JP6386462B2 - Composite structure - Google Patents

Composite structure Download PDF

Info

Publication number
JP6386462B2
JP6386462B2 JP2015539092A JP2015539092A JP6386462B2 JP 6386462 B2 JP6386462 B2 JP 6386462B2 JP 2015539092 A JP2015539092 A JP 2015539092A JP 2015539092 A JP2015539092 A JP 2015539092A JP 6386462 B2 JP6386462 B2 JP 6386462B2
Authority
JP
Japan
Prior art keywords
steel pipe
protrusion
region
pipe pile
local buckling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015539092A
Other languages
Japanese (ja)
Other versions
JPWO2015045872A1 (en
Inventor
知季 小橋
知季 小橋
妙中 真治
真治 妙中
清水 信孝
信孝 清水
寛子 内藤
寛子 内藤
菅野 良一
良一 菅野
半谷 公司
公司 半谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPWO2015045872A1 publication Critical patent/JPWO2015045872A1/en
Application granted granted Critical
Publication of JP6386462B2 publication Critical patent/JP6386462B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/24Prefabricated piles
    • E02D5/30Prefabricated piles made of concrete or reinforced concrete or made of steel and concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Piles And Underground Anchors (AREA)
  • Foundations (AREA)

Description

本発明は、鋼管と接合対象部材との接合に適用可能な合成構造に関する。
本願は、2013年09月25日に、日本に出願された特願2013−197688号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a composite structure applicable to joining a steel pipe and a member to be joined.
This application claims priority on September 25, 2013 based on Japanese Patent Application No. 2013-197688 for which it applied to Japan, and uses the content here.

従来より、鋼管杭とコンクリートとの付着強度を向上させるために、鋼管杭の先端部の内周面及び外周面の少なくとも一方に、鋼管杭とコンクリートとの滑り止めとして突起を設ける技術が一般的に知られている。 Conventionally, in order to improve the bond strength between steel pipe piles and concrete, it is common to provide protrusions on at least one of the inner and outer peripheral surfaces of the tip of the steel pipe piles to prevent slippage between the steel pipe piles and the concrete. Known to.

下記特許文献1には、鋼管杭の内周面において鋼管杭の周方向に沿って円環状の突起を、鋼管杭とコンクリートとの滑り止めとして設けることにより、鋼管杭とコンクリートとの一体性を確保して付着強度を向上させる技術が開示されている。 In Patent Document 1 below, by providing an annular protrusion on the inner peripheral surface of the steel pipe pile along the circumferential direction of the steel pipe pile as a slip stopper between the steel pipe pile and the concrete, the integrity of the steel pipe pile and the concrete is improved. A technique for ensuring and improving the adhesion strength is disclosed.

下記特許文献2及び3には、鋼管杭の内周面又は外周面に螺旋状の突起を、鋼管杭とコンクリートとの滑り止めとして設けることにより、鋼管杭とコンクリートとの一体性を確保して付着強度を向上させる技術が開示されている。 In Patent Documents 2 and 3 below, by providing a spiral protrusion on the inner peripheral surface or outer peripheral surface of the steel pipe pile as a slip stopper between the steel pipe pile and the concrete, the integrity of the steel pipe pile and the concrete is secured. A technique for improving the adhesion strength is disclosed.

下記非特許文献1には、螺旋状の突起が内周面又は外周面に設けられた鋼管杭の製造方法として、突起が設けられた鋼帯を螺旋状に巻くことにより、螺旋状の突起を有する鋼管杭を製造する方法が開示されている。非特許文献1では、螺旋状の突起方向角度が大きくなることに起因して、鋼管杭とコンクリートとの付着強度が低下するので、鋼管杭とコンクリートとの所定の付着強度を確保するために、螺旋状の突起方向角度は40°以下に制限されている。 In Non-Patent Document 1 below, as a method of manufacturing a steel pipe pile in which a spiral protrusion is provided on the inner peripheral surface or the outer peripheral surface, a spiral protrusion is formed by winding a steel strip provided with the protrusion spirally. A method of manufacturing a steel pipe pile having the same is disclosed. In Non-Patent Document 1, since the bond strength between the steel pipe pile and the concrete is reduced due to the increase in the spiral protrusion direction angle, in order to ensure the predetermined bond strength between the steel pipe pile and the concrete, The spiral projection direction angle is limited to 40 ° or less.

下記非特許文献2には、螺旋状の突起が内周面に設けられた鋼管とコンクリートとの付着強度を調査するために実施された実験の結果が開示されている。この実験結果においては、螺旋状の突起方向角度が45°の場合であっても、鋼管とコンクリートとの必要な付着強度を確保できることが示されている。 Non-Patent Document 2 below discloses the results of an experiment conducted for investigating the adhesion strength between a steel pipe having a spiral protrusion provided on the inner peripheral surface and concrete. This experimental result shows that the necessary adhesion strength between the steel pipe and the concrete can be secured even when the spiral protrusion direction angle is 45 °.

日本国特開2007−51500号公報Japanese Laid-Open Patent Publication No. 2007-51500 日本国特開2007−32044号公報Japanese Unexamined Patent Publication No. 2007-32044 日本国特開平8−284159号公報Japanese Unexamined Patent Publication No. 8-284159

JIS A 5525 「鋼管ぐい」JIS A 5525 “Steel pipe pile” 「リブ付鋼管による重ね継手の付着性状」、土木学会年次学術講演会講演概要集第5部、Vol.50、880頁〜881頁、1995年“Adhesive properties of lap joints with ribbed steel pipes”, Annual Meeting of the Japan Society of Civil Engineers, Vol. 5, Vol. 50, pp. 880-881, 1995

しかし、特許文献1、2及び3に開示された鋼管杭では、補剛領域(鋼管杭の内周面においてコンクリートと接触する領域)の断面剛性及び部材耐力が、素管領域(鋼管杭の内周面においてコンクリートと接触しない領域)と大きく異なる。特に、鋼管杭の補剛領域と素管領域との境界において、鋼管杭の断面剛性及び部材耐力が大幅に減少する。 However, in the steel pipe piles disclosed in Patent Documents 1, 2, and 3, the cross-sectional rigidity and member strength of the stiffening region (the region in contact with the concrete on the inner peripheral surface of the steel pipe pile) are the same. It is significantly different from the area that does not come into contact with concrete on the peripheral surface. In particular, the cross-sectional rigidity and member strength of the steel pipe pile are greatly reduced at the boundary between the stiffening region and the raw pipe region of the steel pipe pile.

このため、特許文献1、2及び3に開示された鋼管杭では、鋼管杭に曲げ力、軸力及びせん断力等の荷重が作用した場合に、鋼管杭の補剛領域と素管領域との境界において、上記の荷重に起因する応力集中が発生して、素管領域に局部座屈が発生する可能性がある。 For this reason, in the steel pipe pile disclosed in Patent Documents 1, 2, and 3, when loads such as bending force, axial force, and shearing force are applied to the steel pipe pile, the stiffening region and the raw tube region of the steel pipe pile At the boundary, stress concentration due to the above-described load may occur, and local buckling may occur in the raw tube region.

また、上記のように、鋼管杭の素管領域に局部座屈が発生すると、建築構造物等の上部柱と鋼管杭との接合箇所等において、建築構造物等の支持が不十分になる可能性がある。 In addition, as described above, when local buckling occurs in the raw pipe region of the steel pipe pile, the support of the building structure or the like may be insufficient at the joint between the upper column of the building structure and the steel pipe pile. There is sex.

このような鋼管杭の素管領域における局部座屈を防ぐ方法の一つとして、鋼管杭の板厚を厚くする方法が考えられる。しかしながら、鋼管杭の板厚を厚くする方法を採用すると、鋼管杭の重量が大きくなると共に、材料コストが増加するので、この方法は合理的ではない。また、鋼管杭の素管領域における局部座屈を防ぐ他の方法として、スティフナ等の補剛材を素管領域に設置することも考えられるが、加工の手間が増える。 One method for preventing local buckling in the raw pipe region of such steel pipe piles is to increase the plate thickness of the steel pipe piles. However, if the method of increasing the thickness of the steel pipe pile is adopted, the weight of the steel pipe pile increases and the material cost increases, so this method is not rational. Further, as another method for preventing local buckling in the raw pipe region of the steel pipe pile, it may be possible to install a stiffener or other stiffener in the raw pipe region, but this increases the labor of processing.

本発明は、上記の事情に鑑みてなされたものであり、鋼管の板厚を厚くすることなく、また、スティフナ等の補剛材を用いることなく、鋼管の補剛領域と素管領域との境界における局部座屈抵抗の向上を実現可能な合成構造を提供することを目的とする。 The present invention has been made in view of the above circumstances, and without increasing the plate thickness of the steel pipe, and without using a stiffener or other stiffener, the stiffening region and the raw tube region of the steel pipe An object of the present invention is to provide a composite structure capable of improving local buckling resistance at the boundary.

本発明は、上記課題を解決して係る目的を達成するために、以下のような手段を採用する。
(1)本発明の一態様に係る合成構造は、鋼管と;一端部が前記鋼管に挿入された接合対象部材と;前記鋼管の内周面と前記接合対象部材の前記一端部との間に充填されたコンクリートと;を備える。前記鋼管は、前記鋼管の前記内周面から前記鋼管の半径方向内側へ向かって突出し且つ前記鋼管の管軸方向に沿って螺旋状に延設された突起を有する。前記鋼管の前記内周面において前記コンクリートと接触する領域を補剛領域と定義し且つ前記鋼管の前記内周面において前記コンクリートと接触しない領域を素管領域と定義したとき、前記突起は、前記補剛領域と前記素管領域との境界を跨ぐように前記管軸方向に沿って前記螺旋状に延設されている。前記素管領域における前記突起の前記管軸方向の延設長は、前記鋼管の局部座屈半波長以上である。前記突起を前記鋼管の前記半径方向の内側から視たとき、前記鋼管の周方向と前記突起との間の角度が、30°以上90°未満である。前記鋼管の前記局部座屈半波長をλ(mm)、前記鋼管の外径をD(mm)、且つ前記鋼管の板厚をt(mm)と定義したとき、前記局部座屈半波長λは下記式(1)で表され、前記鋼管の前記外径Dと前記板厚tとの比率D/tは50以上100以下である。
The present invention employs the following means in order to solve the above problems and achieve the object.
(1) The composite structure according to an aspect of the present invention includes a steel pipe; a member to be joined whose one end is inserted into the steel pipe; and an inner peripheral surface of the steel pipe and the one end of the member to be joined. Filled concrete; and The steel pipe has a protrusion that protrudes inward in the radial direction of the steel pipe from the inner peripheral surface of the steel pipe and extends spirally along the pipe axis direction of the steel pipe. When the region in contact with the concrete on the inner peripheral surface of the steel pipe is defined as a stiffening region and the region not in contact with the concrete on the inner peripheral surface of the steel pipe is defined as a raw tube region, the protrusion is It extends in the spiral shape along the tube axis direction so as to straddle the boundary between the stiffening region and the raw tube region. The extension length of the projection in the pipe axis direction in the raw pipe region is equal to or greater than the local buckling half wavelength of the steel pipe. When the projection is viewed from the inside in the radial direction of the steel pipe, an angle between the circumferential direction of the steel pipe and the projection is 30 ° or more and less than 90 °. When the local buckling half wavelength of the steel pipe is defined as λ (mm), the outer diameter of the steel pipe is defined as D (mm), and the plate thickness of the steel pipe is defined as t (mm), the local buckling half wavelength λ is It is represented by the following formula (1), and the ratio D / t between the outer diameter D and the plate thickness t of the steel pipe is 50 or more and 100 or less.

Figure 0006386462
Figure 0006386462

)上記(1)に記載の合成構造において、前記鋼管を前記管軸方向に平行な断面で視たとき、前記突起の凸断面が、前記管軸方向に沿って前記局部座屈半波長λ以下の間隔で並んでいてもよい。 ( 2 ) In the composite structure according to (1) above, when the steel pipe is viewed in a cross section parallel to the tube axis direction, the convex cross section of the protrusion has the local buckling half-wavelength along the tube axis direction. They may be arranged at intervals of λ or less.

上記(1)に記載の合成構造によれば、鋼管の補剛領域と素管領域との境界において、鋼管の補剛領域と素管領域とで断面剛性及び部材耐力の差異が小さくなり、補剛領域から素管領域までの鋼管の断面剛性及び部材耐力を漸減させて、鋼管の断面剛性及び部材耐力の急激な減少を防止することが可能となる。 According to the composite structure described in (1) above, at the boundary between the stiffening region and the raw tube region of the steel pipe, the difference in cross-sectional rigidity and member strength between the stiffening region and the raw tube region of the steel pipe is reduced. It is possible to gradually reduce the cross-sectional rigidity and member strength of the steel pipe from the rigid region to the raw tube region, thereby preventing a rapid decrease in the cross-sectional rigidity and member strength of the steel pipe.

上記(1)に記載の合成構造によれば、鋼管の補剛領域と素管領域との境界において、鋼管の断面剛性及び部材耐力の急激な減少を防止して、曲げ力、軸力、せん断力等の荷重に起因する鋼管に対する応力集中の発生を回避することができ、素管領域における局部座屈の発生を防止することが可能となる。 According to the composite structure described in the above (1), it is possible to prevent a sudden decrease in the cross-sectional rigidity and the member strength of the steel pipe at the boundary between the stiffening region and the raw pipe region of the steel pipe, and thereby the bending force, the axial force, the shearing force. Occurrence of stress concentration on the steel pipe due to a load such as force can be avoided, and local buckling in the raw pipe region can be prevented.

上記(1)に記載の合成構造によれば、鋼管の補剛領域と素管領域との境界において、鋼管の局部座屈抵抗を向上させることができるため、鋼管と接合対象部材との接合箇所等における建築構造物等の支持を十分なものとすることが可能となる。 According to the composite structure described in the above (1), since the local buckling resistance of the steel pipe can be improved at the boundary between the stiffening region and the raw pipe region of the steel pipe, the joint location between the steel pipe and the member to be joined It is possible to provide sufficient support for building structures and the like.

上記()に記載の合成構造によれば、突起が存在しない鋼管の薄い部位が鋼管の管周方向断面で連続しない。その結果、鋼管の局部座屈抵抗を向上させることができるため、素管領域における局部座屈の発生を防止することが可能となる。 According to the composite structure described in ( 1 ) above, the thin portion of the steel pipe where no protrusion is present is not continuous in the pipe circumferential direction cross section. As a result, since local buckling resistance of the steel pipe can be improved, it is possible to prevent the occurrence of local buckling in the raw pipe region.

また、上記()に記載の合成構造によれば、鋼管に、管壁が蛇腹状に潰れるような局部座屈が発生することを確実に防止することが可能となる。また、鋼管の内周面にコンクリートを確実に付着させて、鋼管とコンクリートとの付着強度を十分に確保することが可能となる。 In addition, according to the composite structure described in ( 1 ) above, it is possible to reliably prevent the local buckling of the steel pipe such that the pipe wall is crushed like a bellows. In addition, it is possible to reliably adhere the concrete to the inner peripheral surface of the steel pipe, and to sufficiently secure the adhesion strength between the steel pipe and the concrete.

上記()に記載の合成構造によれば、鋼管とコンクリートとの付着強度を向上させるために補剛領域に設けられた突起を、鋼管の管軸方向に沿ってさらに延ばして設けることができ、局部座屈抵抗を向上させた鋼管を効率的に製造することが可能となる。 According to the composite structure described in ( 1 ) above, the protrusion provided in the stiffening region in order to improve the adhesion strength between the steel pipe and the concrete can be further extended along the pipe axis direction of the steel pipe. It becomes possible to efficiently manufacture a steel pipe with improved local buckling resistance.

特に、従来では、鋼管とコンクリートとの付着強度を確保することのみを目的として突起が鋼管に設けられた場合に、突起を鋼管の周方向に対して10°〜20°程度傾斜させていた。しかしながら、上記()に記載の合成構造によれば、鋼管とコンクリートとの付着強度を確保するために突起を設ける鋼管の製造工程を直接的に利用して、鋼管の周方向に対して30°以上の角度で突起を傾斜させて、鋼管の局部座屈抵抗を向上させた突起を効率的に設けることが可能となる。 In particular, conventionally, when the protrusion is provided on the steel pipe only for the purpose of ensuring the adhesion strength between the steel pipe and the concrete, the protrusion is inclined by about 10 ° to 20 ° with respect to the circumferential direction of the steel pipe. However, according to the composite structure described in ( 1 ) above, the manufacturing process of the steel pipe in which the protrusion is provided in order to secure the adhesion strength between the steel pipe and the concrete is directly utilized, and the steel pipe is 30 in the circumferential direction. It is possible to efficiently provide the protrusion with the local buckling resistance of the steel pipe improved by inclining the protrusion at an angle of more than 0 °.

上記()に記載の合成構造によれば、鋼管の管軸方向に沿って互いに隣り合う突起の間で、鋼管に作用する荷重に起因して素管領域に局部座屈が発生することを防止することが可能となる。 According to the composite structure described in ( 2 ) above, local buckling occurs in the raw pipe region due to the load acting on the steel pipe between the protrusions adjacent to each other along the pipe axis direction of the steel pipe. It becomes possible to prevent.

本発明の一実施形態に係る合成構造1を示す縦断面図である。It is a longitudinal section showing composition structure 1 concerning one embodiment of the present invention. 図1において点線で囲まれた領域Cの拡大図である。It is an enlarged view of the area | region C enclosed with the dotted line in FIG. 図1において補剛領域B1と素管領域B2との境界を含む領域の拡大図である。FIG. 2 is an enlarged view of a region including a boundary between a stiffening region B1 and a raw tube region B2. 鋼管杭10にせん断力Qを作用させた場合と、鋼管杭10に軸力Nを作用させた場合とのそれぞれを模式的に示す図である。It is a figure which shows typically each with the case where the shear force Q is made to act on the steel pipe pile 10, and the case where the axial force N is made to act on the steel pipe pile 10. FIG. 表1における「L/√(D・t)」が横軸として設定され、表1における「Qmax/Q0」が縦軸として設定されたグラフを示す。A graph in which “L / √ (D · t)” in Table 1 is set as the horizontal axis and “Q max / Q0” in Table 1 is set as the vertical axis is shown. 表2における突起傾斜角θが横軸として設定され、表2における「Qmax/Q0」が縦軸として設定されたグラフを示す。3 is a graph in which the protrusion inclination angle θ in Table 2 is set as the horizontal axis, and “Q max / Q0” in Table 2 is set as the vertical axis. 表3における突起傾斜角θが横軸として設定され、表3における「Nmax/N0)が縦軸として設定されたグラフを示す。The projection inclination angle θ in Table 3 is set as the horizontal axis, and “N max / N0) in Table 3 is set as the vertical axis. 表4における「S/√(D・t)」が横軸として設定され、表4における「Qmax/Q0」が縦軸として設定されたグラフを示す。The graph in which “S / √ (D · t)” in Table 4 is set as the horizontal axis and “Q max / Q0” in Table 4 is set as the vertical axis is shown. 本実施形態の変形例を示す図である。It is a figure which shows the modification of this embodiment. 本実施形態の変形例を示す図である。It is a figure which shows the modification of this embodiment.

以下、本発明の一実施形態について、図面を参照しながら詳細に説明する。
図1は、本発明の一実施形態に係る合成構造1を示す縦断面図である。図1に示すように、本実施形態に係る合成構造1は、地盤に打ち込まれた鋼管杭10(鋼管)と、一端部が鋼管杭10に挿入されたH形鋼20(接合対象部材)と、鋼管杭10の内周面11とH形鋼20の一端部(鋼管杭10に挿入された部分)との間に充填されたコンクリート30とを備えている。なお、図1は、鋼管杭10の管軸方向(図1中のY方向)と平行な断面で鋼管杭10を視た図である。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing a composite structure 1 according to an embodiment of the present invention. As shown in FIG. 1, the composite structure 1 according to this embodiment includes a steel pipe pile 10 (steel pipe) driven into the ground, and an H-section steel 20 (member to be joined) having one end inserted into the steel pipe pile 10. The concrete 30 filled between the inner peripheral surface 11 of the steel pipe pile 10 and the one end part (part inserted in the steel pipe pile 10) of the H-section steel 20 is provided. In addition, FIG. 1 is the figure which looked at the steel pipe pile 10 in the cross section parallel to the pipe-axis direction (Y direction in FIG. 1) of the steel pipe pile 10. FIG.

H形鋼20は、例えば建築構造物(上部構造物)の柱部材である。基礎構造物として地盤に打ち込まれた鋼管杭10にH形鋼20の一端部が挿入された状態で、鋼管杭10の内周面11とH形鋼20の一端部との間にコンクリート30が充填されることにより、鋼管杭10とH形鋼20とが互いに接合される。図1に示すように、鋼管杭10とH形鋼20との接合強度を強くするために、H形鋼20の先端に、ベースプレート21が接合されていることが好ましい。ただし、このベースプレート21は必須ではない。   The H-section steel 20 is a pillar member of a building structure (upper structure), for example. Concrete 30 is provided between the inner peripheral surface 11 of the steel pipe pile 10 and one end of the H-shaped steel 20 in a state where one end of the H-shaped steel 20 is inserted into the steel pipe pile 10 driven into the ground as a foundation structure. By being filled, the steel pipe pile 10 and the H-section steel 20 are joined to each other. As shown in FIG. 1, a base plate 21 is preferably joined to the tip of the H-section steel 20 in order to increase the joint strength between the steel pipe pile 10 and the H-section steel 20. However, the base plate 21 is not essential.

鋼管杭10は、例えば、1000mmの外径Dと、6.6mmの板厚tと、0.28〜0.30のポアソン比νを有する鋼管である。鋼管杭10の外径D、板厚t、及びポアソン比νは、上記の数値に限定されない。しかしながら、鋼管杭10の板厚tが大きすぎると、鋼管杭10の局部座屈抵抗が大きくなるというメリットがある反面、鋼管杭10の重量及び材料コストが増大するというデメリットもある。そのため、本実施形態では、板厚tに起因するメリットとデメリットとのバランスを考慮して、外径Dと板厚tとの比率D/tが50以上100以下に設定されている。
鋼管杭10として建築用鋼材を用いた場合、外径Dと板厚tとの比率D/tが50未満となると、局部座屈による耐力低下が鋼管杭10に生じる。従って、比率D/tの下限値を50に設定することが望ましい。一方、比率D/tの上限値については特に制限はないが、土木建築用に製造されて市場に流通している鋼管の比率D/tの上限値は概ね100であるので、本実施形態においても、鋼管杭10の比率D/tの上限値を100に設定している。
このような鋼管杭10は、鋼管杭10の内周面11から鋼管杭10の半径方向(図1中のX方向)内側へ向かって突出し、且つ鋼管杭10の管軸方向Yに沿って螺旋状に延設された突起12を有している。
The steel pipe pile 10 is, for example, a steel pipe having an outer diameter D of 1000 mm, a plate thickness t of 6.6 mm, and a Poisson's ratio ν of 0.28 to 0.30. The outer diameter D, the plate thickness t, and the Poisson's ratio ν of the steel pipe pile 10 are not limited to the above numerical values. However, if the plate thickness t of the steel pipe pile 10 is too large, there is a merit that the local buckling resistance of the steel pipe pile 10 is increased, but there is also a demerit that the weight and material cost of the steel pipe pile 10 are increased. Therefore, in this embodiment, the ratio D / t between the outer diameter D and the plate thickness t is set to 50 or more and 100 or less in consideration of the balance between the merit and demerit caused by the plate thickness t.
When a steel material for construction is used as the steel pipe pile 10, when the ratio D / t between the outer diameter D and the plate thickness t is less than 50, a decrease in yield strength due to local buckling occurs in the steel pipe pile 10. Therefore, it is desirable to set the lower limit value of the ratio D / t to 50. On the other hand, the upper limit value of the ratio D / t is not particularly limited, but the upper limit value of the ratio D / t of the steel pipe manufactured for civil engineering and distributed in the market is approximately 100. Also, the upper limit value of the ratio D / t of the steel pipe pile 10 is set to 100.
Such a steel pipe pile 10 protrudes from the inner peripheral surface 11 of the steel pipe pile 10 inward in the radial direction (X direction in FIG. 1) of the steel pipe pile 10 and spirals along the pipe axis direction Y of the steel pipe pile 10. It has the protrusion 12 extended in the shape.

図2は、図1において点線で囲まれた領域Cの拡大図である。図2に示すように、鋼管杭10の管軸方向Yにおける突起12の凸断面の長さを突起幅wと定義する。また、鋼管杭10の半径方向Xにおける突起12の凸断面の長さを突起高さhと定義する。また、管軸方向Yに沿って互いに隣り合う突起12の凸断面の中心間の距離を突起間隔Sと定義する。さらに、突起12を鋼管杭10の半径方向Xの内側から視たとき、鋼管杭10の周方向(図2中のW方向)と突起12との間の角度を突起傾斜角θと定義する。   FIG. 2 is an enlarged view of a region C surrounded by a dotted line in FIG. As shown in FIG. 2, the length of the convex cross section of the protrusion 12 in the pipe axis direction Y of the steel pipe pile 10 is defined as the protrusion width w. Moreover, the length of the convex cross section of the protrusion 12 in the radial direction X of the steel pipe pile 10 is defined as the protrusion height h. Further, the distance between the centers of the convex cross sections of the protrusions 12 adjacent to each other along the tube axis direction Y is defined as a protrusion interval S. Furthermore, when the projection 12 is viewed from the inside in the radial direction X of the steel pipe pile 10, an angle between the circumferential direction (W direction in FIG. 2) of the steel pipe pile 10 and the projection 12 is defined as a projection inclination angle θ.

突起12の突起幅wは、例えば10mmである。突起12の突起高さhは、例えば4mmである。ただし、突起12の突起幅w及び突起高さhは、上記の数値に限定されない。突起傾斜角θは、30°以上90°未満であることが好ましい。また、突起傾斜角θは、30°以上60°未満が最も好ましい。突起傾斜角θを上記の範囲に設定することが好ましい理由については後述する。突起間隔Sの好ましい範囲については後述する。なお、本実施形態では、矩形状の凸断面を有する突起12が鋼管杭10に形成された場合を例示したが、突起12の凸断面の形状は、矩形以外の形状であってもよい。   The protrusion width w of the protrusion 12 is, for example, 10 mm. The protrusion height h of the protrusion 12 is, for example, 4 mm. However, the protrusion width w and the protrusion height h of the protrusion 12 are not limited to the above numerical values. The protrusion inclination angle θ is preferably 30 ° or more and less than 90 °. The protrusion inclination angle θ is most preferably 30 ° or more and less than 60 °. The reason why it is preferable to set the protrusion inclination angle θ in the above range will be described later. A preferable range of the protrusion interval S will be described later. In addition, in this embodiment, although the case where the processus | protrusion 12 which has a rectangular-shaped convex cross section was formed in the steel pipe pile 10, the shape of the convex cross section of the processus | protrusion 12 may be shapes other than a rectangle.

突起12は、鋼帯等の圧延によって鋼管杭10の内周面11設けられてもよく、棒鋼を溶接等で取り付けたり、溶接ビードを置く方法等によって設けられてもよい。また、複数の螺旋状の突起12の一部を互いに交差させることにより、鋼管杭10の周方向Wに対して互いに異なる方向に傾斜した複数の突起12が組み合わされてもよい。また、螺旋状の突起12と、鋼管杭10の周方向Wに平行な突起12とが組み合わされてもよい。   The protrusion 12 may be provided on the inner peripheral surface 11 of the steel pipe pile 10 by rolling of a steel strip or the like, or may be provided by attaching a steel bar by welding or placing a weld bead. Moreover, the some protrusion 12 inclined in a mutually different direction with respect to the circumferential direction W of the steel pipe pile 10 may be combined by making some helical protrusions 12 cross | intersect mutually. Moreover, the spiral protrusion 12 and the protrusion 12 parallel to the circumferential direction W of the steel pipe pile 10 may be combined.

以下では、図1に示すように、鋼管杭10の内周面11において突起12が設けられている領域を突起領域A1と定義し、鋼管杭10の内周面11において突起12が設けられていない領域を平坦領域A2と定義する。また、図1に示すように、鋼管杭10の内周面11においてコンクリート30と接触する領域を補剛領域B1と定義し、鋼管杭10の内周面11においてコンクリート30と接触しない領域を素管領域B2と定義する。 Below, as shown in FIG. 1, the area | region in which the protrusion 12 is provided in the inner peripheral surface 11 of the steel pipe pile 10 is defined as protrusion area | region A1, and the protrusion 12 is provided in the inner peripheral surface 11 of the steel pipe pile 10. A region that does not exist is defined as a flat region A2. In addition, as shown in FIG. 1, a region that contacts the concrete 30 on the inner peripheral surface 11 of the steel pipe pile 10 is defined as a stiffening region B1, and a region that does not contact the concrete 30 on the inner peripheral surface 11 of the steel pipe pile 10 is defined. This is defined as a tube region B2.

図1に示すように、突起12は、補剛領域B1と素管領域B2との境界を跨ぐように、管軸方向Yに沿って螺旋状に延設されている。言い換えれば、突起領域A1において、補剛領域B1と素管領域B2との境界が少なくとも1つ存在する。詳細は後述するが、突起領域A1において、補剛領域B1と素管領域B2との境界が2つ存在する場合もある。   As shown in FIG. 1, the protrusion 12 is spirally extended along the tube axis direction Y so as to straddle the boundary between the stiffening region B1 and the raw tube region B2. In other words, in the projection region A1, there is at least one boundary between the stiffening region B1 and the raw tube region B2. Although details will be described later, there may be two boundaries between the stiffening region B1 and the raw tube region B2 in the projection region A1.

図1に示すように、突起12が、補剛領域B1と素管領域B2との境界から素管領域B2側へ管軸方向Yに沿って延設されている長さを延設長Lと定義する。言い換えれば、素管領域B2における突起12の管軸方向Yの延設長Lは、突起領域A1の管軸方向Yの長さから、補剛領域B1の管軸方向Yの長さを減算することで得られる長さである。   As shown in FIG. 1, the length of the protrusion 12 extending along the tube axis direction Y from the boundary between the stiffening region B1 and the raw tube region B2 toward the raw tube region B2 is defined as an extended length L. Define. In other words, the extending length L in the tube axis direction Y of the protrusion 12 in the raw tube region B2 subtracts the length in the tube axis direction Y of the stiffening region B1 from the length in the tube axis direction Y of the protrusion region A1. This is the length obtained.

図3は、図1において補剛領域B1と素管領域B2との境界を含む領域の拡大図である。図3に示すように、素管領域B2における突起12の管軸方向Yの延設長Lは、鋼管杭10の局部座屈半波長λ以上である。ここで、鋼管杭10の局部座屈半波長λとは、曲げ力M、軸力N及びせん断力Q等の荷重が鋼管杭10に作用することに起因して、補剛領域B1と素管領域B2との境界に近い素管領域B2の管壁に発生する座屈部位13の長さである(図3参照)。 FIG. 3 is an enlarged view of a region including the boundary between the stiffening region B1 and the raw tube region B2 in FIG. As shown in FIG. 3, the extending length L in the tube axis direction Y of the protrusion 12 in the raw tube region B <b> 2 is equal to or greater than the local buckling half wavelength λ of the steel pipe pile 10. Here, the local buckling half-wavelength λ of the steel pipe pile 10 is due to the fact that loads such as bending force M, axial force N, and shearing force Q act on the steel pipe pile 10, so This is the length of the buckled portion 13 generated on the tube wall of the raw tube region B2 close to the boundary with the region B2 (see FIG. 3).

上記のように、鋼管杭10の外径をD(mm)、鋼管杭10の板厚をt(mm)、及び鋼管杭10の局部座屈半波長をλ(mm)と定義したとき、局部座屈半波長λは下記式(1)で表される。なお、鋼管杭10のポアソン比をνと定義したとき、下記式(1)における定数Kは、下記式(2)で表される。 As described above, when the outer diameter of the steel pipe pile 10 is defined as D (mm), the plate thickness of the steel pipe pile 10 is defined as t (mm), and the local buckling half wavelength of the steel pipe pile 10 is defined as λ (mm), The buckling half wavelength λ is expressed by the following formula (1). In addition, when the Poisson's ratio of the steel pipe pile 10 is defined as ν, the constant K in the following formula (1) is represented by the following formula (2).

Figure 0006386462
Figure 0006386462

Figure 0006386462
Figure 0006386462

また、図3に示すように、鋼管杭10を管軸方向Yに平行な断面で視たとき、突起12の凸断面が、管軸方向Yに沿って局部座屈半波長λ以下の間隔で並んでいることが望ましい。言い換えれば、突起12の突起間隔Sが、局部座屈半波長λ以下であることが望ましい。すなわち、突起12の延設長L、突起間隔S、及び局部座屈半波長λの関係が下記条件式(3)を満たすことが望ましい。
S ≦ λ ≦ L …(3)
Further, as shown in FIG. 3, when the steel pipe pile 10 is viewed in a cross section parallel to the pipe axis direction Y, the convex cross section of the protrusion 12 is spaced along the pipe axis direction Y at a local buckling half wavelength λ or less. It is desirable to line up. In other words, it is desirable that the protrusion interval S of the protrusions 12 is equal to or less than the local buckling half wavelength λ. That is, it is desirable that the relationship between the extended length L of the protrusions 12, the protrusion interval S, and the local buckling half-wavelength λ satisfy the following conditional expression (3).
S ≦ λ ≦ L (3)

上記のような構成を有する合成構造1によれば、鋼管杭10の板厚を厚くすることなく、また、スティフナ等の補剛材を用いることなく、鋼管杭10の補剛領域B1と素管領域B2との境界における局部座屈抵抗の向上を実現することが可能となる。すなわち、上記のような構成を有する合成構造1によれば、鋼管杭10の板厚tに起因するメリットとデメリットとのバランスが最適となる条件(外径Dと板厚tとの比率D/tが50以上100以下という条件)を満足しながら、補剛領域B1と素管領域B2との境界における局部座屈抵抗を向上させることができる。   According to the composite structure 1 having the above-described configuration, the stiffening region B1 and the raw pipe of the steel pipe pile 10 can be used without increasing the plate thickness of the steel pipe pile 10 and without using a stiffener or other stiffener. It is possible to improve the local buckling resistance at the boundary with the region B2. That is, according to the composite structure 1 having the above-described configuration, the condition (the ratio D / outer diameter D to the thickness t) where the balance between the merit and the demerit due to the thickness t of the steel pipe pile 10 is optimal. The local buckling resistance at the boundary between the stiffening region B1 and the raw tube region B2 can be improved while satisfying the condition that t is 50 or more and 100 or less.

以下では、図4に示すように、鋼管杭10にせん断力Qを作用させた場合と、鋼管杭10に軸力Nを作用させた場合とのそれぞれについて、鋼管杭10の局部座屈抵抗をシェル要素を用いた有限要素法(FEM)解析によって解析した結果を説明する。   Below, as shown in FIG. 4, the local buckling resistance of the steel pipe pile 10 is shown for each of the case where the shear force Q is applied to the steel pipe pile 10 and the case where the axial force N is applied to the steel pipe pile 10. The result analyzed by the finite element method (FEM) analysis using a shell element is demonstrated.

上記のFEM解析において、鋼管杭10の外径Dを1000mm、鋼管杭10の板厚tを6.6mm、鋼管杭10のポアソン比νを0.30、突起12の突起高さhを4mm、突起12の突起幅wを10mm、突起12の突起傾斜角θを30°、突起12の突起間隔Sを100mmに設定した。このような条件において、鋼管杭10の局部座屈半波長λは、199mmとなる。
上記の条件の下で、突起12の延設長Lを0mm〜500mmの範囲で変化させた場合における、突起12の延設長Lとせん断力Qに対する局部座屈抵抗(せん断力Qに対する最大耐力)との関係を解析した結果を下記表1に示す。なお、下記表1において、突起12の延設長Lが199mm以上のとき、突起12の延設長Lが鋼管杭10の局部座屈半波長λ以上という条件が満たされる。
In the above FEM analysis, the outer diameter D of the steel pipe pile 10 is 1000 mm, the plate thickness t of the steel pipe pile 10 is 6.6 mm, the Poisson's ratio ν of the steel pipe pile 10 is 0.30, the protrusion height h of the protrusion 12 is 4 mm, The protrusion width w of the protrusion 12 was set to 10 mm, the protrusion inclination angle θ of the protrusion 12 was set to 30 °, and the protrusion interval S of the protrusion 12 was set to 100 mm. Under such conditions, the local buckling half wavelength λ of the steel pipe pile 10 is 199 mm.
Under the above conditions, when the extension length L of the protrusion 12 is changed in the range of 0 mm to 500 mm, the local buckling resistance against the extension length L of the protrusion 12 and the shear force Q (maximum proof stress against the shear force Q). Table 1 below shows the results of analyzing the relationship with In Table 1 below, when the extended length L of the protrusion 12 is 199 mm or more, the condition that the extended length L of the protrusion 12 is equal to or greater than the local buckling half wavelength λ of the steel pipe pile 10 is satisfied.

Figure 0006386462
Figure 0006386462

表1において、Qmax(kN)は、鋼管杭10の上端部に作用するせん断力Qを徐々に増大させて鋼管杭10を強制的に変形させた場合に、最終的に鋼管杭10に局部座屈が発生して最大耐力に至った時点でのせん断力Qを示している。すなわち、このQmaxは、せん断力Qに対する鋼管杭10の局部座屈抵抗(せん断力Qに対する最大耐力)を示している。
延設長Lが0mmのとき、すなわち素管領域B2に突起12が存在しないときの最大耐力Qmax(=794kN)を、基準耐力Q0と定義する。従って、表1において、突起12の延設長Lが0mmのとき、最大耐力Qmaxと基準耐力Q0との比(=Qmax/Q0)は、“1”となる。表1における「Qmax/Q0」は、突起12の延設長Lの変化に対する最大耐力Qmaxの上昇率を示す無次元数である。
In Table 1, Q max (kN) is a local increase in the steel pipe pile 10 when the steel pipe pile 10 is forcibly deformed by gradually increasing the shearing force Q acting on the upper end of the steel pipe pile 10. The shearing force Q when the buckling occurs and the maximum proof stress is reached is shown. That is, this Q max indicates the local buckling resistance of the steel pipe pile 10 with respect to the shearing force Q (maximum proof stress with respect to the shearing force Q).
The maximum proof stress Q max (= 794 kN) when the extended length L is 0 mm, that is, when the protrusion 12 is not present in the raw tube region B2, is defined as the standard proof strength Q0. Therefore, in Table 1, when the extended length L of the protrusion 12 is 0 mm, the ratio (= Q max / Q0) between the maximum proof strength Q max and the reference proof strength Q 0 is “1”. “Q max / Q 0” in Table 1 is a dimensionless number indicating an increase rate of the maximum proof stress Q max with respect to a change in the extension length L of the protrusion 12.

図5は、表1における「L/√(D・t)」が横軸として設定され、表1における「Qmax/Q0」が縦軸として設定されたグラフを示す。図5に示すように、「L/√(Dt)」が2.44以上となるとき、「Qmax/Q0」が1.049以上となる。すなわち、突起12の延設長Lが鋼管杭10の局部座屈半波長λ(=199mm)以上という条件を満たすとき、せん断力Qに対する鋼管杭10の最大耐力Qmaxの上昇率が4.9%以上となる。このように、突起12の延設長Lが鋼管杭10の局部座屈半波長λ以上という条件を満たすとき、せん断力Qに対する鋼管杭10の局部座屈抵抗が著しく上昇することが確認された。
FIG. 5 shows a graph in which “L / √ (D · t)” in Table 1 is set as the horizontal axis and “Q max / Q0” in Table 1 is set as the vertical axis. As shown in FIG. 5, when “L / √ (Dt)” is 2.44 or more, “Q max / Q0” is 1.049 or more. That is, when extending設長L protrusion 12 satisfy the condition that the steel pipe local buckling屈半wavelength λ of pile 10 (= 199mm) or more, the rate of increase in ultimate strength Q max of the steel pipe pile 10 against shear force Q is 4.9 % Or more. Thus, it was confirmed that the local buckling resistance of the steel pipe pile 10 with respect to the shearing force Q significantly increases when the extension length L of the protrusion 12 satisfies the condition that the local buckling half wavelength λ of the steel pipe pile 10 is greater than or equal to the condition. .

次に、上記のFEM解析において、鋼管杭10の外径Dを1000mm、鋼管杭10の板厚tを6.6mm、鋼管杭10のポアソン比νを0.30、突起12の突起高さhを4mm、突起12の突起幅wを10mm、突起12の延設長Lを500mm、突起12の突起間隔Sを100mmに設定した。すなわち、突起12の延設長Lが鋼管杭10の局部座屈半波長λ(=199mm)以上という条件が満たされている。
このような条件の下で、突起12の突起傾斜角θを10°〜90°の範囲で変化させた場合における、突起傾斜角θと、せん断力Qに対する鋼管杭10の最大耐力Qmaxと、「Qmax/Q0」との関係を解析した結果を下記表2に示す。
Next, in the above FEM analysis, the outer diameter D of the steel pipe pile 10 is 1000 mm, the plate thickness t of the steel pipe pile 10 is 6.6 mm, the Poisson's ratio ν of the steel pipe pile 10 is 0.30, and the protrusion height h of the protrusion 12 4 mm, the protrusion width w of the protrusion 12 is set to 10 mm, the extended length L of the protrusion 12 is set to 500 mm, and the protrusion interval S of the protrusion 12 is set to 100 mm. That is, the condition that the extended length L of the protrusion 12 is equal to or greater than the local buckling half wavelength λ (= 199 mm) of the steel pipe pile 10 is satisfied.
Under such conditions, when the protrusion inclination angle θ of the protrusion 12 is changed in the range of 10 ° to 90 °, the protrusion inclination angle θ, the maximum proof stress Q max of the steel pipe pile 10 against the shear force Q, The results of analyzing the relationship with “Q max / Q0” are shown in Table 2 below.

Figure 0006386462
Figure 0006386462

図6は、表2における突起傾斜角θが横軸として設定され、表2における「Qmax/Q0」が縦軸として設定されたグラフを示す。図6に示すように、突起傾斜角θが30°以上となるとき、「Qmax/Q0」が1.053〜1.085となる。すなわち、突起傾斜角θが30°以上という条件を満たすとき、せん断力Qに対する鋼管杭10の最大耐力Qmaxの上昇率が5.3%〜8.5となる。このように、突起12の延設長Lが鋼管杭10の局部座屈半波長λ以上という条件を満たし、且つ突起傾斜角θが30°以上という条件を満たすとき、せん断力Qに対する鋼管杭10の局部座屈抵抗がより著しく上昇することが確認された。FIG. 6 shows a graph in which the protrusion inclination angle θ in Table 2 is set as the horizontal axis, and “Q max / Q0” in Table 2 is set as the vertical axis. As shown in FIG. 6, when the projection inclination angle θ is 30 ° or more, “Q max / Q0” is 1.053 to 1.085. That is, when the condition that the protrusion inclination angle θ is 30 ° or more is satisfied, the rate of increase in the maximum proof stress Q max of the steel pipe pile 10 with respect to the shear force Q is 5.3% to 8.5. Thus, when the extension length L of the protrusion 12 satisfies the condition that the local buckling half-wavelength λ of the steel pipe pile 10 is equal to or greater than that, and the condition that the protrusion inclination angle θ is 30 ° or greater, the steel pipe pile 10 against the shear force Q is satisfied. It was confirmed that the local buckling resistance increased significantly.

次に、上記のFEM解析において、鋼管杭10の外径Dを1000mm、鋼管杭10の板厚tを6.6mm、鋼管杭10のポアソン比νを0.30、突起12の突起高さhを4mm、突起12の突起幅wを10mm、突起12の延設長Lを3000mm、突起12の突起間隔Sを100mmに設定した。すなわち、突起12の延設長Lが鋼管杭10の局部座屈半波長λ(=199mm)以上という条件が満たされている。なお、突起12の延設長Lを3000mmに設定することは、鋼管杭10の全長に亘って突起12が形成されていることを意味する。
このような条件の下で、突起12の突起傾斜角θを5°〜90°の範囲で変化させた場合における、突起傾斜角θと、軸力Nに対する局部座屈抵抗(軸力Nに対する最大耐力)との関係を解析した結果を下記表3に示す。
Next, in the above FEM analysis, the outer diameter D of the steel pipe pile 10 is 1000 mm, the plate thickness t of the steel pipe pile 10 is 6.6 mm, the Poisson's ratio ν of the steel pipe pile 10 is 0.30, and the protrusion height h of the protrusion 12 4 mm, the protrusion width w of the protrusion 12 is set to 10 mm, the extension length L of the protrusion 12 is set to 3000 mm, and the protrusion interval S of the protrusion 12 is set to 100 mm. That is, the condition that the extended length L of the protrusion 12 is equal to or greater than the local buckling half wavelength λ (= 199 mm) of the steel pipe pile 10 is satisfied. In addition, setting the extended length L of the protrusion 12 to 3000 mm means that the protrusion 12 is formed over the entire length of the steel pipe pile 10.
Under such conditions, when the protrusion inclination angle θ of the protrusion 12 is changed in the range of 5 ° to 90 °, the local inclination resistance θ against the protrusion inclination angle θ and the axial force N (maximum against the axial force N). The results of analyzing the relationship with the yield strength are shown in Table 3 below.

Figure 0006386462
Figure 0006386462

表3において、Nmax(kN)は、鋼管杭10に作用する軸力Nを徐々に増大させて鋼管杭10を強制的に変形させた場合に、最終的に鋼管杭10に局部座屈が発生して最大耐力に至った時点での軸力Nを示している。すなわち、このNmaxは、軸力Nに対する鋼管杭10の局部座屈抵抗(軸力Nに対する最大耐力)を示している。
突起傾斜角θが「無し」のとき(鋼管杭10に突起12が存在しないとき)の最大耐力Nmax(=7580kN)を、基準耐力N0と定義する。従って、表3において、突起傾斜角θが「無し」のとき、最大耐力Nmaxと基準耐力N0との比(=Nmax/N0)は、“1”となる。「Nmax/N0」は、突起12の突起傾斜角θの変化に対する最大耐力Nmaxの上昇率を示す無次元数である。
In Table 3, N max (kN) indicates that when the axial force N acting on the steel pipe pile 10 is gradually increased and the steel pipe pile 10 is forcibly deformed, the local buckling is finally applied to the steel pipe pile 10. The axial force N at the time when the maximum proof stress is generated is shown. That is, this N max indicates the local buckling resistance of the steel pipe pile 10 with respect to the axial force N (maximum proof stress with respect to the axial force N).
The maximum proof stress N max (= 7580 kN) when the protrusion inclination angle θ is “none” (when the protrusion 12 does not exist on the steel pipe pile 10) is defined as the standard proof stress N0. Therefore, in Table 3, when the protrusion inclination angle θ is “none”, the ratio (= N max / N0) between the maximum proof stress N max and the reference proof strength N0 is “1”. “N max / N 0” is a dimensionless number indicating an increase rate of the maximum proof stress N max with respect to the change in the protrusion inclination angle θ of the protrusion 12.


図7は、表3における突起傾斜角θが横軸として設定され、表3における「Nmax/N0)が縦軸として設定されたグラフを示す。図7に示すように、突起傾斜角θが30°以上となるとき、「Nmax/N0」が1.049〜1.100となる。すなわち、突起傾斜角θが30°以上という条件を満たすとき、軸力Nに対する鋼管杭10の最大耐力Nmaxの上昇率が4.9%〜10.0%となる。このように、突起12の延設長Lが鋼管杭10の局部座屈半波長λ以上という条件を満たし、且つ突起傾斜角θが30°以上という条件を満たすとき、軸力Nに対する鋼管杭10の局部座屈抵抗が著しく上昇することが確認された。

7 shows a graph in which the protrusion inclination angle θ in Table 3 is set as the horizontal axis and “N max / N0) in Table 3 is set as the vertical axis, as shown in FIG. When it is 30 ° or more, “N max / N 0” is 1.049 to 1.100. That is, when the condition that the protrusion inclination angle θ is 30 ° or more is satisfied, the increase rate of the maximum proof stress Nmax of the steel pipe pile 10 with respect to the axial force N is 4.9% to 10.0%. Thus, when the extension length L of the protrusion 12 satisfies the condition that the local buckling half-wavelength λ or more of the steel pipe pile 10 is satisfied and the condition that the protrusion inclination angle θ is 30 ° or more is satisfied, the steel pipe pile 10 with respect to the axial force N is satisfied. It was confirmed that the local buckling resistance increased significantly.

上記のように、表2及び表3(図6及び図7)に示した解析結果からは、鋼管杭10の局部座屈抵抗をより向上させるための条件として、突起12の突起傾斜角θが30°以上90°以下という条件が導き出される。しかしながら、突起傾斜角θが90°の場合、鋼管杭10とコンクリート30との付着強度が十分に得られないので、本実施形態では、鋼管杭10の局部座屈抵抗をより向上するための条件として、突起12の突起傾斜角θが30°以上90°未満という条件を採用している。 As described above, from the analysis results shown in Tables 2 and 3 (FIGS. 6 and 7), the protrusion inclination angle θ of the protrusion 12 is determined as a condition for further improving the local buckling resistance of the steel pipe pile 10. A condition of 30 ° or more and 90 ° or less is derived. However, since the adhesion strength between the steel pipe pile 10 and the concrete 30 cannot be sufficiently obtained when the protrusion inclination angle θ is 90 °, in this embodiment, the condition for further improving the local buckling resistance of the steel pipe pile 10 is obtained. The projection inclination angle θ of the projection 12 is 30 ° or more and less than 90 °.

また、表2及び表3(図6及び図7)に示した解析結果から、最も好ましい条件として、突起12の突起傾斜角θが30°以上60°以下という条件が導き出される。ここで、突起傾斜角θの下限値である30°は、図6及び図7に示すように、せん断力Qに対する最大耐力Qmax及び軸力Nに対する最大耐力Nmaxの上昇率が顕著に高くなる値である。また、突起傾斜角θの上限値である60°は、これ以上、突起傾斜角θを大きくしても、せん断力Qに対する最大耐力Qmax及び軸力Nに対する最大耐力Nmaxの上昇率が大きく変化しない値である。From the analysis results shown in Tables 2 and 3 (FIGS. 6 and 7), as the most preferable condition, a condition that the protrusion inclination angle θ of the protrusion 12 is 30 ° or more and 60 ° or less is derived. Here, 30 ° which is the lower limit value of the protrusion inclination angle θ has a remarkably high increase rate of the maximum proof stress Q max with respect to the shearing force Q and the maximum proof stress N max with respect to the axial force N as shown in FIGS. Is the value. Further, the upper limit of the protrusion inclination angle θ of 60 ° is such that even if the protrusion inclination angle θ is increased, the rate of increase in the maximum proof stress Q max for the shear force Q and the maximum proof stress N max for the axial force N is large. It is a value that does not change.

次に、上記のFEM解析において、鋼管杭10の外径Dを1000mm、鋼管杭10の板厚tを6.6mm、鋼管杭10のポアソン比νを0.30、突起12の突起高さhを4mm、突起12の突起幅wを10mm、突起12の突起傾斜角θを45°、突起12の延設長Lを500mmに設定した。すなわち、突起12の延設長Lが鋼管杭10の局部座屈半波長λ(=199mm)以上という条件が満たされている。
上記の条件の下で、突起12の突起間隔Sを0mm〜300mmの範囲で変化させた場合における、突起12の突起間隔Sとせん断力Qに対する局部座屈抵抗(せん断力Qに対する最大耐力)との関係を解析した結果を下記表4に示す。なお、下記表4において、突起12の突起間隔Sが199mm以下のとき、突起12の突起間隔Sが鋼管杭10の局部座屈半波長λ以下という条件が満たされる。
Next, in the above FEM analysis, the outer diameter D of the steel pipe pile 10 is 1000 mm, the plate thickness t of the steel pipe pile 10 is 6.6 mm, the Poisson's ratio ν of the steel pipe pile 10 is 0.30, and the protrusion height h of the protrusion 12 Is 4 mm, the protrusion width w of the protrusion 12 is 10 mm, the protrusion inclination angle θ of the protrusion 12 is 45 °, and the extending length L of the protrusion 12 is 500 mm. That is, the condition that the extended length L of the protrusion 12 is equal to or greater than the local buckling half wavelength λ (= 199 mm) of the steel pipe pile 10 is satisfied.
Under the above conditions, when the projection interval S of the projection 12 is changed in the range of 0 mm to 300 mm, the local buckling resistance (maximum proof strength against the shear force Q) against the projection interval S of the projection 12 and the shear force Q The results of analyzing the relationship are shown in Table 4 below. In Table 4 below, when the protrusion interval S of the protrusions 12 is 199 mm or less, the condition that the protrusion interval S of the protrusions 12 is equal to or less than the local buckling half wavelength λ of the steel pipe pile 10 is satisfied.

Figure 0006386462
Figure 0006386462

表4において、Qmax(kN)は、表1及び表2と同様に、鋼管杭10の上端部に作用するせん断力Qを徐々に増大させて鋼管杭10を強制的に変形させた場合に、最終的に鋼管杭10に局部座屈が発生して最大耐力に至った時点でのせん断力Qを示している。すなわち、このQmaxは、せん断力Qに対する鋼管杭10の局部座屈抵抗(せん断力Qに対する最大耐力)を示している。
突起間隔Sが「無し」のとき(鋼管杭10に突起12が存在しないとき)の最大耐力Qmax(=794kN)を、基準耐力Q0と定義する。従って、表4において、突起間隔Sが「無し」のとき、最大耐力Qmaxと基準耐力Q0との比(=Qmax/Q0)は、“1”となる。表4における「Qmax/Q0」は、突起12の突起間隔Sの変化に対する最大耐力Qmaxの上昇率を示す無次元数である。
In Table 4, Q max (kN) is the same as in Tables 1 and 2, when the steel pipe pile 10 is forcibly deformed by gradually increasing the shearing force Q acting on the upper end of the steel pipe pile 10. The shear force Q at the time when local buckling finally occurs in the steel pipe pile 10 and the maximum proof stress is reached is shown. That is, this Q max indicates the local buckling resistance of the steel pipe pile 10 with respect to the shearing force Q (maximum proof stress with respect to the shearing force Q).
The maximum yield strength Q max (= 794 kN) when the projection spacing S is “none” (when no projection 12 is present on the steel pipe pile 10) is defined as the standard strength Q0. Therefore, in Table 4, when the protrusion interval S is “none”, the ratio (= Q max / Q0) between the maximum proof strength Q max and the reference proof strength Q0 is “1”. “Q max / Q 0” in Table 4 is a dimensionless number indicating an increase rate of the maximum proof stress Q max with respect to a change in the protrusion interval S of the protrusions 12.

図8は、表4における「S/√(D・t)」が横軸として設定され、表4における「Qmax/Q0」が縦軸として設定されたグラフを示す。図8に示すように、「S/√(Dt)」が2.44以下となるとき、「Qmax/Q0」が1.022以上となる。すなわち、突起12の突起間隔Sが鋼管杭10の局部座屈半波長λ(=199mm)以下という条件を満たすとき、せん断力Qに対する鋼管杭10の最大耐力Qmaxの上昇率が2.2%以上となる。このように、突起12の延設長Lが鋼管杭10の局部座屈半波長λ以上という条件を満たし、且つ突起12の突起間隔Sが鋼管杭10の局部座屈半波長λ以下という条件(すなわち、上記(3)式で規定される条件)を満たすとき、せん断力Qに対する鋼管杭10の局部座屈抵抗が著しく上昇することが確認された。FIG. 8 shows a graph in which “S / √ (D · t)” in Table 4 is set as the horizontal axis, and “Q max / Q0” in Table 4 is set as the vertical axis. As shown in FIG. 8, when “S / √ (Dt)” is 2.44 or less, “Q max / Q0” is 1.022 or more. That is, when the projection spacing S of the projections 12 satisfies the condition that the local buckling half wavelength λ (= 199 mm) of the steel pipe pile 10 or less, the rate of increase of the maximum proof strength Q max of the steel pipe pile 10 with respect to the shear force Q is 2.2%. That's it. Thus, the condition that the extended length L of the protrusion 12 satisfies the condition that the local buckling half-wavelength λ of the steel pipe pile 10 is greater than or equal to that and the protrusion interval S of the protrusion 12 is less than the local buckling half-wavelength λ of the steel pipe pile 10 ( That is, it was confirmed that the local buckling resistance of the steel pipe pile 10 with respect to the shearing force Q significantly increases when the condition defined by the above expression (3) is satisfied.

以上のように、突起12の延設長Lが鋼管杭10の局部座屈半波長λ以上という条件(第1条件)、突起傾斜角θが30°以上90°未満という条件(第2条件)、及び突起12の突起間隔Sが鋼管杭10の局部座屈半波長λ以下という条件(第3条件)を満たす本実施形態に係る合成構造1によれば、鋼管杭10の板厚tに起因するメリットとデメリットとのバランスが最適となる条件(外径Dと板厚tとの比率D/tが50以上100以下という条件)を満足しながら、補剛領域B1と素管領域B2との境界における局部座屈抵抗の向上を実現することが可能となる。 As described above, the condition that the extension length L of the protrusion 12 is equal to or greater than the local buckling half wavelength λ of the steel pipe pile 10 (first condition), and the condition that the protrusion inclination angle θ is 30 ° or more and less than 90 ° (second condition). According to the composite structure 1 according to this embodiment that satisfies the condition (third condition) in which the protrusion spacing S of the protrusions 12 is equal to or less than the local buckling half-wavelength λ of the steel pipe pile 10, it is caused by the plate thickness t of the steel pipe pile 10. Between the stiffening region B1 and the raw tube region B2 while satisfying the condition that the balance between the merit and demerit is optimal (the ratio D / t of the outer diameter D and the plate thickness t is 50 or more and 100 or less). It is possible to improve local buckling resistance at the boundary.

なお、上記の解析結果から理解されるように、少なくとも、上記の第1条件を満たす合成構造であれば、上記の効果を得ることができる。しかしながら、鋼管杭10の局部座屈抵抗をより向上させるためには、第1条件に加えて、第2条件及び第3条件の少なくとも一方を満たす合成構造を採用することが好ましい。   As can be understood from the above analysis results, at least the above-described effects can be obtained as long as the synthetic structure satisfies the first condition. However, in order to further improve the local buckling resistance of the steel pipe pile 10, it is preferable to employ a composite structure that satisfies at least one of the second condition and the third condition in addition to the first condition.

ところで、上記実施形態では、補剛領域B1の全部に突起12が形成されている場合(つまり、コンクリート30と接触する内周面11の全部に突起12が形成されている場合)を例示したが、少なくとも第1条件を満たしてさえいれば、補剛領域B1の全部に突起12が形成されている必要はない。例えば、図9に示すように、補剛領域B1に、突起12が形成されていない領域(平坦領域A2)と、突起12が形成されている領域(突起領域A1)とが含まれていてもよい。ただし、鋼管杭10とコンクリート30との付着強度を強くするためには、補剛領域B1の全部に突起12が形成されていることが好ましい。   By the way, in the said embodiment, although the case where the processus | protrusion 12 was formed in all the stiffening area | region B1 (that is, the processus | protrusion 12 was formed in the whole inner peripheral surface 11 which contacts the concrete 30) was illustrated. As long as at least the first condition is satisfied, the protrusions 12 do not have to be formed in the entire stiffening region B1. For example, as shown in FIG. 9, even if the stiffening region B1 includes a region where the protrusion 12 is not formed (flat region A2) and a region where the protrusion 12 is formed (protrusion region A1). Good. However, in order to increase the adhesion strength between the steel pipe pile 10 and the concrete 30, it is preferable that the protrusions 12 are formed in the entire stiffening region B1.

また、上記実施形態では、突起領域A1において、補剛領域B1と素管領域B2との境界が1つ存在する場合を例示したが、例えば、図10に示すように、突起領域A1において、補剛領域B1と素管領域B2との境界が2つ存在するような合成構造を採用してもよい。図10に示す合成構造においても、少なくとも第1条件を満たす必要がある。つまり、図10において、補剛領域B1の上端から管軸方向Yの上方へ向かって延設された突起12の延設長Lと、補剛領域B1の下端から管軸方向Yの下方へ向かって延設された突起12の延設長Lとの両方が、鋼管杭10の局部座屈半波長λ以上の長さに設定される必要がある。   Further, in the above embodiment, the case where one boundary between the stiffening region B1 and the raw tube region B2 exists in the projection region A1, but for example, as shown in FIG. A composite structure in which two boundaries between the rigid region B1 and the raw tube region B2 exist may be employed. Also in the composite structure shown in FIG. 10, it is necessary to satisfy at least the first condition. That is, in FIG. 10, the extending length L of the protrusion 12 extending upward in the tube axis direction Y from the upper end of the stiffening region B1, and downward from the lower end of the stiffening region B1 in the tube axis direction Y. Both the extended length L of the extended protrusion 12 need to be set to a length equal to or longer than the local buckling half wavelength λ of the steel pipe pile 10.

また、上記実施形態では、鋼管杭10に接合される接合対象部材としてH形鋼20を例示したが、鋼管杭10に挿入可能な形状を有する物であれば、どのような接合対象部材であってもよい。
また、上記実施形態では、鋼管杭10の内周面11に突起12が設けられている場合を例示したが、この突起12に加えて、鋼管杭10の外周面から鋼管杭10の半径方向外側へ向かって突出し且つ鋼管杭10の管軸方向Yに沿って螺旋状に延設された突起が設けられていてもよい。
Moreover, in the said embodiment, although the H-section steel 20 was illustrated as a joining target member joined to the steel pipe pile 10, what kind of joining target member will be used if it has a shape which can be inserted in the steel pipe pile 10? May be.
Moreover, in the said embodiment, although the case where the processus | protrusion 12 was provided in the inner peripheral surface 11 of the steel pipe pile 10, in addition to this processus | protrusion 12, the radial direction outer side of the steel pipe pile 10 from the outer peripheral surface of the steel pipe pile 10 was illustrated. A protrusion that protrudes in a spiral manner along the pipe axis direction Y of the steel pipe pile 10 may be provided.

以上のように、上記実施形態によれば、少なくとも第1条件を満たすことにより、補剛領域B1と素管領域B2との境界において、補剛領域B1と素管領域B2とで断面剛性及び部材耐力の差異が小さくなる。 As described above, according to the above-described embodiment, by satisfying at least the first condition, the cross-sectional rigidity and the member between the stiffening region B1 and the raw tube region B2 at the boundary between the stiffening region B1 and the raw tube region B2. The difference in yield strength is reduced.

これにより、補剛領域B1と素管領域B2との境界において、補剛領域B1から素管領域B2までの断面剛性及び部材耐力を漸減させて、鋼管(鋼管杭10)の断面剛性及び部材耐力の急激な減少を防止することが可能となる。また、上記実施形態によれば、鋼管の補剛領域B1と素管領域B2との境界において、曲げ力M、軸力N、せん断力Q等の荷重に起因する鋼管に対する応力集中の発生を回避して、素管領域B2における局部座屈の発生を防止することが可能となる。 Accordingly, the cross-sectional rigidity and member strength from the stiffening region B1 to the raw pipe region B2 are gradually reduced at the boundary between the stiffening region B1 and the raw pipe region B2, and the cross-sectional rigidity and member strength of the steel pipe (steel pipe pile 10) are gradually reduced. It is possible to prevent a sudden decrease in the. Moreover, according to the said embodiment, generation | occurrence | production of the stress concentration with respect to the steel pipe resulting from loads, such as bending force M, axial force N, and shearing force Q, in the boundary of the stiffening area | region B1 of a steel pipe, and the raw pipe area | region B2. Thus, it is possible to prevent the occurrence of local buckling in the raw tube region B2.

また、上記実施形態によれば、鋼管の補剛領域B1と素管領域B2との境界において、鋼管の局部座屈抵抗を向上させることができるため、鋼管と接合対象部材との接合箇所等において、建築構造物等の支持を十分なものとすることが可能となる。 Moreover, according to the said embodiment, since the local buckling resistance of a steel pipe can be improved in the boundary of the stiffening area | region B1 and the raw pipe area | region B2 of a steel pipe, in the joining location etc. of a steel pipe and a member to be joined, etc. It is possible to provide sufficient support for building structures and the like.

また、上記実施形態では、鋼管の突起(12)を鋼管の半径方向Xの内側から視たとき、鋼管の周方向Wと突起との間の角度が、30°以上90°未満に設定されている。 Moreover, in the said embodiment, when the protrusion (12) of a steel pipe is seen from the inner side of the radial direction X of a steel pipe, the angle between the circumferential direction W of a steel pipe and a protrusion is set to 30 to 90 degrees. Yes.

これにより、上記実施形態では、突起が存在しない鋼管の薄い部位が鋼管の管周方向の断面で連続しない。その結果、鋼管の局部座屈抵抗を向上させることができるため、素管領域B2における局部座屈の発生を防止することが可能となる。 Thereby, in the said embodiment, the thin site | part of the steel pipe in which a protrusion does not exist does not continue in the cross section of the pipe circumference direction of a steel pipe. As a result, since local buckling resistance of the steel pipe can be improved, it is possible to prevent the occurrence of local buckling in the raw pipe region B2.

また、上記実施形態によれば、突起が、鋼管の管軸方向Yに沿って螺旋状に設けられているので、鋼管とコンクリート(30)との付着強度を向上させることができる。また、鋼管とコンクリートとの付着強度を向上させるために補剛領域B1に設けられた突起を、鋼管の管軸方向Yに沿ってさらに延ばして設けることができ、局部座屈抵抗を向上させた鋼管を効率的に製造することが可能となる。さらに、上記実施形態によれば、例えば、突起が設けられた鋼帯を螺旋状に造管した場合において、鋼管の製造効率を著しく向上させることが可能となる。 Moreover, according to the said embodiment, since the processus | protrusion is provided spirally along the pipe-axis direction Y of a steel pipe, the adhesive strength of a steel pipe and concrete (30) can be improved. Moreover, in order to improve the adhesion strength between the steel pipe and the concrete, the protrusion provided in the stiffening region B1 can be further extended along the pipe axis direction Y of the steel pipe, thereby improving the local buckling resistance. It becomes possible to manufacture a steel pipe efficiently. Furthermore, according to the above-described embodiment, for example, when a steel strip provided with protrusions is formed in a spiral shape, the manufacturing efficiency of the steel pipe can be significantly improved.

従来では、鋼管とコンクリートとの付着強度を確保することのみを目的とした場合に、突起が設けられた鋼帯を螺旋状に造管すること等によって、鋼管の周方向Wに対して10°〜20°程度傾斜した突起を鋼管に設けていた。   Conventionally, when the purpose is only to ensure the adhesion strength between the steel pipe and the concrete, the steel strip provided with the protrusions is formed into a spiral shape, etc., so that it is 10 ° with respect to the circumferential direction W of the steel pipe. The steel pipe was provided with a protrusion inclined by about -20 °.

これに対して、上記実施形態によれば、鋼管とコンクリートとの付着強度を確保するために突起を設ける鋼管の製造工程を直接的に利用して、鋼管の局部座屈抵抗を向上させるために、鋼管の周方向Wに対して30°以上の角度で突起を傾斜させて、突起を鋼管に効率的に設けることが可能となる。   On the other hand, according to the above embodiment, in order to improve the local buckling resistance of the steel pipe by directly using the manufacturing process of the steel pipe provided with the protrusion in order to ensure the adhesion strength between the steel pipe and the concrete. The protrusion can be efficiently provided on the steel pipe by inclining the protrusion at an angle of 30 ° or more with respect to the circumferential direction W of the steel pipe.

特に、上記実施形態によれば、突起傾斜角θを30°以上90°未満(最も好ましくは、30°≦θ≦60°)に設定することにより、鋼管に、管壁が蛇腹状に潰れるような局部座屈が発生することを確実に防止することが可能となる。また、鋼管の内周面(11)にコンクリートを確実に付着させて、鋼管とコンクリートとの付着強度を十分に確保することが可能となる。   In particular, according to the above-described embodiment, by setting the protrusion inclination angle θ to 30 ° or more and less than 90 ° (most preferably 30 ° ≦ θ ≦ 60 °), the tube wall is collapsed into a bellows shape on the steel pipe. It is possible to surely prevent the occurrence of local buckling. In addition, it is possible to reliably adhere the concrete to the inner peripheral surface (11) of the steel pipe and to sufficiently secure the adhesion strength between the steel pipe and the concrete.

また、上記実施形態では、鋼管を管軸方向Yに平行な断面で視たとき、突起の凸断面が、管軸方向Yに沿って鋼管の局部座屈半波長λ以下の間隔で並んでいる。つまり、突起の突起間隔Sが鋼管の局部座屈半波長λ以下に設定されている。 Further, in the above embodiment, when the steel pipe is viewed in a cross section parallel to the pipe axis direction Y, the convex cross section of the protrusions is arranged along the pipe axis direction Y at intervals equal to or less than the local buckling half wavelength λ of the steel pipe. . That is, the protrusion interval S between the protrusions is set to be equal to or less than the local buckling half wavelength λ of the steel pipe.

これにより、鋼管の管軸方向Yに沿って互いに隣り合う突起の間で、鋼管に作用する荷重に起因して素管領域B2に局部座屈が発生することを防止することが可能となる。 This makes it possible to prevent local buckling from occurring in the raw pipe region B2 due to the load acting on the steel pipe between the protrusions adjacent to each other along the pipe axis direction Y of the steel pipe.

また、突起の突起間隔Sが鋼管の局部座屈半波長λ以下に設定されることにより、鋼管の局部座屈抵抗がより強化され、その結果、鋼管の部材耐力を著しく向上させることが可能となる。 Further, by setting the projection spacing S of the projections to be equal to or less than the local buckling half wavelength λ of the steel pipe, the local buckling resistance of the steel pipe is further strengthened, and as a result, the member strength of the steel pipe can be remarkably improved. Become.

以上、本発明の一実施形態について詳細に説明したが、本発明は上述した実施形態に限定されず、上記実施形態によって本発明の技術的範囲が限定的に解釈されてはならない。 As mentioned above, although one Embodiment of this invention was described in detail, this invention is not limited to embodiment mentioned above, The technical scope of this invention must not be limitedly interpreted by the said embodiment.

例えば、柱材または鞘管として用いられた鋼管に突起が設けられ、梁材が接合される鞘管に柱材(接合対象部材)が挿通されて、鞘管と柱材との間にコンクリートが充填された柱と梁との接合構造に対しても本発明を適用することができる。 For example, a projection is provided on a steel pipe used as a pillar material or a sheath pipe, and a pillar material (member to be joined) is inserted into a sheath pipe to which a beam material is joined, and concrete is interposed between the sheath pipe and the pillar material. The present invention can also be applied to a joint structure between a filled column and a beam.


1:合成構造
12:突起
10:鋼管杭(鋼管)
20:H形鋼(接合対象部材)
11:鋼管杭(鋼管)の内周面
30:コンクリート
13:座屈部位
L:延設長
A1:突起領域
A2:平坦領域
B1:補剛領域
B2:素管領域
W:周方向
X:半径方向
Y:管軸方向

1: Composite structure 12: Projection 10: Steel pipe pile (steel pipe)
20: H-section steel (member to be joined)
11: Inner peripheral surface 30 of steel pipe pile (steel pipe): Concrete 13: Buckling region L: Extension length A1: Projection region A2: Flat region B1: Stiffening region B2: Raw tube region W: Circumferential direction X: Radial direction Y: Pipe axis direction

Claims (2)

鋼管と;
一端部が前記鋼管に挿入された接合対象部材と;
前記鋼管の内周面と前記接合対象部材の前記一端部との間に充填されたコンクリートと;
を備え、
前記鋼管は、前記鋼管の前記内周面から前記鋼管の半径方向内側へ向かって突出し且つ前記鋼管の管軸方向に沿って螺旋状に延設された突起を有し、
前記鋼管の前記内周面において前記コンクリートと接触する領域を補剛領域と定義し且つ前記鋼管の前記内周面において前記コンクリートと接触しない領域を素管領域と定義したとき、前記突起は、前記補剛領域と前記素管領域との境界を跨ぐように前記管軸方向に沿って前記螺旋状に延設されており、
前記素管領域における前記突起の前記管軸方向の延設長は、前記鋼管の局部座屈半波長以上であり、
前記突起を前記鋼管の前記半径方向の内側から視たとき、前記鋼管の周方向と前記突起との間の角度が、30°以上90°未満であり、
前記鋼管の前記局部座屈半波長をλ(mm)、前記鋼管の外径をD(mm)、且つ前記鋼管の板厚をt(mm)と定義したとき、前記局部座屈半波長λは下記式(1)で表され、前記鋼管の前記外径Dと前記板厚tとの比率D/tは50以上100以下であることを特徴とする合成構造。
Figure 0006386462
With steel pipes;
A joining target member having one end inserted into the steel pipe;
Concrete filled between the inner peripheral surface of the steel pipe and the one end of the member to be joined;
With
The steel pipe has a protrusion that protrudes inward in the radial direction of the steel pipe from the inner peripheral surface of the steel pipe and spirally extends along the pipe axis direction of the steel pipe,
When the region in contact with the concrete on the inner peripheral surface of the steel pipe is defined as a stiffening region and the region not in contact with the concrete on the inner peripheral surface of the steel pipe is defined as a raw tube region, the protrusion is It extends in the spiral shape along the tube axis direction so as to straddle the boundary between the stiffening region and the raw tube region,
The extension length of the projection in the pipe axis direction in the raw pipe region is equal to or greater than the local buckling half wavelength of the steel pipe,
When the projection is viewed from the inside in the radial direction of the steel pipe, an angle between the circumferential direction of the steel pipe and the projection is 30 ° or more and less than 90 °,
When the local buckling half wavelength of the steel pipe is defined as λ (mm), the outer diameter of the steel pipe is defined as D (mm), and the plate thickness of the steel pipe is defined as t (mm), the local buckling half wavelength λ is A composite structure represented by the following formula (1), wherein a ratio D / t between the outer diameter D and the plate thickness t of the steel pipe is 50 or more and 100 or less.
Figure 0006386462
前記鋼管を前記管軸方向に平行な断面で視たとき、前記突起の凸断面が、前記管軸方向に沿って前記局部座屈半波長λ以下の間隔で並んでいることを特徴とする請求項に記載の合成構造。 When the steel pipe is viewed in a cross section parallel to the pipe axis direction, the convex cross sections of the protrusions are arranged at intervals of the local buckling half-wavelength λ or less along the pipe axis direction. Item 2. A synthetic structure according to Item 1 .
JP2015539092A 2013-09-25 2014-09-10 Composite structure Expired - Fee Related JP6386462B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013197688 2013-09-25
JP2013197688 2013-09-25
PCT/JP2014/073921 WO2015045872A1 (en) 2013-09-25 2014-09-10 Composite structure

Publications (2)

Publication Number Publication Date
JPWO2015045872A1 JPWO2015045872A1 (en) 2017-03-09
JP6386462B2 true JP6386462B2 (en) 2018-09-05

Family

ID=52743016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015539092A Expired - Fee Related JP6386462B2 (en) 2013-09-25 2014-09-10 Composite structure

Country Status (4)

Country Link
JP (1) JP6386462B2 (en)
AU (1) AU2014325437B2 (en)
CA (1) CA2920289C (en)
WO (1) WO2015045872A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6575422B2 (en) * 2016-04-11 2019-09-18 Jfeエンジニアリング株式会社 Jacket structure
CN109404224A (en) * 2018-12-10 2019-03-01 重庆大学 It is a kind of based on edge put more energy into combined shell wind-powered electricity generation mix tower

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220139A (en) * 1999-02-03 2000-08-08 Nippon Steel Corp Steel pipe pile for inner digging
JP3690496B2 (en) * 2000-11-06 2005-08-31 清水建設株式会社 Foundation structure of building and construction method of foundation
JP2006292088A (en) * 2005-04-12 2006-10-26 Nippon Steel Corp Steel pipe having superior pipe end buckling deformation-proof property
JP2009197472A (en) * 2008-02-21 2009-09-03 Nippon Steel Corp Steel pipe pile and foundation structure
JP2011144562A (en) * 2010-01-15 2011-07-28 Nippon Steel Engineering Co Ltd Steel pipe, steel pipe pile, and manufacturing method for steel pipe

Also Published As

Publication number Publication date
CA2920289A1 (en) 2015-04-02
AU2014325437A1 (en) 2016-01-07
WO2015045872A1 (en) 2015-04-02
JPWO2015045872A1 (en) 2017-03-09
AU2014325437B2 (en) 2016-10-13
CA2920289C (en) 2018-05-01

Similar Documents

Publication Publication Date Title
US9212486B2 (en) Column structure and base member
KR20140021277A (en) Hollow core pc composite column for src columns and src structures using the same
JP4762941B2 (en) Concrete-filled steel segment and its design method
JP2017057665A (en) Column-beam joining structure
JP6386462B2 (en) Composite structure
JP2011001792A (en) Beam-column joint part structure of rigid frame skeleton and rolled h-steel
JP5456947B1 (en) Composite pile
JP6393516B2 (en) Heterogeneous steel beam joint structure
KR101549088B1 (en) Steel-Concrete Composite Pipe and the Connection Structure
JP4819605B2 (en) Precast prestressed concrete beams using tendons with different strength at the end and center
JP2019127800A (en) Truss beam
JP5382968B2 (en) PC steel sheath
JP6646206B2 (en) Joint structure of RC members
JP2014098288A (en) Sheath for PC steel
JP5510597B1 (en) Circular ring reinforcing beam member
JP6357357B2 (en) Concrete structure
JP6432764B2 (en) Column connection structure
JP7234084B2 (en) Steel beam with floor slab and its reinforcement method
JP2007239238A (en) Reinforced soil wall constructing implement and reinforced soil wall using this implement
JP2017053101A (en) Design method for structure for joining columns together, and structure for joining columns together
JP4062706B2 (en) Bonding structure
JP6390284B2 (en) Beam-column joint structure
JP6682903B2 (en) Buckling stiffening structure and steel structure of H-shaped cross-section member
JP6499421B2 (en) Shear reinforcement and rebar assembly
TWM498783U (en) Reinforcement steel bar structure of reinforced concrete beam through hole structure

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180809

R150 Certificate of patent or registration of utility model

Ref document number: 6386462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees