JP6389239B2 - Rubber composition for soundproofing - Google Patents

Rubber composition for soundproofing Download PDF

Info

Publication number
JP6389239B2
JP6389239B2 JP2016505908A JP2016505908A JP6389239B2 JP 6389239 B2 JP6389239 B2 JP 6389239B2 JP 2016505908 A JP2016505908 A JP 2016505908A JP 2016505908 A JP2016505908 A JP 2016505908A JP 6389239 B2 JP6389239 B2 JP 6389239B2
Authority
JP
Japan
Prior art keywords
butyl
black
weight
composition
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016505908A
Other languages
Japanese (ja)
Other versions
JP2016520857A (en
Inventor
モハマド アスリ アーマド
モハマド アスリ アーマド
ア ラヒム マハムド イスカンダール セス
ア ラヒム マハムド イスカンダール セス
シャムスル カマルッディン
シャムスル カマルッディン
Original Assignee
レムバガ ゲタ マレーシア
レムバガ ゲタ マレーシア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レムバガ ゲタ マレーシア, レムバガ ゲタ マレーシア filed Critical レムバガ ゲタ マレーシア
Publication of JP2016520857A publication Critical patent/JP2016520857A/en
Application granted granted Critical
Publication of JP6389239B2 publication Critical patent/JP6389239B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C08L23/22Copolymers of isobutene; Butyl rubber ; Homo- or copolymers of other iso-olefins

Description

本発明は、車両用ドアパネルに使用される未加硫ゴム(green rubber)遮音材に関する。   The present invention relates to an unvulcanized rubber sound insulating material used for a vehicle door panel.

近年の目立った車両性能の向上に合わせて、効果的な減音(sound reduction)を可能にする遮音材に対する需要が増加している。そのような遮音材のために必要である重要な特性には、例えば、軽量、低コスト、及び環境にやさしい等の最適な特性を含むことが考慮されるべきである。遮音材は、大型パネルに媒介する音を低減するための道具として使用される。ソリッドパネルに入射した音波の反射エネルギーを低下させることは、騒音を制御するのに適切な戦略であろう。遮音材は、近年、自動車産業において幅広く採用されている。自動車内の騒音は、通常、エンジン、路面、風などの異なる系統の振動エネルギーの伝達から、種々の経路、とりわけ車両用ドアを経て車両内に生じる。自動車両客室の内部の騒音レベルは、車両品質全体の顧客視点において大きな役割を果たす。それゆえ、内部の騒音レベルは、車両用ドアの密閉システムの設計を包含する、車体構造の設計、構成、及び組立における主な留意点となっている。自動車両産業における遮音材を製造するための従来の方法は、音を低下させることに効果があるが、噴霧による材料処理(溶媒ベース)等の材料処理は、工場内の環境にやさしいものでなく、拘束層処理は高価であり、その相当量の重量を車両に加えることは、車両の燃費に影響を及ぼし、追加のコストが生じる。   Along with the remarkable improvement in vehicle performance in recent years, there is an increasing demand for sound insulation materials that enable effective sound reduction. It should be considered that important properties required for such a sound insulation include optimal properties such as, for example, light weight, low cost, and environmental friendliness. The sound insulating material is used as a tool for reducing sound transmitted to the large panel. Reducing the reflected energy of sound waves incident on a solid panel would be a suitable strategy for controlling noise. In recent years, sound insulation materials have been widely adopted in the automobile industry. Noise in an automobile is usually generated in the vehicle through various routes, particularly vehicle doors, from the transmission of vibration energy of different systems such as the engine, road surface, and wind. The noise level inside the motor vehicle cabin plays a major role in the customer perspective of overall vehicle quality. Therefore, the internal noise level is a major consideration in the design, construction and assembly of car body structures, including the design of vehicle door sealing systems. Conventional methods for producing sound insulation in the motor vehicle industry are effective in reducing sound, but material treatment by spraying (solvent based) and other material treatments are not environmentally friendly in the factory The constrained layer treatment is expensive, and adding a considerable amount of weight to the vehicle affects the fuel consumption of the vehicle, resulting in additional costs.

既存の先行技術の上記の欠点により、車両部品に用いられるだけでなく、遮音材の防音が音を弱めるべきあらゆる場合における、様々な種類の音密閉システムにも適用される、従来の遮音材にとって代わる必要がある。   Due to the above disadvantages of the existing prior art, for conventional sound insulation, not only used in vehicle parts, but also applied to various kinds of sound sealing systems in any case where sound insulation of sound insulation should attenuate sound It needs to be replaced.

軽く、グリーン(環境にやさしい)である、車両用ドアパネルの遮音材のための材料を提供することが本発明の目的である。   It is an object of the present invention to provide a material for sound insulation for vehicle door panels that is light and green (environmentally friendly).

吸音率及び減音度の双方に対して良好な音響性能(acoustics performances)を有する、車両用ドアパネルの遮音材を提供することが本発明の別の目的である。   It is another object of the present invention to provide a sound insulation for a vehicle door panel that has good acoustic performance with respect to both sound absorption and sound reduction.

従って、本発明は、ブチルゴム、変性エポキシ化天然ゴム、カーボンブラック、非補強充填剤、及びプロセス油を含む車両用ドアパネルのための遮音材の組成物を提供する。好ましくは、その組成物は、組成物の総重量100重量部あたり1〜100重量部の範囲のブチルゴム、組成物の総重量100重量部あたり1〜100重量部の範囲の変性エポキシ化天然ゴム、組成物の総重量100重量部あたり50〜100重量部の範囲の、70〜96nmの粒径を有するカーボンブラック、組成物の総重量100重量部あたり50〜100重量部の範囲の非補強充填剤、及び組成物の総重量100重量部あたり100〜200重量部の範囲のプロセス油をさらに含む。その組成物を用いて製造されるゴム遮音材は、容易に粘着適用するための高タック粘着性、1.23g/cm〜1.26g/cmの範囲の密度、0.65〜0.70の範囲の最大吸音率、及び16dB〜18dBの範囲の最大減音度を有する。   Accordingly, the present invention provides a sound insulation composition for a vehicle door panel comprising butyl rubber, modified epoxidized natural rubber, carbon black, non-reinforcing filler, and process oil. Preferably, the composition comprises 1 to 100 parts by weight of butyl rubber per 100 parts by weight of the total composition, modified epoxidized natural rubber in the range of 1 to 100 parts by weight per 100 parts by weight of the composition, Carbon black having a particle size of 70-96 nm in the range of 50-100 parts by weight per 100 parts by weight of the total composition, unreinforced filler in the range of 50-100 parts by weight per 100 parts by weight of the total composition And process oil in the range of 100 to 200 parts by weight per 100 parts by weight of the total composition. The rubber sound insulating material produced using the composition has high tack adhesion for easy adhesive application, density in the range of 1.23 g / cm to 1.26 g / cm, 0.65 to 0.70. It has a maximum sound absorption rate in the range and a maximum sound reduction degree in the range of 16 dB to 18 dB.

本発明の特徴は、本発明の好ましい実施形態に関係する添付の図面と併用して読むと、以下の詳細な説明からより容易に理解され、認識されるものである。   The features of the present invention will be more readily understood and appreciated from the following detailed description when read in conjunction with the accompanying drawings, which relate to preferred embodiments of the invention.

本発明の遮音材の構造の概略を図示する。1 schematically illustrates the structure of a sound insulating material according to the present invention. インピーダンス測定管の断面図、定常ランダム信号の入射波及び反射波を図示する。A sectional view of an impedance measuring tube, an incident wave and a reflected wave of a stationary random signal are illustrated. 分析した遮音材の吸音率の結果を図示する。The result of the sound absorption coefficient of the analyzed sound insulating material is illustrated. 減音度管(transmission loss tube)の断面図を図示する。Figure 2 illustrates a cross-sectional view of a transmission loss tube. 分析した遮音材の減音度の結果を図示する。The result of the sound reduction degree of the analyzed sound insulating material is illustrated.

通常、本発明は、ブチルゴム、変性エポキシ化天然ゴム、カーボンブラック、非補強充填剤、及びプロセス油を含む車両用ドアパネルのための遮音材の組成物に関する。好ましくは、その組成物は、
組成物の総重量100重量部あたり1〜100重量部の範囲のブチルゴム、
組成物の総重量100重量部あたり1〜100重量部の範囲の変性エポキシ化天然ゴム、
組成物の総重量100重量部あたり50〜100重量部の範囲の、70〜96nmの粒径を有するカーボンブラック、
組成物の総重量100重量部あたり50〜100重量部の範囲の非補強充填剤、及び
組成物の総重量100重量部あたり100〜200重量部の範囲のプロセス油
をさらに含む。
Generally, the present invention relates to a composition of a sound insulation for a vehicle door panel comprising butyl rubber, modified epoxidized natural rubber, carbon black, non-reinforcing filler, and process oil. Preferably, the composition is
Butyl rubber in the range of 1 to 100 parts by weight per 100 parts by weight of the total composition,
Modified epoxidized natural rubber in the range of 1 to 100 parts by weight per 100 parts by weight of the total composition,
Carbon black having a particle size of 70-96 nm, in the range of 50-100 parts by weight per 100 parts by weight of the total composition,
Further included is a non-reinforcing filler in the range of 50-100 parts by weight per 100 parts by weight of the composition, and a process oil in the range of 100-200 parts by weight per 100 parts by weight of the total composition.

ブチルゴムは、ブチル007、ブチル035、ブチル065、ブチル068、ブチル077、ブチル85、ブチル86、ブチル93、ブチル100、ブチル101−3、ブチル111、ブチル150、ブチル165、ブチル200、ブチル215、ブチル217、ブチル218、ブチル258、ブチル265、ブチル268、ブチル278、ブチル301、ブチル325、ブチル365、ブチル400、ブチル402、ブチル600、ブチル1268、ブチル1365、ブチル4266、又はこれらの組合せからなる群から選択される。   Butyl rubber is butyl 007, butyl 035, butyl 065, butyl 068, butyl 077, butyl 85, butyl 86, butyl 93, butyl 100, butyl 101-3, butyl 111, butyl 150, butyl 165, butyl 200, butyl 215, From Butyl 217, Butyl 218, Butyl 258, Butyl 265, Butyl 268, Butyl 278, Butyl 301, Butyl 325, Butyl 365, Butyl 400, Butyl 402, Butyl 600, Butyl 1268, Butyl 1365, Butyl 4266, or combinations thereof Selected from the group consisting of

変性エポキシ化天然ゴムは、エポキシ化天然ゴムのラテックスから選択される。   The modified epoxidized natural rubber is selected from latexes of epoxidized natural rubber.

カーボンブラックは、中粒熱分解(MT)ブラック、微粒熱分解(FT)ブラック、中補強性(SRF)ブラック、高応力(HMF)ブラック、良押出性(FEF)ブラック、良加工性チャンネル(EPC)ブラック、高耐摩耗性(HAF)ブラック、準超耐摩耗性(ISAF)ブラック、超耐摩耗性(SAF)ブラック、又はこれらの組合せからなる群から選択される。   Carbon black is medium grain pyrolysis (MT) black, fine grain pyrolysis (FT) black, medium reinforcement (SRF) black, high stress (HMF) black, good extrudability (FEF) black, good processability channel (EPC) ) Black, High Abrasion Resistance (HAF) Black, Quasi Super Abrasion Resistance (ISAF) Black, Super Abrasion Resistance (SAF) Black, or a combination thereof.

非補強充填剤は、重晶石、石英、生体起源のシリカ、ドロマイト石灰(dolomite whiting)、タルク、二酸化チタン、カオリン粘土、アルミニウム三水和物、炭酸カルシウム、又はこれらの組合せからなる群から選択される。   The non-reinforcing filler is selected from the group consisting of barite, quartz, biogenic silica, dolomite whiting, talc, titanium dioxide, kaolin clay, aluminum trihydrate, calcium carbonate, or combinations thereof Is done.

プロセス油は、ナフテン酸プロセス油、ポリマー系油、又はこれらの組合せからなる群から選択される。   The process oil is selected from the group consisting of naphthenic acid process oils, polymeric oils, or combinations thereof.

本発明は、以下の実施例によって、より詳細に説明されるだろう。実施例は、本発明の好ましい実施形態を説明するためだけに示され、本発明の範囲を制限することを何ら意図しない。   The invention will be explained in more detail by the following examples. The examples are presented solely for the purpose of illustrating preferred embodiments of the invention and are not intended to limit the scope of the invention in any way.

[実施例1:組成物]
表1は、本発明を形成する実施例の組成を示す。
[Example 1: Composition]
Table 1 shows the compositions of the examples forming the present invention.

Figure 0006389239
Figure 0006389239

表1に記載される組成を、図1に図示されるようなゴム(2)及びアルミニウム面(3)の2層からなる遮音材(1)におけるゴム系材料を製造するのに用いた。   The composition described in Table 1 was used to produce a rubber-based material in a sound insulating material (1) consisting of two layers of rubber (2) and aluminum surface (3) as shown in FIG.

[実施例2:密度試験]
材料の実際の密度の値を得るために、材料に対し密度試験を実施した。この試験は、アルキメデスの原理による浮力に基づく。主に、試験対象物の重さは、空気中より水中で軽い。この重さの減少は、試験対象物に作用する水の押上げによるものであり、対象物の押上げは、対象物が排除した液体の重量と等しい。以下のように密度の値を得るために、空気中及び水中で、試験片の重量を量った。
密度=m/(m−m
[Example 2: Density test]
A density test was performed on the material to obtain the actual density value of the material. This test is based on buoyancy according to Archimedes' principle. Mainly, the test object is lighter in water than in air. This decrease in weight is due to the push-up of water acting on the test object, and the push-up of the object is equal to the weight of the liquid removed by the object. The specimens were weighed in air and water to obtain density values as follows.
Density = m 1 / (m 1 -m 2 )

空気中での試験片の重量はmであり、水中での試験片の重量はmである。それぞれの試験片を2回試験した。表2は、本発明の遮音材(1)の材料、及び市販の遮音材から2種の材料について、密度試験の結果を示す。 The weight of the test piece in air is m 1 and the weight of the test piece in water is m 2 . Each specimen was tested twice. Table 2 shows the result of the density test for the material of the sound insulating material (1) of the present invention and two kinds of materials from commercially available sound insulating materials.

Figure 0006389239
Figure 0006389239

本発明の材料の密度は、1.23g/cm〜1.26g/cmであり、一方、市販品1の材料及び市販品2の材料双方の密度は、それぞれ1.36g/cm〜1.37g/cm及び1.54g/cm〜1.56g/cmであった。この結果は、本発明の密度が、市販品1の材料及び市販品2の材料の密度より7%〜21%軽いことを示した。密度の結果には、明らかに、使用した材料の種類による影響があった。主に、ベースとなる材料は似ているが、用いられた充填剤粒子の大きさが材料の重さに寄与するため、材料中の充填剤の種類が重要な役割を果たし得る。表2を参照すると、本発明の密度は、市販の材料より軽い。それゆえ本発明は、燃費を抑えることの環境保護の利益に合致する利点がある。 The density of the material of the present invention is 1.23 g / cm 3 to 1.26 g / cm 3 , while the density of both the commercial product 1 material and the commercial product 2 material is 1.36 g / cm 3 to It was 1.37 g / cm 3 and 1.54g / cm 3 ~1.56g / cm 3 . This result showed that the density of the present invention was 7% to 21% lighter than the density of the commercial product 1 material and the commercial product 2 material. The density results were clearly influenced by the type of material used. Although the base material is mainly similar, the type of filler in the material can play an important role because the size of the filler particles used contributes to the weight of the material. Referring to Table 2, the density of the present invention is lighter than commercially available materials. The present invention therefore has the advantage of meeting the environmental protection benefits of reducing fuel consumption.

[実施例3:音響試験]
次いで、遮音材の性能;1)吸音率試験;及びb)減音度試験を測定するために、材料に対して2種類の音響試験を実施した。
[Example 3: Acoustic test]
The material was then subjected to two types of acoustic tests to determine the performance of the sound insulation; 1) sound absorption rate test; and b) sound reduction test.

材料の吸音特性は、吸音率により定量化される。材料の実際の吸音率は、周波数依存であり、どれほど良好に吸音されているかを表す。材料の吸音率は0〜1の範囲の値となる。吸音率1の材料は、完全に吸音する材料であることを示し、一方、吸音率0の材料は、完全に反射する材料であることを示す。現在の調査において、人間の聴覚に最も敏感であり、客車車体(car passenger body)における音響工学材料(acoustic engineering material)のための最も一般的な試験が行われる、2000Hz〜4000Hzの領域における周波数に、結果の重点が置かれる。   The sound absorption characteristics of the material are quantified by the sound absorption rate. The actual sound absorption rate of the material is frequency dependent and represents how well the sound is absorbed. The sound absorption coefficient of the material is a value in the range of 0-1. A material with a sound absorption factor of 1 indicates that the material absorbs completely, while a material with a sound absorption factor of 0 indicates that the material is completely reflective. In the current study, the most common tests for acoustic engineering material, which are most sensitive to human hearing and are carried in car passenger bodies, are performed at frequencies in the range of 2000 Hz to 4000 Hz. Emphasis on results.

図2に図示するように、0Hz〜6400Hzの周波数の範囲における吸音率を測定するために、2マイクロホンImpedance Tube Measurement Type 4206 A(4)を使用した。直径29mmの大きさの本発明(試験片)(5)を試料ホルダー内に載せ、直管の一方の終端に載置した。吸音率を測定する2マイクロホン法は、入射P(7)波及び反射P(8)波への、広帯域の定常ランダム信号(6)の分解を必要とする。その信号は、音源(9)より発せられ、入射波及び反射波を、管壁の2か所(10)で、マイクロホンにより測定される音圧間の関係から測定した。 As shown in FIG. 2, a two-microphone Impedance Tube Measurement Type 4206 A (4) was used to measure sound absorption in the frequency range of 0 Hz to 6400 Hz. The present invention (test piece) (5) having a diameter of 29 mm was placed in a sample holder and placed at one end of a straight pipe. The two-microphone method of measuring sound absorption requires the decomposition of a broadband stationary random signal (6) into incident P i (7) and reflected P r (8) waves. The signal was emitted from the sound source (9), and the incident wave and the reflected wave were measured from the relationship between the sound pressure measured by the microphone at two places (10) on the tube wall.

図3は試験した遮音材の吸音率の結果を示す。市販品1、市販品2、及び本発明の吸音率の最大値は、それぞれ0.34、0.45、及び0.69であった。明らかに、本発明の吸音率は、34%〜50%の範囲の市販の遮音材と比較して良好な性能を示し、より高い周波数においては顕著であった。   FIG. 3 shows the results of the sound absorption coefficient of the tested sound insulating material. The maximum values of the sound absorption coefficient of the commercial product 1, the commercial product 2, and the present invention were 0.34, 0.45, and 0.69, respectively. Apparently, the sound absorption rate of the present invention showed good performance compared with commercially available sound insulation materials in the range of 34% to 50%, and was remarkable at higher frequencies.

減音度は、材料により分離され、又は特定の周波数の範囲に分割されるデシベル(dB)で、音量を表す。これは、試料を通過することに起因する音量の減少を表す。減音度が高ければ、壁を通過する音は小さくなる。   The sound reduction is expressed in decibels (dB) separated by a material or divided into a specific frequency range, and represents sound volume. This represents a decrease in volume due to passing through the sample. If the sound reduction is high, the sound passing through the wall is small.

図4を参照すると、0Hz〜6400Hzの周波数の範囲における減音度を測定するために、4マイクロホンImpedance Tube Measurement Type 4206 T(11)を使用した。直径29mmの大きさの本発明(試験片)(12)を試料ホルダー内に載せ、直管の中央に載置した。減音度を測定する4マイクロホン法は、音源管(15)と呼ばれる試験片(12)の前面で、入射波(13)及び反射波(14)への、受信管(18)と呼ばれる試験片(12)の裏面で、透過波(16)及び反射波(17)への、広帯域の定常ランダム信号の分解を必要とする。   Referring to FIG. 4, a 4-microphone Impedance Tube Measurement Type 4206 T (11) was used to measure sound reduction in the frequency range of 0 Hz to 6400 Hz. The present invention (test piece) (12) having a diameter of 29 mm was placed in a sample holder and placed at the center of a straight pipe. The four-microphone method for measuring the sound reduction degree is a test piece called a receiving tube (18) to an incident wave (13) and a reflected wave (14) on the front surface of a test piece (12) called a sound source tube (15). On the back side of (12), it is necessary to decompose the broadband steady random signal into transmitted wave (16) and reflected wave (17).

図5は試験した遮音材の減音度の結果を示す。この結果も、前回の試験と同じ周波数の領域に重点が置かれた。市販品1、市販品2、及び本発明の減音度の最大値は、それぞれ8.0dB、4.9dB、及び17.9dBであった。本発明の減音度は、55%〜72%の範囲の市販の遮音材と比較して良好な性能を示し、より高い周波数においては顕著であった。   FIG. 5 shows the results of the sound reduction of the tested sound insulation. This result also focused on the same frequency range as the previous test. The maximum values of the sound reduction degree of the commercial product 1, the commercial product 2, and the present invention were 8.0 dB, 4.9 dB, and 17.9 dB, respectively. The sound reduction degree of the present invention showed good performance as compared with commercially available sound insulating materials in the range of 55% to 72%, and was remarkable at higher frequencies.

1)吸音率試験及びb)減音度試験の双方の音響試験で得られた実験データによると、その結果が市販品1及び市販品2の遮音材より良好である通り、本発明は確かに優れた、他に勝る性能を示した。結果として、この室内の遮音材は、車両用ドアパネルに適用することに好適、且つ実行可能である。   According to the experimental data obtained in both the acoustic test of 1) sound absorption rate test and b) sound reduction test, the present invention is certainly as good as the results are better than the sound insulation material of the commercial product 1 and the commercial product 2. Excellent performance compared to others. As a result, this indoor sound insulating material is suitable and feasible for application to a vehicle door panel.

本発明は特定の実施形態を参照して説明され、添付の図面に示されたものであるが、多くの変形及び修正が、本明細書に説明され、特許請求の範囲に定義される本発明の範囲内において実施され得ることが当業者にとって明らかであろう。   While the invention has been described with reference to specific embodiments and shown in the accompanying drawings, many variations and modifications are described herein and as defined in the claims. It will be apparent to those skilled in the art that it can be implemented within the scope of

Claims (6)

1〜100重量部の範囲のブチルゴム、
1〜100重量部の範囲の変性エポキシ化天然ゴム、
50〜100重量部の範囲の、70〜96nmの粒径を有するカーボンブラック、
50〜100重量部の範囲の非補強充填剤、及び
100〜200重量部の範囲のプロセス油
を含む、車両用ドアパネルのための遮音材の組成物(1)。
Butyl rubber in the range of 1 to 100 parts by weight ,
Modified epoxidized natural rubber in the range of 1 to 100 parts by weight ,
Carbon black having a particle size of 70-96 nm in the range of 50-100 parts by weight ,
Unreinforced filler in the range of 50 to 100 parts by weight , and
A composition (1) of a sound insulating material for a vehicle door panel, comprising a process oil in the range of 100 to 200 parts by weight .
前記ブチルゴムが、ブチル007、ブチル035、ブチル065、ブチル068、ブチル077、ブチル85、ブチル86、ブチル93、ブチル100、ブチル101−3、ブチル111、ブチル150、ブチル165、ブチル200、ブチル215、ブチル217、ブチル218、ブチル258、ブチル265、ブチル268、ブチル278、ブチル301、ブチル325、ブチル365、ブチル400、ブチル402、ブチル600、ブチル1268、ブチル1365、ブチル4266、又はこれらの組合せからなる群から選択される、請求項1に記載の車両用ドアパネルのための遮音材の組成物(1)。 The butyl rubber is butyl 007, butyl 035, butyl 065, butyl 068, butyl 077, butyl 85, butyl 86, butyl 93, butyl 100, butyl 101-3, butyl 111, butyl 150, butyl 165, butyl 200, butyl 215 Butyl 217, Butyl 218, Butyl 258, Butyl 265, Butyl 268, Butyl 278, Butyl 301, Butyl 325, Butyl 365, Butyl 400, Butyl 402, Butyl 600, Butyl 1268, Butyl 1365, Butyl 4266, or combinations thereof The composition (1) of a sound insulating material for a vehicle door panel according to claim 1, selected from the group consisting of: 前記変性エポキシ化天然ゴムが、エポキシ化天然ゴムのラテックスから選択される、請求項1又は2に記載の車両用ドアパネルのための遮音材の組成物(1)。   The composition (1) of a sound insulating material for a vehicle door panel according to claim 1 or 2, wherein the modified epoxidized natural rubber is selected from latex of epoxidized natural rubber. 前記カーボンブラックが、中粒熱分解(MT)ブラック、微粒熱分解(FT)ブラック、中補強性(SRF)ブラック、高応力(HMF)ブラック、良押出性(FEF)ブラック、良加工性チャンネル(EPC)ブラック、高耐摩耗性(HAF)ブラック、準超耐摩耗性(ISAF)ブラック、超耐摩耗性(SAF)ブラック、又はこれらの組合せからなる群から選択される、請求項1〜3のいずれか1項に記載の車両用ドアパネルのための遮音材の組成物(1)。 The carbon black is medium grain pyrolysis (MT) black, fine grain pyrolysis (FT) black, medium reinforcing (SRF) black, high stress (HMF) black, good extrudability (FEF) black, good workability channel ( EPC) black, high wear resistance (HAF) blacks, intermediate super abrasion (ISAF) blacks, super abrasion (SAF) blacks, or is selected from the group consisting of, claims 1 to 3 of A composition (1) of a sound insulating material for a vehicle door panel according to any one of the preceding claims. 前記非補強充填剤が、重晶石、石英、生体起源のシリカ、ドロマイト石灰、タルク、二酸化チタン、カオリン粘土、アルミニウム三水和物、炭酸カルシウム、又はこれらの組合せからなる群から選択される、請求項1〜4のいずれか1項に記載の車両用ドアパネルのための遮音材の組成物(1)。 The non-reinforcing filler is selected from the group consisting of barite, quartz, biogenic silica, dolomite lime, talc, titanium dioxide, kaolin clay, aluminum trihydrate, calcium carbonate, or combinations thereof; A composition (1) of a sound insulating material for a vehicle door panel according to any one of claims 1 to 4 . 前記プロセス油が、ナフテン酸プロセス油、ポリマー系油、又はこれらの組合せからなる群から選択される、請求項1〜5のいずれか1項に記載の車両用ドアパネルのための遮音材の組成物(1)。 The composition of the sound insulating material for a vehicle door panel according to any one of claims 1 to 5, wherein the process oil is selected from the group consisting of a naphthenic acid process oil, a polymer-based oil, or a combination thereof. (1).
JP2016505908A 2013-04-05 2014-03-27 Rubber composition for soundproofing Expired - Fee Related JP6389239B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
MYPI2013001214 2013-04-05
MYPI2013001214 2013-04-05
PCT/IB2014/060197 WO2014162244A1 (en) 2013-04-05 2014-03-27 Rubber composition for sound insulation

Publications (2)

Publication Number Publication Date
JP2016520857A JP2016520857A (en) 2016-07-14
JP6389239B2 true JP6389239B2 (en) 2018-09-12

Family

ID=51657652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016505908A Expired - Fee Related JP6389239B2 (en) 2013-04-05 2014-03-27 Rubber composition for soundproofing

Country Status (4)

Country Link
JP (1) JP6389239B2 (en)
KR (1) KR20150143538A (en)
DE (1) DE112014001832T5 (en)
WO (1) WO2014162244A1 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4164512A (en) * 1977-10-04 1979-08-14 Exxon Research & Engineering Co. Foamable thermoelastic ionomer composition
JP3871453B2 (en) * 1998-03-12 2007-01-24 株式会社クラレ Thermoplastic polymer composition
JP2000006287A (en) * 1998-06-26 2000-01-11 Zeon Kasei Co Ltd Vibration-control structure
WO2000036044A1 (en) * 1998-12-11 2000-06-22 Shishiai-Kabushikigaisha Energy conversion compound
KR20030030645A (en) * 2001-10-12 2003-04-18 금호산업 주식회사 Innerliner Rubber Composition for Tire
JP4043403B2 (en) * 2003-05-13 2008-02-06 住友ゴム工業株式会社 Pneumatic tire
EP1484359B1 (en) * 2003-06-03 2006-08-09 Sumitomo Rubber Industries Limited Rubber composition for tread and pneumatic tire using the same
EP1940617B1 (en) * 2005-10-27 2014-03-26 The Yokohama Rubber Co., Ltd. Construction comprising tie layer
CN101688029B (en) * 2007-06-06 2013-07-31 住友橡胶工业株式会社 Rubber composition for tire and pneumatic tire made with the same
US8609760B2 (en) * 2009-11-18 2013-12-17 Exxonmobil Chemical Patents Inc. Blend partner with natural rubber for elastomeric compounds

Also Published As

Publication number Publication date
KR20150143538A (en) 2015-12-23
WO2014162244A1 (en) 2014-10-09
JP2016520857A (en) 2016-07-14
DE112014001832T5 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
Chen et al. The effects of various additive components on the sound absorption performances of polyurethane foams
JP4900538B1 (en) Rubber composition, cross-linked rubber composition, and highly attenuated laminate
JPH02289451A (en) Soundproof window glass for vehicle
CN113717593B (en) Water-based sound insulation coating
EP1277823A1 (en) Resin composition for vibration-damping material, vibration-damping material, and sound-insulating member
WO2017113284A1 (en) Sound-insulating, shock-absorbing and heat-resistant abs resin composition for automobile interior and preparation method therefor
JP2007091491A (en) Intermediate film and laminated glass
Zent et al. Automotive sound absorbing material survey results
JP2011074332A (en) Rubber composition for tire sidewall and pneumatic tire using the same
JP6389239B2 (en) Rubber composition for soundproofing
Crocker et al. Measurement of acoustical and mechanical properties of porous road surfaces and tire and road noise
CN114410021A (en) Noise-reducing heat-insulating thin butyl damping film for vehicle and preparation method thereof
CN109651668B (en) Underwater sound absorption rubber composite material and preparation method thereof
JP4915139B2 (en) Tire noise test method
Praticò et al. Electric vehicles diffusion: changing pavement acoustic design?
Zheng et al. Fabrication and investigation on damping performance of novel co‐curing sandwich composites
CN108177407A (en) A kind of automobile-used damping patch with flame retarding function
WO1998032794A1 (en) Rubber composition for seismic isolation laminates
RU2675557C1 (en) Rubber mixture for manufacture of noise absorbing coatings
RU2258718C1 (en) Rubber compound for manufacturing acoustic layer of a coating
Jaish et al. Sound insulation performance of composites developed using waste carbonaceous materials
JP2001064545A (en) Water-based sound-insulating coating material
RU2340640C1 (en) Vibration-and-noise absorbing acoustic-insulation material
Algaily et al. Acoustic absorption and physicomechanical properties of SBR/RR foam
Cherng et al. Characterization and validation of acoustic cavities of automotive vehicles

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180816

R150 Certificate of patent or registration of utility model

Ref document number: 6389239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees