は、含アミンポリマーアロイや市販のポリアミン型アニオン交換樹脂と比較して高い吸着容量を持つことがわかる。
After the adsorption treatment, the resin was separated by suction filtration, the platinum element concentration in the filtrate (post-adsorption liquid) was analyzed, and the separated resin was washed with water, and the platinum element quality of the resin was also analyzed.
The results of platinum element analysis of these post-adsorption liquid and post-adsorption resin are shown as adsorption isotherms in FIG.
It can be seen that the amine-containing hydrophilic resin (adsorbent I) used in the present invention has a higher adsorption capacity than amine-containing polymer alloys and commercially available polyamine type anion exchange resins.

Figure 0006399352
Figure 0006399352

Figure 0006399352
Figure 0006399352

(1)吸着材
吸着材としては、エチレン−ビニルアルコール共重合体とビニルアルコール系重合体を9:1の比率で混合し、加熱・融解することにより製造した母体樹脂を、ジエチレントリアミンと化学的に結合させて製造した含アミン親水性樹脂を使用した。
使用する前に、粒径400〜700μmの粒子を篩を用いて選別し、選別後の樹脂100gを1Lの2mol/L塩酸で処理することにより、樹脂の末端の官能基をCl型とし、水洗後、吸引濾過により脱水処理したCl型の含アミン親水性樹脂を準備した。
(1) Adsorbent As an adsorbent, a base resin produced by mixing an ethylene-vinyl alcohol copolymer and a vinyl alcohol polymer in a ratio of 9: 1, heating and melting, is chemically combined with diethylenetriamine. An amine-containing hydrophilic resin produced by bonding was used.
Before use, particles having a particle size of 400 to 700 μm are sorted using a sieve, and 100 g of the sorted resin is treated with 1 L of 2 mol / L hydrochloric acid to make the functional group at the end of the resin Cl-type, and washed with water. Thereafter, a Cl-type amine-containing hydrophilic resin dehydrated by suction filtration was prepared.

(2)吸着工程
原液として、表1に示す組成及び塩化物イオン濃度132g/L、塩酸濃度80g/Lの水溶液100mlを用いた。
まず、原液に、亜塩素酸ナトリウムを添加して、酸化還元電位を1011mV(銀/塩化銀電極規準、以下同じ)に調整した後、上記(1)で準備したCl型の含アミン親水性樹脂10g(乾燥重量)を投入し、25℃にて1時間攪拌混合した。混合の途中、酸化還元電位は945〜1014mVを維持した。
吸着処理後、吸引濾過にて樹脂を分離し、濾液(吸着後液)の成分分析を行った。
(2) Adsorption process 100 ml of an aqueous solution having the composition shown in Table 1 and a chloride ion concentration of 132 g / L and a hydrochloric acid concentration of 80 g / L was used as a stock solution.
First, after adding sodium chlorite to the stock solution to adjust the oxidation-reduction potential to 1011 mV (silver / silver chloride electrode standard, the same applies hereinafter), the Cl-type amine-containing hydrophilic resin prepared in (1) above 10 g (dry weight) was added and mixed with stirring at 25 ° C. for 1 hour. During the mixing, the oxidation-reduction potential was maintained at 945 to 1014 mV.
After the adsorption treatment, the resin was separated by suction filtration, and component analysis of the filtrate (liquid after adsorption) was performed.

(3)洗浄工程
(2)の工程で回収した吸着処理後の樹脂と、100mlの1mol/Lの塩酸とを25℃にて10分間攪拌しながら混合後、吸引濾過して樹脂と吸着後酸洗液とを分離し、濾液(吸着後酸洗液)の成分分析を行った。
塩酸洗浄後の樹脂は、さらに脱イオン水100mlと10分間攪拌しながら混合し、やはり吸引濾過にて樹脂を濾液と分離、回収し、分離した濾液(溶離前水洗液)の成分分析を行った。
(3) Washing step After the adsorption treatment resin collected in the step (2) and 100 ml of 1 mol / L hydrochloric acid are mixed with stirring for 10 minutes at 25 ° C., suction filtration is performed to filter the resin and the acid after adsorption. The washing solution was separated and the components of the filtrate (post-adsorption pickling solution) were analyzed.
The resin after washing with hydrochloric acid was further mixed with 100 ml of deionized water with stirring for 10 minutes, and the resin was separated and collected from the filtrate by suction filtration, and the component analysis of the separated filtrate (water washing before elution) was performed. .

(4)溶離工程
(3)の工程で回収した洗浄後の樹脂と、2.5%チオ尿素水溶液を混合し、80℃に昇温した後、1時間攪拌混合した。
混合物は吸引濾過にて樹脂を分離し、濾液(溶離回収(80℃)液)の成分分析を行った。
(4) Elution step The washed resin collected in the step (3) and a 2.5% thiourea aqueous solution were mixed, heated to 80 ° C., and stirred for 1 hour.
The mixture was subjected to suction filtration to separate the resin and subjected to component analysis of the filtrate (eluent recovery (80 ° C.) solution).

また、さらに溶離後の樹脂は、濾過器内で25℃の水100mlにて掛水法で洗浄、吸引脱水し、樹脂は25℃の水100mlを加えて10分間攪拌混合し、この混合物を吸引濾過し、再び濾過器内で25℃の水50mlにて掛水法で洗浄、吸引することにより洗浄した。各水洗浄液は合併し、溶離後水洗液として成分分析を行った。
水洗後の樹脂は、2mol/Lの濃度の塩酸100mlと10分間攪拌して混合し、樹脂内部の水を塩酸に置換し、吸引濾過後に得た酸置換液の成分分析を行った。
Further, the resin after elution was washed with 100 ml of water at 25 ° C. in a filter by the water spray method and sucked and dehydrated. The resin was stirred and mixed for 10 minutes after adding 100 ml of water at 25 ° C., and the mixture was sucked. It filtered, and it wash | cleaned by wash | cleaning and attracting | sucking again with 50 ml of water of 25 degreeC in a filter. The respective water washes were combined, and the components were analyzed as water washes after elution.
The resin after washing with water was mixed with 100 ml of hydrochloric acid having a concentration of 2 mol / L while stirring for 10 minutes, the water inside the resin was replaced with hydrochloric acid, and component analysis of the acid replacement solution obtained after suction filtration was performed.

以上の(2)〜(4)の吸着〜溶離工程を1サイクルとし、このサイクルを計4回反復した。
また、各サイクルの各工程で発生した水溶液の分析値から含有する元素の重量を求め、表1の原液100ml中に存在する元素重量に対する比率(分配:%)を求めた。
その結果を図2〜15に示す。
なお、図2〜15において、「A」は吸着後液、「B」は吸着後酸洗液、「C」は溶離前水洗液、「D」は溶離回収液(80℃)、「E」は溶離後水洗液、「F」は酸置換液である。
The above-described adsorption-elution steps (2) to (4) were defined as one cycle, and this cycle was repeated a total of 4 times.
Moreover, the weight of the element contained was calculated | required from the analytical value of the aqueous solution generate | occur | produced in each process of each cycle, and the ratio (distribution:%) with respect to the element weight which exists in 100 ml of stock solutions of Table 1 was calculated | required.
The results are shown in FIGS.
2 to 15, “A” is the post-adsorption liquid, “B” is the post-adsorption pickling liquid, “C” is the pre-elution water washing liquid, “D” is the elution recovery liquid (80 ° C.), and “E”. Is the washing solution after elution, and “F” is the acid replacement solution.

従来型の陰イオン交換樹脂でも吸着、溶離が良好なPt、Pdについては、図2(Pt)、図3(Pd)に示すように、「D」の溶離回収液に各サイクル毎に80%を超える分配率でPt、Pdが回収されており、含アミン親水性樹脂を使用する本発明の方法により、問題なく、かつ、再現性良く吸着溶離できている。   For Pt and Pd that are well adsorbed and eluted even with conventional anion exchange resins, as shown in FIG. 2 (Pt) and FIG. 3 (Pd), 80% of each cycle is added to the elution recovery solution of “D”. Pt and Pd are recovered at a distribution ratio exceeding 1, and by the method of the present invention using an amine-containing hydrophilic resin, adsorption and elution can be performed without any problem and with good reproducibility.

一方、従来型の陰イオン樹脂を用いた場合に特に溶離が困難であったIrについても、図4に示すように、チオ尿素溶離後に塩酸溶離(置換)を併用する方法を用いて、60%近く回収ができた。
また、RuとRhについては、図5と図6に示すように、従来型の陰イオン交換樹脂を用いた場合と同等程度の50〜60%をチオ尿素のみで回収できた。
図7に示すように、Auはチオ尿素のみで70〜80%を回収できた。
On the other hand, Ir, which was particularly difficult to elute when a conventional anion resin was used, was also 60% by using a method in which hydrochloric acid elution (substitution) was used after elution of thiourea as shown in FIG. We were able to recover soon.
As shown in FIGS. 5 and 6, about 50 to 60% of Ru and Rh could be recovered with only thiourea, which is equivalent to the case of using a conventional anion exchange resin.
As shown in FIG. 7, Au could recover 70-80% with thiourea alone.

一方、不純物に関しては、下記の通りである。
分配を図8に示すPbは、一時的に吸着されるものの最終的には75%以上を樹脂外へ回収できた。
On the other hand, the impurities are as follows.
Although Pb whose distribution is shown in FIG. 8 was temporarily adsorbed, 75% or more was finally recovered out of the resin.

図13に分配を示すBiは、回を重ねる度に吸着率が下がるとともに溶離率が向上し、4サイクル目では75%が樹脂外へ回収できた。   In the case of Bi, which shows distribution in FIG. 13, the adsorption rate decreased and the elution rate improved each time, and 75% was recovered out of the resin in the fourth cycle.

Sbは図9に示すように吸着自体が抑制され、2サイクル目以降は80%以上をPGMと分離できた。   As shown in FIG. 9, adsorption of Sb was suppressed, and 80% or more could be separated from PGM after the second cycle.

図11に分配を示すSnは、従来型の陰イオン交換樹脂を用いた方法ではSbと似た挙動となり樹脂内に蓄積するが、本発明の方法では、ほぼ100%がPGMから分離され回収できた。   In the method using a conventional anion exchange resin, Sn having a distribution shown in FIG. 11 behaves like Sb and accumulates in the resin. However, in the method of the present invention, almost 100% can be separated and recovered from PGM. It was.

図10、図12、図14、図15に示すように、As、Te、Se、Cuについては吸着自体がほとんどなく、選択的に白金族元素から分離できた。   As shown in FIG. 10, FIG. 12, FIG. 14, and FIG. 15, As, Te, Se, and Cu hardly adsorbed themselves and could be selectively separated from the platinum group elements.

以上のように、表1に示す不純物としてCu、Se、As、Teを含んだ白金族水溶液から、含アミン親水性樹脂を利用する本発明の方法により、白金族元素と主なマトリックス成分とをシャープに分離することができ、かつ、吸着された白金族を樹脂から効率よく溶離回収可能であることが確認できた。   As described above, from the platinum group aqueous solution containing Cu, Se, As, and Te as impurities shown in Table 1, the platinum group element and main matrix components are obtained by the method of the present invention using an amine-containing hydrophilic resin. It was confirmed that they could be separated sharply and that the adsorbed platinum group could be efficiently eluted and recovered from the resin.

また、反復使用しても、白金族の吸着率および回収率を高く維持することが確認できた。
表3に、有価金属の回収率を実施例2と特許文献3の発明(従来例)と比較したものを示す。
表3によれば、従来よりも高い回収率で白金族元素を回収できることが明らかである。
また、従来よりも高い回収率で金を回収できることも明らかである。吸着率が高いため、回収率も高くすることができた。
Moreover, even if it used repeatedly, it has confirmed that the adsorption rate and collection | recovery rate of a platinum group were maintained high.
Table 3 shows the recovery rate of valuable metals compared to Example 2 and the invention of Patent Document 3 (conventional example).
According to Table 3, it is clear that platinum group elements can be recovered at a higher recovery rate than before.
It is also clear that gold can be recovered at a higher recovery rate than before. Since the adsorption rate was high, the recovery rate could be increased.

Figure 0006399352
Figure 0006399352

Claims (6)

少なくとも白金又はルテニウムの白金族元素と不純物元素を含む酸性溶液から前記白金族元素を回収する方法において、
下記(1)〜(3)の工程を順に経ることを特徴とする白金族元素の分離回収方法。
(記)
(1)前記酸性溶液を、アミノ基を含むポリマーが親水性ポリマーと化学結合した構造を有する水に不溶な樹脂と接触させ、前記樹脂に前記酸性溶液に含まれる白金族元素を吸着させる吸着処理する第一の工程。
(2)前記第一の工程を経て白金族元素を吸着した樹脂を、洗浄処理する第二の工程。
(3)前記第二の工程を経た樹脂に、液温度が60〜90℃のチオ尿素を含有する水溶液を接触させ、前記樹脂に吸着した白金族元素を溶離処理する第三の工程。
A method of recovering the platinum group elements from acidic solutions containing at least platinum or ruthenium platinum group element and impurity elements,
A method for separating and recovering a platinum group element, wherein the following steps (1) to (3) are sequentially performed.
(Record)
(1) Adsorption treatment in which the acidic solution is brought into contact with water-insoluble resin having a structure in which an amino group-containing polymer is chemically bonded to a hydrophilic polymer, and the platinum group element contained in the acidic solution is adsorbed on the resin. The first step to do.
(2) A second step of cleaning the resin that has adsorbed the platinum group element through the first step.
(3) A third step in which an aqueous solution containing thiourea having a liquid temperature of 60 to 90 ° C. is brought into contact with the resin having undergone the second step, and the platinum group element adsorbed on the resin is eluted.
前記第一の工程における酸性溶液が、銀/塩化銀電極を規準(参照)電極とする酸化還元電位として、電位700〜1100mVに維持されることを特徴とする請求項1記載の白金族元素の分離回収方法。   2. The platinum group element according to claim 1, wherein the acidic solution in the first step is maintained at a potential of 700 to 1100 mV as an oxidation-reduction potential using a silver / silver chloride electrode as a reference (reference) electrode. Separation and recovery method. 前記第二の工程における洗浄処理が、前記吸着処理後の樹脂に塩酸溶液と水を順次接触させて樹脂を洗浄する処理であることを特徴とする請求項1又は2に記載の白金族元素の分離回収方法。   The cleaning process in the second step is a process of cleaning the resin by sequentially bringing a hydrochloric acid solution and water into contact with the resin after the adsorption process. Separation and recovery method. 前記塩酸溶液の塩素イオン濃度が、4mol/L未満であることを特徴とする請求項3記載の白金族元素の分離回収方法。   The method for separating and recovering platinum group elements according to claim 3, wherein the hydrochloric acid solution has a chlorine ion concentration of less than 4 mol / L. 前記第三の工程における溶離処理が、前記洗浄処理後の樹脂にチオ尿素を含有する水溶液を接触させた後、濃度が2mol/L以上の塩酸を前記樹脂に接触させることを特徴とする請求項1〜4のいずれか1項に記載の白金族元素の分離回収方法。   The elution treatment in the third step is characterized in that, after bringing the washed resin into contact with an aqueous solution containing thiourea, hydrochloric acid having a concentration of 2 mol / L or more is brought into contact with the resin. 5. The method for separating and recovering a platinum group element according to any one of 1 to 4. 前記酸性溶液が、
金、ルテニウムの群から選ばれる少なくとも1種の白金族元素と、
銅、ニッケル、金、銀、セレン、テルル、ビスマス、アンチモン、ヒ素から選ばれる少なくとも1種の不純物元素を含む塩酸酸性もしくは塩化物溶液から構成されていることを特徴とする請求項1〜5のいずれか1項に記載の白金族元素の分離回収方法。
The acidic solution is
Platinum, and at least one platinum group element selected from the group consisting of Le ruthenium,
6. It is composed of a hydrochloric acid acidic or chloride solution containing at least one impurity element selected from copper, nickel, gold, silver, selenium, tellurium, bismuth, antimony and arsenic. The method for separating and recovering a platinum group element according to any one of the above items.
JP2015006207A 2015-01-15 2015-01-15 Methods for separating and recovering platinum group elements Active JP6399352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015006207A JP6399352B2 (en) 2015-01-15 2015-01-15 Methods for separating and recovering platinum group elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015006207A JP6399352B2 (en) 2015-01-15 2015-01-15 Methods for separating and recovering platinum group elements

Publications (2)

Publication Number Publication Date
JP2016132782A JP2016132782A (en) 2016-07-25
JP6399352B2 true JP6399352B2 (en) 2018-10-03

Family

ID=56425976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015006207A Active JP6399352B2 (en) 2015-01-15 2015-01-15 Methods for separating and recovering platinum group elements

Country Status (1)

Country Link
JP (1) JP6399352B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108579695A (en) * 2018-01-22 2018-09-28 江苏欣诺科催化剂有限公司 A kind of adsorbent and desorption method of absorption iridium

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4144311B2 (en) * 2002-10-08 2008-09-03 住友金属鉱山株式会社 Methods for separating and recovering platinum group elements
CA2644083A1 (en) * 2005-04-13 2006-10-26 Metals Recovery Technology Inc. Process for recovering platinum group metals, rhenium and gold
JP5486535B2 (en) * 2010-03-24 2014-05-07 株式会社クラレ Metal ion adsorbent composition, metal ion adsorbent and metal recovery method
JP5786661B2 (en) * 2011-11-10 2015-09-30 住友金属鉱山株式会社 Methods for separating and recovering platinum group elements
JP6147162B2 (en) * 2012-10-30 2017-06-14 株式会社クラレ Graft copolymer of ethylene-vinyl alcohol copolymer, process for producing the same, and metal ion adsorbent using the same
CN104755543B (en) * 2012-10-30 2018-02-02 可乐丽股份有限公司 Porous graft copolymer particle, its manufacture method and use its sorbing material
JP2014114436A (en) * 2012-11-15 2014-06-26 Kuraray Co Ltd Graft copolymer of ethylene-vinyl alcohol copolymer, manufacturing method thereof, and metal adsorbent with use of the same
JP2014114447A (en) * 2012-11-15 2014-06-26 Kuraray Co Ltd Graft copolymer whose graft chain possesses an aromatic nitrogen-containing heterocycle, method for manufacturing the same, and ion adsorbent using the same
JP5984020B2 (en) * 2013-03-21 2016-09-06 住友金属鉱山株式会社 Methods for separating and recovering platinum group elements

Also Published As

Publication number Publication date
JP2016132782A (en) 2016-07-25

Similar Documents

Publication Publication Date Title
JP4144311B2 (en) Methods for separating and recovering platinum group elements
JP3741117B2 (en) Mutual separation of platinum group elements
JP5994912B2 (en) Scandium recovery method
JP5984020B2 (en) Methods for separating and recovering platinum group elements
Hubicki et al. Application of ion exchange methods in recovery of Pd (II) ions—a review
KR101224503B1 (en) Method for recovering platinum group matals from platinum group matals industrial waste
JP6399352B2 (en) Methods for separating and recovering platinum group elements
WO2011108112A1 (en) Process for production of aqueous ammonium tungstate solution
JP5004104B2 (en) Method for recovering Ru and / or Ir from platinum group-containing solution
JP4827146B2 (en) Gold separation method
JP5786661B2 (en) Methods for separating and recovering platinum group elements
JP4321231B2 (en) Method for removing chloride ions in non-ferrous metal sulfate solutions
AU2011201892B2 (en) Method for aqueous gold thiosulfate extraction using copper-cyanide pretreated carbon adsorption
JP3896423B2 (en) Method for recovering palladium from palladium-containing liquid
JP4506041B2 (en) Methods for removing osmium and ruthenium from nickel chloride solutions.
JP6205290B2 (en) Method for recovering gold or silver from cyanic waste liquid containing gold or silver
JPH0533071A (en) Method for separating and refining rhodium from aqueous solution
JP2016151062A (en) METHOD FOR REMOVING IMPURITY ELEMENT FROM Pt-CONTAINING SOLUTION AND METHOD FOR RECOVERING Pt USING THE SAME
JPH07310129A (en) Recovering method of platinum group element
KR100378050B1 (en) High purity separating method of palladium
JP5992796B2 (en) Method for separating and recovering precious metals
JP2008038236A (en) Method of separating zinc from aqueous nickel chloride solution
JP5440137B2 (en) Method for separating palladium from chloride solutions containing arsenic
JPH01111826A (en) Method for recovering noble metal from noble metal-containing liquid
WO2022087656A1 (en) Process for removing cyanide from a cyanide-bearing aqueous fluid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180822

R150 Certificate of patent or registration of utility model

Ref document number: 6399352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150