JP6388901B2 - 診断テストを特定するための経路分析 - Google Patents
診断テストを特定するための経路分析 Download PDFInfo
- Publication number
- JP6388901B2 JP6388901B2 JP2016232168A JP2016232168A JP6388901B2 JP 6388901 B2 JP6388901 B2 JP 6388901B2 JP 2016232168 A JP2016232168 A JP 2016232168A JP 2016232168 A JP2016232168 A JP 2016232168A JP 6388901 B2 JP6388901 B2 JP 6388901B2
- Authority
- JP
- Japan
- Prior art keywords
- data
- cell lines
- expression
- disease cell
- specific disease
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002405 diagnostic procedure Methods 0.000 title description 6
- 210000004027 cell Anatomy 0.000 claims description 235
- 230000014509 gene expression Effects 0.000 claims description 115
- 201000010099 disease Diseases 0.000 claims description 113
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 113
- 229940079593 drug Drugs 0.000 claims description 66
- 239000003814 drug Substances 0.000 claims description 66
- 238000010801 machine learning Methods 0.000 claims description 66
- 230000035945 sensitivity Effects 0.000 claims description 55
- 238000011282 treatment Methods 0.000 claims description 51
- 238000000034 method Methods 0.000 claims description 34
- 230000037361 pathway Effects 0.000 claims description 27
- 239000003550 marker Substances 0.000 claims description 20
- 238000012360 testing method Methods 0.000 claims description 17
- 108090000623 proteins and genes Proteins 0.000 claims description 10
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- 238000002560 therapeutic procedure Methods 0.000 claims description 8
- 102000004169 proteins and genes Human genes 0.000 claims description 6
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 4
- 230000004952 protein activity Effects 0.000 claims description 4
- 210000005170 neoplastic cell Anatomy 0.000 claims description 3
- 206010064571 Gene mutation Diseases 0.000 claims description 2
- 108020004459 Small interfering RNA Proteins 0.000 claims description 2
- 230000011987 methylation Effects 0.000 claims description 2
- 238000007069 methylation reaction Methods 0.000 claims description 2
- 238000013519 translation Methods 0.000 claims description 2
- 230000001225 therapeutic effect Effects 0.000 description 21
- 230000000694 effects Effects 0.000 description 17
- 230000001413 cellular effect Effects 0.000 description 16
- 230000001105 regulatory effect Effects 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- 230000019491 signal transduction Effects 0.000 description 5
- 102000001253 Protein Kinase Human genes 0.000 description 4
- 108060006633 protein kinase Proteins 0.000 description 4
- 238000012706 support-vector machine Methods 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 239000002246 antineoplastic agent Substances 0.000 description 3
- 229940041181 antineoplastic drug Drugs 0.000 description 3
- 230000004640 cellular pathway Effects 0.000 description 3
- 235000015872 dietary supplement Nutrition 0.000 description 3
- 230000002503 metabolic effect Effects 0.000 description 3
- 230000004481 post-translational protein modification Effects 0.000 description 3
- 229940043274 prophylactic drug Drugs 0.000 description 3
- 238000001671 psychotherapy Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000004043 responsiveness Effects 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 229940126585 therapeutic drug Drugs 0.000 description 3
- 230000002103 transcriptional effect Effects 0.000 description 3
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- 210000003484 anatomy Anatomy 0.000 description 2
- 229940052810 complex b Drugs 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001447 compensatory effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009266 disease activity Effects 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229940043355 kinase inhibitor Drugs 0.000 description 1
- 150000002611 lead compounds Chemical class 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 238000002705 metabolomic analysis Methods 0.000 description 1
- 230000001431 metabolomic effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 238000003068 pathway analysis Methods 0.000 description 1
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/506—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B40/00—ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B50/00—ICT programming tools or database systems specially adapted for bioinformatics
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/10—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- Theoretical Computer Science (AREA)
- Primary Health Care (AREA)
- Medicinal Chemistry (AREA)
- Software Systems (AREA)
- Pathology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Bioethics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Biophysics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Biotechnology (AREA)
- Evolutionary Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Description
Claims (19)
- 特異的な疾患細胞株のオミクス・データに基づいて薬剤を使用して、1人の患者において病気を治療するためのマーカを判定する方法であって、
それぞれ複数の特異的な疾患細胞株のオミクス・データから導き出された複数の特異的なデータセットを格納し、それぞれのデータセットには複数の経路要素データが含まれる経路モデル・データベースを機械学習システムに情報的に連結することであって、前記複数の特異的な疾患細胞株が前記1人の患者からの細胞を含むことと、
前記機械学習システムにより、前記複数の特定的な疾患細胞株に関連付けられ、前記薬剤に反応する前記複数の特異的な疾患細胞株のうちのそれぞれの1つの感度レベルを示す感度データを受け取ることと、
前記機械学習システムにより、前記経路モデル・データベースにおいて前記複数の特異的な疾患細胞株に対応する前記複数の経路要素データを横断することにより、前記複数の特異的な疾患細胞株に関する前記感度データとの相関関係を有する発現を推測することと、
前記機械学習システムにより、前記相関関係に基づいて前記病気を治療する前記薬剤を推奨するために前記1人の患者の細胞により示される発現レベル閾値を判定することと、
を含む方法。 - 前記発現は前記複数の特異的な疾患細胞株内に存在する可能な発現から推測される、請求項1に記載の方法。
- 前記発現を推測することは、前記複数の疾患細胞株内に存在する前記可能な発現のうちのそれぞれの1つに対して、
前記複数の経路要素データにしたがって前記複数の特異的な疾患細胞株内に存在する前記1つの発現の等級を示すデータ点を生成することと、
前記機械学習システムにより、前記1つの発現の前記等級と、前記複数の特異的な疾患細胞株に関する前記感度データと、の間の相関関係を導き出すことと、
を含む、請求項2に記載の方法。 - 前記可能な発現に対応する前記導き出された相関関係から最適な相関関係を有する前記発現を推測するために機械学習を使用することをさらに含む、請求項3に記載の方法。
- 前記薬剤を用いて前記複数の特異的な疾患細胞株のサンプル疾患細胞を技師または機械によりテストすることにより前記感度データを生成することをさらに含む、請求項1に記載の方法。
- 前記1人の患者からの細胞が健康な細胞である、請求項1に記載の方法。
- 前記1人の患者からの細胞が新生物細胞である、請求項1に記載の方法。
- 前記1人の患者からの細胞が異なる組織からのものである、請求項1に記載の方法。
- 前記患者の推奨療法を含む出力データを前記機械学習システムにより生成することをさらに含む、請求項1に記載の方法。
- サンプル疾患細胞を前記患者から採取することと、
前記サンプル疾患細胞内に存在する前記発現の等級を測定し、前記推奨療法が前記発現の前記測定された等級に基づいて前記機械学習システムにより生成されることと、
をさらに含む、請求項9に記載の方法。 - 前記複数の特異的な疾患細胞株は前記薬剤に対する感度に関して互いに異なる、請求項1に記載の方法。
- 前記複数の特異的な疾患細胞株のうちの第1セットは前記薬剤を用いる治療に対して感度を有し、前記複数の特異的な疾患細胞株のうちの第2セットは前記薬剤を用いる治療に対して抵抗性を有する、請求項1に記載の方法。
- 前記オミクス・データは遺伝子コピー数データ、遺伝子突然変異データ、遺伝子メチル化データ、遺伝子発現データ、RNAスプライス情報データ、siRNAデータ、RNA翻訳データ、およびタンパク質活性データからなる群から選択された、請求項1に記載の方法。
- 前記特異的なデータセットはPARADIGMデータセットである、請求項1に記載の方法。
- 前記経路要素データは遺伝子の発現状態、タンパク質のタンパク質レベル、および/またはタンパク質のタンパク質活性である、請求項1に記載の方法。
- 特異的な疾患細胞株のオミクス・データに基づいて薬剤を使用して、1人の患者において病気を治療するためのマーカを判定するためのシステムであって、
それぞれ複数の特異的な疾患細胞株のオミクス・データから導き出され、それぞれのデータセットが複数の経路要素データを含む複数の特異的なデータセットを格納する経路モデル・データベースであって、前記複数の特異的な疾患細胞株が前記1人の患者からの細胞を含む経路モデル・データベースと、
前記経路情報モデル・データベースに情報的に連結され、且つ、 前記複数の特異的な疾患細胞株に関連付けられ、前記薬剤に反応する前記複数の特異的な疾患細胞株のうちのそれぞれの1つの感度レベルを示す感度データを受け取ること、
前記経路モデル・データベースにおいて前記複数の特異的な疾患細胞株に対応する前記複数の経路要素データを横断することにより、前記複数の特異的な疾患細胞株に関する前記感度データとの相関関係を有する発現を推測すること、および
前記相関関係に基づいて前記病気を治療する前記薬剤を推奨するために前記1人の患者の細胞により示される発現レベル閾値を判定すること、
を行うようプログラムされた、機械学習システムと、
を含むシステム。 - 前記1人の患者からの細胞が健康な細胞であるか、または前記1人の患者からの細胞が新生物細胞であるか、または前記1人の患者からの細胞が異なる組織からのものである、請求項16に記載のシステム。
- 前記機械学習システムは、前記複数の疾患細胞株内に存在する前記可能な発現のうちのそれぞれの1つに対して、
前記複数の経路要素データにしたがって前記複数の特異的な疾患細胞株内に存在する前記1つの発現の等級を示すデータ点を生成することと、
前記1つの発現の前記等級と、前記複数の特異的な疾患細胞株に関する前記感度データと、の間の相関関係を導き出すことと、
を行うことにより、前記発現を推測するようプログラムされた、請求項17に記載のシステム。 - 前記機械学習システムは、前記可能な発現に対応する前記導き出された相関関係から最適な相関関係を有する前記発現を推測するために機械学習を使用するようさらにプログラムされた、請求項18に記載のシステム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361840669P | 2013-06-28 | 2013-06-28 | |
US61/840,669 | 2013-06-28 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015563138A Division JP6054555B2 (ja) | 2013-06-28 | 2014-06-30 | 診断テストを特定するための経路分析 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018152970A Division JP6677773B2 (ja) | 2013-06-28 | 2018-08-15 | 診断テストを特定するための経路分析 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017097884A JP2017097884A (ja) | 2017-06-01 |
JP6388901B2 true JP6388901B2 (ja) | 2018-09-12 |
Family
ID=52116630
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015563138A Active JP6054555B2 (ja) | 2013-06-28 | 2014-06-30 | 診断テストを特定するための経路分析 |
JP2016232168A Active JP6388901B2 (ja) | 2013-06-28 | 2016-11-30 | 診断テストを特定するための経路分析 |
JP2018152970A Expired - Fee Related JP6677773B2 (ja) | 2013-06-28 | 2018-08-15 | 診断テストを特定するための経路分析 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015563138A Active JP6054555B2 (ja) | 2013-06-28 | 2014-06-30 | 診断テストを特定するための経路分析 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018152970A Expired - Fee Related JP6677773B2 (ja) | 2013-06-28 | 2018-08-15 | 診断テストを特定するための経路分析 |
Country Status (8)
Country | Link |
---|---|
US (1) | US11011273B2 (ja) |
EP (1) | EP3014505A4 (ja) |
JP (3) | JP6054555B2 (ja) |
KR (1) | KR20160084363A (ja) |
CN (2) | CN105706097A (ja) |
AU (3) | AU2014302070B2 (ja) |
CA (1) | CA2919768C (ja) |
WO (1) | WO2014210611A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11011273B2 (en) | 2013-06-28 | 2021-05-18 | Nantomics, Llc | Pathway analysis for identification of diagnostic tests |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2914265A4 (en) * | 2012-11-05 | 2016-04-13 | Nant Holdings Ip Llc | SUBSTITUTED INDOL-5-OL COMPOUNDS AND THEIR THERAPEUTIC APPLICATIONS |
AU2014233069A1 (en) | 2013-03-15 | 2015-09-24 | Nantbioscience, Inc. | Substituted indol-5-ol derivatives and their therapeutic applications |
KR20190031492A (ko) | 2016-06-30 | 2019-03-26 | 난트 홀딩스 아이피, 엘엘씨 | 난트 암 백신(nant cancer vaccine) |
US11823773B2 (en) | 2018-04-13 | 2023-11-21 | Nant Holdings Ip, Llc | Nant cancer vaccine strategies |
US11564980B2 (en) | 2018-04-23 | 2023-01-31 | Nantcell, Inc. | Tumor treatment method with an individualized peptide vaccine |
TW202345890A (zh) | 2018-04-23 | 2023-12-01 | 美商南特細胞公司 | 新抗原表位疫苗及免疫刺激組合物及方法 |
US11915832B2 (en) | 2018-12-24 | 2024-02-27 | Medirita | Apparatus and method for processing multi-omics data for discovering new drug candidate substance |
US11721441B2 (en) * | 2019-01-15 | 2023-08-08 | Merative Us L.P. | Determining drug effectiveness ranking for a patient using machine learning |
KR20210096402A (ko) * | 2020-01-28 | 2021-08-05 | (주)인테그로메디랩 | 증례 데이터 기반 천연물 추천 장치 및 방법 |
JP6810294B1 (ja) * | 2020-06-30 | 2021-01-06 | 凸版印刷株式会社 | 評価システム、学習装置、予測装置、評価方法、及びプログラム |
WO2022196971A1 (ko) * | 2021-03-18 | 2022-09-22 | 주식회사 온코크로스 | 세포 레벨의 정보로부터 조직 레벨의 정보를 추정하는 방법 및 그 장치 |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6054555B2 (ja) | 1979-04-19 | 1985-11-30 | 株式会社 テイエルブイ | バケットフロ−ト形スチ−ムトラップ |
US6983227B1 (en) * | 1995-01-17 | 2006-01-03 | Intertech Ventures, Ltd. | Virtual models of complex systems |
US6925389B2 (en) * | 2000-07-18 | 2005-08-02 | Correlogic Systems, Inc., | Process for discriminating between biological states based on hidden patterns from biological data |
WO2002019602A2 (en) | 2000-09-01 | 2002-03-07 | Fred Hutchinson Cancer Research Center | Statistical modeling to analyze large data arrays |
US20030130798A1 (en) * | 2000-11-14 | 2003-07-10 | The Institute For Systems Biology | Multiparameter integration methods for the analysis of biological networks |
US6602670B2 (en) | 2000-12-01 | 2003-08-05 | Response Genetics, Inc. | Method of determining a chemotherapeutic regimen based on ERCC1 expression |
WO2002044423A2 (en) * | 2000-12-01 | 2002-06-06 | Response Genetics, Inc. | Method of determining a chemotherapeutic regimen by assaying gene expression in primary tumors |
US20040076984A1 (en) | 2000-12-07 | 2004-04-22 | Roland Eils | Expert system for classification and prediction of generic diseases, and for association of molecular genetic parameters with clinical parameters |
WO2002072871A2 (en) * | 2001-03-13 | 2002-09-19 | Ashni Naturaceuticals, Inc. | Method for association of genomic and proteomic pathways associated with physiological or pathophysiological processes |
ATE503023T1 (de) | 2001-06-18 | 2011-04-15 | Rosetta Inpharmatics Llc | Diagnose und prognose von brustkrebspatientinnen |
US7308363B2 (en) * | 2002-01-23 | 2007-12-11 | Sri International | Modeling and evaluation metabolic reaction pathways and culturing cells |
US20040088116A1 (en) * | 2002-11-04 | 2004-05-06 | Gene Network Sciences, Inc. | Methods and systems for creating and using comprehensive and data-driven simulations of biological systems for pharmacological and industrial applications |
EP1631689A2 (en) * | 2003-05-28 | 2006-03-08 | Genomic Health, Inc. | Gene expression markers for predicting response to chemotherapy |
US8594941B2 (en) * | 2003-11-26 | 2013-11-26 | Selventa, Inc. | System, method and apparatus for causal implication analysis in biological networks |
EP1874471A4 (en) * | 2005-03-16 | 2008-12-10 | Sidney Kimmel Cancer Ct | METHOD AND COMPOSITIONS FOR PREDICTING DEATH BY CANCER AND SURVIVAL OF PROSTATE CANCER USING GENE EXPRESSION SIGNATURES |
US20080275652A1 (en) * | 2005-05-13 | 2008-11-06 | Universite Libre De Bruxelles | Gene-based algorithmic cancer prognosis |
US20070172844A1 (en) * | 2005-09-28 | 2007-07-26 | University Of South Florida | Individualized cancer treatments |
US8768629B2 (en) * | 2009-02-11 | 2014-07-01 | Caris Mpi, Inc. | Molecular profiling of tumors |
CA2698084A1 (en) * | 2007-08-29 | 2009-03-05 | Genstruct, Inc. | Computer-aided discovery of biomarker profiles in complex biological systems |
WO2009043022A2 (en) * | 2007-09-28 | 2009-04-02 | Duke University | Individualized cancer treatments |
WO2009102957A2 (en) * | 2008-02-14 | 2009-08-20 | The Johns Hopkins University | Methods to connect gene set expression profiles to drug sensitivity |
CA2737485A1 (en) * | 2008-10-10 | 2010-04-15 | Mount Sinai Hospital | Methods for classifying samples based on network modularity |
JP2010165230A (ja) | 2009-01-16 | 2010-07-29 | Pharma Design Inc | 薬剤標的となるタンパク質−タンパク質相互作用を予測する方法及び予測システム |
US10192641B2 (en) * | 2010-04-29 | 2019-01-29 | The Regents Of The University Of California | Method of generating a dynamic pathway map |
KR102136041B1 (ko) * | 2010-04-29 | 2020-07-20 | 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 | 게놈 모델에 대한 데이터 통합을 이용하는 경로 인지 알고리즘 (paradigm) |
US8756182B2 (en) * | 2010-06-01 | 2014-06-17 | Selventa, Inc. | Method for quantifying amplitude of a response of a biological network |
WO2012027533A1 (en) * | 2010-08-25 | 2012-03-01 | Gt Life Sciences, Inc. | Selectable markers and related methods |
EP2549399A1 (en) | 2011-07-19 | 2013-01-23 | Koninklijke Philips Electronics N.V. | Assessment of Wnt pathway activity using probabilistic modeling of target gene expression |
US20130144584A1 (en) | 2011-12-03 | 2013-06-06 | Medeolinx, LLC | Network modeling for drug toxicity prediction |
WO2013150420A2 (en) | 2012-04-02 | 2013-10-10 | Koninklijke Philips N.V. | Pathway visualization for clinical decision support |
CN104838372B (zh) | 2012-10-09 | 2018-11-02 | 凡弗3基因组有限公司 | 用于生物路径中的调控互动的学习和识别的系统和方法 |
EP2914265A4 (en) * | 2012-11-05 | 2016-04-13 | Nant Holdings Ip Llc | SUBSTITUTED INDOL-5-OL COMPOUNDS AND THEIR THERAPEUTIC APPLICATIONS |
CA2920608C (en) * | 2013-05-28 | 2018-07-24 | Five3 Genomics, Llc | Paradigm drug response networks |
AU2014302070B2 (en) | 2013-06-28 | 2016-09-15 | Nantomics, Llc | Pathway analysis for identification of diagnostic tests |
-
2014
- 2014-06-30 AU AU2014302070A patent/AU2014302070B2/en active Active
- 2014-06-30 CN CN201480037201.7A patent/CN105706097A/zh active Pending
- 2014-06-30 KR KR1020167002371A patent/KR20160084363A/ko not_active IP Right Cessation
- 2014-06-30 CN CN201910676787.6A patent/CN110444289A/zh not_active Withdrawn
- 2014-06-30 WO PCT/US2014/044950 patent/WO2014210611A1/en active Application Filing
- 2014-06-30 JP JP2015563138A patent/JP6054555B2/ja active Active
- 2014-06-30 CA CA2919768A patent/CA2919768C/en active Active
- 2014-06-30 US US14/320,214 patent/US11011273B2/en active Active
- 2014-06-30 EP EP14816915.4A patent/EP3014505A4/en not_active Withdrawn
-
2016
- 2016-11-30 JP JP2016232168A patent/JP6388901B2/ja active Active
- 2016-12-14 AU AU2016273897A patent/AU2016273897B2/en active Active
-
2018
- 2018-08-15 JP JP2018152970A patent/JP6677773B2/ja not_active Expired - Fee Related
- 2018-12-17 AU AU2018282245A patent/AU2018282245A1/en not_active Abandoned
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11011273B2 (en) | 2013-06-28 | 2021-05-18 | Nantomics, Llc | Pathway analysis for identification of diagnostic tests |
Also Published As
Publication number | Publication date |
---|---|
AU2014302070A1 (en) | 2016-02-18 |
JP2016528565A (ja) | 2016-09-15 |
EP3014505A1 (en) | 2016-05-04 |
US11011273B2 (en) | 2021-05-18 |
AU2018282245A1 (en) | 2019-01-17 |
CN110444289A (zh) | 2019-11-12 |
AU2014302070B2 (en) | 2016-09-15 |
EP3014505A4 (en) | 2017-03-08 |
JP2019023871A (ja) | 2019-02-14 |
CN105706097A (zh) | 2016-06-22 |
WO2014210611A1 (en) | 2014-12-31 |
JP6677773B2 (ja) | 2020-04-08 |
JP2017097884A (ja) | 2017-06-01 |
AU2016273897A1 (en) | 2017-01-12 |
JP6054555B2 (ja) | 2016-12-27 |
CA2919768C (en) | 2019-12-03 |
KR20160084363A (ko) | 2016-07-13 |
CA2919768A1 (en) | 2014-12-31 |
US20150006445A1 (en) | 2015-01-01 |
AU2016273897B2 (en) | 2019-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6388901B2 (ja) | 診断テストを特定するための経路分析 | |
JP6609355B2 (ja) | 細胞系ゲノミクスからの薬物応答の患者特異的予測のためのシステムおよび方法 | |
Panahiazar et al. | Using EHRs and machine learning for heart failure survival analysis | |
Walczak et al. | Improving prognosis and reducing decision regret for pancreatic cancer treatment using artificial neural networks | |
Hajian-Tilaki | Sample size estimation in diagnostic test studies of biomedical informatics | |
Kim et al. | Powerful and adaptive testing for multi-trait and multi-SNP associations with GWAS and sequencing data | |
JP2019527894A (ja) | ダサチニブ反応予測モデルおよびその方法 | |
Motoyama et al. | Liver failure after hepatocellular carcinoma surgery | |
Felder et al. | Exploring computer-based imaging analysis in interstitial lung disease: opportunities and challenges | |
Dominietto et al. | Integrative analysis of cancer imaging readouts by networks | |
JP7557703B2 (ja) | 状態遷移グラフの統計分析と予測モデリングのための方法 | |
Ostmeier et al. | USE-Evaluator: Performance metrics for medical image segmentation models supervised by uncertain, small or empty reference annotations in neuroimaging | |
Donária et al. | Relationship between sniff nasal inspiratory pressure and BODE index in patients with COPD | |
US20220017965A1 (en) | Methods for predicting a response to bevacizumab or platinum-based chemotherapy or both in patients with ovarian cancer | |
Chen et al. | Regression analysis of multivariate current status data with dependent censoring: application to ankylosing spondylitis data | |
Park | Interval design to identify the optimal biological dose for immunotherapy | |
US20130131491A1 (en) | Tumor Response Prediction to Therapy | |
Kim et al. | Adaptive testing for multiple traits in a proportional odds model with applications to detect SNP‐brain network associations | |
JP7533572B2 (ja) | 個人のタイムラインデータからの状態遷移グラフの自動構築のための方法 | |
Seshadri et al. | AI Age Discrepancy: A Novel Parameter for Frailty Assessment in Kidney Tumor Patients | |
Kim et al. | Powerful and adaptive testing for multi-trait and multi-SNP associations | |
Kundu | STATISTICAL METHODS FOR INTEGRATING DISPARATE DATA SOURCES | |
Tao | Designs and Analysis of Two-Phase Studies, with Applications to Genetic Association Studies | |
Gifford | Performance characteristics of a visual-search human-model observer with sparse PET image data | |
Fielding et al. | The Spread of Epidemic Diseases: Public Spending on Health as Political Instrument? |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170315 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180327 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180626 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180717 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180815 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6388901 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |