JP5960371B1 - Coriolis mass flow meter - Google Patents

Coriolis mass flow meter Download PDF

Info

Publication number
JP5960371B1
JP5960371B1 JP2016026234A JP2016026234A JP5960371B1 JP 5960371 B1 JP5960371 B1 JP 5960371B1 JP 2016026234 A JP2016026234 A JP 2016026234A JP 2016026234 A JP2016026234 A JP 2016026234A JP 5960371 B1 JP5960371 B1 JP 5960371B1
Authority
JP
Japan
Prior art keywords
tube
magnetic
measurement
bent
coriolis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016026234A
Other languages
Japanese (ja)
Other versions
JP2017146124A (en
Inventor
村上 英一
英一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atsuden Co Ltd
Original Assignee
Atsuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atsuden Co Ltd filed Critical Atsuden Co Ltd
Priority to JP2016026234A priority Critical patent/JP5960371B1/en
Application granted granted Critical
Publication of JP5960371B1 publication Critical patent/JP5960371B1/en
Priority to TW105129783A priority patent/TWI625507B/en
Priority to EP16189126.2A priority patent/EP3153827B1/en
Priority to CN201610866276.7A priority patent/CN106908106B/en
Priority to US15/285,556 priority patent/US9921093B2/en
Priority to KR1020160129586A priority patent/KR101883068B1/en
Publication of JP2017146124A publication Critical patent/JP2017146124A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】合成樹脂製の測定管が変形し難いコリオリ式質量流量計を得る。【解決手段】合成樹脂製の測定管11のU字状の曲管部11aには補強管11bが被着され、曲管部11aは補強管11bにより保形されている。曲管部11aには第1の磁性体ホルダ11eが取り付けられ、先端には磁極面を前方に向けた永久磁石から成る磁気作用体11fが埋め込まれている。第1の磁性体ホルダ11eの先端に対向した離隔位置に第2の磁性体ホルダ12aが設けられ、第1の磁性体ホルダ11e中の磁気作用体11fと対向して、磁極面を第1の磁性体ホルダ11eに向けた永久磁石12bが配置され、磁気作用体11fと異極同士の磁極面が対向している。第2の磁性体ホルダ12aの永久磁石12bは、磁気作用体11fを磁気吸引力により吸引し、曲管部11aを離隔的かつ弾性的に引き寄せて保持する。【選択図】図2To obtain a Coriolis mass flow meter in which a synthetic resin measuring tube is difficult to deform. A reinforcing tube 11b is attached to a U-shaped bent tube portion 11a of a measurement tube 11 made of synthetic resin, and the bent tube portion 11a is held by the reinforcing tube 11b. A first magnetic body holder 11e is attached to the bent tube portion 11a, and a magnetic acting body 11f made of a permanent magnet with a magnetic pole surface facing forward is embedded at the tip. A second magnetic body holder 12a is provided at a separation position facing the tip of the first magnetic body holder 11e, and the magnetic pole surface faces the first magnetic body 11f in the first magnetic body holder 11e so as to face the first magnetic pole surface. A permanent magnet 12b facing the magnetic material holder 11e is disposed, and the magnetic acting surface 11f and the magnetic pole surface of different polarities are opposed to each other. The permanent magnet 12b of the second magnetic body holder 12a attracts the magnetic acting body 11f with a magnetic attraction force, and holds the bent tube portion 11a while being pulled apart and elastically. [Selection] Figure 2

Description

本発明は、曲管部の形状を弾性的に保持するコリオリ式質量流量計に関するものである。   The present invention relates to a Coriolis mass flow meter that elastically holds the shape of a curved pipe portion.

コリオリ式質量流量計とは、速度Vで回転振動系の回転中心に向かう、又は回転中心から離れる質量mの質点に働くコリオリ力が、質量mと速度Vの積に比例することから、コリオリ力を測定して質量流量を求める方式の流量計である。   The Coriolis mass flow meter is a Coriolis force because the Coriolis force acting on the mass point of the mass m that moves toward or away from the rotational center of the rotational vibration system at a velocity V is proportional to the product of the mass m and the velocity V. This is a flow meter of a type that obtains a mass flow rate by measuring.

コリオリ式質量流量計は差圧式、電磁式、容積式などの流量計と比較すると、直接的に質量流量が得られること、摩耗などを起こす機械的可動部分がないこと、保守性に優れていること、そして原理上、測定管の振動数の計測から密度が計測できることなどの数々の優れた特長を有している。   Coriolis type mass flowmeters are superior in maintainability compared to differential pressure type, electromagnetic type, positive displacement type flowmeters, because they can directly obtain mass flow rates, have no mechanical moving parts that cause wear, etc. And in principle, it has many excellent features such as the ability to measure the density from the measurement of the frequency of the measuring tube.

例えば、特許文献1には図8に示すように、U字形測定管を用いたコリオリ式質量流量計が開示されている。測定管は1本のU字形測定管1で構成され、取付フランジ2a、2bを介して固定された点を中心にして、片持ち梁状のU字形測定管1は加振した共振周波数で上下に振動を繰り返えす。この測定管1内に流入した測定流体は、入口からU字の曲がり部に向かって流れる際に、測定管1に対する速度によりコリオリ力が生じ、測定管1に歪を与え、曲管部から出口に向かって流れる際は、コリオリ力により逆方向の歪を与え振動となる。   For example, Patent Document 1 discloses a Coriolis type mass flow meter using a U-shaped measuring tube as shown in FIG. The measuring tube is composed of a single U-shaped measuring tube 1, and the cantilever-shaped U-shaped measuring tube 1 is vertically moved at a vibrating resonance frequency around a point fixed via mounting flanges 2 a and 2 b. Repeat the vibration. When the measurement fluid that has flowed into the measurement tube 1 flows from the inlet toward the U-shaped bent portion, a Coriolis force is generated due to the velocity with respect to the measurement tube 1, and the measurement tube 1 is distorted and exits from the bent tube portion. When it flows toward, it is distorted in the opposite direction by Coriolis force and becomes a vibration.

測定管1のU字形を成す先端には振動子3が設けられ、曲がり部の両側の測定管1には変位検出センサ4a、4bがそれぞれ取り付けられている。   A transducer 3 is provided at the distal end of the U-shape of the measurement tube 1, and displacement detection sensors 4a and 4b are attached to the measurement tube 1 on both sides of the bent portion.

測定管1に測定流体を流し、振動子3を駆動し測定管1を加振する。振動子3の振動方向の角速度ω、測定流体の流速νとすると、Fc=−2mω×νのコリオリ力が働き、このコリオリ力Fcに比例した振動の振幅を変位検出センサ4a、4bで検出し、演算を行えば質量流量が測定できる。   A measurement fluid is allowed to flow through the measurement tube 1, and the vibrator 3 is driven to vibrate the measurement tube 1. When the angular velocity ω in the vibration direction of the vibrator 3 and the flow velocity ν of the measurement fluid, the Coriolis force of Fc = −2mω × ν works, and the amplitude of vibration proportional to the Coriolis force Fc is detected by the displacement detection sensors 4a and 4b. If the calculation is performed, the mass flow rate can be measured.

特開平3−41319号公報Japanese Patent Laid-Open No. 3-41319

しかし、この従来例のコリオリ式質量流量計では、測定管1内に測定流体が充満しても、例えばU字状の曲管部が自重などで垂れ下がるなどの変形による測定誤差が介入しないように、測定管1には通常は剛性の大きな金属管が使用されている。しかし、金属管の加工は難しく、加工により同一特性の金属管を揃えることは困難であり、使用に際してはその支持構造が大型となり重量も大となり、価格も高価となる。   However, in this conventional Coriolis type mass flow meter, even if the measurement pipe 1 is filled with the measurement fluid, the measurement error due to deformation such as the U-shaped curved pipe portion hanging down due to its own weight or the like does not intervene. The measurement tube 1 is usually a metal tube having high rigidity. However, it is difficult to process a metal tube, and it is difficult to prepare metal tubes having the same characteristics by processing. In use, the support structure is large, the weight is increased, and the price is also expensive.

このために、測定管に合成樹脂管の使用が考えられるが、合成樹脂管の使用により加工性が有利で軽量化ができる反面で、特に曲管部において変形し易い測定管を保持し、振動に対する剛性を大きくした構造が必要となる。   For this reason, it is conceivable to use a synthetic resin tube for the measurement tube. However, the use of the synthetic resin tube is advantageous in terms of workability and can be reduced in weight. A structure with increased rigidity is required.

本発明の目的は、上述の課題を解消し、合成樹脂管から成り曲管部を有する測定管を使用し、小型化が可能で安価で曲管部における変形がし難いコリオリ式質量流量計を提供することにある。   The object of the present invention is to solve the above-mentioned problems, use a measurement tube made of a synthetic resin tube and having a curved pipe part, and to provide a Coriolis mass flow meter that can be reduced in size and is inexpensive and difficult to deform in the curved pipe part. It is to provide.

上記目的を達成するための本発明に係るコリオリ式質量流量計は、U字状の曲管部を有し測定流体を往き管から戻り管の方向に流通する合成樹脂製の測定管と、前記曲管部を弾性的に保持する保持部と、前記測定管に振動を与える加振駆動部と、前記測定管の前記往き管と前記戻り管の2個所において前記測定管の変位を検出する変位検出部とを有するコリオリ式質量流量計であって、前記曲管部の形状を補強部材により保形するようにしたことを特徴とする。   A Coriolis type mass flow meter according to the present invention for achieving the above object is a measurement tube made of a synthetic resin having a U-shaped bent tube portion and flowing a measurement fluid from an outward tube to a return tube, Displacement that detects the displacement of the measurement tube at two locations: a holding portion that elastically holds the bent tube portion, an excitation drive unit that applies vibration to the measurement tube, and the forward tube and the return tube of the measurement tube A Coriolis type mass flow meter having a detection unit, wherein the shape of the bent tube portion is retained by a reinforcing member.

本発明に係るコリオリ式質量流量計によれば、合成樹脂製の測定管の曲管部の形状を保形し、弾性的に保持することにより、発生したコリオリ力を基にした流量の測定を安価に実現することができる。   According to the Coriolis type mass flow meter according to the present invention, the shape of the curved pipe portion of the measurement tube made of synthetic resin is held and elastically held, thereby measuring the flow rate based on the generated Coriolis force. It can be realized at low cost.

実施例1のコリオリ式質量流量計の斜視図である。1 is a perspective view of a Coriolis mass flow meter of Example 1. FIG. 側面図である。It is a side view. 要部の拡大構成図である。It is an enlarged block diagram of the principal part. 温度測定部の構成図である。It is a block diagram of a temperature measurement part. 実施例2の側面図である。6 is a side view of Example 2. FIG. 片側の補強板の斜視図である。It is a perspective view of the reinforcement board of one side. 実施例3の側面図である。6 is a side view of Example 3. FIG. 従来例のコリオリ式質量流量計の斜視図である。It is a perspective view of the Coriolis type mass flow meter of a prior art example.

本発明を図1〜図7に図示の実施例に基づいて詳細に説明する。   The present invention will be described in detail based on the embodiment shown in FIGS.

図1は実施例1のコリオリ式質量流量計の斜視図、図2は側面図である。このコリオリ式質量流量計は主として、測定流体を一方向に流通する測定管11と、測定管11の所定の位置を離隔的にかつ弾性的に保持する磁気保持部12と、測定管11を加振する加振駆動部13と、測定管11の変位を検出する変位検出部14と、測定流体の温度を測定する温度測定部15と、これらの機構に対し検出信号、制御信号を入出力し、測定流体の流量を演算する図示しない演算制御部とから成っている。   FIG. 1 is a perspective view of a Coriolis type mass flow meter of Example 1, and FIG. 2 is a side view. This Coriolis type mass flow meter mainly includes a measuring tube 11 that circulates a measuring fluid in one direction, a magnetic holding unit 12 that holds a predetermined position of the measuring tube 11 in a separated and elastic manner, and a measuring tube 11. The vibration drive unit 13 that vibrates, the displacement detection unit 14 that detects the displacement of the measurement tube 11, the temperature measurement unit 15 that measures the temperature of the measurement fluid, and the detection signals and control signals to these mechanisms are input and output. And a calculation control unit (not shown) for calculating the flow rate of the measurement fluid.

測定管11は合成樹脂管の例えばフッ素樹脂管から成り、直径が例えば3.2mmで、中央部にU字状の曲管部11aを有しており、曲管部11aには金属管又は合成樹脂管、好ましくは金属管から成る補強管11bが被着されている。なお、測定流体が腐蝕性を有していなければ、測定管11はフッ素樹脂管でなくとも通常の合成樹脂管であってもよい。しかし、測定管11は補強管11bを含めて振動を十分に伝達可能とする硬度の弾性係数を有し、柔軟でないことが必要である。測定管11の径は1例であり、任意の径の測定管11を使用できることは勿論である。   The measurement tube 11 is made of a synthetic resin tube such as a fluororesin tube, has a diameter of, for example, 3.2 mm, and has a U-shaped bent tube portion 11a at the center, and the bent tube portion 11a includes a metal tube or a synthetic tube. A reinforcing tube 11b made of a resin tube, preferably a metal tube, is attached. If the measurement fluid does not have corrosive properties, the measurement tube 11 may be a normal synthetic resin tube instead of a fluororesin tube. However, the measuring tube 11 including the reinforcing tube 11b needs to have an elastic coefficient of hardness that can sufficiently transmit vibration and be not flexible. The diameter of the measuring tube 11 is one example, and it is needless to say that the measuring tube 11 having an arbitrary diameter can be used.

このように、補強管11bによって曲管部11aを被覆することにより、合成樹脂製の測定管11であっても、曲管部11aが変形する虞れはなく保形が可能である。   Thus, by covering the curved pipe part 11a with the reinforcing pipe 11b, even if it is the measurement pipe | tube 11 made from a synthetic resin, there is no possibility that the curved pipe part 11a will deform | transform, and shape retention is possible.

測定管11の曲管部11aを境界とする往き管11cと戻り管11dの平行な2個所は、基板16上に配置されたハウジング17に挟着されることにより、測定管11は保持されている。従って、これらの固定位置よりも曲管部11a側の測定管11は、機械的な支持部がない自由端とされている。   Two parallel portions of the forward tube 11c and the return tube 11d with the bent tube portion 11a of the measurement tube 11 as a boundary are sandwiched by the housing 17 disposed on the substrate 16, whereby the measurement tube 11 is held. Yes. Therefore, the measurement tube 11 closer to the curved tube portion 11a than these fixed positions is a free end without a mechanical support portion.

図3に示す要部の拡大構成図のように、曲管部11a上の補強管11bには、合成樹脂製の第1の磁性体ホルダ11eが付加され、この先端には磁気作用体11fとして、磁極面を前方に向けた永久磁石、又は鉄、コバルト、ニッケル、これらの合金などの強磁性体が埋め込まれている。   As shown in the enlarged configuration diagram of the main part shown in FIG. 3, a first magnetic body holder 11e made of synthetic resin is added to the reinforcing pipe 11b on the curved pipe section 11a, and a magnetic acting body 11f is provided at the tip. A permanent magnet with the pole face facing forward, or a ferromagnetic material such as iron, cobalt, nickel, or an alloy thereof is embedded.

第1の磁性体ホルダ11eに対向した離隔位置に、磁気保持部12の合成樹脂製の第2の磁性体ホルダ12aが基板16上に設けられている。磁気保持部12は測定管11を保持したハウジング17と基板16を介して連結しているが、基板16では他の部材を介して連結していてもよい。第2の磁性体ホルダ12aには、第1の磁性体ホルダ11e中の永久磁石又は強磁性体から成る磁気作用体11fと対向して、強力な例えばネオジム磁石などから成り、磁極面を磁気作用体11fに向けた永久磁石12bが配置されている。磁気作用体11fが永久磁石の場合には、対向する磁極同士は異極とされ、つまりS極とN極が対向するようにされている。従って、第2の磁性体ホルダ12aの永久磁石12bは、磁気作用体11fを磁気吸引力により強力に吸引することにより、測定管11の曲管部11aの位置を離隔的に所定位置に弾性的に保持するという磁気保持部12の役割を果している。   A synthetic resin second magnetic body holder 12a of the magnetic holding portion 12 is provided on the substrate 16 at a separation position facing the first magnetic body holder 11e. The magnetic holding unit 12 is connected to the housing 17 holding the measurement tube 11 via the substrate 16, but the substrate 16 may be connected via another member. The second magnetic body holder 12a is made of a strong neodymium magnet or the like so as to face the magnetic action body 11f made of a permanent magnet or a ferromagnetic material in the first magnetic body holder 11e, and the magnetic pole surface is magnetically actuated. A permanent magnet 12b facing the body 11f is arranged. When the magnetic acting body 11f is a permanent magnet, the opposing magnetic poles are different from each other, that is, the S pole and the N pole are opposed to each other. Therefore, the permanent magnet 12b of the second magnetic body holder 12a elastically pulls the magnetic acting body 11f with a magnetic attraction force to separate the bent tube portion 11a of the measuring tube 11 to a predetermined position. It plays the role of the magnetic holding unit 12 that holds the

このように、実施例1の補強管11bにより被覆された曲管部11aは、第2の磁性体ホルダ12a側に強く引き寄せられる。従って、この状態で測定管11内に測定流体を流入しても、曲管部11aが測定流体の重みで垂れ下がり位置が変化することなく弾性的に保持され、また補強管11bにより曲管部11aが変形することが防止される。   As described above, the bent tube portion 11a covered with the reinforcing tube 11b of the first embodiment is strongly drawn toward the second magnetic material holder 12a. Therefore, even if the measurement fluid flows into the measurement tube 11 in this state, the bent tube portion 11a is elastically held without changing the hanging position due to the weight of the measurement fluid, and the bent tube portion 11a is supported by the reinforcing tube 11b. Is prevented from deforming.

なお、第2の磁性体ホルダ12aにおいては、永久磁石12bの代りに、電磁コイルを用いて磁気作用体11fを吸引することもできる。また、第1の磁性体ホルダ11eには永久磁石から成る磁気作用体11fを取り付け、第2の磁性体ホルダ12aには強磁性体を配置し、磁気作用体11fの永久磁石から生ずる磁束により第2の磁性体ホルダ12aの強磁性体に磁気吸引力を作用させることも可能である。   In addition, in the 2nd magnetic body holder 12a, the magnetic action body 11f can also be attracted | sucked using an electromagnetic coil instead of the permanent magnet 12b. In addition, a magnetic acting body 11f made of a permanent magnet is attached to the first magnetic body holder 11e, and a ferromagnetic body is placed in the second magnetic body holder 12a. It is also possible to apply a magnetic attractive force to the ferromagnetic material of the second magnetic material holder 12a.

また、第1の磁性体ホルダ11eの下側には、加振駆動部13の一部として機能する加振体13aとして、永久磁石が磁極面を下方向に向けて取り付けられている。加振体13aの下方の基板16上には、電磁石である電磁コイル13bが配置され、加振体13aと共働して作用する加振駆動部13とされている。なお、加振体13aは永久磁石以外にも、鉄、コバルト、ニッケル、これらの合金から成る強磁性体であってもよい。   In addition, a permanent magnet is attached to the lower side of the first magnetic body holder 11 e as a vibration body 13 a that functions as a part of the vibration drive unit 13 with the magnetic pole surface facing downward. An electromagnetic coil 13b, which is an electromagnet, is disposed on the substrate 16 below the vibration body 13a, and serves as a vibration driving unit 13 that works in cooperation with the vibration body 13a. In addition to the permanent magnet, the vibrating body 13a may be a ferromagnetic body made of iron, cobalt, nickel, or an alloy thereof.

電磁コイル13bの鉄心13cに巻回したコイル13dに電流の方向を切換ながら通電し、鉄心13cの端部から発生する磁束の方向を切換えることにより、加振体13aに対し磁気吸引力、磁気反発力を交互に繰り返して作用し、加振体13a、磁性体ホルダ11eを介して測定管11に非接触で所定の振動を加振する。   The coil 13d wound around the iron core 13c of the electromagnetic coil 13b is energized while switching the direction of the current, and the direction of the magnetic flux generated from the end of the iron core 13c is switched, so that the magnetic attractive force and magnetic repulsion are applied to the vibrating body 13a. A force is applied alternately and repeatedly, and a predetermined vibration is vibrated in a non-contact manner on the measuring tube 11 via the vibrating body 13a and the magnetic body holder 11e.

なお、この振動は測定管11の左右対称の中心位置に加えることが好ましい。また、振動数は測定管11中に測定流体を充満した状態における測定管1の共振周波数、或いはその整数倍とされ、通常はオートチューニングより求められた数10〜数100Hzであり、測定管11の弾性係数、形状、測定流体の種類によって異なる。   This vibration is preferably applied to the symmetrical center position of the measuring tube 11. The vibration frequency is the resonance frequency of the measurement tube 1 in a state where the measurement tube 11 is filled with the measurement fluid, or an integral multiple thereof, and is usually several tens to several hundreds of Hz obtained by auto-tuning. Varies depending on the elastic modulus, shape, and type of measurement fluid

なお、加振駆動部13による加振量は微少であるので、測定管11が磁気保持部12により保持されていても、測定管11を加振することができる。なお、加振駆動部13には電磁コイル13b以外の他の加振駆動機構を使用することも可能である。   Since the amount of vibration by the vibration driving unit 13 is very small, the measurement tube 11 can be vibrated even if the measurement tube 11 is held by the magnetic holding unit 12. In addition, it is also possible to use the vibration drive mechanism other than the electromagnetic coil 13b for the vibration drive part 13. FIG.

流量測定中の測定管11の加振による変位の大きさ、つまりコリオリ力を測定するために、測定管11の平行部分の往き管11c、戻り管11dの2個所には、光センサによる変位検出部14が配置されている。測定管11には光反射部14aがそれぞれ取り付けられ、光反射部14aの下方の基板16上には、送受光部14bがそれぞれ配置されている。   In order to measure the magnitude of displacement caused by the vibration of the measurement tube 11 during flow rate measurement, that is, the Coriolis force, the displacement detection by an optical sensor is provided at two locations of the forward tube 11c and the return tube 11d in the parallel portion of the measurement tube 11. Part 14 is arranged. A light reflecting portion 14a is attached to each of the measuring tubes 11, and a light transmitting / receiving portion 14b is disposed on the substrate 16 below the light reflecting portion 14a.

この変位検出部14では、送受光部14bからの光ビームを光反射部14aに向けて送光し、その反射光を送受光部14bで受光して、反射光の位置ずれを検出する。この位置ずれにより送受光部14bから光反射部14aまでの距離、つまりそれぞれの送受光部14bからの往き管11cと戻り管11dへの距離をそれぞれ測定し、往き管11cと戻り管11dにおけるコリオリ力によるねじれ量に相当する量を演算制御部で時間差検出により求める。そして、これらの検出量を基に流量を求めるが、その演算方式等は公知なのでその説明は省略する。   In the displacement detector 14, the light beam from the light transmitter / receiver 14b is transmitted toward the light reflector 14a, and the reflected light is received by the transmitter / receiver 14b to detect the positional deviation of the reflected light. Due to this misalignment, the distance from the light transmitting / receiving unit 14b to the light reflecting unit 14a, that is, the distance from each transmitting / receiving unit 14b to the forward tube 11c and the return tube 11d is measured, and the Coriolis in the forward tube 11c and the return tube 11d is measured. An amount corresponding to the amount of twist due to force is obtained by time difference detection in the arithmetic control unit. Then, the flow rate is obtained based on these detected amounts, but since the calculation method and the like are known, the description thereof is omitted.

なお、この変位検出部14は位置ずれ検出方式により距離を測定しているが、ぼけ検出方式、光干渉方式等により距離を検出してもよい。また、光検出方式の代りに、例えば電磁式の変位検出器等に代えることもできる。しかし、光検出方式は測定管11に対して力を作用することがないので、微小なコリオリ力に影響を与えることがなく、精度の良い流量測定ができる。   The displacement detection unit 14 measures the distance by the positional deviation detection method, but may detect the distance by a blur detection method, an optical interference method, or the like. Further, instead of the light detection method, for example, an electromagnetic displacement detector or the like can be used. However, since the light detection method does not apply force to the measurement tube 11, the flow rate can be measured with high accuracy without affecting the minute Coriolis force.

また、測定管11の下方の基板16上には、測定管11の温度を測定する温度測定部15が配置されている。測定管11は測定流体の温度によって、温められたり冷やされたりすると弾性係数が変化して、測定管11の共振振動数やねじれ面が微妙に変化するので、これらを補正するために測定管11の温度を測定する。なお、この測定流体の温度はコリオリ式質量流量計以外の他の個所において測定していれば、この温度測定部15を用いて温度を測定する必要はない。   A temperature measurement unit 15 that measures the temperature of the measurement tube 11 is disposed on the substrate 16 below the measurement tube 11. When the measurement tube 11 is heated or cooled depending on the temperature of the measurement fluid, the elastic coefficient changes, and the resonance frequency and the torsional surface of the measurement tube 11 slightly change. To correct these, the measurement tube 11 is corrected. Measure the temperature. If the temperature of the measurement fluid is measured at a location other than the Coriolis type mass flow meter, it is not necessary to measure the temperature using the temperature measurement unit 15.

図4は温度測定部15で使用される赤外線放射温度計の構成図を示し、温度測定部15はレンズ光学系15aと温度検知素子15bとを有している。レンズ光学系15aは赤外光を測定管11の表面と温度検知素子15bとを共役としている。温度検知素子15bは図示しない光学フィルタを介して測定管11の表面温度に依存する赤外線を検知して表面温度を求める。なお、実施例においては、このコリオリ式質量流量計をカバーで覆って内部を暗室としているので、周囲の外光が温度測定における外乱となることはない。   FIG. 4 shows a configuration diagram of an infrared radiation thermometer used in the temperature measurement unit 15, and the temperature measurement unit 15 includes a lens optical system 15a and a temperature detection element 15b. The lens optical system 15a conjugates infrared light with the surface of the measuring tube 11 and the temperature detection element 15b. The temperature detecting element 15b detects infrared rays depending on the surface temperature of the measuring tube 11 through an optical filter (not shown) to obtain the surface temperature. In the embodiment, since this Coriolis mass flowmeter is covered with a cover and the inside is a dark room, ambient ambient light does not become a disturbance in temperature measurement.

図5は実施例2の斜視図、図6は片側の補強板の斜視図を示している。なお、実施例1と同一の符号は同一の部材を示している。測定管11の曲管部11aには、磁性体ホルダ兼補強用ホルダ11e’が取り付けられている。この磁性体ホルダ兼補強用ホルダ11e’は合成樹脂材又は金属材から成る重ねて使用する一対の補強板11g、11hから構成されている。 FIG. 5 is a perspective view of the second embodiment, and FIG. 6 is a perspective view of a reinforcing plate on one side. In addition, the same code | symbol as Example 1 has shown the same member. A magnetic material holder / reinforcing holder 11 e ′ is attached to the bent tube portion 11 a of the measuring tube 11. The magnetic material holder / reinforcing holder 11e ′ is composed of a pair of reinforcing plates 11g and 11h which are made of a synthetic resin material or a metal material and used in an overlapping manner.

これらの補強板11g、11hの合わせ面には、曲管部11aと同形状の断面半円状の溝部11iが形成され、曲管部11aに上下両側から補強板11g、11hを重ね合わせて固定すると、曲管部11aは溝部11i内に収納されることになる。   A groove 11i having a semicircular cross section having the same shape as the curved pipe portion 11a is formed on the mating surface of these reinforcing plates 11g and 11h, and the reinforcing plates 11g and 11h are overlapped and fixed to the curved pipe portion 11a from both the upper and lower sides. Then, the curved pipe part 11a is accommodated in the groove part 11i.

なお、補強板11g、11hの先端側にはそれぞれ凹部11jが形成され、この凹部11j内に磁気作用体11fが配置されている。更に、磁性体ホルダ兼補強用ホルダ11e’の下面、つまり補強板11hの下面に、加振駆動部13の一部として機能する加振体13aが取り付けられていることは実施例1と同様である。 In addition, the recessed part 11j is formed in the front end side of the reinforcing plates 11g and 11h, respectively, and the magnetic action body 11f is arrange | positioned in this recessed part 11j. Furthermore, the vibration body 13a that functions as a part of the vibration drive unit 13 is attached to the lower surface of the magnetic material holder / reinforcing holder 11e ', that is, the lower surface of the reinforcing plate 11h, as in the first embodiment. is there.

この構成により、永久磁石12bによる磁気作用体11fに対する磁気吸引力により曲管部11aを弾性的に引き寄せて保持し、加振駆動部13が加振体13aを介して測定管11を加振することも実施例1と同様である。そして、測定管11の曲管部11aは補強板11g、11hにより保形され、形状が変形することなく、安定した流量測定が可能となる。   With this configuration, the curved tube portion 11a is elastically attracted and held by the magnetic attractive force of the permanent magnet 12b with respect to the magnetic action member 11f, and the vibration driving unit 13 vibrates the measurement tube 11 via the vibration member 13a. This is the same as in the first embodiment. The bent tube portion 11a of the measuring tube 11 is retained by the reinforcing plates 11g and 11h, and the flow rate can be stably measured without deformation of the shape.

図7は実施例3の側面図であり、実施例1、2と同一の符号は同一の部材を示している。補強管11bを被覆した曲管部11aには、係止部18が付設され、係止部18の上方には保持部19が設けられている。係止部18と保持部19との間には例えばコイルばねから成り係止部18を保持部19に引き寄せる弾性部材20が介在されている。   FIG. 7 is a side view of the third embodiment, and the same reference numerals as those in the first and second embodiments indicate the same members. A locking portion 18 is attached to the bent tube portion 11 a that covers the reinforcing tube 11 b, and a holding portion 19 is provided above the locking portion 18. An elastic member 20 made of, for example, a coil spring and pulling the locking portion 18 toward the holding portion 19 is interposed between the locking portion 18 and the holding portion 19.

この構成によっても、曲管部11aは補強管11bにより被覆されることにより保形され、曲管部11aの変形は少ない。   Also with this configuration, the bent pipe portion 11a is shaped by being covered with the reinforcing pipe 11b, and deformation of the bent pipe portion 11a is small.

なお、この実施例3は実施例1、2のような磁気吸引力は用いていないが、曲管部11aに対する弾性的な保持は弾性部材20によりなされる。   In addition, although this Example 3 does not use the magnetic attraction force like Example 1, 2, the elastic holding | maintenance with respect to the curved pipe part 11a is made | formed by the elastic member 20. FIG.

なお、曲管部11aに対する補強部材は実施例の補強管11b、補強板11g、11h以外の他の部材であってもよい。   The reinforcing member for the curved pipe portion 11a may be a member other than the reinforcing pipe 11b and the reinforcing plates 11g and 11h of the embodiment.

また、実施例3の弾性部材20による引き寄せは、1個の弾性部材により曲管部11aの一部を前方に引き寄せたり、或いは2個の弾性部材を用いて上下方向に平衡させて引き寄せることもできる。   In addition, the pulling by the elastic member 20 of the third embodiment may pull a part of the bent tube portion 11a forward by one elastic member, or may be drawn by balancing in the vertical direction using two elastic members. it can.

実施例においては、測定管11は水平に配置しているが、鉛直方向に配置してコリオリ力を検出することもできる。   In the embodiment, the measuring tube 11 is arranged horizontally, but it can be arranged in the vertical direction to detect the Coriolis force.

なお、本明細書における上下とは、図面に対しての方向であり、必ずしも実際の装置における上下とは限らない。   In addition, the upper and lower sides in this specification are directions with respect to the drawings, and are not necessarily the upper and lower sides in an actual apparatus.

11 測定管
11a 曲管部
11b 補強管
11c 往き管
11d 戻り管
11e 第1の磁性体ホルダ
11e’ 磁性体ホルダ兼補強用ホルダ
11f 磁気作用体
11g、11h 補強板
11i 溝部
11j 凹部
12 磁気保持部
12a 第2の磁性体ホルダ
12b 永久磁石
13 加振駆動部
13a 加振体
13b 電磁コイル
14 変位検出部
14a 光反射部
14b 送受光部
15 温度測定部
15a レンズ光学系
15b 温度検知素子
16 基板
17 ハウジング
18 係止部
19 保持部
20 弾性部材
11 Measurement tube 11a Curved tube portion 11b Reinforcement tube 11c Forward tube 11d Return tube 11e First magnetic body holder
11e ′ Magnetic body holder / reinforcing holder 11f Magnetic acting body 11g, 11h Reinforcing plate 11i Groove portion 11j Recessed portion 12 Magnetic holding portion 12a Second magnetic body holder 12b Permanent magnet 13 Excitation drive portion 13a Exciting body 13b Electromagnetic coil 14 Displacement Detection unit 14a Light reflection unit 14b Transmitting / receiving unit 15 Temperature measurement unit 15a Lens optical system 15b Temperature detection element 16 Substrate 17 Housing 18 Locking unit 19 Holding unit 20 Elastic member

Claims (6)

U字状の曲管部を有し測定流体を往き管から戻り管の方向に流通する合成樹脂製の測定管と、前記曲管部を弾性的に保持する保持部と、前記測定管に振動を与える加振駆動部と、前記測定管の前記往き管と前記戻り管の2個所において前記測定管の変位を検出する変位検出部とを有するコリオリ式質量流量計であって、前記曲管部の形状を補強部材により保形するようにしたことを特徴とするコリオリ式質量流量計。   A synthetic resin measuring tube that has a U-shaped bent pipe portion and circulates the measurement fluid in the direction from the forward pipe to the return pipe, a holding portion that elastically holds the bent pipe portion, and a vibration in the measuring tube A Coriolis type mass flow meter having a vibration drive unit for providing a displacement, and a displacement detection unit for detecting displacement of the measurement tube at two locations of the forward tube and the return tube of the measurement tube, A Coriolis type mass flowmeter characterized in that the shape of the cylinder is retained by a reinforcing member. 前記曲管部は前記往き管と前記戻り管との境界に設けたことを特徴とする請求項1に記載のコリオリ式質量流量計。   The Coriolis mass flowmeter according to claim 1, wherein the bent pipe portion is provided at a boundary between the forward pipe and the return pipe. 前記補強部材は前記曲管部に被着した金属製の補強管としたことを特徴とする請求項1又は2に記載のコリオリ式質量流量計。   The Coriolis type mass flow meter according to claim 1 or 2, wherein the reinforcing member is a metal reinforcing pipe attached to the bent pipe portion. 前記補強部材は前記曲管部を取り付けた一対の補強板とし、これらの補強板はそれぞれ前記曲管部と同形の溝部を有し、前記曲管部に両側から重ね合わせたことを特徴とする請求項1又は2に記載のコリオリ式質量流量計。   The reinforcing member is a pair of reinforcing plates to which the bent pipe portion is attached, and each of the reinforcing plates has a groove portion having the same shape as the bent pipe portion, and is superimposed on the bent pipe portion from both sides. The Coriolis mass flowmeter according to claim 1 or 2. 前記保持部は前記曲管部を磁気吸引力により離隔的に保持したことを特徴とする請求項1〜4の何れか1項に記載のコリオリ式質量流量計。   The Coriolis mass flowmeter according to any one of claims 1 to 4, wherein the holding portion holds the bent tube portion apart by a magnetic attractive force. 前記保持部は前記曲管部を弾性部材により保持したことを特徴とする請求項1〜4の何れか1項に記載のコリオリ式質量流量計。   The Coriolis mass flowmeter according to any one of claims 1 to 4, wherein the holding portion holds the bent tube portion with an elastic member.
JP2016026234A 2015-10-08 2016-02-15 Coriolis mass flow meter Active JP5960371B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016026234A JP5960371B1 (en) 2016-02-15 2016-02-15 Coriolis mass flow meter
TW105129783A TWI625507B (en) 2015-10-08 2016-09-13 Coriolis mass flow meter
EP16189126.2A EP3153827B1 (en) 2015-10-08 2016-09-16 Coriolis mass flow meter
CN201610866276.7A CN106908106B (en) 2015-10-08 2016-09-29 Coriolis mass flowmeters
US15/285,556 US9921093B2 (en) 2015-10-08 2016-10-05 Coriolis mass flow meter
KR1020160129586A KR101883068B1 (en) 2015-10-08 2016-10-07 Coriolis mass flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016026234A JP5960371B1 (en) 2016-02-15 2016-02-15 Coriolis mass flow meter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016097983A Division JP6395189B2 (en) 2015-10-08 2016-05-16 Coriolis mass flow meter

Publications (2)

Publication Number Publication Date
JP5960371B1 true JP5960371B1 (en) 2016-08-02
JP2017146124A JP2017146124A (en) 2017-08-24

Family

ID=56550530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016026234A Active JP5960371B1 (en) 2015-10-08 2016-02-15 Coriolis mass flow meter

Country Status (1)

Country Link
JP (1) JP5960371B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6178033B1 (en) * 2017-04-03 2017-08-09 株式会社アツデン Coriolis mass flow meter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318219A (en) * 1986-07-10 1988-01-26 Oval Eng Co Ltd Mass flowmeter
US5602344A (en) * 1994-09-01 1997-02-11 Lew; Hyok S. Inertia force flowmeter
US20010035055A1 (en) * 2000-05-04 2001-11-01 Wolfgang Drahm Mass flow rate/density sensor with a single curved measuring tube
JP2011013161A (en) * 2009-07-03 2011-01-20 Keyence Corp Coriolis mass flowmeter
JP2012159510A (en) * 2011-02-02 2012-08-23 Krohne Ag Coriolis mass flowmeter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318219A (en) * 1986-07-10 1988-01-26 Oval Eng Co Ltd Mass flowmeter
US5602344A (en) * 1994-09-01 1997-02-11 Lew; Hyok S. Inertia force flowmeter
US20010035055A1 (en) * 2000-05-04 2001-11-01 Wolfgang Drahm Mass flow rate/density sensor with a single curved measuring tube
JP2011013161A (en) * 2009-07-03 2011-01-20 Keyence Corp Coriolis mass flowmeter
JP2012159510A (en) * 2011-02-02 2012-08-23 Krohne Ag Coriolis mass flowmeter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6178033B1 (en) * 2017-04-03 2017-08-09 株式会社アツデン Coriolis mass flow meter
KR20180112661A (en) * 2017-04-03 2018-10-12 가부시키가이샤 아쓰덴 Coriolis mass flow meter
EP3392622A1 (en) * 2017-04-03 2018-10-24 Atsuden Co., Ltd Coriolis mass flow meter
JP2018179526A (en) * 2017-04-03 2018-11-15 株式会社アツデン Coriolis type mass flowmeter
TWI732980B (en) * 2017-04-03 2021-07-11 日商壓電股份有限公司 Coriolis mass flow meter

Also Published As

Publication number Publication date
JP2017146124A (en) 2017-08-24

Similar Documents

Publication Publication Date Title
TWI625507B (en) Coriolis mass flow meter
EP3163262B1 (en) Coriolis mass flow meter
US6883387B2 (en) Magnetic circuit arrangement for a transducer
KR101359295B1 (en) Method and apparatus for vibrationaly separating driver and pick-offs of a vibrating-type flow sensor assembly
CN108692778B (en) Coriolis mass flowmeter
JP5960371B1 (en) Coriolis mass flow meter
JP5922291B1 (en) Coriolis mass flow meter
JP6395189B2 (en) Coriolis mass flow meter
JP5942238B1 (en) Coriolis mass flow meter
JP5922293B1 (en) Coriolis mass flow meter
JP2012026776A (en) Coriolis-type mass flowmeter
JPH03199922A (en) Coriolis mass flowmeter
WO2024072431A1 (en) Flowmeter magnetic shielding apparatus and method
JP2012013648A (en) Coriolis mass flowmeter

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160622

R150 Certificate of patent or registration of utility model

Ref document number: 5960371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250