JP6387029B2 - Four-way valve and refrigeration cycle apparatus provided with the same - Google Patents

Four-way valve and refrigeration cycle apparatus provided with the same Download PDF

Info

Publication number
JP6387029B2
JP6387029B2 JP2016020290A JP2016020290A JP6387029B2 JP 6387029 B2 JP6387029 B2 JP 6387029B2 JP 2016020290 A JP2016020290 A JP 2016020290A JP 2016020290 A JP2016020290 A JP 2016020290A JP 6387029 B2 JP6387029 B2 JP 6387029B2
Authority
JP
Japan
Prior art keywords
conduit
low
way valve
indoor
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016020290A
Other languages
Japanese (ja)
Other versions
JP2017137961A (en
Inventor
浩之 豊田
浩之 豊田
智弘 小松
智弘 小松
晴樹 額賀
晴樹 額賀
吉田 和正
和正 吉田
高藤 亮一
亮一 高藤
真和 粟野
真和 粟野
啓輔 福原
啓輔 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2016020290A priority Critical patent/JP6387029B2/en
Publication of JP2017137961A publication Critical patent/JP2017137961A/en
Application granted granted Critical
Publication of JP6387029B2 publication Critical patent/JP6387029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Valve Housings (AREA)

Description

本発明は、四方弁およびこれを備えた冷凍サイクル装置に関する。   The present invention relates to a four-way valve and a refrigeration cycle apparatus including the same.

圧縮機、室内熱交換器、膨張弁、室外熱交換器等を配管で接続した冷媒流路を切り替えることにより冷房運転と暖房運転とを可能とした冷凍サイクル装置が知られている。冷暖房運転が可能な冷凍サイクル装置は、冷媒流路を切り替えて冷媒の循環方向を変更する部品として、冷媒流路上に四方弁を備える装置が多い。   There is known a refrigeration cycle apparatus that enables a cooling operation and a heating operation by switching a refrigerant flow path in which a compressor, an indoor heat exchanger, an expansion valve, an outdoor heat exchanger, and the like are connected by piping. Many refrigeration cycle apparatuses capable of cooling and heating operation include a four-way valve on the refrigerant flow path as a part that changes the circulation direction of the refrigerant by switching the refrigerant flow path.

四方弁は、圧縮機の吐出側に連通する高圧側の導管と、圧縮機の吸込側に連通する低圧側の導管と、室内側熱交換器に連通する室内側の導管と、室外側熱交換器に連通する室外側の導管と、弁体とを備え、弁体を移動させることにより選択的に導管を連通させて冷媒流路の切り替えを可能とする。四方弁の構造上、四方弁内には、高温高圧の冷媒と低温低圧の冷媒が同時に流れるため、四方弁の筺体を経由して高温高圧の冷媒から低温低圧の冷媒へ熱が移動することにより、冷凍サイクル装置の冷房能力や暖房能力が低下し、仕事量の増加につながることが知られている。   The four-way valve has a high-pressure side conduit communicating with the compressor discharge side, a low-pressure side conduit communicating with the compressor suction side, an indoor side conduit communicating with the indoor heat exchanger, and an outdoor heat exchange. An outdoor conduit communicating with the vessel and a valve body are provided, and by moving the valve body, the conduit is selectively communicated to enable switching of the refrigerant flow path. Due to the structure of the four-way valve, high-temperature and high-pressure refrigerant and low-temperature and low-pressure refrigerant flow in the four-way valve at the same time, so heat is transferred from the high-temperature and high-pressure refrigerant to the low-temperature and low-pressure refrigerant via the four-way valve housing. It is known that the cooling capacity and heating capacity of the refrigeration cycle apparatus are reduced, leading to an increase in work volume.

四方弁内での冷媒間の熱移動を抑制することで、冷凍サイクル装置の冷房能力、暖房能力、省エネ性能等を向上させる四方弁として、銅製配管よりも熱伝導率の低い材料とした配管接続部を備える四方弁が開示されている(特許文献1参照)。
又、導管が挿入される弁座を熱伝導率の低い材料とした四方弁が開示されている(特許文献2参照)。更に、四方弁の筺体及び弁座と接続配管との間に熱伝導率の低い材料からなる熱抵抗部材を備える四方弁が開示されている(特許文献3参照)。
Pipe connection made of material with lower thermal conductivity than copper pipe as a four-way valve to improve the cooling capacity, heating capacity, energy saving performance, etc. of the refrigeration cycle device by suppressing heat transfer between refrigerants in the four-way valve A four-way valve having a portion is disclosed (see Patent Document 1).
Further, a four-way valve is disclosed in which a valve seat into which a conduit is inserted is made of a material having low thermal conductivity (see Patent Document 2). Furthermore, a four-way valve including a heat resistance member made of a material having low thermal conductivity is disclosed between a housing and a valve seat of the four-way valve and a connection pipe (see Patent Document 3).

特開平1‐314870号公報JP-A-1-314870 特許第5300657号公報Japanese Patent No. 5300657 特開2009−109062号公報JP 2009-109062 A

特許文献1〜3で開示された発明は、冷凍サイクル装置の冷媒配管として一般的に使用される銅管よりも熱伝導率の低い材料によって、四方弁内における冷媒間の熱伝導経路となり得る部材を構成しているため、熱移動の抑制が図られている。   The invention disclosed in Patent Documents 1 to 3 is a member that can be a heat conduction path between refrigerants in a four-way valve by a material having a lower thermal conductivity than a copper pipe generally used as a refrigerant pipe of a refrigeration cycle apparatus. Therefore, heat transfer is suppressed.

ところで、熱移動の抑制を図るため、四方弁内の冷媒流路は銅よりも熱伝導率が低い材料で構成される。又、冷媒が冷媒流路からわずかでも大気中に漏れることは好ましくないため、接続部を含む四方弁内の冷媒流路には高いバリア性が要求される。そして、冷凍サイクル装置において使用されるほとんどの冷媒は、常時大気圧よりも高い圧力で冷媒流路内に存在するため、接続部を含む四方弁内の冷媒流路には耐圧性を維持可能な強度が要求される。   By the way, in order to suppress heat transfer, the refrigerant flow path in the four-way valve is made of a material having a lower thermal conductivity than copper. Moreover, since it is not preferable that the refrigerant leaks from the refrigerant flow path to the atmosphere, a high barrier property is required for the refrigerant flow path in the four-way valve including the connecting portion. And since most refrigerants used in the refrigeration cycle apparatus always exist in the refrigerant flow path at a pressure higher than atmospheric pressure, the refrigerant flow path in the four-way valve including the connecting portion can maintain pressure resistance. Strength is required.

しかし、特許文献1〜3で開示された発明として前記条件を満たす材料であるステンレス合金を接続配管等に採用した四方弁は、従来行われてきたりん銅ろうを使用したろう付け接合に不向きであり、冷凍サイクル装置の冷媒流路に組み付けることを考慮した発明ではなかった。   However, as the invention disclosed in Patent Documents 1 to 3, a four-way valve that employs a stainless alloy, which is a material satisfying the above conditions, for connection piping or the like is not suitable for brazing joining using phosphor copper brazing that has been conventionally performed. Yes, it was not an invention that considered assembling in the refrigerant flow path of the refrigeration cycle apparatus.

本発明は、前記課題を解決するものであり、内部における熱移動を抑制し、冷媒流路に組み付けることを考慮した四方弁を提供すること、並びに、内部における熱移動を抑制し、冷媒流路に組み付けることを考慮した四方弁を備える冷凍サイクル装置を提供することを課題とする。   The present invention solves the above-mentioned problems, provides a four-way valve that suppresses heat transfer in the interior and is considered to be assembled in the refrigerant flow path, and suppresses heat transfer inside the refrigerant flow path. It is an object of the present invention to provide a refrigeration cycle apparatus including a four-way valve in consideration of assembly in

本発明は、本体と、高温高圧の流体が流入する高圧側の導管と、低温低圧の液体が流出する低圧側の導管と、冷凍サイクル装置に適用された場合に室内機の室内熱交換器に連通する室内側の導管と、冷凍サイクル装置に適用された場合に室外機の室外熱交換器に連通する室外側の導管と、を備え、前記低圧側の導管と、前記室内側の導管と、前記室外側の導管のうち少なくとも1つは、ステンレス又はステンレス合金からなり、前記低圧側の導管、前記室内側の導管及び前記室外側の導管の各開放端には銅合金製の接続管が接続され、前記接続管は、前記冷凍サイクル装置の各配管と、りん銅ろうにより接続され、前記導管の断面積をA(mm)とした場合に、前記低圧側の導管、前記室内側の導管、及び、前記室外側の導管のうちステンレス又はステンレス合金からなる管の長さL1はL1≧0.33A(mm)である。 The present invention is applied to an indoor heat exchanger of an indoor unit when applied to a main body, a high-pressure side conduit through which high-temperature and high-pressure fluid flows, a low-pressure side conduit from which low-temperature and low-pressure liquid flows out, and a refrigeration cycle apparatus. and the indoor side of the conduit which communicates, and a outdoor side of the conduit which communicates with the outdoor heat exchanger of the outdoor unit when it is applied to a refrigeration cycle apparatus, and the low pressure side of the conduit, and the indoor side of the conduit, At least one of the outdoor conduits is made of stainless steel or a stainless alloy, and a connection pipe made of a copper alloy is connected to each open end of the low pressure side conduit, the indoor side conduit, and the outdoor conduit. The connecting pipe is connected to each pipe of the refrigeration cycle apparatus by phosphor copper brazing, and when the cross-sectional area of the conduit is A (mm 2 ), the low-pressure side conduit and the indoor-side conduit Of the outdoor conduits. The length L1 of the tube consisting of less or stainless alloy is L1 ≧ 0.33A (mm).

本発明は、本体と、高温高圧の流体が流入する高圧側の導管と、低温低圧の液体が流出する低圧側の導管と、冷凍サイクル装置に適用された場合に室内機の室内熱交換器に連通する室内側の導管と、冷凍サイクル装置に適用された場合に室外機の室外熱交換器に連通する室外側の導管と、を備え、前記低圧側の導管と、前記室内側の導管と、前記室外側の導管のうち少なくとも1つは、ステンレス又はステンレス合金からなり、前記低圧側の導管、前記室内側の導管及び前記室外側の導管の開放端には銅合金製の接続管が接続され、前記接続管は、前記冷凍サイクル装置の各配管と、りん銅ろうにより接続され、前記導管の断面積をA(mm)とした場合に、前記低圧側の導管、前記室内側の導管、及び、前記室外側の導管のうちステンレス又はステンレス合金からなる管の長さL1はL1≦3.3A(mm)である。 The present invention is applied to an indoor heat exchanger of an indoor unit when applied to a main body, a high-pressure side conduit through which high-temperature and high-pressure fluid flows, a low-pressure side conduit from which low-temperature and low-pressure liquid flows out, and a refrigeration cycle apparatus. and the indoor side of the conduit which communicates, and a outdoor side of the conduit which communicates with the outdoor heat exchanger of the outdoor unit when it is applied to a refrigeration cycle apparatus, and the low pressure side of the conduit, and the indoor side of the conduit, at least one of the outdoor side of the conduit is made of stainless steel or stainless steel alloy, the low pressure side of the guide tube, the indoor side of the conduit and the chamber connecting pipe made of copper alloy in the open end of the outer conduit The connecting pipe is connected to each pipe of the refrigeration cycle apparatus by phosphor copper brazing, and when the cross-sectional area of the conduit is A (mm 2 ), the low-pressure side conduit, the indoor side Of the conduit and the conduit outside the room, The length L1 of the tube consisting of less or stainless alloy is L1 ≦ 3.3A (mm).

本発明によれば、内部における熱移動を抑制し、冷媒流路に組み付けることを考慮した四方弁を提供すること、並びに、内部における熱移動を抑制し、冷媒流路に組み付けることを考慮した四方弁を備える冷凍サイクル装置を提供することができる。
上記した以外の課題、構成及び効果は、明細書中において説明する。
According to the present invention, it is possible to provide a four-way valve that suppresses heat transfer in the interior and is considered to be assembled in the refrigerant flow path, and to suppress the heat transfer in the interior and is considered to be assembled in the refrigerant flow path. A refrigeration cycle apparatus including a valve can be provided.
Problems, configurations, and effects other than those described above will be described in the specification.

本発明の第1実施形態に係る四方弁の暖房サイクル時の動作状態を示す断面図である。It is sectional drawing which shows the operation state at the time of the heating cycle of the four-way valve which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る四方弁の冷房サイクル時の動作状態を示す断面図である。It is sectional drawing which shows the operation state at the time of the cooling cycle of the four-way valve which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る四方弁の導管の長さに対する四方弁の本体側に流れ込む熱量の関係を示す図である。It is a figure which shows the relationship of the calorie | heat amount which flows into the main body side of the four-way valve with respect to the length of the conduit | pipe of the four-way valve which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る四方弁の暖房サイクル時の動作状態を示す断面図である。It is sectional drawing which shows the operation state at the time of the heating cycle of the four-way valve which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る四方弁の冷房サイクル時の動作状態を示す断面図である。It is sectional drawing which shows the operation state at the time of the cooling cycle of the four-way valve which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る四方弁の導管の温度分布とそれに伴う熱交換量を計算するにあたり使用したモデルの図である。It is a figure of the model used in calculating the temperature distribution of the conduit | pipe of the four-way valve which concerns on 2nd Embodiment of this invention, and the heat exchange amount accompanying it. 本発明の第2実施形態に係る四方弁の導管の長さに対する熱移動量抑制効果の関係を示す図である。It is a figure which shows the relationship of the heat transfer amount suppression effect with respect to the length of the conduit | pipe of the four-way valve which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る四方弁の接続管のろう付け時の配管接続側の温度と、導管接続側の計算結果を示す図である。It is a figure which shows the temperature of the pipe connection side at the time of brazing of the connection pipe of the four-way valve which concerns on 2nd Embodiment of this invention, and the calculation result of the conduit connection side. 本発明の第3実施形態に係る四方弁の暖房サイクル時の動作状態を示す断面図である。It is sectional drawing which shows the operation state at the time of the heating cycle of the four-way valve which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る四方弁の暖房サイクル時の動作状態を示す断面図である。It is sectional drawing which shows the operation state at the time of the heating cycle of the four-way valve which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る四方弁の暖房サイクル時の動作状態を示す断面図である。It is sectional drawing which shows the operation state at the time of the heating cycle of the four-way valve which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る第2実施形態に係る四方弁を含む冷凍サイクル装置の暖房サイクル時の動作状態を示す図である。It is a figure which shows the operation state at the time of the heating cycle of the refrigerating-cycle apparatus containing the four-way valve which concerns on 2nd Embodiment which concerns on 6th Embodiment of this invention. 本発明の第6実施形態に係る第2実施形態に係る四方弁を含む冷凍サイクル装置の冷房サイクル時の動作状態を示す図である。It is a figure which shows the operation state at the time of a cooling cycle of the refrigerating-cycle apparatus containing the four-way valve which concerns on 2nd Embodiment which concerns on 6th Embodiment of this invention.

本発明の実施形態について、適宜、図面を参照しながら詳細に説明する。本実施形態は以下の内容に限定されるものではなく、本発明の趣旨の範囲内において適宜変更して実施可能であり、種々の変形例や応用例をもその範囲に含むものである。

各図において、共通する部分には同一の符号を付し重複した説明を省略する。
Embodiments of the present invention will be described in detail with reference to the drawings as appropriate. The present embodiment is not limited to the following contents, and can be implemented with appropriate modifications within the scope of the gist of the present invention, and includes various modifications and application examples.

In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.

<第1実施形態>
図1は、本実施形態に係る四方弁1の暖房サイクル時の動作状態を示す断面図である。
図1に示す様に、四方弁1は、高温高圧の流体が流入する高圧側の導管11、低温低圧の液体が流出する低圧側の導管12、冷凍サイクルに適用された場合に室内機の室内熱交換器に連通する室内側の導管13、冷凍サイクルに適用された場合に室外機の室外熱交換器に連通する室外側の導管14が四方弁1の本体2にそれぞれ接続されている。高圧側の導管11の周方向の反対側には、室内側の導管13、低圧側の導管12、及び、室外側の導管14がこの順に四方弁1の本体2の軸方向に並んで配置されている。高圧側の導管11は、室内側の導管13に対向し、略一直線状となる様に配置されている。
<First Embodiment>
FIG. 1 is a cross-sectional view showing an operating state during a heating cycle of the four-way valve 1 according to the present embodiment.
As shown in FIG. 1, the four-way valve 1 includes a high-pressure side conduit 11 into which a high-temperature and high-pressure fluid flows, a low-pressure side conduit 12 from which a low-temperature and low-pressure liquid flows out, and an indoor unit when applied to a refrigeration cycle. An indoor conduit 13 communicating with the heat exchanger and an outdoor conduit 14 communicating with the outdoor heat exchanger of the outdoor unit when applied to the refrigeration cycle are respectively connected to the main body 2 of the four-way valve 1. On the opposite side of the circumferential direction of the high pressure side conduit 11, an indoor side conduit 13, a low pressure side conduit 12, and an outdoor side conduit 14 are arranged in this order in the axial direction of the main body 2 of the four-way valve 1. ing. The high-pressure side conduit 11 faces the indoor-side conduit 13 and is arranged in a substantially straight line.

四方弁1は、両端が閉じられた筒状の金属製の四方弁1の本体2と、この四方弁1の本体2内に軸方向に延在して配置され、平面状のシート面4aを有する金属製の弁座4と、弁座4のシート面4a上を軸方向に沿って摺動可能に設けられた樹脂製の弁体3と、四方弁1の本体2内の両側に移動可能に設けられた金属や樹脂からなるピストン板5、5と、このピストン板5と弁体3とを連結する金属や樹脂からなる連結板6とを備えて構成される。   The four-way valve 1 has a cylindrical metal four-way valve 1 with both ends closed, and a main body 2 of the four-way valve 1 that extends in the axial direction and has a planar seat surface 4a. Metal valve seat 4, resin valve body 3 slidable on the seat surface 4 a of the valve seat 4 along the axial direction, and movable to both sides in the body 2 of the four-way valve 1 Are provided with piston plates 5 and 5 made of metal or resin, and a connecting plate 6 made of metal or resin for connecting the piston plate 5 and the valve body 3.

四方弁1の本体2は、円筒状の筒部と、この筒部の両端を閉塞する円板状の壁部とからなるステンレス合金(ステンレスを含む、以下同じ)の部材で構成されている。四方弁1の本体2としては、例えば、外径28mm、肉厚1mm、容積約10000mm、密度7890kg/m、比熱511J/kg・Kの四方弁本体が挙げられる。 The main body 2 of the four-way valve 1 is composed of a stainless alloy member (including stainless steel, the same applies hereinafter) composed of a cylindrical tube portion and a disk-like wall portion that closes both ends of the tube portion. Examples of the body 2 of the four-way valve 1 include a four-way valve body having an outer diameter of 28 mm, a thickness of 1 mm, a volume of about 10,000 mm 3 , a density of 7890 kg / m 3 , and a specific heat of 511 J / kg · K.

弁座4には、軸方向に沿って順に、室内側の導管13に連通する室内側連通路と、低圧側の導管12に連通する低圧側連通路と、室外側の導管14に連通する室外側連通路とが形成されている。室内側連通路、低圧側連通路、及び、室外側連通路は、それぞれシート面4aに開口されている。
弁座4としては、例えば、容積約3400mmであり、銅合金(ニッケルシルバー、Cu−20Zn−15Ni)製、密度8700kg/m、比熱380J/kg・Kの弁座が挙げられる。又、弁座4は、同様の形状の銅、鉄、鉄系合金で形成することも可能である。
In the valve seat 4, a chamber communicating with the indoor conduit 13, the low pressure communication passage communicating with the low pressure conduit 12, and the outdoor conduit 14, in order along the axial direction. An outer communication path is formed. The indoor side communication path, the low pressure side communication path, and the outdoor side communication path are each opened in the seat surface 4a.
Examples of the valve seat 4 include a valve seat having a volume of about 3400 mm 3 , a copper alloy (nickel silver, Cu-20Zn-15Ni), a density of 8700 kg / m 3 , and a specific heat of 380 J / kg · K. The valve seat 4 can also be formed of copper, iron, or an iron-based alloy having the same shape.

弁体3は、シート面4a上を摺動する摺動面と、この摺動面に形成された窪みを有している。又、摺動面の反対面側は窪みに対応して半球状に形成されている。この反対面の半球は四方弁1の本体2の筒部と間隔を有するように形成されている。
弁体3は、ポリフェニレンサルファイドやナイロン等の樹脂で形成される。
The valve body 3 has a sliding surface that slides on the seat surface 4a and a recess formed in the sliding surface. Further, the opposite surface side of the sliding surface is formed in a hemispherical shape corresponding to the recess. The opposite hemisphere is formed so as to be spaced from the cylindrical portion of the main body 2 of the four-way valve 1.
The valve body 3 is formed of a resin such as polyphenylene sulfide or nylon.

弁体3には連結板6の中央部が嵌合されて固定されている。この連結板6の両端はピストン板5、5に固定されている。連結板6は、弁体3とピストン板5、5とを連結するものである。連結板6の左右両側には、冷凍サイクル装置に適用された場合において、暖房時に高圧側の導管11と室内側の導管13とを連通する連通孔と、冷房時に高圧側の導管11と室外側の導管14とを連通する連通孔とが形成されている。連結板6は、例えば、ステンレス合金で形成することが可能である。   A central portion of the connecting plate 6 is fitted and fixed to the valve body 3. Both ends of the connecting plate 6 are fixed to the piston plates 5 and 5. The connecting plate 6 connects the valve body 3 and the piston plates 5 and 5. On the left and right sides of the connecting plate 6, when applied to a refrigeration cycle apparatus, there are communication holes that connect the high-pressure side conduit 11 and the indoor side conduit 13 during heating, and the high-pressure side conduit 11 and the outdoor side during cooling. A communication hole communicating with the conduit 14 is formed. The connecting plate 6 can be formed of, for example, a stainless alloy.

ピストン板5、5は、四方弁1の本体2の壁部の内周面と同じ外周形状を有しており、四方弁1の本体2の両端部に圧力調整空間を形成している。
圧力調整空間の圧力を調整することにより、弁体3は弁座4のシート面4a上を軸方向に沿って摺動して移動される。弁体3が移動することにより、四方弁1を配設した冷凍サイクル装置の暖房サイクルと冷房サイクルが入れ替わる。
ピストン板5は、円板状のステンレス合金板と、円板状のステンレス合金板の外周部であり、四方弁1の本体2の壁部の内周面との摺動部分が樹脂(ポリフェニレンサルファイドやナイロン等)で形成される。
The piston plates 5 and 5 have the same outer peripheral shape as the inner peripheral surface of the wall portion of the main body 2 of the four-way valve 1, and form pressure adjustment spaces at both ends of the main body 2 of the four-way valve 1.
By adjusting the pressure in the pressure adjustment space, the valve element 3 is slid along the axial direction on the seat surface 4a of the valve seat 4 and moved. When the valve body 3 moves, the heating cycle and the cooling cycle of the refrigeration cycle apparatus provided with the four-way valve 1 are switched.
The piston plate 5 is a disc-shaped stainless alloy plate and an outer peripheral portion of the disc-shaped stainless alloy plate, and a sliding portion between the inner peripheral surface of the wall portion of the body 2 of the four-way valve 1 is made of resin (polyphenylene sulfide). Or nylon).

弁体3は、シート面4a上を軸方向に移動され、一方の移動端とされた状態において、室外側の導管14と低圧側の導管12とを弁の窪みを介して連通させて室外側の導管14から弁の窪みを介して低圧側の導管12へ冷媒を流通させると共に、高圧側の導管11から室内側の導管13へ冷媒を略一直線上に流通させる。この様に高圧側の導管11と室内側の導管13とを略一直線上に配置することにより、四方弁1を冷凍サイクルに適用した場合、高温高圧の冷媒の圧力損失を低減できるため、冷媒の温度低下を抑制できる。   The valve body 3 is moved in the axial direction on the seat surface 4a, and in a state of being one moving end, the outdoor conduit 14 and the low pressure side conduit 12 are communicated with each other through a valve recess, thereby The refrigerant is circulated from the conduit 14 to the low-pressure side conduit 12 through the valve recess and from the high-pressure side conduit 11 to the indoor side conduit 13 in a substantially straight line. By arranging the high-pressure side conduit 11 and the indoor-side conduit 13 in a substantially straight line in this way, when the four-way valve 1 is applied to a refrigeration cycle, the pressure loss of the high-temperature and high-pressure refrigerant can be reduced. Temperature drop can be suppressed.

又、冷媒の流れに乱れや渦が多い場合、撹乱効果によって冷媒の流れと四方弁1の壁面の温度境界層が小さくなりやすく、熱交換が起りやすくなる。しかし、前記のように冷媒を略一直線上に流すことによって、四方弁1の本体2との熱交換を抑制でき、冷媒の温度低下も抑制できる。   Further, when the refrigerant flow has many disturbances and vortices, the temperature boundary layer between the refrigerant flow and the wall surface of the four-way valve 1 tends to be small due to the disturbance effect, and heat exchange tends to occur. However, by flowing the refrigerant in a substantially straight line as described above, heat exchange with the main body 2 of the four-way valve 1 can be suppressed, and a decrease in the temperature of the refrigerant can also be suppressed.

高圧側の導管11は、銅合金(銅を含む、以下同じ)製の管である。高圧側の導管11に適用可能な管として、例えば、外径9.53mm、肉厚0.80mmの銅合金製の管が挙げられる。
低圧側の導管12、室内側の導管13、及び、室外側の導管14に適用可能なステンレス合金製の管として、例えば、外径12.7mm、肉厚0.80mmのステンレス合金製の管が挙げられる。
The high-pressure side conduit 11 is a tube made of a copper alloy (including copper, the same applies hereinafter). Examples of the pipe applicable to the high-pressure side conduit 11 include a copper alloy pipe having an outer diameter of 9.53 mm and a wall thickness of 0.80 mm.
As a stainless alloy tube applicable to the low pressure side conduit 12, the indoor side conduit 13, and the outdoor side conduit 14, for example, a stainless alloy tube having an outer diameter of 12.7 mm and a wall thickness of 0.80 mm is used. Can be mentioned.

本実施形態では、四方弁1の内部での高温冷媒から低温冷媒への熱の移動を極力抑えるために、筒状(シリンダ状)の四方弁1の本体2、低圧側の導管12、室内側の導管13、及び、室外側の導管14をステンレス合金製とする。本実施形態で使用するステンレス合金は、鉄(Fe)を主成分とし、クロム(Cr)を10.5%以上含有する合金である。本実施形態で使用するステンレス合金は、鉄、クロムに加えて、ニッケル(Ni)やマンガン(Mn)、モリブデン(Mo)等の元素を更に含有してもよい。   In this embodiment, in order to suppress the heat transfer from the high-temperature refrigerant to the low-temperature refrigerant inside the four-way valve 1 as much as possible, the main body 2 of the cylindrical (cylindrical) four-way valve 1, the low pressure side conduit 12, the indoor side The conduit 13 and the outdoor conduit 14 are made of stainless steel alloy. The stainless steel alloy used in this embodiment is an alloy containing iron (Fe) as a main component and containing 10.5% or more of chromium (Cr). The stainless steel alloy used in this embodiment may further contain elements such as nickel (Ni), manganese (Mn), and molybdenum (Mo) in addition to iron and chromium.

高圧側の導管11と室内側の導管13とを略一直線上に配置することにより得られる2つの効果により、四方弁1を冷凍サイクルに適用した場合、圧縮機102(図12参照)から吐出された冷媒のエネルギ損失を極力抑えて、室内機110の室内熱交換機112へ流通させることができるため、四方弁1を適用することにより冷凍サイクルの暖房時の性能を向上させることができる。   When the four-way valve 1 is applied to a refrigeration cycle, it is discharged from the compressor 102 (see FIG. 12) due to two effects obtained by arranging the high-pressure side conduit 11 and the indoor-side conduit 13 in a substantially straight line. Therefore, the performance of the refrigeration cycle during heating can be improved by applying the four-way valve 1 because the energy loss of the refrigerant can be suppressed as much as possible and can be distributed to the indoor heat exchanger 112 of the indoor unit 110.

四方弁1が冷凍サイクル装置に適用された場合、暖房サイクル時、冷房サイクル時とも四方弁1の高圧側の導管11には常に高圧の冷媒が流れ、低圧側の導管12には常に低圧の冷媒が流れる。弁体3の外側を高圧の冷媒を流れ、弁体3の内側を低圧の冷媒が流れることで、弁体3の外側と内側とで圧力差が生じて、弁体3は常に弁座4に押しつけられる押圧力を受ける。   When the four-way valve 1 is applied to a refrigeration cycle apparatus, a high-pressure refrigerant always flows through the high-pressure side conduit 11 of the four-way valve 1 during a heating cycle and a cooling cycle, and a low-pressure refrigerant always flows through the low-pressure side conduit 12. Flows. A high pressure refrigerant flows outside the valve body 3, and a low pressure refrigerant flows inside the valve body 3, thereby creating a pressure difference between the outside and inside of the valve body 3, so that the valve body 3 is always in the valve seat 4. Receives pressing force.

図2は、本実施形態に係る四方弁1の冷房サイクル時の動作状態を示す断面図である。
弁体3は、シート面4a上を軸方向に移動され、他方の移動端とされた状態において、室内側の導管13と低圧側の導管12とを弁の窪みを介して連通させて室内側の導管13から弁の窪みを介して低圧側の導管12へ冷媒を流通させると共に、高圧側の導管11から弁体3の外面と四方弁1の本体2の内面とで形成される空間を介して室外側の導管14へ冷媒を流通させる。
FIG. 2 is a cross-sectional view showing an operating state during the cooling cycle of the four-way valve 1 according to the present embodiment.
In the state where the valve body 3 is moved in the axial direction on the seat surface 4a and used as the other moving end, the indoor side conduit 13 and the low pressure side conduit 12 are communicated with each other via the valve recess. The refrigerant is circulated from the conduit 13 to the low pressure side conduit 12 through the recess of the valve, and through the space formed by the outer surface of the valve body 3 and the inner surface of the main body 2 of the four-way valve 1 from the high pressure side conduit 11. Then, the refrigerant is circulated through the conduit 14 outside the room.

次に、高圧側の導管11、低圧側の導管12、室内側の導管13、室外側の導管14の最短長さの算出について説明する。本実施形態において、導管の長さL1は、四方弁1の本体2との接続部から導管の開放端までの距離とする。   Next, calculation of the shortest lengths of the high pressure side conduit 11, the low pressure side conduit 12, the indoor side conduit 13, and the outdoor side conduit 14 will be described. In this embodiment, the length L1 of the conduit is the distance from the connection portion of the four-way valve 1 with the main body 2 to the open end of the conduit.

四方弁1の内部に存在する弁体3は、ポリフェニレンサルファイドやナイロン等の樹脂で形成される。弁体3は、ガラス転移点以上の温度に加熱された場合、変形する可能性がある。そして、弁体3が変形した場合、弁体3のシール性(気密性)が低下する可能性もある。弁体3の変形を防ぐためには、導管と冷媒サイクルの配管の接合時に、弁体3の周囲の金属の温度は弁体3のガラス転移点未満である。ちなみに、ナイロンのガラス転移点は、88℃である。
そこで、ステンレス合金製の導管の長さに対する、導管から四方弁1の本体2に流れ込む熱量を計算した。
The valve body 3 existing inside the four-way valve 1 is formed of a resin such as polyphenylene sulfide or nylon. The valve body 3 may be deformed when heated to a temperature equal to or higher than the glass transition point. And when the valve body 3 deform | transforms, the sealing performance (airtightness) of the valve body 3 may fall. In order to prevent the deformation of the valve body 3, the temperature of the metal around the valve body 3 is lower than the glass transition point of the valve body 3 when the conduit and the piping of the refrigerant cycle are joined. Incidentally, the glass transition point of nylon is 88 ° C.
Therefore, the amount of heat flowing from the conduit to the main body 2 of the four-way valve 1 relative to the length of the stainless steel conduit was calculated.

四方弁の本体2、弁座4、ピストン板5、連結板6の体積、これらに使用する金属であるステンレス合金や銅合金の密度及び比熱に基づき、弁体3に熱伝導する弁座4や四方弁の本体2等の金属が25℃から弁体3のガラス転移点温度(88℃)になるために必要な熱量が求められる。本実施形態の四方弁1について計算すると、この熱量は、約3300Jである。   The valve seat 4 that conducts heat to the valve body 3 based on the volume of the main body 2, the valve seat 4, the piston plate 5 and the connecting plate 6 of the four-way valve, and the density and specific heat of the stainless alloy or copper alloy that is the metal used for these. The amount of heat required for the metal such as the body 2 of the four-way valve to reach the glass transition temperature (88 ° C.) of the valve body 3 from 25 ° C. is required. When calculated for the four-way valve 1 of the present embodiment, this amount of heat is about 3300 J.

図3は、導管の長さに対する、四方弁1の本体側に流れ込む熱量の関係であり、ろう付け作業を考慮して、90秒間に接続管から四方弁の本体2に流れ込む熱量を示す。   FIG. 3 shows the relationship between the amount of heat flowing into the main body side of the four-way valve 1 with respect to the length of the conduit, and shows the amount of heat flowing into the main body 2 of the four-way valve from the connection pipe in 90 seconds in consideration of the brazing operation.

図3に示す様に、導管の長さが10mm以下では、四方弁1の本体2に流れ込む熱量が弁体3のガラス転移点に到達する(軟化を引き起こす)約3300Jを超える。
従って、導管と冷媒サイクルの配管のろう付けによる接合を考慮した場合、ステンレス合金製の導管の長さは、10mm以上必要である。
As shown in FIG. 3, when the length of the conduit is 10 mm or less, the amount of heat flowing into the main body 2 of the four-way valve 1 reaches about 3300 J reaching the glass transition point of the valve body 3 (causing softening).
Therefore, in consideration of the joining of the conduit and the piping of the refrigerant cycle by brazing, the length of the stainless alloy conduit needs to be 10 mm or more.

当該計算における想定条件は、家庭用の空気調和機に適用される四方弁を想定した条件であり、弁体3の軟化を引き起こす熱量は、四方弁を構成する金属の質量により変動するが、約3300Jを基準とすることができる。   The assumed condition in the calculation is a condition assuming a four-way valve applied to a home air conditioner, and the amount of heat that causes softening of the valve body 3 varies depending on the mass of the metal constituting the four-way valve. 3300J can be used as a reference.

従って、前記想定条件における四方弁の導管に冷凍サイクル装置の配管等をろう付けにより接合する場合、導管の長さL1を10mm以上とすることで、弁体3の保護が図られる。   Therefore, when joining the pipe | tube of a refrigerating cycle apparatus etc. to the conduit | pipe of the four-way valve in the said assumption conditions by brazing, protection of the valve body 3 is achieved by making the length L1 of a conduit | pipe into 10 mm or more.

そして、弁体3、弁座4、及び、導管12等を変更した場合について説明する。   And the case where the valve body 3, the valve seat 4, the conduit | pipe 12, etc. are changed is demonstrated.

前記想定条件と異なり、弁体3、及び、弁座4が密度の小さい金属や組成の異なる合金で形成される場合、並びに、弁体3、及び、弁座4の質量を大きくした場合は、弁体3、及び、弁座4の体積が大きくなる可能性がある。弁座4等の体積が大きくなると、弁体3と弁座4との接触面積が増えるため熱伝導による導管12等から弁体3への熱移動を促進させることになる。つまり、熱伝導抑制効果を小さくし、冷房・暖房の性能を低下させることになる。   Unlike the assumed conditions, when the valve body 3 and the valve seat 4 are formed of a metal having a low density or an alloy having a different composition, and when the mass of the valve body 3 and the valve seat 4 is increased, The volume of the valve body 3 and the valve seat 4 may become large. When the volume of the valve seat 4 or the like increases, the contact area between the valve body 3 and the valve seat 4 increases, and thus heat transfer from the conduit 12 or the like to the valve body 3 by heat conduction is promoted. That is, the effect of suppressing heat conduction is reduced, and the cooling / heating performance is reduced.

一方、前記想定条件と異なり、弁体3、及び、弁座4が密度の大きい金属や組成の異なる合金で形成される場合、並びに、弁体3、及び、弁座4の質量を小さくした場合は、弁体3、及び、弁座4の体積が小さくなる可能性がある。弁座4等の体積が小さくなると、弁体3と弁座4との接触面積が減るため熱伝導による導管12等から弁体3への熱移動を抑制させることになる。つまり、熱伝導抑制効果を大きくし、冷房・暖房の性能を向上させることになる。   On the other hand, unlike the above assumed conditions, when the valve body 3 and the valve seat 4 are formed of a metal having a high density or an alloy having a different composition, and when the mass of the valve body 3 and the valve seat 4 is reduced. The volume of the valve body 3 and the valve seat 4 may be reduced. When the volume of the valve seat 4 or the like is reduced, the contact area between the valve body 3 and the valve seat 4 is reduced, so that heat transfer from the conduit 12 or the like to the valve body 3 due to heat conduction is suppressed. That is, the effect of suppressing heat conduction is increased, and the performance of cooling and heating is improved.

又、弁座4に接続する導管12、13、14がフィンの役割を果たす。このため、導管12等が前記想定条件とは異なる合金組成や密度の材料で形成される場合は、熱伝導度が変化する可能性がある。導管12等の熱伝導度が向上した場合は、導管から弁体3への熱移動を促進させることになる。つまり、熱伝導抑制効果を小さくし、冷房・暖房の性能を低下させることになる。導管12等の熱伝導度が低下した場合は、導管から弁体3への熱移動を抑制させることになる。つまり、熱伝導抑制効果を大きくし、冷房・暖房の性能を向上させることになる。
熱伝導による導管12等から弁体3への熱移動を抑制させるには、導管12等を長くしてもよい。
The conduits 12, 13, and 14 connected to the valve seat 4 serve as fins. For this reason, when the conduit | pipe 12 grade | etc., Is formed with the material of an alloy composition and density different from the said assumption, thermal conductivity may change. When the thermal conductivity of the conduit 12 and the like is improved, heat transfer from the conduit to the valve body 3 is promoted. That is, the effect of suppressing heat conduction is reduced, and the cooling / heating performance is reduced. When the thermal conductivity of the conduit 12 or the like decreases, the heat transfer from the conduit to the valve body 3 is suppressed. That is, the effect of suppressing heat conduction is increased, and the performance of cooling and heating is improved.
In order to suppress heat transfer from the conduit 12 or the like to the valve body 3 due to heat conduction, the conduit 12 or the like may be lengthened.

更に、導管の外径や肉厚が異なる場合について説明する。   Furthermore, the case where the outer diameter and thickness of a conduit | pipe differ is demonstrated.

導管の外径をD(mm)、導管の肉厚をt(mm)、断面積をA(mm)と定義すると、以下の式1が成立する。 When the outer diameter of the conduit is defined as D (mm), the thickness of the conduit is defined as t (mm), and the cross-sectional area is defined as A (mm 2 ), the following formula 1 is established.

Figure 0006387029
Figure 0006387029

同様に、前記想定条件における導管の外径をD(mm)、導管の肉厚をt(mm)、断面積をA(mm)と定義すると、以下の式2が成立する。 Similarly, if the outer diameter of the conduit under the above-mentioned assumptions is defined as D 0 (mm), the thickness of the conduit is defined as t 0 (mm), and the cross-sectional area is defined as A 0 (mm 2 ), the following formula 2 is established.

Figure 0006387029
Figure 0006387029

従って、四方弁1の本体2の熱容量や弁体3の想定条件と同じであり、導管の外径や肉厚の条件が異なる場合の導管の長さL1は、次の式3で表わされる。   Therefore, the heat capacity of the main body 2 of the four-way valve 1 and the assumed conditions of the valve body 3 are the same, and the length L1 of the conduit when the outer diameter and thickness of the conduit are different is expressed by the following equation (3).

Figure 0006387029
Figure 0006387029

以上より、四方弁の導管に冷凍サイクル装置の配管等をろう付けにより接合する場合、導管の長さL1を0.33A(=10A/A)(mm)以上とすることで、弁体3を保護しつつ四方弁1の組み立てが可能となり、作業性が向上する。 From the above, if the piping of the refrigeration cycle apparatus to the conduit of the four-way valve is joined by brazing, by setting the length L1 of the conduit 0.33A (= 10A / A 0) (mm) or more, the valve body 3 As a result, it is possible to assemble the four-way valve 1 and to improve workability.

<第2実施形態>
第2実施形態は、第1実施形態の四方弁1における低圧側の導管12、室内側の導管13、及び、室外側の導管14のそれぞれに接続管21を接続するように変更した実施形態である。本実施形態において、導管の開放端に導管の開放端の外径以上に内径が拡管された接続管21が接続されている。
Second Embodiment
The second embodiment is an embodiment in which the connection pipe 21 is connected to each of the low pressure side conduit 12, the indoor side conduit 13, and the outdoor side conduit 14 in the four-way valve 1 of the first embodiment. is there. In the present embodiment, a connecting pipe 21 having an inner diameter expanded beyond the outer diameter of the open end of the conduit is connected to the open end of the conduit.

図4は、本実施形態に係る四方弁1Aの暖房サイクル時の動作状態を示す断面図である。又、図5は、本実施形態に係る四方弁1Aの冷房サイクル時の動作状態を示す断面図である。接続管21を使用することにより、四方弁1Aの内部での高温冷媒から低温冷媒への熱の移動を極力抑える。   FIG. 4 is a cross-sectional view showing the operating state of the four-way valve 1A according to the present embodiment during the heating cycle. FIG. 5 is a cross-sectional view showing an operating state during the cooling cycle of the four-way valve 1A according to the present embodiment. By using the connecting pipe 21, heat transfer from the high-temperature refrigerant to the low-temperature refrigerant is suppressed as much as possible inside the four-way valve 1A.

本実施形態における、低圧側の導管12、室内側の導管13、及び、室外側の導管14の長さの算出について説明する。
これら導管の長さを算出するにあたり、図4に示す四方弁1Aを想定した。図6は、導管の温度分布とそれに伴う熱交換量を計算するにあたり使用したモデルを示す。本実施形態においては第1実施形態とは異なり、導管の長さL1は、四方弁1の本体2との接続部から接続管21の末端までの距離とする。
Calculation of the lengths of the low-pressure side conduit 12, the indoor-side conduit 13, and the outdoor-side conduit 14 in the present embodiment will be described.
In calculating the lengths of these conduits, a four-way valve 1A shown in FIG. 4 was assumed. FIG. 6 shows the model used in calculating the temperature distribution of the conduit and the amount of heat exchange associated therewith. In the present embodiment, unlike the first embodiment, the length L1 of the conduit is the distance from the connection portion of the four-way valve 1 to the main body 2 to the end of the connection pipe 21.

これら導管の長さを算出するにあたり、導管上端の温度は,冷媒主流の温度とθ0Kの温度差を有しており、管内面では熱伝導率h(W/(m・K))で冷媒と熱交換が行なわれていると仮定する。冷媒側の温度変化は、冷媒循環量が多く、温度変化が小さいものとして無視する。 In calculating the lengths of these pipes, the temperature at the upper end of the pipe has a temperature difference of θ 0 K from the refrigerant mainstream temperature, and the thermal conductivity h (W / (m 2 · K)) on the pipe inner surface. It is assumed that heat exchange is performed with the refrigerant. The temperature change on the refrigerant side is ignored because the refrigerant circulation amount is large and the temperature change is small.

導管の外径をD(mm)、肉厚をt(mm)と定義した場合、導管の断面積S(mm)と、濡れぶちの長さL(mm)は、以下の式4、式5により求められる。 When the outer diameter of the conduit is defined as D (mm) and the wall thickness is defined as t (mm), the cross-sectional area S (mm 2 ) of the conduit and the length L (mm) of the wetting edge are expressed by the following equations 4, 5 is obtained.

Figure 0006387029
Figure 0006387029

Figure 0006387029
Figure 0006387029

ここで、導管の縦方向の温度変化が、冷媒との熱交換量と等しいと仮定すれば、次の式6の微分方程式が得られる。   Here, if it is assumed that the temperature change in the longitudinal direction of the conduit is equal to the amount of heat exchange with the refrigerant, the following differential equation (6) is obtained.

Figure 0006387029
Figure 0006387029

接続管側でも同様に微分方程式をたて、それぞれの解を以下のように仮定する。   Similarly, a differential equation is established on the connecting pipe side, and each solution is assumed as follows.

Figure 0006387029
Figure 0006387029

Figure 0006387029
Figure 0006387029

ここで、mSUS、mCuは以下のとおりである。 Here, m SUS and m Cu are as follows.

Figure 0006387029
Figure 0006387029

Figure 0006387029
Figure 0006387029

ここで、境界条件より、導管上端で温度がθ0なので、 Here, from the boundary condition, the temperature is θ 0 at the top of the conduit,

Figure 0006387029
Figure 0006387029

又、導管と接続管のつなぎ目では、温度が同じであり、熱移動量も同じことから、   Also, at the joint between the conduit and the connecting pipe, the temperature is the same and the amount of heat transfer is the same.

Figure 0006387029
Figure 0006387029

Figure 0006387029
Figure 0006387029

更に、接続管の下端では、熱の移動がなくなるとして、次の式14が成り立つ。   Further, assuming that there is no heat transfer at the lower end of the connecting pipe, the following equation 14 holds.

Figure 0006387029
Figure 0006387029

これらより、定数C1、C2、C3、C4は、以下のように求められる。   From these, the constants C1, C2, C3, and C4 are obtained as follows.

Figure 0006387029
Figure 0006387029

Figure 0006387029
Figure 0006387029

Figure 0006387029
Figure 0006387029

Figure 0006387029
Figure 0006387029

Figure 0006387029
Figure 0006387029

Figure 0006387029
Figure 0006387029

Figure 0006387029
Figure 0006387029

この解(C1、C2、C3、C4)を用いて、導管の温度分布を求め、求めた導管の温度分布に導管内面積と熱伝導率を乗じることにより導管から冷媒への熱移動量が求められる。この熱移動量はステンレス合金管が長ければ長いほど小さくなる。そこで、導管の長さがゼロのときの熱移動量を熱移動量抑制率0%、導管の長さが200mm時の熱移動量まで熱移動量が小さくなった時を熱移動量抑制率100%として、導管の長さと熱移動抑制率の関係を算出した。その結果を図7に示す。   Using this solution (C1, C2, C3, C4), the temperature distribution of the conduit is obtained, and the amount of heat transfer from the conduit to the refrigerant is obtained by multiplying the obtained temperature distribution of the conduit by the area inside the conduit and the thermal conductivity. It is done. This heat transfer amount becomes smaller as the stainless alloy tube is longer. Therefore, when the length of the conduit is zero, the heat transfer rate is 0%, and when the length of the conduit is 200 mm, the heat transfer rate is 100%. As a percentage, the relationship between the length of the conduit and the heat transfer inhibition rate was calculated. The result is shown in FIG.

図7は、導管の長さに対する熱移動量抑制効果の関係を示す。
図7に示す様に、導管が長ければ長い程熱移動量抑制効果が高い。又、導管内部の熱伝達率が上昇すると、より短い地点で熱移動量抑制効果が飽和する。
FIG. 7 shows the relationship between the heat transfer amount suppression effect and the length of the conduit.
As shown in FIG. 7, the longer the conduit, the higher the effect of suppressing the amount of heat transfer. Further, when the heat transfer coefficient inside the conduit is increased, the effect of suppressing the amount of heat transfer is saturated at a shorter point.

四方弁に流入する冷媒はガス単相に近い状態であり、その熱伝達率は10W/(m・K)以上1000W/(m・K)未満と推定される。又、熱移動による冷媒の温度変化を考慮すると、実際の四方弁1Aにおいては、今回のモデルよりも導管内面からの放熱量が小さくなるため、導管の温度分布としては熱伝達率が低い条件に近づくと推測される。
これらを考慮しても、図7より導管の長さは100mm程度あれば熱伝導抑制効果が十分に得られる。
The refrigerant flowing into the four-way valve is in a state close to a gas single phase, and its heat transfer coefficient is estimated to be 10 W / (m 2 · K) or more and less than 1000 W / (m 2 · K). Considering the temperature change of the refrigerant due to heat transfer, in the actual four-way valve 1A, the amount of heat released from the inner surface of the conduit is smaller than that of the current model, so the temperature distribution of the conduit has a low heat transfer rate. Presumed to approach.
Even if these are taken into consideration, the heat conduction suppressing effect can be sufficiently obtained if the length of the conduit is about 100 mm from FIG.

そして、本実施形態に係る四方弁1Aと、冷凍サイクル装置の配管との接続について説明する。
冷凍サイクル装置の組み立てにおいて、熱交換器、圧縮機、アキュムレータや四方弁等の各部品と各配管を接続する際は、各部品の導管や各配管に銅合金管が採用されることが多いため、一般的に、りん銅ろうが使用される。りん銅ろうは、銅合金同士の接合においてフラックスを必要とせずにろう付けが可能であり、接合の作業効率が向上する。又、りん銅ろうを使用することにより、フラックスの準備や管理が不要となり、コスト削減にもつながる。このため、冷凍サイクル装置の組み立て作業は、一貫してりん銅ろうのみを使用して行うことが一般的である。
Then, connection between the four-way valve 1A according to the present embodiment and the piping of the refrigeration cycle apparatus will be described.
When assembling refrigeration cycle equipment, when connecting parts such as heat exchangers, compressors, accumulators and four-way valves to pipes, copper alloy pipes are often used for the pipes and pipes of each part. Generally, phosphor copper brazing is used. Phosphor copper brazing is possible without the need for flux in joining copper alloys, and the working efficiency of joining is improved. Moreover, the use of phosphor copper brazing eliminates the need for flux preparation and management, leading to cost reduction. For this reason, it is general that the assembly operation of the refrigeration cycle apparatus is performed consistently using only phosphorous copper solder.

しかし、本実施形態に係る四方弁1Aが導管としてステンレス合金管を採用しているため、冷凍サイクル装置の銅合金製の各配管とは材質が異なり、四方弁1Aと各配管の接合は、異種金属の接合となる。ステンレス合金管と銅合金管の接合において、りん銅ろうを使用した接合は強度等の信頼性の面で課題が存在するため、銀ろう、炉中での銅及び銅合金ろう、ニッケルろう等によるろう付けにより接合を行うことが一般的である。   However, since the four-way valve 1A according to this embodiment employs a stainless alloy pipe as a conduit, the material is different from each copper alloy pipe of the refrigeration cycle apparatus, and the four-way valve 1A and each pipe are joined differently. It becomes metal bonding. In joining stainless steel pipes and copper alloy pipes, joining using phosphor copper brazing has problems in terms of reliability, such as strength, so silver brazing, copper and copper alloy brazing in a furnace, nickel brazing, etc. It is common to perform joining by brazing.

本実施形態においては、四方弁1Aの各導管12、13、14の先端に銅合金製の接続管21を設けることで、接続管21を介して四方弁1Aと各配管(図示せず)を接続し、りん銅ろうを使用して接続管21と各配管との接合を行う。
りん銅ろうを使用した接続管21と冷凍サイクル装置の各配管との接合において、接続管21をガスバーナで加熱すると、接続管21の上部の四方弁1Aの各導管との接続部も熱伝導により加熱される。
そこで、四方弁1Aの各導管12、13、14の適切な長さを求めた。
In this embodiment, the connection pipe 21 made of copper alloy is provided at the tip of each conduit 12, 13, 14 of the four-way valve 1A, so that the four-way valve 1A and each pipe (not shown) are connected via the connection pipe 21. Connection is made, and the connecting pipe 21 and each pipe are joined using phosphor copper brazing.
When the connecting pipe 21 is heated by a gas burner in the joining of the connecting pipe 21 using phosphor copper brazing and each pipe of the refrigeration cycle apparatus, the connecting portion of each pipe of the four-way valve 1A above the connecting pipe 21 is also thermally conductive. Heated.
Therefore, appropriate lengths of the respective conduits 12, 13, and 14 of the four-way valve 1A were obtained.

接続管21と冷凍サイクル装置の配管との接合において、りん銅ろう(BCuP−2)を使用した場合を想定して、接続管21の冷凍サイクル装置の配管側の温度を845℃、接続管21の四方弁1Aの導管との接続部の温度を25℃と仮定した。又、接続管21の長さを35mm、外径12.7mm、肉厚0.80mmと仮定した。   Assuming that phosphor copper brazing (BCuP-2) is used in joining the connecting pipe 21 and the piping of the refrigeration cycle apparatus, the temperature of the connecting pipe 21 on the piping side of the refrigeration cycle apparatus is 845 ° C. The temperature of the connection portion of the four-way valve 1A with the conduit was assumed to be 25 ° C. The length of the connecting tube 21 was assumed to be 35 mm, the outer diameter 12.7 mm, and the wall thickness 0.80 mm.

この仮定に基づき、接続管21のろう付け時の配管接続側(図の下端側)の温度と、導管接続側(図の上端側)の温度について、熱抵抗のバランスから計算を行った。この計算結果について、求めた温度関係のグラフにして、図8に示す。図8に示される様に、ステンレス合金製の導管を長くすると、接続管の導管接続側の温度が上昇する。   Based on this assumption, the temperature on the pipe connection side (lower end side in the figure) at the time of brazing of the connection pipe 21 and the temperature on the conduit connection side (upper end side in the figure) were calculated from the balance of thermal resistance. This calculation result is shown in FIG. 8 as a graph of the obtained temperature relationship. As shown in FIG. 8, when the conduit made of stainless alloy is lengthened, the temperature on the conduit connection side of the connection pipe rises.

接続管21の上部において、導管接続側と導管のろう付けを銅ろう(BCu−4)により行うと仮定した場合、銅ろうの最低溶融温度である830℃未満になる導管の長さは、図8に基づくと100mm以下である。つまり、ステンレス合金製の導管の長さが100mm以下とすることで、接続管21と銅合金製の配管とのりん銅ろうによるろう付けが容易になる。   Assuming that the conduit connection side and the conduit are brazed with copper brazing (BCu-4) at the upper part of the connecting pipe 21, the length of the conduit that becomes less than 830 ° C., which is the minimum melting temperature of the copper brazing, is shown in FIG. 8 is 100 mm or less. That is, by setting the length of the stainless alloy conduit to 100 mm or less, it is easy to braze the connecting pipe 21 and the copper alloy pipe with phosphor copper brazing.

本実施形態において、使用可能なりん銅ろうとしては、例えば、BCuP−2の他に、BCuP−1、BCuP−3、BCuP−4、BCuP−5、BCuP−6(JIS Z 3264:1998)が挙げられる。本実施形態において、使用可能な銅及び銅合金ろうとしては、例えば、BCu−4の他に、BCu−1、BCuP−1A、BCu−2、BCu−3(JIS Z 3262:1998)が挙げられる。   In this embodiment, examples of usable phosphor copper solder include BCuP-1, BCuP-3, BCuP-4, BCuP-5, and BCuP-6 (JIS Z 3264: 1998) in addition to BCuP-2. Can be mentioned. In this embodiment, examples of usable copper and copper alloy brazing include BCu-1, BCuP-1A, BCu-2, and BCu-3 (JIS Z 3262: 1998) in addition to BCu-4. .

これまで、前記想定条件に従い、外径12.7mm、肉厚0.80mmの導管の場合について説明を行ったが、更に、導管の外径や肉厚が異なる場合について説明する。   Up to now, the case of a conduit having an outer diameter of 12.7 mm and a wall thickness of 0.80 mm has been described in accordance with the above-mentioned assumptions. Further, a case where the outer diameter and thickness of the conduit are different will be described.

第1実施形態と同様に、導管の外径をD(mm)、導管の肉厚をt(mm)、断面積をA(mm)と定義すると、以下の式1が成立する。 Similarly to the first embodiment, when the outer diameter of the conduit is defined as D (mm), the thickness of the conduit is defined as t (mm), and the cross-sectional area is defined as A (mm 2 ), the following Expression 1 is established.

Figure 0006387029
Figure 0006387029

同様に、前記想定条件における導管の外径をD(mm)、導管の肉厚をt(mm)、断面積をA(mm)と定義すると、以下の式2が成立する。 Similarly, if the outer diameter of the conduit under the above-mentioned assumptions is defined as D 0 (mm), the thickness of the conduit is defined as t 0 (mm), and the cross-sectional area is defined as A 0 (mm 2 ), the following formula 2 is established.

Figure 0006387029
Figure 0006387029

従って、四方弁1の本体2の熱容量や弁体3の想定条件と同じであり、導管の外径や肉厚の条件が異なる場合の導管の長さL1は、次の式22で表わされる。   Therefore, the heat capacity of the main body 2 of the four-way valve 1 and the assumed conditions of the valve body 3 are the same, and the length L1 of the conduit when the outer diameter and thickness of the conduit are different is expressed by the following equation (22).

Figure 0006387029
Figure 0006387029

以上より、四方弁の導管に接続管21を介して冷凍サイクル装置の配管等をろう付けにより接合する場合、導管の長さL1を3.3A(=100A/A)(mm)以下とすることで、導管と接続管21とのろう付け部分を保護しやすくなる。その結果、組立作業性が向上する。 From the above, when the piping of the refrigeration cycle apparatus is joined to the conduit of the four-way valve via the connection tube 21 by brazing, the length L1 of the conduit is 3.3 A (= 100 A / A 0 ) (mm) or less. This facilitates protection of the brazed portion between the conduit and the connecting tube 21. As a result, assembly workability is improved.

加えて、接続管21の長さについて説明する。   In addition, the length of the connecting pipe 21 will be described.

長さをL(mm)、断面積をA(mm)、熱伝導率をλ(W/mK)とすると、熱抵抗R((mm・mK)/W)は、次の式23で表わされる。 When the length is L (mm), the cross-sectional area is A (mm 2 ), and the thermal conductivity is λ (W / mK), the thermal resistance R ((mm · mK) / W) is expressed by the following Equation 23. It is.

Figure 0006387029
Figure 0006387029

本実施形態における導管が、長さL=100(mm)、断面積A=29.91(mm)、熱伝導率λ=18(W/mK)であると仮定すると、式23より、導管の熱抵抗は、次の式24で表わされる。 Assuming that the conduit in this embodiment has a length L = 100 (mm), a cross-sectional area A = 29.91 (mm 2 ), and a thermal conductivity λ = 18 (W / mK), from Equation 23, the conduit Is expressed by the following equation 24.

Figure 0006387029
Figure 0006387029

又、本実施形態における接続管が、長さL=35(mm)、断面積A=29.91(mm)、熱伝導率λ=320(W/mK)であると仮定すると、式23より、接続管の熱抵抗は、次の式25で表わされる。 Assuming that the connecting pipe in this embodiment has a length L = 35 (mm), a cross-sectional area A = 29.91 (mm 2 ), and a thermal conductivity λ = 320 (W / mK), Equation 23 Thus, the thermal resistance of the connecting pipe is expressed by the following formula 25.

Figure 0006387029
Figure 0006387029

接続管21において、冷凍サイクル装置の配管側の温度が845℃、導管側の温度がx℃、であり、導管において、接続管側の温度がx℃、四方弁1の本体2側の温度が25℃である、という関係が成立するには、接続管21を流れる熱量と、導管を流れる熱量が釣り合う必要がある。
つまり、次式の関係が成立する。
In the connecting pipe 21, the temperature on the piping side of the refrigeration cycle apparatus is 845 ° C., the temperature on the conduit side is x ° C., and in the conduit, the temperature on the connecting pipe side is x ° C., and the temperature on the main body 2 side of the four-way valve 1 is In order to establish the relationship of 25 ° C., it is necessary to balance the amount of heat flowing through the connecting pipe 21 with the amount of heat flowing through the conduit.
That is, the relationship of the following formula is established.

Figure 0006387029
Figure 0006387029

従って、接続管21の導管側の温度xは、次式で表される。そして、導管側の温度xが830℃より低ければよい。   Therefore, the temperature x on the conduit side of the connecting pipe 21 is expressed by the following equation. The conduit side temperature x should be lower than 830 ° C.

Figure 0006387029
Figure 0006387029

式を整理すると、 Organizing the formula

Figure 0006387029
Figure 0006387029

従って、次の式29の関係を満たせばよい。   Therefore, it is sufficient to satisfy the relationship of the following expression 29.

Figure 0006387029
Figure 0006387029

例えば、銅合金製の接続管の熱伝導率を320W/mK、ステンレス合金製の導管の熱伝導率を18W/mK、管の断面積が同じと仮定した場合、上記式29の関係を満たすには、図4や図5に示す様に、接続管の長さL2は、導管の長さL1の1/3倍以下とすればよい。接続管21の断面積が導管と異なる場合であっても、又、前記想定条件と異なる場合であっても同様に接続管の長さL2を求めることができる。   For example, assuming that the thermal conductivity of the copper alloy connecting tube is 320 W / mK, the thermal conductivity of the stainless steel conduit is 18 W / mK, and the cross-sectional area of the tube is the same, As shown in FIGS. 4 and 5, the length L2 of the connecting pipe may be set to 1/3 times or less of the length L1 of the conduit. Even when the cross-sectional area of the connecting pipe 21 is different from that of the conduit, or even when the connecting pipe 21 is different from the assumed condition, the length L2 of the connecting pipe can be obtained similarly.

以上より、四方弁の導管に接続管を介して冷凍サイクル装置の配管を、りん銅ろうによるろう付け接合を行う場合、導管の長さL1を3.3A(mm)以下とすることで、導管と接続管21とのろう付け部分を保護しやすくなり、組立作業性が向上する。接続管の長さL2を導管の長さL1の1/3倍以下とすることで、導管と接続管21とのろう付け部分を保護しやすくなり、組立作業性が向上する。   From the above, when the brazing joint of the refrigeration cycle apparatus is connected to the four-way valve conduit via the connecting pipe by phosphor copper brazing, the length L1 of the conduit is set to 3.3 A (mm) or less. As a result, it becomes easy to protect the brazed portion between the connecting pipe 21 and the connecting pipe 21, and the assembling workability is improved. By setting the length L2 of the connecting pipe to 1/3 times or less of the length L1 of the conduit, the brazed portion between the conduit and the connecting tube 21 can be easily protected, and the assembling workability is improved.

<第3実施形態>
第3実施形態は、第1実施形態の四方弁1における導管と接続管の接合部において、導管を拡管して、冷凍サイクルの配管や接続管21が導管内に挿入されるように変更した実施形態である。
<Third Embodiment>
The third embodiment is an implementation in which the conduit is expanded at the joint between the conduit and the connecting pipe in the four-way valve 1 of the first embodiment so that the piping of the refrigeration cycle and the connecting pipe 21 are inserted into the conduit. It is a form.

図9は、本実施形態に係る四方弁1Bの暖房サイクル時の動作状態を示す断面図である。
四方弁1の下部の低圧側の導管12B、室内側の導管13B、室外側の導管14Bのうち、低圧側の導管12と、残りの一方の導管には、低温、低圧の冷媒が流れる。低温、低圧の冷媒が流れる導管は、外気よりも温度が低くなることがあるため、導管外部に結露が発生することがある。
FIG. 9 is a cross-sectional view showing the operating state of the four-way valve 1B according to the present embodiment during the heating cycle.
Of the low-pressure side conduit 12B, the indoor side conduit 13B, and the outdoor side conduit 14B below the four-way valve 1, low-temperature and low-pressure refrigerant flows through the low-pressure side conduit 12 and the remaining one conduit. Since the temperature of the conduit through which the low-temperature and low-pressure refrigerant flows may be lower than the outside air, condensation may occur outside the conduit.

結露により生じた液滴は、導管の下方に垂れて、導管と接続管21の接続部の段差(管外周の段差)に表面張力により保持される。保持された液滴が接する金属の面積は、接続管21側が大きくなる。銅合金製の接続管21は、ステンレス合金製の導管よりも耐食性が高いため、接続管21が導管に挿入される構造とすることにより、四方弁1の本体2の耐食性を向上させることができる。
銅合金製の接続管21の代わりに銅合金製の冷凍サイクルの配管が接続される場合であっても同様の効果が得られる。
The droplets generated by the condensation hang down below the conduit and are held by the surface tension at the step between the conduit and the connecting tube 21 (the step on the outer periphery of the tube). The area of the metal in contact with the retained droplets increases on the connecting tube 21 side. Since the connection pipe 21 made of copper alloy has higher corrosion resistance than a conduit made of stainless alloy, the corrosion resistance of the main body 2 of the four-way valve 1 can be improved by adopting a structure in which the connection pipe 21 is inserted into the conduit. .
The same effect can be obtained even when a copper alloy refrigeration cycle pipe is connected instead of the copper alloy connection pipe 21.

<第4実施形態>
第4実施形態は、第3実施形態の四方弁1における導管と接続管の接合部において、導管の開放端の内周部に銅めっきを施した実施形態である。
<Fourth embodiment>
The fourth embodiment is an embodiment in which copper plating is applied to the inner peripheral portion of the open end of the conduit at the joint between the conduit and the connecting pipe in the four-way valve 1 of the third embodiment.

図10は、本実施形態に係る四方弁1Cの暖房サイクル時の動作状態を示す断面図である。
図10に示す様に、四方弁の下部の低圧側の導管12C、室内側の導管13C、及び、室外側の導管14Cの開放端に施す銅めっきの範囲は、少なくともこれら導管の開放端の内周部であって、冷凍サイクルの配管や接続管21との接合強度が確保できる範囲とする。
FIG. 10 is a cross-sectional view showing the operating state of the four-way valve 1C according to the present embodiment during the heating cycle.
As shown in FIG. 10, the range of copper plating applied to the open ends of the low pressure side conduit 12C, the indoor conduit 13C, and the outdoor conduit 14C at the bottom of the four-way valve is at least within the open ends of these conduits. It is a circumference and it is set as the range which can ensure joining strength with piping of a refrigerating cycle, or connecting pipe 21.

銅めっきは、これら導管の開放端の断面部分にも施されていることが好ましい。断面部分まで銅めっきを施すことにより、これら導管の表面で結露することにより生じた液滴が垂れて冷凍サイクル装置の配管との接合部の段差部に保持された場合であっても、これら導管の耐食性を向上させることができる。   Copper plating is also preferably applied to the cross-sectional portions of the open ends of these conduits. Even if the copper plating is applied to the cross-section, and the droplets generated by condensation on the surface of these conduits hang down and are held at the step portion of the joint with the piping of the refrigeration cycle apparatus, these conduits Corrosion resistance can be improved.

これら導管の開放端の内周部に銅めっきを施すことにより、これら導管に炉中ろう付けではなくりん銅ろう(BCuP−2)等により拡管した冷凍サイクルの配管や接続管21を接合することができる。   By applying copper plating to the inner periphery of the open ends of these conduits, the pipes and connecting pipes 21 of the refrigeration cycle expanded by phosphorous copper braze (BCuP-2) or the like instead of brazing in the furnace are joined to these conduits. Can do.

<第5実施形態>
第5実施形態は、第1実施形態の四方弁1の下部の低圧側の導管12、室内側の導管13、及び、室外側の導管14の開放端の外周に銅めっきを施した実施形態である。
<Fifth Embodiment>
The fifth embodiment is an embodiment in which copper plating is applied to the outer periphery of the open end of the low pressure side conduit 12, the indoor side conduit 13, and the outdoor side conduit 14 of the four-way valve 1 of the first embodiment. is there.

図11は、本実施形態に係る四方弁1Dの暖房サイクル時の動作状態を示す断面図である。
図11に示す様に、四方弁の下部の低圧側の導管12D、室内側の導管13D、及び、室外側の導管14Dの開放端に施す銅めっきの範囲は、少なくともこれら導管の開放端の外周部であって、冷凍サイクルの配管や接続管21との接合強度が確保できる範囲とする。銅めっきの量は、冷凍サイクル装置の配管との接合強度が確保できる量とする。
FIG. 11 is a cross-sectional view showing an operating state during the heating cycle of the four-way valve 1D according to the present embodiment.
As shown in FIG. 11, the range of copper plating applied to the open ends of the low pressure side conduit 12D, the indoor side conduit 13D, and the outdoor side conduit 14D at the bottom of the four-way valve is at least the outer circumference of the open ends of these conduits. It is a part, Comprising: It is set as the range which can ensure the joint strength with the piping of the refrigerating cycle, or the connecting pipe 21. The amount of copper plating is an amount that can secure the bonding strength with the piping of the refrigeration cycle apparatus.

これら導管の開放端の外周部に銅めっきを施すことにより、炉中ろう付けではなくりん銅ろう(BCuP−2)等により拡管した冷凍サイクルの配管や接続管21をこれら導管に接合することができる。   By applying copper plating to the outer periphery of the open ends of these conduits, it is possible to join the pipes and connecting pipes 21 of the refrigeration cycle expanded not by brazing in the furnace but by phosphorous copper brazing (BCuP-2) or the like to these conduits. it can.

<第6実施形態>
第6実施形態は、第1〜5実施形態の四方弁を構成要件として含む冷凍サイクル装置である。
図12に、例として、暖房サイクル状態の第2実施形態の四方弁1Aを含む冷凍サイクル装置を示す。
<Sixth Embodiment>
The sixth embodiment is a refrigeration cycle apparatus including the four-way valve of the first to fifth embodiments as a constituent element.
FIG. 12 shows, as an example, a refrigeration cycle apparatus including the four-way valve 1A of the second embodiment in a heating cycle state.

本実施形態に係る冷凍サイクル装置は、室外機101の内部の四方弁1A、圧縮機102、膨張弁103、室外熱交換器104、室外ファン105、アキュムレータ106を備え、室内機110の内部の室内熱交換器111、室内ファン112等を配管で接続して構成される。   The refrigeration cycle apparatus according to the present embodiment includes a four-way valve 1A inside the outdoor unit 101, a compressor 102, an expansion valve 103, an outdoor heat exchanger 104, an outdoor fan 105, and an accumulator 106, and includes a room inside the indoor unit 110. The heat exchanger 111 and the indoor fan 112 are connected by piping.

圧縮機102は、低温低圧状態のガス冷媒を圧縮し、高温高圧状態のガス冷媒を四方弁1Aに吐出する。圧縮機102から吐出された高温高圧のガス冷媒は、四方弁1Aの高圧側の導管11から四方弁1Aに流入する。   The compressor 102 compresses the low-temperature and low-pressure gas refrigerant, and discharges the high-temperature and high-pressure gas refrigerant to the four-way valve 1A. The high-temperature and high-pressure gas refrigerant discharged from the compressor 102 flows into the four-way valve 1A from the high-pressure side conduit 11 of the four-way valve 1A.

四方弁1Aは、図12に示す様に、高圧側の導管11と室内側の導管13が連通する位置に弁体3が存在している。四方弁1Aに流入した高温高圧状態のガス冷媒は、四方弁1Aの内部を通過し、室内側の導管13から流出する。   In the four-way valve 1A, as shown in FIG. 12, the valve body 3 is present at a position where the high-pressure side conduit 11 and the indoor side conduit 13 communicate with each other. The high-temperature and high-pressure gas refrigerant that has flowed into the four-way valve 1A passes through the inside of the four-way valve 1A and flows out from the indoor conduit 13.

四方弁1Aから流出した高温高圧状態のガスは、室内熱交換器111に到達する。室内熱交換器111に到達した高温高圧状態のガスは、室内ファン112により室内機110の内部に取り込まれた空気に熱エネルギを渡して温める。熱エネルギを失ったガス冷媒は凝縮して、低温高圧状態の液冷媒となる。暖められた空気は、室内ファン112により温風として室内に供給される。   The high-temperature and high-pressure gas flowing out of the four-way valve 1A reaches the indoor heat exchanger 111. The high-temperature and high-pressure gas that has reached the indoor heat exchanger 111 passes the thermal energy to the air taken into the indoor unit 110 by the indoor fan 112 and warms it. The gas refrigerant that has lost its heat energy condenses and becomes a liquid refrigerant in a low-temperature and high-pressure state. The warmed air is supplied indoors as warm air by the indoor fan 112.

室内熱交換器111において凝縮した低温高圧状態の液冷媒は、膨張弁103に流出する。
膨張弁103は、流体抵抗を変えることができる圧力調整弁である。膨張弁103に流入した低温高圧状態の液冷媒は、減圧、低温化されて気液混相の二相流となる。低温低圧状態の二相流の冷媒は、室外熱交換器104に流入する。
The low-temperature and high-pressure liquid refrigerant condensed in the indoor heat exchanger 111 flows out to the expansion valve 103.
The expansion valve 103 is a pressure regulating valve that can change the fluid resistance. The low-temperature and high-pressure liquid refrigerant that has flowed into the expansion valve 103 is depressurized and reduced in temperature to become a gas-liquid mixed phase two-phase flow. The low-temperature and low-pressure two-phase refrigerant flows into the outdoor heat exchanger 104.

室外熱交換器104には、流入した冷媒よりも温度が高い外部空気が室外ファン105により送風されている。室外熱交換器104に流入した低温低圧状態の二相流の冷媒は、外部空気から熱エネルギを受け取り、液相が蒸発してガス冷媒となる。
室外熱交換器104においてガス化された低温低圧状態のガス冷媒は、再度四方弁1Aに流入する。
The outdoor fan 105 blows external air having a temperature higher than that of the refrigerant flowing into the outdoor heat exchanger 104. The low-temperature, low-pressure two-phase flow refrigerant that has flowed into the outdoor heat exchanger 104 receives heat energy from the external air, and the liquid phase evaporates to become a gas refrigerant.
The low-temperature and low-pressure gas refrigerant gasified in the outdoor heat exchanger 104 flows into the four-way valve 1A again.

四方弁1Aは、室外側の導管14と、低圧側の導管12が連通する位置に弁体3が存在している。このため、四方弁1Aに流入した低温低圧状態のガス冷媒は、アキュムレータ106に流入する。   In the four-way valve 1A, the valve body 3 is present at a position where the outdoor conduit 14 and the low pressure conduit 12 communicate with each other. For this reason, the low-temperature and low-pressure gas refrigerant flowing into the four-way valve 1 </ b> A flows into the accumulator 106.

アキュムレータ106は、圧縮機102に低温低圧状態のガス冷媒が一度に大量に流入しない様に、流量を制限する機能を備える。
アキュムレータ106から流出した低温低圧状態のガス冷媒は、圧縮機102に流入する。圧縮機102に流入した低温低圧状態のガス冷媒は、圧縮されて、再度冷凍サイクルを循環する。
The accumulator 106 has a function of limiting the flow rate so that a large amount of low-temperature and low-pressure gas refrigerant does not flow into the compressor 102 at a time.
The low-temperature and low-pressure gas refrigerant that has flowed out of the accumulator 106 flows into the compressor 102. The low-temperature and low-pressure gas refrigerant flowing into the compressor 102 is compressed and circulates through the refrigeration cycle again.

図13に、例として、冷房サイクル状態の第2実施形態の四方弁1Aを含む冷凍サイクル装置を示す。暖房サイクルとは異なる点について説明する。   FIG. 13 shows, as an example, a refrigeration cycle apparatus including the four-way valve 1A of the second embodiment in the cooling cycle state. A different point from a heating cycle is demonstrated.

冷房サイクル状態における四方弁1Aは、高圧側の導管11と室外側の導管14が連通する位置に弁体3が存在している。圧縮機102から四方弁1Aに流入した高温高圧状態のガス冷媒は、室外熱交換器104に流出する。   In the four-way valve 1A in the cooling cycle state, the valve body 3 is present at a position where the high pressure side conduit 11 and the outdoor side conduit 14 communicate with each other. The high-temperature and high-pressure gas refrigerant flowing into the four-way valve 1A from the compressor 102 flows out to the outdoor heat exchanger 104.

室外熱交換器104に流入した高温高圧状態のガス冷媒は、室外ファン105により送風された外部空気に熱エネルギを渡すことにより冷却して液化する。   The high-temperature and high-pressure gas refrigerant flowing into the outdoor heat exchanger 104 is cooled and liquefied by passing thermal energy to the external air blown by the outdoor fan 105.

室外熱交換器104から流出した低温高圧状態の液冷媒は、室内熱交換器111に到達し、室内ファン112により室内機110の内部に取り込まれた空気から熱エネルギを受け取り、蒸発して高温高圧状態のガス冷媒となる。   The low-temperature and high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 104 reaches the indoor heat exchanger 111, receives heat energy from the air taken into the interior of the indoor unit 110 by the indoor fan 112, evaporates, and evaporates at high temperature and pressure. It becomes a state gas refrigerant.

<変形例>
第1〜5実施形態として示す様に、四方弁1の下部の低圧側の導管12、室内側の導管13、室外側の導管14のうち、いずれか1つ、又は、2つを他よりも長く、例えば、中央に配置される低圧側の導管12の長さを、左右に配置される室内側の導管13、室外側の導管14よりも長くすることで、ろう付け位置をずらすことができるため、ろう付け作業が容易となる。
又、四方弁1の下部の低圧側の導管12、室内側の導管13、室外側の導管14の長さは、全て同じでもよく、それぞれ異なっていてもよい。
<Modification>
As shown in the first to fifth embodiments, one or two of the low-pressure side conduit 12, the indoor-side conduit 13, and the outdoor-side conduit 14 at the lower part of the four-way valve 1 are used more than the others. For example, the brazing position can be shifted by making the length of the low-pressure side conduit 12 arranged in the center longer than the indoor-side conduit 13 and the outdoor-side conduit 14 arranged on the left and right. For this reason, the brazing operation becomes easy.
The lengths of the low-pressure side conduit 12, the indoor-side conduit 13, and the outdoor-side conduit 14 below the four-way valve 1 may all be the same or different.

本発明に係る四方弁は、例えば、第1実施形態として示す接続管21を構成要素としない四方弁、及び、第2実施形態として示す接続管21を構成要素とする四方弁の両方の形態の四方弁を含むものである。   The four-way valve according to the present invention is, for example, both a four-way valve that does not include the connecting pipe 21 shown as the first embodiment and a four-way valve that uses the connecting pipe 21 shown as the second embodiment as a constituent element. Includes a four-way valve.

1、1A、1B、1C、1D 四方弁
2 本体
3 弁
4 弁座
4a シート面
5 ピストン板
6 連結板
11 導管
12、12B、12C、12D 導管
13、13B、13C、12D 導管
14、14B、14C、12D 導管
21 接続管
51 冷媒の流れ方向
52 冷媒の流れ方向
53 冷媒の流れ方向
54 冷媒の流れ方向
61 冷媒の流れ方向
62 冷媒の流れ方向
63 冷媒の流れ方向
64 冷媒の流れ方向
71 銅メッキ
101 室外機
102 圧縮機
103 膨張弁
104 室外熱交換器
105 アキュムレータ
106 室外ファン
110 室内機
111 室内熱交換器
112 室内ファン
1, 1A, 1B, 1C, 1D Four-way valve 2 Main body 3 Valve 4 Valve seat 4a Seat surface 5 Piston plate 6 Connecting plate 11 Conduit 12, 12B, 12C, 12D Conduit 13, 13B, 13C, 12D Conduit 14, 14B, 14C 12D Conduit 21 Connecting pipe 51 Refrigerant flow direction 52 Refrigerant flow direction 53 Refrigerant flow direction 54 Refrigerant flow direction 61 Refrigerant flow direction 62 Refrigerant flow direction 63 Refrigerant flow direction 64 Refrigerant flow direction
71 Copper plating
101 outdoor unit
102 Compressor
103 expansion valve
104 Outdoor heat exchanger
105 Accumulator
106 Outdoor fan
110 Indoor unit
111 Indoor heat exchanger
112 Indoor fan

Claims (9)

本体と、高温高圧の流体が流入する高圧側の導管と、低温低圧の液体が流出する低圧側の導管と、冷凍サイクル装置に適用された場合に室内機の室内熱交換器に連通する室内側の導管と、冷凍サイクル装置に適用された場合に室外機の室外熱交換器に連通する室外側の導管と、を備え、
前記低圧側の導管と、前記室内側の導管と、前記室外側の導管のうち少なくとも1つは、ステンレス又はステンレス合金からなり、
前記低圧側の導管、前記室内側の導管及び前記室外側の導管の各開放端には銅合金製の接続管が接続され、
前記接続管は、前記冷凍サイクル装置の各配管と、りん銅ろうにより接続され、
前記導管の断面積をA(mm)とした場合に、
前記低圧側の導管、前記室内側の導管、及び、前記室外側の導管のうちステンレス又はステンレス合金からなる管の長さL1はL1≧0.33A(mm)である四方弁。
A main body, a high-pressure side conduit through which high-temperature and high-pressure fluid flows, a low-pressure side conduit through which low-temperature and low-pressure liquid flows out, and an indoor side that communicates with the indoor heat exchanger of the indoor unit when applied to a refrigeration cycle apparatus And an outdoor conduit communicating with the outdoor heat exchanger of the outdoor unit when applied to the refrigeration cycle apparatus,
And the low pressure side of the conduit, and the indoor side of the conduit, at least one of the outdoor side of the conduit is made of stainless steel or stainless steel alloy,
A connection pipe made of a copper alloy is connected to each open end of the low-pressure side conduit, the indoor-side conduit, and the outdoor-side conduit,
The connection pipe is connected to each pipe of the refrigeration cycle apparatus by a phosphor copper braze,
When the cross-sectional area of the conduit is A (mm 2 ),
Of the low-pressure side conduit, the indoor-side conduit, and the outdoor-side conduit, the length L1 of a tube made of stainless steel or a stainless alloy is L1 ≧ 0.33 A (mm).
本体と、高温高圧の流体が流入する高圧側の導管と、低温低圧の液体が流出する低圧側の導管と、冷凍サイクル装置に適用された場合に室内機の室内熱交換器に連通する室内側の導管と、冷凍サイクル装置に適用された場合に室外機の室外熱交換器に連通する室外側の導管と、を備え、
前記低圧側の導管と、前記室内側の導管と、前記室外側の導管のうち少なくとも1つは、ステンレス又はステンレス合金からなり、
前記低圧側の導管、前記室内側の導管及び前記室外側の導管の開放端には銅合金製の接続管が接続され、
前記接続管は、前記冷凍サイクル装置の各配管と、りん銅ろうにより接続され、
前記導管の断面積をA(mm)とした場合に、
前記低圧側の導管、前記室内側の導管、及び、前記室外側の導管のうちステンレス又はステンレス合金からなる管の長さL1はL1≦3.3A(mm)である四方弁。
A main body, a high-pressure side conduit through which high-temperature and high-pressure fluid flows, a low-pressure side conduit through which low-temperature and low-pressure liquid flows out, and an indoor side that communicates with the indoor heat exchanger of the indoor unit when applied to a refrigeration cycle apparatus And an outdoor conduit communicating with the outdoor heat exchanger of the outdoor unit when applied to the refrigeration cycle apparatus ,
And the low pressure side of the conduit, and the indoor side of the conduit, at least one of the outdoor side of the conduit is made of stainless steel or stainless steel alloy,
The low pressure side of the guide tube, the connection pipe made of a copper alloy is connected to the indoor side of the conduit and the open end of the chamber outside the conduit,
The connection pipe is connected to each pipe of the refrigeration cycle apparatus by a phosphor copper braze,
When the cross-sectional area of the conduit is A (mm 2 ),
A length L1 of a pipe made of stainless steel or a stainless alloy among the low-pressure side conduit, the indoor-side conduit, and the outdoor-side conduit is L1 ≦ 3.3A (mm).
本体と、高温高圧の流体が流入する高圧側の導管と、低温低圧の液体が流出する低圧側の導管と、冷凍サイクル装置に適用された場合に室内機の室内熱交換器に連通する室内側の導管と、冷凍サイクル装置に適用された場合に室外機の室外熱交換器に連通する室外側の導管と、を備え、
前記低圧側の導管と、前記室内側の導管と、前記室外側の導管のうち少なくとも1つは、ステンレス又はステンレス合金からなり、
前記低圧側の導管、前記室内側の導管及び前記室外側の導管の開放端には銅合金製の接続管が接続され、
前記接続管は、前記冷凍サイクル装置の各配管と、りん銅ろうにより接続され、
前記導管の長さL1に対する前記接続管の長さL2は、1/3以下である四方弁。
A main body, a high-pressure side conduit through which high-temperature and high-pressure fluid flows, a low-pressure side conduit through which low-temperature and low-pressure liquid flows out, and an indoor side that communicates with the indoor heat exchanger of the indoor unit when applied to a refrigeration cycle apparatus And an outdoor conduit communicating with the outdoor heat exchanger of the outdoor unit when applied to the refrigeration cycle apparatus ,
At least one of the low-pressure side conduit, the indoor-side conduit, and the outdoor-side conduit is made of stainless steel or a stainless alloy,
The low pressure side of the guide tube, the connection pipe made of a copper alloy is connected to the indoor side of the conduit and the open end of the chamber outside the conduit,
The connection pipe is connected to each pipe of the refrigeration cycle apparatus by a phosphor copper braze,
The four-way valve, wherein a length L2 of the connecting pipe with respect to a length L1 of the conduit is 1/3 or less.
前記接続管は、内径が前記導管の開放端の外径以上に拡管して、前記導管と接続していることを特徴とする請求項1〜3のいずれか一項に記載の四方弁。 The four-way valve according to any one of claims 1 to 3, wherein the connection pipe has an inner diameter that is larger than an outer diameter of an open end of the conduit and is connected to the conduit. 前記導管は、開放端の内径が接続管の外径以上に拡管しており、前記接続管が前記導管の拡管した開放端に挿入されていることを特徴とする請求項1〜3のいずれか一項に記載の四方弁。 The inner diameter of the said open end is expanded more than the outer diameter of a connection pipe, and the said connection pipe is inserted in the open end where the said pipe was expanded . The four-way valve according to one item . 前記導管は、開放端の外周面、内周面のいずれか一方の面、又は、両方の面が銅めっきされていることを特徴とする請求項1〜5のいずれか一項に記載の四方弁。 The conduit is an outer peripheral surface of the open end, either side of the inner peripheral surface, or square according to any one of claims 1-5 in which both surfaces is characterized in that it is copper-plated valve. 前記導管と、前記接続管とがりん銅ろうよりも融点の高いろう材で接合されていることを特徴とする請求項1〜6のいずれか一項に記載の四方弁。 The four-way valve according to any one of claims 1 to 6 , wherein the conduit and the connection pipe are joined by a brazing material having a melting point higher than that of the phosphor copper brazing. 前記低圧側の導管は、前記室内側の導管、前記室外側の導管のいずれか一方、又は、両方よりも長いことを特徴とする請求項1〜7のいずれか一項に記載の四方弁。   The four-way valve according to any one of claims 1 to 7, wherein the low-pressure side conduit is longer than one of the indoor-side conduit, the outdoor-side conduit, or both. 冷媒を圧縮する圧縮機と、第一の熱交換器と、減圧手段と、第二の熱交換器を環状に冷媒配管で接続して形成されると共に内部に冷媒が充填された冷凍サイクルを形成し、
請求項1〜8のいずれか一項に記載の四方弁を前記冷媒配管に配設し、
前記第一の熱交換器と前記第二の熱交換器のうち、一方の熱交換器が前記圧縮機の吐出口と連通状態となり、他方の熱交換器が前記圧縮機の吸込口と連通状態となるように、選択的に冷媒流路を切換え可能とすることを特徴とする冷凍サイクル装置。
A compressor that compresses the refrigerant, the first heat exchanger, the decompression means, and the second heat exchanger are formed by connecting the second heat exchanger in a ring shape with a refrigerant pipe, and a refrigeration cycle filled with the refrigerant is formed. And
The four-way valve according to any one of claims 1 to 8 is disposed in the refrigerant pipe,
Of the first heat exchanger and the second heat exchanger, one heat exchanger is in communication with the discharge port of the compressor, and the other heat exchanger is in communication with the suction port of the compressor. A refrigeration cycle apparatus characterized in that the refrigerant flow path can be selectively switched so that
JP2016020290A 2016-02-04 2016-02-04 Four-way valve and refrigeration cycle apparatus provided with the same Active JP6387029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016020290A JP6387029B2 (en) 2016-02-04 2016-02-04 Four-way valve and refrigeration cycle apparatus provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016020290A JP6387029B2 (en) 2016-02-04 2016-02-04 Four-way valve and refrigeration cycle apparatus provided with the same

Publications (2)

Publication Number Publication Date
JP2017137961A JP2017137961A (en) 2017-08-10
JP6387029B2 true JP6387029B2 (en) 2018-09-05

Family

ID=59565674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016020290A Active JP6387029B2 (en) 2016-02-04 2016-02-04 Four-way valve and refrigeration cycle apparatus provided with the same

Country Status (1)

Country Link
JP (1) JP6387029B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138245A1 (en) * 2018-12-28 2020-07-02 ダイキン工業株式会社 Refrigerant pipe and air-conditioning device
JP6885452B2 (en) 2019-07-31 2021-06-16 ダイキン工業株式会社 Refrigerant piping and refrigerating equipment
CN114207364A (en) * 2019-07-31 2022-03-18 大金工业株式会社 Refrigerating device
AU2020323253B2 (en) * 2019-07-31 2024-02-01 Daikin Industries, Ltd. Refrigeration apparatus, and refrigerant piping of refrigeration apparatus
JP7049310B2 (en) * 2019-12-25 2022-04-06 ダイキン工業株式会社 Refrigeration equipment
JP6950735B2 (en) * 2019-07-31 2021-10-13 ダイキン工業株式会社 Refrigerant equipment and refrigerant piping for the refrigeration equipment
JP7436789B2 (en) * 2019-11-01 2024-02-22 ダイキン工業株式会社 Plate type refrigerant piping and refrigeration equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038949B2 (en) * 1978-04-28 1985-09-03 富士電機株式会社 superconducting rotating machine
JPS586890B2 (en) * 1981-03-10 1983-02-07 株式会社 前川製作所 Metal tube type average temperature indicator that uses pressure inside the tube
JPS6097579A (en) * 1983-10-31 1985-05-31 昭和電線電纜株式会社 Method of forming cable connector
JPH01314870A (en) * 1988-06-14 1989-12-20 Hitachi Ltd 4-way valve for reversible freezing cycle
JP5030064B2 (en) * 2007-03-16 2012-09-19 国立大学法人高知大学 Cryogenic refrigerator
JP5300657B2 (en) * 2009-08-25 2013-09-25 日立アプライアンス株式会社 Air conditioner
EP3165799B1 (en) * 2014-07-02 2019-06-05 Mitsubishi Electric Corporation Expansion valve and refrigeration cycle device

Also Published As

Publication number Publication date
JP2017137961A (en) 2017-08-10

Similar Documents

Publication Publication Date Title
JP6387029B2 (en) Four-way valve and refrigeration cycle apparatus provided with the same
JP5777622B2 (en) Heat exchanger, heat exchange method and refrigeration air conditioner
JP4738401B2 (en) Air conditioner
EP2706318A1 (en) Heat exchanger and refrigeration cycle device provided with same
US4573497A (en) Refrigerant reversing valve
US20070163767A1 (en) Brazed plate fin heat exchanger
JP2008528938A (en) Parallel flow heat exchanger incorporating a porous insert
CN109564070B (en) Heat exchanger and refrigeration system using the same
JP2009109062A (en) Refrigerating cycle device using four-way switch valve
JP2006003071A (en) Heat exchanger
JP2014224670A (en) Double-pipe heat exchanger
JPWO2020044391A1 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle equipment
JP6198976B2 (en) Heat exchanger and refrigeration cycle apparatus
JP6069921B2 (en) Four-way valve
WO2022264348A1 (en) Heat exchanger and refrigeration cycle device
JP6934609B2 (en) Heat exchanger and freezing system using it
US20210348859A1 (en) Heat exchanger with aluminum alloy clad tube and method of manufacture
JP2004183960A (en) Heat exchanger
JP6928793B2 (en) Plate fin laminated heat exchanger and freezing system using it
JP2019100563A (en) Heat exchanger and refrigeration system using the same
JP7498133B2 (en) Heat exchanger and refrigeration cycle device
JP7437418B2 (en) Heat exchanger and refrigeration cycle equipment
JP7224465B2 (en) refrigeration cycle equipment
JP7296264B2 (en) Heat exchanger and refrigeration cycle equipment
JP6920592B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171221

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171221

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180810

R150 Certificate of patent or registration of utility model

Ref document number: 6387029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150