JP6382886B2 - 差圧式高圧水電解装置 - Google Patents

差圧式高圧水電解装置 Download PDF

Info

Publication number
JP6382886B2
JP6382886B2 JP2016105217A JP2016105217A JP6382886B2 JP 6382886 B2 JP6382886 B2 JP 6382886B2 JP 2016105217 A JP2016105217 A JP 2016105217A JP 2016105217 A JP2016105217 A JP 2016105217A JP 6382886 B2 JP6382886 B2 JP 6382886B2
Authority
JP
Japan
Prior art keywords
anode
electrolyte membrane
type high
differential pressure
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016105217A
Other languages
English (en)
Other versions
JP2017210660A (ja
Inventor
満田 直樹
直樹 満田
栄次 針生
栄次 針生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2016105217A priority Critical patent/JP6382886B2/ja
Publication of JP2017210660A publication Critical patent/JP2017210660A/ja
Application granted granted Critical
Publication of JP6382886B2 publication Critical patent/JP6382886B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、水を電気分解し、酸素と前記酸素よりも高圧な水素とを発生させる差圧式高圧水電解装置に関する。
一般的に、燃料電池の発電反応に使用される燃料ガスとして、水素が使用されている。水素は、例えば、水電解装置により製造されている。水電解装置は、水を分解して水素(及び酸素)を発生させるため、固体高分子電解質膜(イオン交換膜)を用いている。
固体高分子電解質膜の両面には、電極触媒層が設けられて電解質膜・電極構造体が構成されるとともに、前記電解質膜・電極構造体の両側には、給電体を配設して水電解セルが構成されている。
そこで、複数の水電解セルが積層された水電解装置では、積層方向両端に電圧が付与されるとともに、アノード給電体に水が供給される。このため、電解質膜・電極構造体のアノード側では、水が分解されて水素イオン(プロトン)が生成され、この水素イオンが固体高分子電解質膜を透過してカソード側に移動し、カソード給電体で電子と結合して水素が製造される。一方、アノード側では、水素とともに生成された酸素が、余剰の水を伴って水電解装置の外部に排出される。
この種の水電解装置として、水の電気分解によりアノード側に酸素を製造する一方、カソード側に前記酸素よりも高圧な水素を製造する差圧式高圧水電解装置が採用されている。このような差圧式高圧水電解装置において、アノード側とカソード側との差圧によって固体高分子電解質膜が電極触媒層に圧接する際、固体高分子電解質膜が破損するおそれがある。
このため、例えば、特許文献1に開示されている差圧式高圧水電解装置が知られている。この差圧式高圧水電解装置では、アノード側給電体と固体高分子電解質膜との間には、多数の貫通孔が形成された保護シート部材が介装されている。従って、簡単な構成で固体高分子電解質膜の破損を可及的に阻止できる、としている。
特開2010−189708号公報
このように特許文献1の差圧式高圧水電解装置によれば、固体高分子電解質膜の破損を可及的に阻止できるものの、さらに大きな差圧がかかった状態での運転や、耐久性向上を考慮すると、さらなる改善の余地がある。
本発明はこのような課題を考慮してなされたものであり、高圧運転における電解質膜の破損を良好に抑制し、電解質膜の耐久性を向上させることができる差圧式高圧水電解装置を提供することを目的とする。
上記の目的を達成するため、本発明は、電解質膜の両側にアノード電極及びカソード電極を設けてなる電解質膜・電極構造体と、前記電解質膜・電極構造体の前記アノード電極側に配置されたアノード給電体と、前記電解質膜・電極構造体の前記カソード電極側に配置されたカソード給電体と、前記電解質膜・電極構造体の厚さ方向の一方側に配置され、前記電解質膜との間に前記アノード給電体を配置し、供給される水を電気分解して酸素が発生されるアノード室を設けるアノードセパレータと、前記電解質膜・電極構造体の厚さ方向の他方側に配置され、前記電解質膜との間に前記カソード給電体を配置し、前記水の電気分解により前記酸素よりも高圧な水素が発生されるカソード室を設けるカソードセパレータと、を備えた差圧式高圧水電解装置であって、前記電解質膜と前記アノード給電体との間には、多数の貫通孔が形成された保護シート部材が介装されるとともに、前記貫通孔には、導電性を有する粉体が配置されていることを特徴とする。
上記の構成を採用した本発明の差圧式高圧水電解装置によれば、保護シート部材の貫通孔に導電性を有する粉体が配置されているため、高圧運転においても貫通孔に電解質膜が落ち込むことが抑制され、これにより、電解質膜が破損することを良好に抑制することができる。従って、電解質膜の耐久性を向上させることができる。また、粉体間には空隙が形成されるため、水供給性及びガス透過性も良好に確保することができる。
上記の差圧式高圧水電解装置において、前記粉体は、前記アノード給電体と同類の材料を含むことが好ましい。
この構成により、異種素材接触による電位差発生を抑制することができるため、電解反応の妨害による発電効率低下を抑制することができる。
上記の差圧式高圧水電解装置において、前記粉体は、前記アノード電極と同類の材料を含むことが好ましい。
この構成により、アノード電極とアノード給電体との距離を実質的に縮めることができるため、導電性能を向上させることができる。
上記の差圧式高圧水電解装置において、前記粉体の粒径は、前記アノード給電体を構成する焼結体の粒子の粒径よりも小さいことが好ましい。
この構成により、毛細管現象によりアノード給電体側から水を吸引してアノード電極に水を良好に導くことができるため、電解性能を良好に維持することができる。
上記の差圧式高圧水電解装置において、前記粉体間に形成される空隙の孔径は、前記アノード給電体に形成される孔部の孔径よりも小さいことが好ましい。
この構成により、毛細管現象によりアノード給電体側から水を吸引してアノード電極に水を良好に導くことができるため、電解性能を良好に維持することができる。
本発明の差圧式高圧水電解装置によれば、保護シート部材の貫通孔に導電性を有する粉体が配置されているため、高圧運転における電解質膜の破損を確実に防止し、電解質膜の耐久性を向上させることができる。
本発明の実施形態に係る差圧式高圧水電解装置の斜視説明図である。 図1に示す差圧式高圧水電解装置を構成する高圧水電解セルの断面説明図である。 保護シート部材の拡大説明図である。
図1に示すように、本発明の実施形態に係る差圧式高圧水電解装置10は、複数の高圧水電解セル12が鉛直方向(矢印A方向)又は水平方向(矢印B方向)に積層された積層体14を備える。
積層体14の積層方向一端(上端)には、ターミナルプレート16a、絶縁プレート18a及びエンドプレート20aが上方に向かって、順次、配設される。積層体14の積層方向他端(下端)には、同様にターミナルプレート16b、絶縁プレート18b及びエンドプレート20bが下方に向かって、順次、配設される。
差圧式高圧水電解装置10は、例えば、矢印A方向に延在する4本のタイロッド22を介して円盤形状のエンドプレート20a、20b間を一体的に積層方向に締め付け保持する。差圧式高圧水電解装置10は、複数の高圧水電解セル12に積層方向(矢印A方向)の締め付け荷重が付与された状態で、締結される。
なお、差圧式高圧水電解装置10は、エンドプレート20a、20bを端板として含む箱状ケーシング(図示せず)により一体的に保持される構成を採用してもよい。また、差圧式高圧水電解装置10は、全体として略円柱体形状を有しているが、立方体形状等の種々の形状に設定可能である。
ターミナルプレート16a、16bの側部には、端子部24a、24bが外方に突出して設けられる。端子部24a、24bは、配線26a、26bを介して電解電源28に電気的に接続される。
図2に示すように、高圧水電解セル12は、略円盤状の電解質膜・電極構造体32と、電解質膜・電極構造体32を挟持するアノードセパレータ34及びカソードセパレータ36とを備える。
高圧水電解セル12の外周縁部には、積層方向(矢印A方向)に互いに連通して、水(純水)を供給するための水供給連通孔38aが設けられる。高圧水電解セル12の外周縁部には、水供給連通孔38aと対角の位置に積層方向に互いに連通して、反応により生成された酸素及び未反応の水(混合流体)を排出するための水排出連通孔38bが設けられる。
高圧水電解セル12の中央部には、電解領域の略中央を貫通して積層方向に互いに連通し、高圧水素連通孔38cが設けられる。高圧水素連通孔38cは、反応により生成された高圧な水素(生成された酸素よりも高圧な水素)(例えば、1MPa〜80MPa)を排出する。
アノードセパレータ34は、固体高分子電解質膜40の膜厚方向(矢印A方向)の一方側に設けられて積層される。カソードセパレータ36は、固体高分子電解質膜40の膜厚方向の他方側に設けられて積層される。
アノードセパレータ34及びカソードセパレータ36は、略円盤状を有するとともに、例えば、カーボン部材等で構成される。アノードセパレータ34及びカソードセパレータ36は、その他、鋼板、ステンレス鋼板、チタン板、アルミニウム板、めっき処理鋼板、あるいはその金属表面に防食用の表面処理を施した金属板をプレス成形して、あるいは切削加工した後に防食用の表面処理を施して構成される。なお、アノードセパレータ34及びカソードセパレータ36は、平板状に構成してもよい。
電解質膜・電極構造体32は、略リング形状を有する固体高分子電解質膜(電解質膜)40を備える。固体高分子電解質膜40は、リング形状を有する電解用のアノード給電体42及びカソード給電体44により挟持されるとともに、外周部がアノードセパレータ34及びカソードセパレータ36により挟持される。固体高分子電解質膜40は、例えば、炭化水素(HC)系の膜(平膜)又はフッ素系の膜(平膜)により構成されるとともに、アノード給電体42及びカソード給電体44よりも所定の寸法だけ大径に設定される。
固体高分子電解質膜40は、略中央部に高圧水素連通孔38cが形成される。固体高分子電解質膜40の一方の面には、リング形状を有するアノード電極触媒層(アノード電極)41が設けられる。固体高分子電解質膜40の他方の面には、リング形状を有するカソード電極触媒層(カソード電極)43が設けられる。アノード電極触媒層41は、例えば、Ru(ルテニウム)系触媒を使用するとともに、カソード電極触媒層43は、例えば、白金触媒を使用する。
アノード給電体42及びカソード給電体44は、例えば、球状アトマイズチタン粉末の焼結体(多孔質導電体)により構成される。アノード給電体42及びカソード給電体44は、研削加工後にエッチング処理される平滑表面部を設けるとともに、空隙率が10%〜50%、より好ましくは、20%〜40%の範囲内に設定される。アノード給電体42は、カソード給電体44よりも所定の寸法だけ大径に設定される。
アノードセパレータ34の電解質膜・電極構造体32に向かう面34aには、リング状の凹部を形成することにより、アノード室46が形成される。アノード室46には、水供給連通孔38aに連通する供給通路48aと、水排出連通孔38bに連通する排出通路48bとが連通する。アノード給電体42のアノード室46の底面に向かう面には、水流路部材50が配設される。水流路部材50には、供給通路48a及び排出通路48bに連通する水流路50aが設けられる。
アノード室46には、アノード給電体42が配置される。また、高圧により固体高分子電解質膜40が膜厚方向に押圧された際の固体高分子電解質膜40の伸びを均一にするため、アノード室46には、アノード給電体42及び固体高分子電解質膜40間に介装されるリング状の保護シート部材52が配置される。保護シート部材52は、内周位置がアノード給電体42及びカソード給電体44の内周位置よりも内方に配置されるとともに、アノード給電体42と同一の外径寸法に設定される。保護シート部材52には、複数の貫通孔52aが形成される。
この保護シート部材52は、例えば、チタンシートで構成され、厚さが、例えば、20μm〜500μmの範囲内に設定される。チタンシートの表面粗さとしては、例えば、6.3μm以下、好ましくは、3.2μm以下に設定される。このチタンシートは、好ましくは、冷間圧延により成形される。貫通孔52aの分布幅は、アノード給電体42の孔部の分布幅よりも小さく設定される。
図3に示すように、貫通孔52aは、固体高分子電解質膜40に向かって縮径するテーパ形状を有する。貫通孔52aは、水供給性及び酸素抜け性を向上させ得るように、アノード給電体42側の開口径が、例えば、170μm〜250μmの範囲内に設定される。貫通孔52aは、エッチング、ドリル、放電加工、電子ビーム、レーザ又はプレス等により形成される。なお、貫通孔52aは、保護シート部材52の膜厚方向に径が一定のストレート形状を有してもよい。
各貫通孔52aには、導電性を有する複数個の粉体62が配置(充填)される。貫通孔52aに配置された粉体62間(及び貫通孔52aを形成する内壁と粉体62との間)には、水及び酸素が流通可能な空隙が形成される。従って、差圧式高圧水電解装置10の運転時において、水はアノード給電体42側から貫通孔52aを介してアノード電極触媒層41へと支障なく到達することができ、アノード電極触媒層41で生成された酸素は貫通孔52aを介してアノード給電体42側へと支障なく流動することができる。
貫通孔52aにおけるアノード給電体42側の領域に配置された粉体62は、アノード給電体42と接触している。また、貫通孔52aにおけるアノード電極触媒層41側の領域に配置された粉体62は、アノード電極触媒層41と接触している。
本実施形態において、粉体62は、アノード給電体42と同類の材料を含み、又は、アノード電極触媒層41と同類の材料を含む。粉体62がアノード給電体42と同類の材料を含む場合、粉体62は、アノード給電体42を構成する材料と同一種類の材料を含めばよい。従って、粉体62は、材料の配合比がアノード給電体42と異なっていてもよく、アノード給電体42と同類の材料を含む粉体62に表面処理等が施されていてもよい。粉体62は、アノード給電体42と同じ材料で構成されてもよい。
また、粉体62がアノード電極触媒層41と同類の材料を含む場合、粉体62は、アノード電極触媒層41を構成する材料と同一種類の材料を含めばよい。従って、粉体62は、材料の配合比がアノード電極触媒層41と異なっていてもよく、アノード電極触媒層41と同類の材料を含む粉体62に表面処理等が施されていてもよい。粉体62は、アノード電極触媒層41と同じ材料で構成されてもよい。
図3に示すように、本実施形態では、粉体62の粒径(大きさ)は、アノード給電体42を構成する焼結体の粒子42aの粒径(大きさ)よりも小さい。このため、粉体間62に形成される空隙の孔径は、アノード給電体42に形成される孔部(粒子42a間に形成される空隙)の孔径よりも小さい。なお、粉体62の粒径は、アノード給電体42の粒子42aの粒径と同等、あるいは、粒子42aの粒径より大きくてもよい。
このような粉体62が貫通孔52aに充填された保護シート部材52を得るには、固体高分子電解質膜40にアノード電極触媒層41を例えば転写等により積層した後、アノード電極触媒層41に、貫通孔52aが形成された保護シート部材52を積層する。そして、保護シート部材52上に粉体62を散布し、保護シート部材52表面をスキージすることにより、貫通孔52aに粉体62が充填される。
図2に示すように、カソードセパレータ36の固体高分子電解質膜40に向かう面36aには、略リング状に切り欠いてカソード室54が形成される。カソード室54には、カソード給電体44と、前記カソード給電体44を固体高分子電解質膜40に押圧させる荷重付与機構56とが配置される。
荷重付与機構56は、弾性部材、例えば、板ばね58を備えるとともに、前記板ばね58は、水素流路部材60を介してカソード給電体44に荷重を付与する。水素流路部材60には、水素流路60aが設けられる。水素流路60aは、水素排出通路48cを介して高圧水素連通孔38cに連通する。なお、弾性部材としては、板ばね58の他、皿ばねやコイルスプリング等を使用することができる。
アノードセパレータ34とカソードセパレータ36との間には、水供給連通孔38aを周回するシール部材(ガスケット)66a及び水排出連通孔38bを周回するシール部材(ガスケット)66bが介装される。アノードセパレータ34の中央部位と固体高分子電解質膜40の中央部位との間には、高圧水素連通孔38cを周回するシール部材(ガスケット)68aが介装される。カソードセパレータ36の中央部位と固体高分子電解質膜40の中央部位との間には、高圧水素連通孔38cを周回するシール部材(ガスケット)68bが介装される。
カソードセパレータ36の電解質膜・電極構造体32に向かう面36aには、カソード室54を周回してシール部材(ガスケット)66が配設される。シール部材70は、固体高分子電解質膜40に当接する。
図1に示すように、エンドプレート20aには、水供給連通孔38a、水排出連通孔38b及び高圧水素連通孔38cに連通する配管72a、72b及び72cが接続される。配管72cには、図示しないが、背圧弁(又は電磁弁)が設けられており、高圧水素連通孔38cに生成される水素の圧力を高圧に維持することができる。
このように構成される差圧式高圧水電解装置10の動作について、以下に説明する。
図1に示すように、配管72aから差圧式高圧水電解装置10の水供給連通孔38aに水が供給されるとともに、ターミナルプレート16a、16bの端子部24a、24bに電気的に接続されている電解電源28を介して電圧が付与される。このため、図2に示すように、各高圧水電解セル12では、水供給連通孔38aからアノードセパレータ34の供給通路48aを通って水流路部材50の水流路50aに水が供給され、この水がアノード給電体42内に沿って移動する。
そして、水は、保護シート部材52の貫通孔52aを介してアノード電極触媒層41へと到達する。従って、水は、アノード電極触媒層41で電気により分解され、水素イオン、電子及び酸素が生成される。この陽極反応により生成された水素イオンは、固体高分子電解質膜40を透過してカソード電極触媒層43側に移動し、電子と結合して水素が得られる。
これにより、カソード給電体44の内部から水素流路部材60の水素流路60aに沿って水素が流動する。水素は、水供給連通孔38aよりも高圧に維持された状態で、水素排出通路48cから高圧水素連通孔38cを流れて差圧式高圧水電解装置10の外部に取り出し可能となる。一方、反応により生成した酸素は、保護シート部材52の貫通孔52aを介してアノード給電体42側へと流動する。そして、酸素と未反応の水とは、水排出連通孔38bに沿って差圧式高圧水電解装置10の外部に排出される。
この場合、本実施形態では、図3に示したように、高圧により押圧された際の固体高分子電解質膜40の伸びを均一にするための保護シート部材52の貫通孔52aに、導電性を有する粉体62が配置されている。このため、差圧式高圧水電解装置10の高圧運転においても貫通孔52aに固体高分子電解質膜40が落ち込むことが抑制される。
すなわち、貫通孔52a内に配置された粉体62によって、アノード電極触媒層41を介して、貫通孔52aに対応する部位の固体高分子電解質膜40が支持される。これにより、固体高分子電解質膜40が破損することを良好にあるいは確実に抑制することができる。従って、固体高分子電解質膜40の耐久性を向上させることができる。また、貫通孔52a内において隣接する粉体62間には空隙が形成されるため、水供給性及びガス透過性(酸素抜け性)も良好に確保することができる。
また、本実施形態では、粉体62は、アノード給電体42又はアノード電極触媒層41と同類の材料を含む。従って、粉体62がアノード給電体42と同類の材料を含む場合、異種素材接触による電位差発生(局部的な電池形成)を抑制することができるため、電解反応の妨害による発電効率低下を抑制することができる。一方、粉体62がアノード電極触媒層41と同類の材料を含む場合、粉体62もアノード電極触媒層41の一部を構成し、アノード電極触媒層41とアノード給電体42との距離を実質的に縮めることができる。従って、導電性能を向上させることができる。
さらに、本実施形態では、粉体62の粒径は、アノード給電体42を構成する焼結体の粒子42aの粒径よりも小さい。また、粉体62間に形成される空隙の孔径は、アノード給電体42に形成される孔部の孔径よりも小さい。従って、毛細管現象によりアノード給電体42側から水を吸引してアノード電極触媒層41に水を良好に導くことができるため、電解性能を良好に維持することができる。
本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改変が可能である。
10…差圧式高圧水電解装置 12…高圧水電解セル
14…積層体 16a、16b…ターミナルプレート
18a、18b…絶縁プレート 20a、20b…エンドプレート
24a、24b…端子部 28…電解電源
32…電解質膜・電極構造体 34…アノードセパレータ
36…カソードセパレータ 40…固体高分子電解質膜
41…アノード電極触媒層 42…アノード給電体
43…カソード電極触媒層 44…カソード給電体
46…アノード室 50…水流路部材
50a…水流路 52…保護シート部材
52a…貫通孔 54…カソード室
60…水素流路部材 60a…水素流路
62…粉体

Claims (6)

  1. 電解質膜の両側にアノード電極及びカソード電極を設けてなる電解質膜・電極構造体と、
    前記電解質膜・電極構造体の前記アノード電極側に配置されたアノード給電体と、
    前記電解質膜・電極構造体の前記カソード電極側に配置されたカソード給電体と、
    前記電解質膜・電極構造体の厚さ方向の一方側に配置され、前記電解質膜との間に前記アノード給電体を配置し、供給される水を電気分解して酸素が発生されるアノード室を設けるアノードセパレータと、
    前記電解質膜・電極構造体の厚さ方向の他方側に配置され、前記電解質膜との間に前記カソード給電体を配置し、前記水の電気分解により前記酸素よりも高圧な水素が発生されるカソード室を設けるカソードセパレータと、
    を備えた差圧式高圧水電解装置であって、
    前記電解質膜と前記アノード給電体との間には、多数の貫通孔が形成された保護シート部材が介装されるとともに、
    前記貫通孔には、導電性を有する粉体が、前記保護シート部材の膜厚の全体にわたって充填されている、
    ことを特徴とする差圧式高圧水電解装置。
  2. 請求項1記載の差圧式高圧水電解装置において、
    前記粉体は、前記アノード給電体と同類の材料を含む、
    ことを特徴とする差圧式高圧水電解装置。
  3. 請求項1記載の差圧式高圧水電解装置において、
    前記粉体は、前記アノード電極と同類の材料を含む、
    ことを特徴とする差圧式高圧水電解装置。
  4. 請求項1記載の差圧式高圧水電解装置において、
    前記粉体の粒径は、前記アノード給電体を構成する焼結体の粒子の粒径よりも小さい、
    ことを特徴とする差圧式高圧水電解装置。
  5. 請求項1記載の差圧式高圧水電解装置において、
    前記粉体間に形成される空隙の孔径は、前記アノード給電体に形成される孔部の孔径よりも小さい、
    ことを特徴とする差圧式高圧水電解装置。
  6. 請求項1記載の差圧式高圧水電解装置において、
    前記保護シート部材の前記アノード給電体と接触する面側で、前記アノード給電体とは別部材として構成された前記粉体が、前記アノード給電体の表面に接触している、差圧式高圧水電解装置。
JP2016105217A 2016-05-26 2016-05-26 差圧式高圧水電解装置 Active JP6382886B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016105217A JP6382886B2 (ja) 2016-05-26 2016-05-26 差圧式高圧水電解装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016105217A JP6382886B2 (ja) 2016-05-26 2016-05-26 差圧式高圧水電解装置

Publications (2)

Publication Number Publication Date
JP2017210660A JP2017210660A (ja) 2017-11-30
JP6382886B2 true JP6382886B2 (ja) 2018-08-29

Family

ID=60474528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016105217A Active JP6382886B2 (ja) 2016-05-26 2016-05-26 差圧式高圧水電解装置

Country Status (1)

Country Link
JP (1) JP6382886B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215088A1 (ja) 2020-04-20 2021-10-28 パナソニックIpマネジメント株式会社 圧縮装置
WO2021215087A1 (ja) 2020-04-20 2021-10-28 パナソニックIpマネジメント株式会社 圧縮装置
WO2022064817A1 (ja) 2020-09-25 2022-03-31 パナソニックIpマネジメント株式会社 電気化学式水素ポンプ用アノードセパレータおよび電気化学式水素ポンプ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL67047A0 (en) * 1981-10-28 1983-02-23 Eltech Systems Corp Narrow gap electrolytic cells
JP5400413B2 (ja) * 2009-02-18 2014-01-29 本田技研工業株式会社 電解装置
JP2012180553A (ja) * 2011-03-01 2012-09-20 Honda Motor Co Ltd 高圧水素製造装置及びその多孔質給電体の製造方法
JP6062597B2 (ja) * 2014-09-19 2017-01-18 株式会社東芝 電解装置、電極ユニットおよび電解水生成方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215088A1 (ja) 2020-04-20 2021-10-28 パナソニックIpマネジメント株式会社 圧縮装置
WO2021215087A1 (ja) 2020-04-20 2021-10-28 パナソニックIpマネジメント株式会社 圧縮装置
WO2022064817A1 (ja) 2020-09-25 2022-03-31 パナソニックIpマネジメント株式会社 電気化学式水素ポンプ用アノードセパレータおよび電気化学式水素ポンプ

Also Published As

Publication number Publication date
JP2017210660A (ja) 2017-11-30

Similar Documents

Publication Publication Date Title
US8337678B2 (en) Electrochemical apparatus
US10053786B2 (en) Differential pressure water electrolysis system
JP5232271B2 (ja) 高圧水電解装置
US10053784B2 (en) Differential pressure water electrolysis system
US10053783B2 (en) Differential pressure water electrolysis system
US7951284B2 (en) Electrolysis apparatus, electrochemical reaction membrane apparatus, porous electrical conductor, and production method thereof
JP5341931B2 (ja) 高圧水素製造装置
US20130015059A1 (en) Electrochemical device
JP5054049B2 (ja) 電解装置
JP6382886B2 (ja) 差圧式高圧水電解装置
JP2015086454A (ja) 差圧式高圧水電解装置
JP5400413B2 (ja) 電解装置
JP5400414B2 (ja) 電解装置
JP5770246B2 (ja) 高圧水電解装置
JP5350717B2 (ja) 水電解装置及びその製造方法
JP4852157B2 (ja) 水電解装置
JP5588402B2 (ja) 高圧水素製造装置
JP5415100B2 (ja) 電解装置
JP6025689B2 (ja) 差圧式高圧水電解装置
JP6426655B2 (ja) 水電解装置
JP2011208163A (ja) 水電解装置
JP2014040636A (ja) 差圧式水電解装置
JP5525195B2 (ja) 高圧水電解装置及び高圧水電解装置用アノード側給電体の製造方法
JP2011127210A (ja) 電気化学装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180802

R150 Certificate of patent or registration of utility model

Ref document number: 6382886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150