JP6395189B2 - Coriolis mass flow meter - Google Patents

Coriolis mass flow meter Download PDF

Info

Publication number
JP6395189B2
JP6395189B2 JP2016097983A JP2016097983A JP6395189B2 JP 6395189 B2 JP6395189 B2 JP 6395189B2 JP 2016097983 A JP2016097983 A JP 2016097983A JP 2016097983 A JP2016097983 A JP 2016097983A JP 6395189 B2 JP6395189 B2 JP 6395189B2
Authority
JP
Japan
Prior art keywords
tube
measurement
measurement tube
magnetic
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016097983A
Other languages
Japanese (ja)
Other versions
JP2017146290A (en
Inventor
村上 英一
英一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atsuden Co Ltd
Original Assignee
Atsuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atsuden Co Ltd filed Critical Atsuden Co Ltd
Priority to JP2016097983A priority Critical patent/JP6395189B2/en
Priority to TW105129783A priority patent/TWI625507B/en
Priority to EP16189126.2A priority patent/EP3153827B1/en
Priority to EP16189133.8A priority patent/EP3163262B1/en
Priority to CN201610866276.7A priority patent/CN106908106B/en
Priority to TW105131283A priority patent/TWI628418B/en
Priority to US15/285,556 priority patent/US9921093B2/en
Priority to KR1020160129586A priority patent/KR101883068B1/en
Priority to US15/296,097 priority patent/US9995612B2/en
Priority to KR1020160138434A priority patent/KR101908194B1/en
Priority to CN201610947958.0A priority patent/CN106996812A/en
Publication of JP2017146290A publication Critical patent/JP2017146290A/en
Application granted granted Critical
Publication of JP6395189B2 publication Critical patent/JP6395189B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)
  • Measuring Volume Flow (AREA)

Description

本発明は、流量を測定すると共に測定管内の流体温度を外部から検出するコリオリ式質量流量計に関するものである。 The present invention relates to a Coriolis mass flow meter that measures a flow rate and detects a fluid temperature in a measurement tube from the outside.

半導体製造装置などにおいては、例えばコリオリ式質量流量計が用いられることがある。コリオリ式質量流量計とは、速度Vで回転振動系の回転中心に向かう、又は回転中心から離れる質量mの質点に働くコリオリ力が、質量mと速度Vの積に比例することから、コリオリ力を測定して質量流量を求める方式の流量計である。   In a semiconductor manufacturing apparatus or the like, for example, a Coriolis type mass flow meter may be used. The Coriolis mass flow meter is a Coriolis force because the Coriolis force acting on the mass point of the mass m that moves toward or away from the rotational center of the rotational vibration system at a velocity V is proportional to the product of the mass m and the velocity V. This is a flow meter of a type that obtains a mass flow rate by measuring.

コリオリ式質量流量計は差圧式、電磁式、容積式などの流量計と比較すると、直接的に質量流量が得られること、摩耗などを起こす機械的可動部分がないこと、保守性に優れていること、そして原理上、測定管の振動数の計測から密度が計測できることなどの数々の優れた特長を有している。   Coriolis type mass flowmeters are superior in maintainability compared to differential pressure type, electromagnetic type, positive displacement type flowmeters, because they can directly obtain mass flow rates, have no mechanical moving parts that cause wear, etc. And in principle, it has many excellent features such as the ability to measure the density from the measurement of the frequency of the measuring tube.

例えば、特許文献1には図5に示すように、U字形測定管を用いたコリオリ式質量流量計が開示されている。測定管は1本のU字形測定管1で構成され、取付フランジ2a、2bを介して固定された点を中心にして、片持ち梁状のU字形測定管1は加振した共振周波数で上下に振動を繰り返えす。この測定管1内に流入した測定流体は、入口からU字の曲がり部に向かって流れる際に、測定管1に対する速度によりコリオリ力が生じ、測定管1に歪を与え、曲管部から出口に向かって流れる際は、コリオリ力により逆方向の歪を与え振動となる。   For example, Patent Document 1 discloses a Coriolis mass flow meter using a U-shaped measuring tube as shown in FIG. The measuring tube is composed of a single U-shaped measuring tube 1, and the cantilever-shaped U-shaped measuring tube 1 is vertically moved at a vibrating resonance frequency around a point fixed via mounting flanges 2 a and 2 b. Repeat the vibration. When the measurement fluid that has flowed into the measurement tube 1 flows from the inlet toward the U-shaped bent portion, a Coriolis force is generated due to the velocity with respect to the measurement tube 1, and the measurement tube 1 is distorted and exits from the bent tube portion. When it flows toward, it is distorted in the opposite direction by Coriolis force and becomes a vibration.

測定管1のU字形を成す先端には振動子3が設けられ、曲がり部の両側の測定管1には変位検出センサ4a、4bがそれぞれ取り付けられている。   A transducer 3 is provided at the distal end of the U-shape of the measurement tube 1, and displacement detection sensors 4a and 4b are attached to the measurement tube 1 on both sides of the bent portion.

測定管1に測定流体を流し、振動子3を駆動し測定管1を加振する。振動子3の振動方向の角速度ω、測定流体の流速νとすると、Fc=−2mω×νのコリオリ力が働き、このコリオリ力Fcに比例した振動の振幅を変位検出センサ4a、4bで検出し、演算を行えば質量流量が測定できる。   A measurement fluid is caused to flow through the measurement tube 1, the vibrator 3 is driven, and the measurement tube 1 is vibrated. When the angular velocity ω in the vibration direction of the vibrator 3 and the flow velocity ν of the measurement fluid, the Coriolis force of Fc = −2mω × ν works, and the amplitude of vibration proportional to the Coriolis force Fc is detected by the displacement detection sensors 4a and 4b. If the calculation is performed, the mass flow rate can be measured.

特開平3−41319号公報Japanese Patent Laid-Open No. 3-41319

このコリオリ式質量流量計では、測定管1が測定流体の温度によって温められたり冷やされると、弾性係数が変化して、測定管1の共振振動数やねじれ面が微妙に変わり流量測定値に影響を与えるので、この流量測定値を補正するために測定流体を測温することが好ましい。   In this Coriolis type mass flow meter, when the measuring tube 1 is heated or cooled depending on the temperature of the measuring fluid, the elastic coefficient changes, and the resonance frequency and the torsional surface of the measuring tube 1 change slightly and affect the flow rate measurement value. Therefore, it is preferable to measure the temperature of the measurement fluid in order to correct this flow rate measurement value.

本発明の目的は、流量を測定すると共に、測定管に接触することなく測定管の内部の測定流体を測温可能なコリオリ式質量流量計を提供することにある。 An object of the present invention is to measure the flow rate is to provide a measuring tube inside the measuring fluid temperature measuring possible Coriolis mass flowmeter without contacting the measuring tube.

上記目的を達成するための本発明に係るコリオリ式質量流量計は、測定流体を一方向に流通する合成樹脂管から成る測定管と、該測定管の所定の位置を離隔的に保持する磁気保持部と、前記測定管に振動を与える加振駆動部と、前記測定管の往き管と戻り管の2個所において前記測定管の変位を検出する変位検出部と、前記測定管の外側に配置する光学的温度検知素子とを有するコリオリ式質量流量計であって、前記磁気保持部は、前記測定管に付設した磁気作用体に対して、磁気吸引力を作用させて前記測定管を離隔的に保持すると共に、前記測定管は透明又は半透明とし、前記光学的温度検知素子と前記測定管内の測定流体とを共役とするレンズ光学系とを備え、前記測定管内の前記測定流体を遠隔的に測温することを特徴とする。 In order to achieve the above object, a Coriolis mass flow meter according to the present invention includes a measuring tube made of a synthetic resin tube that circulates a measuring fluid in one direction, and a magnetic holding device that holds a predetermined position of the measuring tube at a distance. A displacement driving unit that applies vibration to the measurement tube, a displacement detection unit that detects the displacement of the measurement tube at two locations of the forward tube and the return tube of the measurement tube, and an outer side of the measurement tube A Coriolis type mass flow meter having an optical temperature sensing element, wherein the magnetic holding unit causes a magnetic attraction force to act on a magnetic acting member attached to the measurement tube to separate the measurement tube. The measuring tube is transparent or translucent, and includes a lens optical system conjugate of the optical temperature sensing element and the measuring fluid in the measuring tube, and the measuring fluid in the measuring tube is remotely It is characterized by measuring temperature.

本発明に係るコリオリ式質量流量計によれば、流量測定と共に、測定管の外側から遠隔的に測定管内の流体を測温できる。 According to the Coriolis mass flow meter according to the present invention, it is possible to measure the temperature of the fluid in the measurement tube remotely from the outside of the measurement tube together with the flow rate measurement .

実施例のコリオリ式質量流量計の斜視図である。It is a perspective view of the Coriolis type mass flow meter of an example. 側面図である。It is a side view. 要部の拡大構成図である。It is an enlarged block diagram of the principal part. 温度測定部の構成図である。It is a block diagram of a temperature measurement part. 従来例のコリオリ式質量流量計の斜視図である。It is a perspective view of the Coriolis type mass flow meter of a prior art example.

本発明を図1〜図4に図示の実施例に基づいて詳細に説明する。
図1は実施例のコリオリ式質量流量計の斜視図、図2は側面図である。このコリオリ式質量流量計は主として、測定流体を一方向に流通する測定管11と、測定管11の所定の位置を離隔的にかつ弾性的に保持する磁気保持部12と、測定管11を加振する加振駆動部13と、測定管11の変位を検出する変位検出部14と、測定管11内の測定流体を測温する温度測定部15と、これらの機構に対し検出信号、制御信号を入出力し、測定流体の流量を演算する図示しない演算制御部とから成っている。
The present invention will be described in detail based on the embodiment shown in FIGS.
FIG. 1 is a perspective view of a Coriolis mass flow meter of the embodiment, and FIG. 2 is a side view. This Coriolis type mass flow meter mainly includes a measuring tube 11 that circulates a measuring fluid in one direction, a magnetic holding unit 12 that holds a predetermined position of the measuring tube 11 in a separated and elastic manner, and a measuring tube 11. A vibration drive unit 13 that vibrates, a displacement detection unit 14 that detects the displacement of the measurement tube 11, a temperature measurement unit 15 that measures the temperature of the measurement fluid in the measurement tube 11, and a detection signal and a control signal for these mechanisms And a calculation control unit (not shown) for calculating the flow rate of the measurement fluid.

測定管11は透明又は半透明の合成樹脂管の例えばフッ素樹脂管から成り、直径が例えば3.2mmで、中央部にU字状の曲管部11aを有しており、曲管部11aには金属管又は合成樹脂管、好ましくは金属管から成る補強管11bが被着されている。なお、測定流体が腐蝕性を有していなければ、測定管11はフッ素樹脂管でなくとも通常の合成樹脂管であってもよい。しかし、測定管11は補強管11bを含めて振動を十分に伝達可能とする硬度の弾性係数を有し、柔軟でないことが必要である。測定管11の径は1例であり、任意の径の測定管11を使用できることは勿論である。   The measuring tube 11 is made of a transparent or translucent synthetic resin tube, for example, a fluororesin tube, has a diameter of, for example, 3.2 mm, and has a U-shaped bent tube portion 11a at the center. Is attached with a reinforcing tube 11b made of a metal tube or a synthetic resin tube, preferably a metal tube. If the measurement fluid does not have corrosive properties, the measurement tube 11 may be a normal synthetic resin tube instead of a fluororesin tube. However, the measuring tube 11 including the reinforcing tube 11b needs to have an elastic coefficient of hardness that can sufficiently transmit vibration and be not flexible. The diameter of the measuring tube 11 is one example, and it is needless to say that the measuring tube 11 having an arbitrary diameter can be used.

このように、補強管11bによって曲管部11aを被覆することにより、合成樹脂製の測定管11であっても、曲管部11aが変形する虞れはなく保形が可能である。   Thus, by covering the curved pipe part 11a with the reinforcing pipe 11b, even if it is the measurement pipe | tube 11 made from a synthetic resin, there is no possibility that the curved pipe part 11a will deform | transform, and shape retention is possible.

測定管11の曲管部11aを境界とする往き管11cと戻り管11dの平行な2個所は、基板16上に配置されたハウジング17に挟着されることにより、測定管11は保持されている。従って、これらの固定位置よりも曲管部11a側の測定管11は、機械的な支持部がない自由端とされている。   Two parallel portions of the forward tube 11c and the return tube 11d with the bent tube portion 11a of the measurement tube 11 as a boundary are sandwiched by the housing 17 disposed on the substrate 16, whereby the measurement tube 11 is held. Yes. Therefore, the measurement tube 11 closer to the curved tube portion 11a than these fixed positions is a free end without a mechanical support portion.

図3に示す要部の拡大構成図のように、曲管部11a上の補強管11bには、合成樹脂製の第1の磁性体ホルダ11eが付加され、この先端には磁気作用体11fとして、磁極面を前方に向けた永久磁石、又は鉄、コバルト、ニッケル、これらの合金などの強磁性体が埋め込まれている。   As shown in the enlarged configuration diagram of the main part shown in FIG. 3, a first magnetic body holder 11e made of synthetic resin is added to the reinforcing pipe 11b on the curved pipe section 11a, and a magnetic acting body 11f is provided at the tip. A permanent magnet with the pole face facing forward, or a ferromagnetic material such as iron, cobalt, nickel, or an alloy thereof is embedded.

第1の磁性体ホルダ11eに対向した離隔位置に、磁気保持部12の合成樹脂製の第2の磁性体ホルダ12aが基板16上に設けられている。磁気保持部12は測定管11を保持したハウジング17と基板16を介して連結しているが、基板16では他の部材を介して連結していてもよい。第2の磁性体ホルダ12aには、第1の磁性体ホルダ11e中の永久磁石又は強磁性体から成る磁気作用体11fと対向して、強力な例えばネオジム磁石などから成り、磁極面を磁気作用体11fに向けた永久磁石12bが配置されている。磁気作用体11fが永久磁石の場合には、対向する磁極同士は異極とされ、つまりS極とN極が対向するようにされている。従って、第2の磁性体ホルダ12aの永久磁石12bは、磁気作用体11fを磁気吸引力により強力に吸引することにより、測定管11の曲管部11aの位置を離隔的に所定位置に弾性的に保持するという磁気保持部12の役割を果している。   A synthetic resin second magnetic body holder 12a of the magnetic holding portion 12 is provided on the substrate 16 at a separation position facing the first magnetic body holder 11e. The magnetic holding unit 12 is connected to the housing 17 holding the measurement tube 11 via the substrate 16, but the substrate 16 may be connected via another member. The second magnetic body holder 12a is made of a strong neodymium magnet or the like so as to face the magnetic action body 11f made of a permanent magnet or a ferromagnetic material in the first magnetic body holder 11e, and the magnetic pole surface is magnetically actuated. A permanent magnet 12b facing the body 11f is arranged. When the magnetic acting body 11f is a permanent magnet, the opposing magnetic poles are different from each other, that is, the S pole and the N pole are opposed to each other. Therefore, the permanent magnet 12b of the second magnetic body holder 12a elastically pulls the magnetic acting body 11f with a magnetic attraction force to separate the bent tube portion 11a of the measuring tube 11 to a predetermined position. It plays the role of the magnetic holding unit 12 that holds the

このように、実施例の補強管11bにより被覆された曲管部11aは、第2の磁性体ホルダ12a側に強く引き寄せられる。従って、この状態で測定管11内に測定流体を流入しても、曲管部11aが測定流体の重みで垂れ下がり位置が変化することなく弾性的に保持され、また補強管11bにより曲管部11aが変形することが防止される。   Thus, the curved pipe part 11a covered with the reinforcing pipe 11b of the embodiment is strongly drawn toward the second magnetic body holder 12a side. Therefore, even if the measurement fluid flows into the measurement tube 11 in this state, the bent tube portion 11a is elastically held without changing the hanging position due to the weight of the measurement fluid, and the bent tube portion 11a is supported by the reinforcing tube 11b. Is prevented from deforming.

なお、第2の磁性体ホルダ12aにおいては、永久磁石12bの代りに、電磁コイルを用いて磁気作用体11fを吸引することもできる。また、第1の磁性体ホルダ11eには永久磁石から成る磁気作用体11fを取り付け、第2の磁性体ホルダ12aには強磁性体を配置し、磁気作用体11fの永久磁石から生ずる磁束により第2の磁性体ホルダ12aの強磁性体に磁気吸引力を作用させることも可能である。   In addition, in the 2nd magnetic body holder 12a, the magnetic action body 11f can also be attracted | sucked using an electromagnetic coil instead of the permanent magnet 12b. In addition, a magnetic acting body 11f made of a permanent magnet is attached to the first magnetic body holder 11e, and a ferromagnetic body is placed in the second magnetic body holder 12a. It is also possible to apply a magnetic attractive force to the ferromagnetic material of the second magnetic material holder 12a.

また、第1の磁性体ホルダ11eの下側には、加振駆動部13の一部として機能する加振体13aとして、永久磁石が磁極面を下方向に向けて取り付けられている。加振体13aの下方の基板16上には、電磁石である電磁コイル13bが配置され、加振体13aと共働して作用する加振駆動部13とされている。なお、加振体13aは永久磁石以外にも、鉄、コバルト、ニッケル、これらの合金から成る強磁性体であってもよい。   A permanent magnet is attached to the lower side of the first magnetic body holder 11e as a vibration body 13a that functions as a part of the vibration drive unit 13 with the magnetic pole surface facing downward. An electromagnetic coil 13b, which is an electromagnet, is disposed on the substrate 16 below the vibration body 13a, and serves as a vibration driving unit 13 that works in cooperation with the vibration body 13a. In addition to the permanent magnet, the vibrating body 13a may be a ferromagnetic body made of iron, cobalt, nickel, or an alloy thereof.

電磁コイル13bの鉄心13cに巻回したコイル13dに電流の方向を切換ながら通電し、鉄心13cの端部から発生する磁束の方向を切換えることにより、加振体13aに対し磁気吸引力、磁気反発力を交互に繰り返して作用し、加振体13a、磁性体ホルダ11eを介して測定管11に非接触で所定の振動を加振する。   The coil 13d wound around the iron core 13c of the electromagnetic coil 13b is energized while switching the direction of the current, and the direction of the magnetic flux generated from the end of the iron core 13c is switched, so that the magnetic attractive force and magnetic repulsion are applied to the vibrating body 13a. A force is applied alternately and repeatedly, and a predetermined vibration is vibrated in a non-contact manner on the measuring tube 11 via the vibrating body 13a and the magnetic body holder 11e.

なお、この振動は測定管11の左右対称の中心位置に加えることが好ましい。また、振動数は測定管11中に測定流体を充満した状態における測定管1の共振周波数、或いはその整数倍とされ、通常はオートチューニングより求められた数10〜数100Hzであり、測定管11の弾性係数、形状、測定流体の種類によって異なる。   This vibration is preferably applied to the symmetrical center position of the measuring tube 11. The vibration frequency is the resonance frequency of the measurement tube 1 in a state where the measurement tube 11 is filled with the measurement fluid, or an integral multiple thereof, and is usually several tens to several hundreds of Hz obtained by auto-tuning. Varies depending on the elastic modulus, shape, and type of fluid being measured.

なお、加振駆動部13による加振量は微少であるので、測定管11が磁気保持部12により保持されていても、測定管11を加振することができる。なお、加振駆動部13には電磁コイル13b以外の他の加振駆動機構を使用することも可能である。   Since the amount of vibration by the vibration driving unit 13 is very small, the measurement tube 11 can be vibrated even if the measurement tube 11 is held by the magnetic holding unit 12. In addition, it is also possible to use the vibration drive mechanism other than the electromagnetic coil 13b for the vibration drive part 13. FIG.

流量測定中の測定管11の加振による変位の大きさ、つまりコリオリ力を測定するために、測定管11の平行部分の往き管11c、戻り管11dの2個所には、光センサによる変位検出部14が配置されている。測定管11には光反射部14aがそれぞれ取り付けられ、光反射部14aの下方の基板16上には、送受光部14bがそれぞれ配置されている。   In order to measure the magnitude of displacement caused by the vibration of the measurement tube 11 during flow rate measurement, that is, the Coriolis force, the displacement detection by an optical sensor is provided at two locations of the forward tube 11c and the return tube 11d in the parallel portion of the measurement tube 11. Part 14 is arranged. A light reflecting portion 14a is attached to each of the measuring tubes 11, and a light transmitting / receiving portion 14b is disposed on the substrate 16 below the light reflecting portion 14a.

この変位検出部14では、送受光部14bからの光ビームを光反射部14aに向けて送光し、その反射光を送受光部14bで受光して、反射光の位置ずれを検出する。この位置ずれにより送受光部14bから光反射部14aまでの距離、つまりそれぞれの送受光部14bからの往き管11cと戻り管11dへの距離をそれぞれ測定し、往き管11cと戻り管11dにおけるコリオリ力によるねじれ量に相当する量を演算制御部で時間差検出により求める。そして、これらの検出量を基に流量を求めるが、その演算方式等は公知なのでその説明は省略する。   In the displacement detector 14, the light beam from the light transmitter / receiver 14b is transmitted toward the light reflector 14a, and the reflected light is received by the transmitter / receiver 14b to detect the positional deviation of the reflected light. Due to this misalignment, the distance from the light transmitting / receiving unit 14b to the light reflecting unit 14a, that is, the distance from each transmitting / receiving unit 14b to the forward tube 11c and the return tube 11d is measured, and the Coriolis in the forward tube 11c and the return tube 11d is measured. An amount corresponding to the amount of twist due to force is obtained by time difference detection in the arithmetic control unit. Then, the flow rate is obtained based on these detected amounts, but since the calculation method and the like are known, the description thereof is omitted.

なお、この変位検出部14は位置ずれ検出方式により距離を測定しているが、ぼけ検出方式、光干渉方式等により距離を検出してもよい。また、光検出方式の代りに、例えば電磁式の変位検出器等に代えることもできる。しかし、光検出方式は測定管11に対して力を作用することがないので、微小なコリオリ力に影響を与えることがなく、精度の良い流量測定ができる。   The displacement detection unit 14 measures the distance by the positional deviation detection method, but may detect the distance by a blur detection method, an optical interference method, or the like. Further, instead of the light detection method, for example, an electromagnetic displacement detector or the like can be used. However, since the light detection method does not apply force to the measurement tube 11, the flow rate can be measured with high accuracy without affecting the minute Coriolis force.

また、測定管11の下方の基板16上には、測定管11の外側から測定管11内の流体温度を測温する流量計の流体温度測定装置である温度測定部15が配置されている。図4は温度測定部15で使用される赤外線放射温度計の構成図を示し、温度測定部15はレンズ光学系15aと温度検知素子15bとを有している。レンズ光学系15aは測定管11の内部の測定流体と赤外線検知素子である光学的温度検知素子15bとを共役としている。従って、測定管11の内部の流体の温度に依存する赤外線は透明又は半透明の測定管11を通過して、レンズ光学系15aの光路内に配置された図示しない波長選択フィルタを介して温度検知素子15bで検知され、遠隔的に測定流体の測温がなされる。   A temperature measuring unit 15 that is a fluid temperature measuring device of a flow meter that measures the fluid temperature in the measuring tube 11 from the outside of the measuring tube 11 is disposed on the substrate 16 below the measuring tube 11. FIG. 4 shows a configuration diagram of an infrared radiation thermometer used in the temperature measurement unit 15, and the temperature measurement unit 15 includes a lens optical system 15a and a temperature detection element 15b. The lens optical system 15a conjugates the measurement fluid inside the measuring tube 11 and the optical temperature detection element 15b which is an infrared detection element. Therefore, the infrared rays depending on the temperature of the fluid inside the measuring tube 11 pass through the transparent or translucent measuring tube 11 and detect the temperature via a wavelength selection filter (not shown) arranged in the optical path of the lens optical system 15a. It is detected by the element 15b, and the temperature of the measurement fluid is measured remotely.

この測温は測定管11に接触することなく遠隔的になされるので、測定管11に生ずるコリオリ力に影響を与えることがなく、精度の良い流量測定に寄与できる。なお、実施例においては、このコリオリ式質量流量計をカバーで覆って内部を暗室としているので、周囲の外光が測温における外乱となることはない。   Since this temperature measurement is performed remotely without contacting the measuring tube 11, it does not affect the Coriolis force generated in the measuring tube 11, and can contribute to accurate flow rate measurement. In the embodiment, since this Coriolis mass flowmeter is covered with a cover and the inside is a dark room, ambient ambient light does not become a disturbance in temperature measurement.

実施例においては、測定管11は水平に配置しているが、鉛直方向に配置してコリオリ力を検出することもできる。   In the embodiment, the measuring tube 11 is arranged horizontally, but it can be arranged in the vertical direction to detect the Coriolis force.

なお、本明細書における上下とは、図面に対しての方向であり、必ずしも実際の装置における上下とは限らない。   In addition, the upper and lower sides in this specification are directions with respect to the drawings, and are not necessarily the upper and lower sides in an actual apparatus.

11 測定管
11a 曲管部
11b 補強管
11c 往き管
11d 戻り管
11e 第1の磁性体ホルダ
11f 磁気作用体
12 磁気保持部
12a 第2の磁性体ホルダ
12b 永久磁石
13 加振駆動部
13a 加振体
13b 電磁コイル
14 変位検出部
14a 光反射部
14b 送受光部
15 温度測定部
15a レンズ光学系
15b 温度検知素子
16 基板
17 ハウジング
DESCRIPTION OF SYMBOLS 11 Measurement pipe 11a Bending pipe part 11b Reinforcing pipe 11c Forward pipe 11d Return pipe 11e 1st magnetic body holder 11f Magnetic action body 12 Magnetic holding part 12a 2nd magnetic body holder 12b Permanent magnet 13 Excitation drive part 13a Excitation body 13b Electromagnetic coil 14 Displacement detecting unit 14a Light reflecting unit 14b Transmitting / receiving unit 15 Temperature measuring unit 15a Lens optical system 15b Temperature detecting element 16 Substrate 17 Housing

Claims (3)

測定流体を一方向に流通する合成樹脂管から成る測定管と、該測定管の所定の位置を離隔的に保持する磁気保持部と、前記測定管に振動を与える加振駆動部と、前記測定管の往き管と戻り管の2個所において前記測定管の変位を検出する変位検出部と、前記測定管の外側に配置する光学的温度検知素子とを有するコリオリ式質量流量計であって、前記磁気保持部は、前記測定管に付設した磁気作用体に対して、磁気吸引力を作用させて前記測定管を離隔的に保持すると共に、前記測定管は透明又は半透明とし、前記光学的温度検知素子と前記測定管内の測定流体とを共役とするレンズ光学系とを備え、前記測定管内の前記測定流体を遠隔的に測温することを特徴とするコリオリ式質量流量計 A measurement tube composed of a synthetic resin tube that circulates the measurement fluid in one direction, a magnetic holding unit that holds a predetermined position of the measurement tube at a distance, an excitation drive unit that applies vibration to the measurement tube, and the measurement A Coriolis type mass flow meter having a displacement detector for detecting the displacement of the measurement tube at two locations of a forward tube and a return tube, and an optical temperature detection element disposed outside the measurement tube, The magnetic holding unit applies a magnetic attraction force to the magnetic action body attached to the measurement tube to hold the measurement tube at a distance, and the measurement tube is transparent or translucent , and the optical temperature A Coriolis mass flow meter comprising a lens optical system that conjugates a sensing element and a measurement fluid in the measurement tube, and remotely measures the temperature of the measurement fluid in the measurement tube . 前記光学的温度検知素子は赤外線検知素子としたことを特徴とする請求項1に記載のコリオリ式質量流量計The Coriolis mass flowmeter according to claim 1, wherein the optical temperature detection element is an infrared detection element. 前記レンズ光学系の光路内に波長選択フィルタを配置したことを特徴とする請求項1又は2に記載のコリオリ式質量流量計The Coriolis mass flowmeter according to claim 1 or 2, wherein a wavelength selection filter is disposed in an optical path of the lens optical system.
JP2016097983A 2015-10-08 2016-05-16 Coriolis mass flow meter Active JP6395189B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2016097983A JP6395189B2 (en) 2016-05-16 2016-05-16 Coriolis mass flow meter
TW105129783A TWI625507B (en) 2015-10-08 2016-09-13 Coriolis mass flow meter
EP16189126.2A EP3153827B1 (en) 2015-10-08 2016-09-16 Coriolis mass flow meter
EP16189133.8A EP3163262B1 (en) 2015-10-28 2016-09-16 Coriolis mass flow meter
TW105131283A TWI628418B (en) 2015-10-28 2016-09-29 Coriolis mass flow meter
CN201610866276.7A CN106908106B (en) 2015-10-08 2016-09-29 Coriolis mass flowmeters
US15/285,556 US9921093B2 (en) 2015-10-08 2016-10-05 Coriolis mass flow meter
KR1020160129586A KR101883068B1 (en) 2015-10-08 2016-10-07 Coriolis mass flow meter
US15/296,097 US9995612B2 (en) 2015-10-28 2016-10-18 Coriolis mass flow meter
KR1020160138434A KR101908194B1 (en) 2015-10-28 2016-10-24 Coriolis mass flow meter
CN201610947958.0A CN106996812A (en) 2015-10-28 2016-10-26 Coriolis mass flowmeters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016097983A JP6395189B2 (en) 2016-05-16 2016-05-16 Coriolis mass flow meter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016026234A Division JP5960371B1 (en) 2015-10-08 2016-02-15 Coriolis mass flow meter

Publications (2)

Publication Number Publication Date
JP2017146290A JP2017146290A (en) 2017-08-24
JP6395189B2 true JP6395189B2 (en) 2018-09-26

Family

ID=59680766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016097983A Active JP6395189B2 (en) 2015-10-08 2016-05-16 Coriolis mass flow meter

Country Status (1)

Country Link
JP (1) JP6395189B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108303751B (en) * 2018-02-06 2019-08-02 四川理工学院 A kind of intelligent exploration steam method of automatic loaded steamer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107535A (en) * 1983-11-16 1985-06-13 Mitsubishi Heavy Ind Ltd Temperature measuring device for high-temperature fluid particle
US7127815B2 (en) * 2001-11-26 2006-10-31 Emerson Electric Co. Method of manufacturing a Coriolis flowmeter
CA2449551A1 (en) * 2003-11-17 2005-05-17 Photon Control Inc. Optical device and method for sensing multiphase flow
US8469588B2 (en) * 2010-05-03 2013-06-25 General Electric Company System and method for compressor inlet temperature measurement
DE102010038329B4 (en) * 2010-07-23 2014-02-06 Bruker Optik Gmbh IR spectrometer with non-contact temperature measurement
JP2014240801A (en) * 2013-06-12 2014-12-25 株式会社日立ハイテクノロジーズ Infrared inspection apparatus

Also Published As

Publication number Publication date
JP2017146290A (en) 2017-08-24

Similar Documents

Publication Publication Date Title
TWI625507B (en) Coriolis mass flow meter
TWI628418B (en) Coriolis mass flow meter
GB2221302A (en) Coriolis-effect fluid mass flow and density sensor made by a micromachining method
KR102362354B1 (en) Coriolis mass flow meter
JP6395189B2 (en) Coriolis mass flow meter
JP5922291B1 (en) Coriolis mass flow meter
JP5960371B1 (en) Coriolis mass flow meter
JP5942238B1 (en) Coriolis mass flow meter
JP5922293B1 (en) Coriolis mass flow meter
JPS62245922A (en) Karman's vortex street flow meter
JPS6425011A (en) Mass flowmeter
CN107430021B (en) Measuring the spatiotemporal relationship between two or more positions of a vibrating element
JP2012026776A (en) Coriolis-type mass flowmeter
JPH03199922A (en) Coriolis mass flowmeter
HUT71161A (en) Method and device for metering mass flow
JPH0357919A (en) Mass flowmeter
CZ27171U1 (en) Mechanical system of weight meter measuring part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180216

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180216

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180822

R150 Certificate of patent or registration of utility model

Ref document number: 6395189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250