JP6384447B2 - Continuous casting method - Google Patents

Continuous casting method Download PDF

Info

Publication number
JP6384447B2
JP6384447B2 JP2015203406A JP2015203406A JP6384447B2 JP 6384447 B2 JP6384447 B2 JP 6384447B2 JP 2015203406 A JP2015203406 A JP 2015203406A JP 2015203406 A JP2015203406 A JP 2015203406A JP 6384447 B2 JP6384447 B2 JP 6384447B2
Authority
JP
Japan
Prior art keywords
slab
magnetic field
molten steel
continuous casting
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015203406A
Other languages
Japanese (ja)
Other versions
JP2017074603A (en
Inventor
智也 小田垣
智也 小田垣
則親 荒牧
則親 荒牧
三木 祐司
祐司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015203406A priority Critical patent/JP6384447B2/en
Publication of JP2017074603A publication Critical patent/JP2017074603A/en
Application granted granted Critical
Publication of JP6384447B2 publication Critical patent/JP6384447B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、鋳片の中心偏析の低減に有効な鋼の連続鋳造方法に関するものである。   The present invention relates to a continuous casting method of steel effective in reducing the center segregation of a slab.

鋼の連続鋳造において、鋳型に注入された溶鋼は、凝固する過程でPやS、Mn等の溶質元素を溶鋼中に排出する。これらの溶質元素は、残された溶鋼中に濃化していわゆる偏析が生じる。この偏析の程度は、最終凝固する連続鋳造鋳片(以降、鋳片という場合がある。)の中心部で最大となる。また、溶鋼は、凝固する過程で数%の体積収縮を起こす。この体積収縮は、鋳片の凝固末期部近傍の等軸晶を多量に含有する固/液共存領域に負圧の空隙部を発生させる。その結果、溶質元素が濃化した溶鋼(以降、濃化溶鋼という場合がある。)は、固/液共存領域における狭い通路を潜り抜けて負圧空隙部に吸引されて鋳片の中心部に中心偏析を形成する。   In continuous casting of steel, molten steel injected into a mold discharges solute elements such as P, S, and Mn into the molten steel in the process of solidification. These solute elements are concentrated in the remaining molten steel and so-called segregation occurs. The degree of segregation is maximized at the center of a continuous cast slab (hereinafter sometimes referred to as a slab) that solidifies. In addition, molten steel causes volume shrinkage of several percent during the solidification process. This volume shrinkage generates a negative pressure void in a solid / liquid coexistence region containing a large amount of equiaxed crystals near the end of solidification of the slab. As a result, the molten steel enriched in the solute element (hereinafter sometimes referred to as concentrated molten steel) passes through the narrow passage in the solid / liquid coexistence region and is sucked into the negative pressure gap to enter the center of the slab. Central segregation is formed.

中心偏析は、製品品質に悪影響を及ぼす。そのため、中心偏析を低減するために各種技術が提案され、実施されている。特許文献1には、タンディッシュ内の溶鋼過熱度を50℃以下にして鋳型に注入し、ストランド内の溶鋼に電磁気力を作用させて攪拌し、鋳片中心部の凝固組織を微細な等軸晶にすることが開示されている。さらに、ストランド横断面中心部の固相率が10から80%の範囲において、未凝固部を5mmから50mm軽圧下して凝固収縮を補償することで凝固末期の濃化溶鋼の流動を抑制することが開示されている。   Central segregation adversely affects product quality. Therefore, various techniques have been proposed and implemented in order to reduce center segregation. In Patent Document 1, the molten steel superheat degree in the tundish is set to 50 ° C. or less, poured into a mold, electromagnetic force is applied to the molten steel in the strand, and the solidified structure in the center of the slab is finely equiaxed. Crystallization is disclosed. Furthermore, in the range where the solid phase ratio in the central part of the strand cross-section is in the range of 10 to 80%, the flow of the concentrated molten steel at the end of solidification is suppressed by lightly reducing the unsolidified part by 5 to 50 mm to compensate for the solidification shrinkage. Is disclosed.

特許文献2には、鋳型下端で静磁場印加による流動制御を行い柱状晶化することで凝固界面を均一化し、加えて軽圧下することで中心偏析を改善することが開示されている。   Patent Document 2 discloses that the solidification interface is made uniform by performing flow control by applying a static magnetic field at the lower end of the mold to make the solidified interface uniform, and in addition, the center segregation is improved by lightly reducing.

特許文献3には、溶鋼過熱度を50℃から80℃として凝固組織が柱状晶になるようにし、鋳片の固相率が30%から75%の位置で静磁場を印加して中心偏析を改善することが開示されている。   In Patent Document 3, the degree of superheating of molten steel is set to 50 ° C. to 80 ° C. so that the solidified structure becomes columnar crystals, and the center segregation is performed by applying a static magnetic field at a position where the solid phase ratio of the slab is 30% to 75%. Improvements are disclosed.

特開平6−126405号公報JP-A-6-126405 特開平7−100608号公報JP-A-7-1000060 特開2008−221278号公報JP 2008-212278 A

しかしながら、特許文献1に開示された電磁気力による攪拌と軽圧下を併用する技術は、電磁気力の攪拌によって鋳片中心部の凝固組織を微細な等軸晶にし、中心部の流動抵抗を増大して鋳片中心部への濃化溶鋼の流動および集積を軽減する。さらに、当該技術は、凝固末期軽圧下により凝固収縮を補償することで、濃化溶鋼の流動駆動力を低減して流動を抑制する。これにより、高い中心偏析低減効果が期待できる。しかし、厳しい品質要求に応えるためには、特許文献1に開示された技術では不十分であり、等軸晶組織内の中心偏析を、さらに改善する必要がある。   However, the technique using both electromagnetic stirring and light pressure disclosed in Patent Document 1 makes the solidification structure of the slab center part a fine equiaxed crystal by the electromagnetic force stirring, and increases the flow resistance of the center part. This reduces the flow and accumulation of concentrated molten steel in the center of the slab. Furthermore, the technique reduces the flow driving force of the concentrated molten steel and suppresses the flow by compensating for the solidification shrinkage due to the light pressure at the end of solidification. Thereby, a high center segregation reduction effect can be expected. However, in order to meet strict quality requirements, the technique disclosed in Patent Document 1 is insufficient, and it is necessary to further improve the center segregation in the equiaxed crystal structure.

また、電磁力による組織制御技術において、例えば、特許文献2に開示された技術は、磁場を印加する鋳片部位が鋳型下端にあるため、この部位に磁場を印加しても中心偏析に影響する凝固末期には効果はなく、柱状晶化することができない。   In addition, in the structure control technique using electromagnetic force, for example, the technique disclosed in Patent Document 2 has a slab part to which a magnetic field is applied at the lower end of the mold, so that even if a magnetic field is applied to this part, the center segregation is affected. There is no effect at the end of solidification and columnar crystallization cannot be achieved.

また、特許文献3に記載された技術は、溶鋼過熱度を50〜80℃とすることで、組織を完全に柱状晶化できる。しかしながら、当該技術は、溶鋼過熱度を50℃以上にするのでシェル厚不足によるブレイクアウトの危険性が非常に高くなる。その対応として鋳造速度を落とす必要があるので生産性が悪くなる。   Moreover, the technique described in patent document 3 can completely crystallize a structure | tissue by making molten steel superheat degree into 50-80 degreeC. However, in this technique, the superheat degree of the molten steel is set to 50 ° C. or higher, so that the risk of breakout due to insufficient shell thickness is extremely high. As a countermeasure, it is necessary to reduce the casting speed, so that productivity is deteriorated.

本発明は、従来技術が抱えるこれらの問題点を解決するものであって、その目的は、近年における内部品質への厳しい要求にも応えられる中心偏析のない鋳片を製造することができる鋼の連続鋳造方法を提案することにある。   The present invention solves these problems of the prior art, and its purpose is to produce a slab free of center segregation that can meet strict requirements for internal quality in recent years. The purpose is to propose a continuous casting method.

このような課題を解決するための本発明の特徴は以下の通りである。
[1]連続鋳造機に静磁場発生装置を設置し、鋳型から引き抜かれた鋳片の中心固相率が、下記数式(1)で表される範囲の少なくとも一部で、前記鋳片の引き抜き方向と直交する方向の静磁場を磁場強度が0.15T以上であって、下記数式(2)で表される印加時間率が10%以上となるように前記鋳片に静磁場を印加することを特徴とする連続鋳造方法。


ただし、fsは、前記鋳片の中心固相率を表す。
[2]前記鋳片の中心固相率が0.3である場合において下記数式(3)の値が0.27以上であることを特徴とする[1]に記載の連続鋳造方法。


ただし、Gは、前記鋳片の中心固相率が0.3の点を通って、その点での鋳造方向に直交する直線上の固相率が0.99となる点の温度勾配(℃/mm)を表し、Vは、前記鋳片の固液界面の移動速度(mm/min)を表す。
The features of the present invention for solving such problems are as follows.
[1] A static magnetic field generator is installed in a continuous casting machine, and the solid phase ratio of the slab drawn from the mold is at least part of the range represented by the following mathematical formula (1), and the slab is drawn out. Applying a static magnetic field to the slab so that the static magnetic field in a direction orthogonal to the direction has a magnetic field strength of 0.15 T or more and an application time rate represented by the following formula (2) is 10% or more. A continuous casting method characterized by the above.


Here, fs represents the central solid phase ratio of the slab.
[2] The continuous casting method according to [1], wherein the value of the following mathematical formula (3) is 0.27 or more when the center solid phase ratio of the slab is 0.3.


However, G is a temperature gradient (° C.) at which the solid phase ratio on the straight line perpendicular to the casting direction at that point passes through a point where the central solid phase ratio of the slab is 0.3 and is 0.99. / Mm), and V represents the moving speed (mm / min) of the solid-liquid interface of the slab.

本発明によれば、濃化溶鋼に電磁力を作用させて、凝固組織の平均偏析粒径を小さくして凝固界面を均一化できる。これにより、連続鋳造機によて鋳造された鋳片のP、SまたはMn等の溶質元素の中心偏析を低減できる。   According to the present invention, it is possible to make the solidification interface uniform by reducing the average segregation particle size of the solidified structure by applying an electromagnetic force to the concentrated molten steel. Thereby, the center segregation of solute elements, such as P, S, or Mn, of the slab cast by the continuous casting machine can be reduced.

本発明の実施形態に係る連続鋳造方法が用いられる連続鋳造機10の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the continuous casting machine 10 in which the continuous casting method which concerns on embodiment of this invention is used. 磁場強度ごとに平均偏析粒径と印加時間率との関係を示したグラフである。It is the graph which showed the relationship between an average segregation particle size and an application time rate for every magnetic field intensity. 印加時間率ごとに平均偏析粒径と磁場強度との関係を示したグラフである。It is the graph which showed the relationship between average segregation particle size and magnetic field intensity for every application time rate.

図1は、本発明の実施形態に係る連続鋳造方法が用いられる連続鋳造機10の一例を示す断面模式図である。図1において、12はモールドを示し、14は溶鋼を示し、16は凝固シェルを示し、18、20は、静磁場発生装置を示す。また、連続鋳造機10は、鋳片を引き抜くための厚さ方向の側面に設けられた複数のロール群を有するセグメント(不図示)を備える。   FIG. 1 is a schematic cross-sectional view showing an example of a continuous casting machine 10 in which a continuous casting method according to an embodiment of the present invention is used. In FIG. 1, 12 indicates a mold, 14 indicates molten steel, 16 indicates a solidified shell, and 18 and 20 indicate static magnetic field generators. Moreover, the continuous casting machine 10 is provided with a segment (not shown) having a plurality of roll groups provided on the side surface in the thickness direction for pulling out a cast piece.

静磁場発生装置18、20は、例えば、磁場印加コイルであって溶鋼14の中心固相率fsが0.24から0.30となる位置のセグメントに設けられている。静磁場発生装置18、20は、鋳片の引き抜き方向と直交する方向の静磁場を溶鋼14に印加する。溶鋼14は、磁場印加コイルから静磁場が印加されることによって、鋳片の引き抜き方向と直交する方向の熱対流が抑制され、当該方向における溶鋼14の温度勾配は増大する。溶鋼の温度勾配を増大させることで、溶鋼14の厚さ方向中心における凝固組織を柱状晶化することで凝固界面を均一化できるので凝固末期の空隙部の発生を抑制できる。これにより、連続鋳造機10で連続鋳造される鋳片の中心偏析を低減させることができる。   The static magnetic field generators 18 and 20 are, for example, provided in segments at positions where the central solid phase ratio fs of the molten steel 14 is 0.24 to 0.30, which is a magnetic field application coil. The static magnetic field generators 18 and 20 apply a static magnetic field in a direction orthogonal to the drawing direction of the slab to the molten steel 14. When a static magnetic field is applied to the molten steel 14 from the magnetic field application coil, thermal convection in a direction orthogonal to the drawing direction of the slab is suppressed, and the temperature gradient of the molten steel 14 in that direction increases. By increasing the temperature gradient of the molten steel, the solidification interface can be made uniform by columnar crystallization of the solidified structure at the center in the thickness direction of the molten steel 14, so that the generation of voids at the end of solidification can be suppressed. Thereby, the center segregation of the slab continuously cast by the continuous casting machine 10 can be reduced.

静磁場発生装置18、20は、溶鋼14の中心固相率fsが、0より大きく、0.3以下となる位置に、鋳片の引き抜き方向と直交する方向の静磁場を印加するように設置されればよい。溶鋼14の熱対流は、中心固相率fsが低く溶鋼14の流動性が高い場合に発生し、溶鋼14の中心固相率fsが高く溶鋼14の流動性が低い場合には発生しない。そのため、中心固相率fsが0より大きく、0.3以下となる位置に静磁場を印加することによって効果的に熱対流を抑制し、その結果、溶鋼14の厚さ方向中心における凝固組織平均偏析粒径を小さくすることができる。   The static magnetic field generators 18 and 20 are installed so as to apply a static magnetic field in a direction orthogonal to the drawing direction of the slab at a position where the central solid phase ratio fs of the molten steel 14 is greater than 0 and equal to or less than 0.3. It only has to be done. Thermal convection of the molten steel 14 occurs when the central solid fraction fs is low and the fluidity of the molten steel 14 is high, and does not occur when the central solid fraction fs of the molten steel 14 is high and the fluidity of the molten steel 14 is low. Therefore, the thermal convection is effectively suppressed by applying a static magnetic field to a position where the central solid phase ratio fs is greater than 0 and less than or equal to 0.3, and as a result, the average solidification structure at the center in the thickness direction of the molten steel 14 The segregated particle size can be reduced.

なお、溶鋼14の中心固相率fsとは、鋳片の引き抜き方向に対して垂直となる方向の断面における中心点の固相率をいう。溶鋼14の中心固相率fsは、溶鋼14の中心点の溶鋼温度から算出できる。すなわち、固相率0の溶鋼温度と、固相率1.0の溶鋼温度との固相率差および温度差との対応関係から、溶鋼温度と固相率との関係式を算出できるので、溶鋼14の中心点の溶鋼温度が算出できれば、当該溶鋼温度に対応した固相率は算出できる。   In addition, the center solid phase rate fs of the molten steel 14 means the solid phase rate of the center point in the cross section in the direction perpendicular to the drawing direction of the slab. The central solid fraction fs of the molten steel 14 can be calculated from the molten steel temperature at the central point of the molten steel 14. That is, the relational expression between the molten steel temperature and the solid fraction can be calculated from the correspondence between the solid fraction difference and the temperature difference between the molten steel temperature with a solid fraction of 0 and the molten steel temperature with a solid fraction of 1.0. If the molten steel temperature at the center point of the molten steel 14 can be calculated, the solid fraction corresponding to the molten steel temperature can be calculated.

また、溶鋼14の中心点の温度は、凝固シェル16の表面温度と、社団法人日本鉄鋼協会、「連続鋼片過熱炉における伝熱実験と計算方法」、社団法人日本鉄鋼協会、昭和46年5月10日発行、に記載された伝熱計算式とを用いて算出できる。凝固シェル16に熱電対を設け、凝固シェル16の表面温度の温度変化を取得することで、引き抜き方向における凝固シェル表面の温度プロファイルが取得できる。取得した凝固シェルの表面温度プロファイルと伝熱計算式とを用いて、溶鋼14の中心点の引き抜き方向に沿った温度プロファイルが算出できる。中心点の温度プロファイルと予め算出された溶鋼温度と固相率との関係式とを用いて、溶鋼14の引き抜き方向の沿った中心固相率fsのプロファイルが算出できる。算出した溶鋼14の中心固相率fsのプロファイルに基づいて、連続鋳造機10における静磁場発生装置18、20の設置位置は定められる。   Moreover, the temperature of the center point of the molten steel 14 is the surface temperature of the solidified shell 16, the Japan Iron and Steel Institute, “Heat transfer experiment and calculation method in a continuous slab superheated furnace”, Japan Iron and Steel Association, 1971 It can be calculated using the heat transfer calculation formula described in “Issued on March 10”. By providing a thermocouple in the solidified shell 16 and acquiring the temperature change of the surface temperature of the solidified shell 16, the temperature profile of the solidified shell surface in the drawing direction can be acquired. A temperature profile along the drawing direction of the center point of the molten steel 14 can be calculated using the obtained surface temperature profile of the solidified shell and the heat transfer calculation formula. The profile of the central solid fraction fs along the drawing direction of the molten steel 14 can be calculated using the temperature profile of the central point and the relational expression between the molten steel temperature and the solid fraction calculated in advance. Based on the calculated profile of the central solid fraction fs of the molten steel 14, the installation positions of the static magnetic field generators 18 and 20 in the continuous casting machine 10 are determined.

また、溶鋼14に印加する磁場強度は、0.15T以上である。印加する磁場強度が0.15Tより小さいと、溶鋼14の厚さ方向中心における凝固組織の平均偏析粒径を小さくできず、鋳片の中心偏析を抑制できない。   Moreover, the magnetic field strength applied to the molten steel 14 is 0.15 T or more. If the applied magnetic field strength is smaller than 0.15 T, the average segregation grain size of the solidified structure at the center in the thickness direction of the molten steel 14 cannot be reduced, and the center segregation of the slab cannot be suppressed.

また、溶鋼14に0.15T以上の磁場強度の静磁場を印加する印加時間率は、10%以上である。印加時間率が10%より短いと、溶鋼14の厚さ方向中心における凝固組織を柱状晶にすることができず、鋳片の中心偏析を抑制できない。なお、印加時間率とは、下記数式(2)で算出される割合(%)である。   Moreover, the application time rate which applies the static magnetic field of the magnetic field strength of 0.15T or more to the molten steel 14 is 10% or more. If the application time rate is shorter than 10%, the solidified structure at the center in the thickness direction of the molten steel 14 cannot be made columnar crystals, and the center segregation of the slab cannot be suppressed. The application time rate is a ratio (%) calculated by the following mathematical formula (2).

また、さらに鋳片の中心偏析を抑制するためには溶鋼14の温度勾配と凝固速度を制御して凝固組織を均一な柱状晶にすることがより好ましい。温度勾配Gを鋳片の中心固相率が0.3の点を通って、その点での鋳造方向に直交する直線上の固相率が0.99となる点の温度勾配(℃/mm)とし、凝固速度Vを鋳片の固液界面の移動速度(mm/min)とすると、中心固相率fsが0.3である場合に、温度勾配Gおよび凝固速度Vからなる下記数式(3)が0.27以上であることが好ましい。これにより、溶鋼14の厚さ方向中心における凝固組織を均一な柱状晶にでき、連続鋳造機10で連続鋳造される鋳片の中心偏析をさらに抑制できる。   Further, in order to further suppress the center segregation of the slab, it is more preferable to control the temperature gradient and solidification rate of the molten steel 14 to make the solidified structure uniform columnar crystals. The temperature gradient (° C./mm) at the point where the solid phase ratio on the straight line orthogonal to the casting direction at that point passes through the point where the central solid fraction of the slab is 0.3 and the temperature gradient G is 0.99. ), And the solidification rate V is the moving speed (mm / min) of the solid-liquid interface of the slab, the following formula consisting of the temperature gradient G and the solidification rate V when the central solid phase ratio fs is 0.3 ( 3) is preferably 0.27 or more. Thereby, the solidification structure | tissue in the thickness direction center of the molten steel 14 can be made into a uniform columnar crystal, and the center segregation of the slab continuously cast by the continuous casting machine 10 can be further suppressed.

一方、上記数式(3)が、0.27より小さいと、溶鋼14の厚さ方向中心における凝固組織を均一な柱状晶にすることができず、連続鋳造機10で連続鋳造される鋳片の中心偏析をさらに抑制できない。   On the other hand, if the numerical formula (3) is smaller than 0.27, the solidified structure at the center in the thickness direction of the molten steel 14 cannot be made into a uniform columnar crystal, and the slab continuously cast by the continuous casting machine 10 Central segregation cannot be further suppressed.

鋳片の中心偏析の確認は、鋳片の中心部分を、厚み50mm、幅410mm、長さ80mmの大きさに切り出したサンプルを用いて評価できる。具体的には、切り出したサンプルの鋳造方向に平行な断面を飽和ピクリン酸を用いてエッチングしてマクロ組織を現出させ、鋳片の厚み中央部で観察される偏析粒径が5mm程度のマクロ偏析および偏析粒径が1mm程度のセミマクロ偏析粒を写真撮影する。そして、撮影した写真を画像解析して、偏析粒の平均面積を測定し、この平均面積から円相当の平均粒径(平均偏析粒径)を算出することで偏析粒の大きさを評価した。   Confirmation of the center segregation of the slab can be evaluated using a sample obtained by cutting the center part of the slab into a size having a thickness of 50 mm, a width of 410 mm, and a length of 80 mm. Specifically, a cross section parallel to the casting direction of the cut sample is etched with saturated picric acid to reveal a macro structure, and a macro particle having a segregation particle size of about 5 mm observed at the center of the thickness of the slab. A semi-macrosegregated grain having a segregation and a segregated grain size of about 1 mm is photographed. And the image | photographed photograph was image-analyzed, the average area of the segregated grain was measured, and the magnitude | size of the segregated grain was evaluated by calculating the average particle diameter (average segregated grain size) equivalent to a circle from this average area.

偏析粒は、溶鋼の凝固の進行にともなって鋳片の表裏面から成長した柱状晶が衝突する厚さ方向中央部の最終凝固組織であり、この偏析粒の大きさ(偏析粒径)は、中心偏析が大きいほど大きくなり、それに伴って、加工性等が低下することが知られている。すなわち、偏析粒径を小さくすることは、中心偏析を小さくすることを意味するので、偏析粒径を測定することで鋳片の中心偏析を評価できる。   The segregated grain is the final solidified structure in the central part in the thickness direction where the columnar crystals grown from the front and back surfaces of the slab collide with the progress of solidification of the molten steel. The size of the segregated grain (segregated grain size) is It is known that the larger the center segregation, the larger the process, and the workability and the like are reduced accordingly. That is, reducing the segregation particle size means reducing the center segregation, so that the center segregation of the slab can be evaluated by measuring the segregation particle size.

図1に示した連続鋳造機10と同じ構成であって、機長が19.9m、湾曲半径が15m、鋳造される鋳片の断面サイズが410×250mmのブルーム連続鋳造機を用いて鋳片を連続鋳造した。なお、モールド12に注入される溶鋼成分は、C:0.7質量%、Si:0.2質量%、Mn:0.9質量%を含み、鋳片の引き抜き速度を0.8m/minとし、溶鋼過熱度(タンディッシュでの溶鋼温度−液相線温度)を20℃とした。   The same configuration as the continuous casting machine 10 shown in FIG. 1, the length of the cast slab is 19.9 m, the radius of curvature is 15 m, and the slab to be cast has a sectional size of 410 × 250 mm. Continuous casting. The molten steel component injected into the mold 12 includes C: 0.7% by mass, Si: 0.2% by mass, Mn: 0.9% by mass, and the drawing rate of the slab is 0.8 m / min. The degree of superheat of the molten steel (molten steel temperature in the tundish−liquidus temperature) was set to 20 ° C.

鋳片の中心固相率fsが0.24から0.30となる位置に静磁場発生装置18、20を設置し、印加時間率が2%、5%、8%、10%、15%および20%となるように、また、磁場強度が0.05T、0.1T、0.15T、0.2T、0.3Tとなるように、印加時間率および磁場強度を振って連続鋳造した。表1に各鋳片の中心部の凝固組織と測定した平均偏析粒径を示す。なお、中心部の凝固組織は、上述したように、サンプルの断面を飽和ピクリン酸を用いてエッチングしてマクロ組織を現出させ、当該組織を目視観察することにより凝固組織の種類を確認した。また、平均偏析粒径も上述したように、偏析粒の平均面積を測定し、この平均面積から算出される円相当の平均粒径を平均偏析粒径とした。   Static magnetic field generators 18 and 20 are installed at positions where the center solid phase ratio fs of the slab is 0.24 to 0.30, and the application time ratio is 2%, 5%, 8%, 10%, 15% and Continuous casting was performed while varying the application time rate and the magnetic field strength so that the magnetic field strength was 0.05T, 0.1T, 0.15T, 0.2T, and 0.3T. Table 1 shows the solidification structure at the center of each slab and the measured average segregation particle size. As described above, the solidified structure in the central part was confirmed by etching the cross section of the sample with saturated picric acid to reveal a macrostructure and visually observing the structure to confirm the type of the solidified structure. Further, as described above, the average segregated particle diameter was also measured as the average area of the segregated grains, and the average particle diameter corresponding to the circle calculated from the average area was defined as the average segregated particle diameter.

図2は、表1に示した測定結果を、磁場強度ごとに平均偏析粒径と印加時間率との関係を示したグラフであり、図3は、表1に示した測定結果を、印加時間率ごとに平均偏析粒径と磁場強度との関係を示したグラフである。   FIG. 2 is a graph showing the relationship between the average segregation particle size and the application time rate for each magnetic field strength, and FIG. 3 shows the measurement result shown in Table 1 with the application time. It is the graph which showed the relationship between average segregation particle size and magnetic field intensity for every rate.

図2から、磁場強度が0.1T以下であると、印加時間率を大きくしても平均偏析粒径は、ほとんど変化しないことが見て取れる。一方、磁場強度が0.15T以上であると、印加時間率を8%以上にすることで、平均偏析粒径を小さくできることが見て取れる。   From FIG. 2, it can be seen that when the magnetic field strength is 0.1 T or less, the average segregation particle diameter hardly changes even when the application time rate is increased. On the other hand, it can be seen that when the magnetic field strength is 0.15 T or more, the average segregation particle size can be reduced by setting the application time rate to 8% or more.

図3から、印加時間率が5%以下であると、磁場強度を大きくしても平均偏析粒径は、ほとんど変化しないことが見て取れる。一方、印加時間率が8%以上であれば、磁場強度を0.15T以上とすることで、平均偏析粒径を小さくできることが見て取れる。   From FIG. 3, it can be seen that when the application time rate is 5% or less, the average segregation particle diameter hardly changes even when the magnetic field strength is increased. On the other hand, when the application time rate is 8% or more, it can be seen that the average segregation particle size can be reduced by setting the magnetic field strength to 0.15 T or more.

また、表1から磁場強度が0.05T以上であれば、印加時間率を10%以上にすることで、中心部の凝固組織を柱状晶にできることが見て取れる。これらの結果から、連続鋳造機10には、鋳片の中心固相率fsが0より大きく0.3以下となる範囲の少なくとも一部に静磁場発生装置18、20が設けられるとともに、静磁場発生装置18、20は、磁場印加時間率を10%以上、磁場印加強度を0.15T以上とした静磁場を溶鋼14に印加しながら連続鋳造する。静磁場発生装置18、20は、溶鋼14の熱対流を抑制して、溶鋼14の温度勾配は増大させる。これにより、鋳片の中心部の凝固組織を柱状晶化し、中心部の凝固組織の平均偏析粒径が小さい中心偏析が改善された鋳片を連続鋳造できる。   Further, it can be seen from Table 1 that if the magnetic field strength is 0.05 T or more, the solidification structure at the center can be made columnar crystals by setting the application time rate to 10% or more. From these results, the continuous casting machine 10 is provided with the static magnetic field generators 18 and 20 in at least a part of the range in which the central solid phase ratio fs of the slab is greater than 0 and 0.3 or less, and the static magnetic field The generators 18 and 20 perform continuous casting while applying a static magnetic field with a magnetic field application time rate of 10% or more and a magnetic field application strength of 0.15 T or more to the molten steel 14. The static magnetic field generators 18 and 20 suppress the thermal convection of the molten steel 14 and increase the temperature gradient of the molten steel 14. Thereby, the solidified structure of the center part of the slab can be converted into columnar crystals, and a slab having improved center segregation with a small average segregation particle size of the solidified structure of the center part can be continuously cast.

また、凝固組織を柱状晶化させるためには温度勾配と凝固速度とを制御することが好ましい。具体的に、温度勾配が小さい場合には凝固速度を遅くし、温度勾配が大きい場合には凝固速度を速くしても均一な柱状晶組織が形成されると予測し、水冷鋳型を用いて温度勾配Gと凝固速度Vとの関係を調査した。なお、静磁場は、中心固相率fsが0.3である溶鋼14に印加し、水冷は、鋳型の長辺面のみに行なった。   In order to crystallize the solidified structure, it is preferable to control the temperature gradient and the solidification rate. Specifically, when the temperature gradient is small, the solidification rate is slowed down, and when the temperature gradient is large, it is predicted that a uniform columnar crystal structure will be formed even if the solidification rate is increased. The relationship between the gradient G and the solidification rate V was investigated. A static magnetic field was applied to the molten steel 14 having a central solid phase ratio fs of 0.3, and water cooling was performed only on the long side surface of the mold.

上述したように、温度勾配Gは、鋳片の中心固相率が0.3の点を通って、その点での鋳造方向に直交する直線上の固相率が0.99となる点の温度勾配(℃/mm)を表す。また、凝固速度Vは、鋳片の固液界面の移動速度(mm/min)を表す。固相率0.99となる点の温度勾配(℃/mm)は、鋳片に2本のR熱電対(長辺1/2短辺1/2位置、長辺1/2短辺1/4位置)を設け、当該熱電対から出力される温度データと伝熱計算式とから、溶鋼14の中心に向かう方向に沿った温度プロファイルから算出する。温度勾配は、当該温度プロファイルから算出される固相率が0.99となる点の前後の温度と、当該前後の距離とを用いて算出した。   As described above, the temperature gradient G passes through the point where the central solid fraction of the slab is 0.3 and the solid fraction on the straight line perpendicular to the casting direction at that point is 0.99. Represents a temperature gradient (° C./mm). The solidification speed V represents the moving speed (mm / min) of the solid-liquid interface of the slab. The temperature gradient (° C./mm) at the point at which the solid phase ratio becomes 0.99 is determined as follows: two R thermocouples (long side 1/2 short side 1/2 position, long side 1/2 short side 1 / 4 positions), and is calculated from the temperature profile along the direction toward the center of the molten steel 14 from the temperature data output from the thermocouple and the heat transfer calculation formula. The temperature gradient was calculated using the temperature before and after the point where the solid phase ratio calculated from the temperature profile was 0.99, and the distance before and after the temperature.

鋳片の固液界面の位置は、熱電対から出力される温度データと伝熱計算式とから算出される溶鋼14内の温度プロファイルから算出できる。鋳片の固液界面の移動速度(mm/min)は、当該温度プロファイルの時間当たりの変化量を用いて算出した。   The position of the solid-liquid interface of the slab can be calculated from the temperature profile in the molten steel 14 calculated from the temperature data output from the thermocouple and the heat transfer calculation formula. The moving speed (mm / min) of the solid-liquid interface of the slab was calculated using the amount of change per time of the temperature profile.

温度勾配Gおよび凝固速度Vの関係を調査した結果を表2に示す。表2から下記数式(3)の値が0.19より小さい場合は、鋳片の中心部においてデンドライト成長方向がばらついている等軸晶組織が観察された。一方、下記数式(3)の値が0.19以上の場合は、柱状晶組織が形成され、下記数式(3)の値が0.27以上の場合は、均一な柱状晶が形成していることが観察された。   The results of investigating the relationship between the temperature gradient G and the solidification rate V are shown in Table 2. When the value of the following formula (3) is smaller than 0.19 from Table 2, an equiaxed crystal structure in which the dendrite growth direction varies in the center portion of the slab was observed. On the other hand, when the value of the following formula (3) is 0.19 or more, a columnar crystal structure is formed, and when the value of the following formula (3) is 0.27 or more, a uniform columnar crystal is formed. It was observed.

表2から、上記数式(3)の値が0.27以上になるよう温度勾配Gおよび凝固速度Vを制御することによって、鋳片の中心部の凝固組織における平均偏析粒径を小さくし、さらに中心部の凝固組織を均一な柱状晶にすることができる。これにより、連続鋳造機によて鋳造された鋳片の溶質元素の中心偏析をさらに低減できることがわかる。   From Table 2, by controlling the temperature gradient G and the solidification rate V so that the value of the above formula (3) is 0.27 or more, the average segregation particle size in the solidified structure of the center portion of the slab is reduced, The solidified structure at the center can be made into uniform columnar crystals. Thereby, it turns out that the center segregation of the solute element of the slab cast by the continuous casting machine can be further reduced.

10 連続鋳造機
12 モールド
14 溶鋼
16 凝固シェル
18 静磁場発生装置
20 静磁場発生装置
DESCRIPTION OF SYMBOLS 10 Continuous casting machine 12 Mold 14 Molten steel 16 Solidified shell 18 Static magnetic field generator 20 Static magnetic field generator

Claims (2)

連続鋳造機に静磁場発生装置を設置し、鋳型から引き抜かれた鋳片の中心固相率が、下記数式(1)で表される範囲の少なくとも一部で、前記鋳片の引き抜き方向と直交する方向の静磁場を磁場強度が0.15T以上であって、下記数式(2)で表される印加時間率が10%以上となるように前記鋳片に静磁場を印加することを特徴とする連続鋳造方法。


ただし、fsは、前記鋳片の中心固相率であり、前記中心固相率は、鋳片の引き抜き方向に対して方向に対して垂直となる方向の断面における中心点の固相率である。
A static magnetic field generator is installed in the continuous casting machine, and the central solid phase ratio of the slab drawn from the mold is at least part of the range represented by the following formula (1), and is orthogonal to the drawing direction of the slab. The static magnetic field is applied to the slab so that the static magnetic field has a magnetic field strength of 0.15 T or more and an application time rate represented by the following formula (2) is 10% or more. Continuous casting method.


However, fs is the central solid fraction of the slab, and the central solid fraction is the solid fraction of the central point in the cross section in the direction perpendicular to the drawing direction of the slab. .
前記鋳片の中心固相率が0.3である場合において下記数式(3)の値が0.27以上
であることを特徴とする請求項1に記載の連続鋳造方法。

ただし、Gは、前記鋳片の中心固相率が0.3の点を通って、その点での鋳造方向に直交する直線上の固相率が0.99となる点の温度勾配(℃/mm)を表し、Vは、前記鋳片の固液界面の移動速度(mm/min)を表す。
2. The continuous casting method according to claim 1, wherein when the central solid phase ratio of the slab is 0.3, the value of the following mathematical formula (3) is 0.27 or more.

However, G is a temperature gradient (° C.) at which the solid phase ratio on the straight line perpendicular to the casting direction at that point passes through a point where the central solid phase ratio of the slab is 0.3 and is 0.99. / Mm), and V represents the moving speed (mm / min) of the solid-liquid interface of the slab.
JP2015203406A 2015-10-15 2015-10-15 Continuous casting method Active JP6384447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015203406A JP6384447B2 (en) 2015-10-15 2015-10-15 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015203406A JP6384447B2 (en) 2015-10-15 2015-10-15 Continuous casting method

Publications (2)

Publication Number Publication Date
JP2017074603A JP2017074603A (en) 2017-04-20
JP6384447B2 true JP6384447B2 (en) 2018-09-05

Family

ID=58549711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015203406A Active JP6384447B2 (en) 2015-10-15 2015-10-15 Continuous casting method

Country Status (1)

Country Link
JP (1) JP6384447B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102297879B1 (en) * 2017-03-29 2021-09-02 제이에프이 스틸 가부시키가이샤 Method of continuous casting of steel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501236B2 (en) * 2000-06-30 2010-07-14 Jfeスチール株式会社 Continuous casting method
JP6036125B2 (en) * 2012-10-02 2016-11-30 Jfeスチール株式会社 Steel continuous casting method

Also Published As

Publication number Publication date
JP2017074603A (en) 2017-04-20

Similar Documents

Publication Publication Date Title
CN110000355B (en) Method for improving frame segregation of bloom continuous casting billet
JP4495224B2 (en) Slabs with excellent solidification structure
JP6115735B2 (en) Steel continuous casting method
JP6358178B2 (en) Continuous casting method and mold cooling water control device
JP6264524B1 (en) Steel continuous casting method
JP2008087046A (en) Continuous casting method for medium-carbon steel
JP6947737B2 (en) Continuous steel casting method
JP6384447B2 (en) Continuous casting method
JP5962733B2 (en) Steel continuous casting method
JP2015107522A (en) Casting mold for continuous casting and continuous casting method of steel
JP2008238244A (en) Method for manufacturing cast slab having sound internal structure by strand-to-strand control of specific flow rate of secondary cooling water for continuous casting
WO2018056322A1 (en) Continuous steel casting method
JP7031628B2 (en) Continuous steel casting method
Kim et al. Control of columnar-to-equiaxed transition in continuous casting of 16% Cr stainless steel
RU2403121C1 (en) Method of continuous steel casting
JP4872723B2 (en) Steel continuous casting method
JP7273307B2 (en) Steel continuous casting method
JP7283633B2 (en) Steel continuous casting method
JP2019030892A (en) Continuous casting method for steel
JP2004141890A (en) Continuous casting method of steel
JPH04313453A (en) Continuous casting method
JP2000094101A (en) Continuously cast slab, continuous casting method thereof and production of thick steel plate
JPH0857584A (en) Production of stainless steel cast slab having good surface quality and workability
JP2024004032A (en) Continuous casting method
JP2640399B2 (en) Continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180426

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180723

R150 Certificate of patent or registration of utility model

Ref document number: 6384447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250