JP6382629B2 - Vapor growth equipment - Google Patents

Vapor growth equipment Download PDF

Info

Publication number
JP6382629B2
JP6382629B2 JP2014160965A JP2014160965A JP6382629B2 JP 6382629 B2 JP6382629 B2 JP 6382629B2 JP 2014160965 A JP2014160965 A JP 2014160965A JP 2014160965 A JP2014160965 A JP 2014160965A JP 6382629 B2 JP6382629 B2 JP 6382629B2
Authority
JP
Japan
Prior art keywords
susceptor
surface cover
susceptor upper
outer member
inner member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014160965A
Other languages
Japanese (ja)
Other versions
JP2016039225A (en
Inventor
和正 池永
和正 池永
山口 晃
晃 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2014160965A priority Critical patent/JP6382629B2/en
Publication of JP2016039225A publication Critical patent/JP2016039225A/en
Application granted granted Critical
Publication of JP6382629B2 publication Critical patent/JP6382629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は、基板を加熱しながら気相原料を供給して基板上に薄膜を堆積させる気相成長装置に関する。   The present invention relates to a vapor phase growth apparatus that deposits a thin film on a substrate by supplying a vapor phase material while heating the substrate.

市場からは効率的で生産性が高い製造方法及びシステムの要求が絶えず高まっている。現在における生産性が高い製造システムは、幾つかの基板上に材料を蒸着させる、有機金属を用いた気相成長装置(MOCVD)を利用している。
図8は特許文献1に開示された気相成長装置31の断面図、図9は図8の一部の拡大図である。
気相成長装置31は、下部中央に原料ガス導入ノズル33を配設した偏平円筒状のチャンバー35内に、円盤状のグラファイトからなるサセプタ37と、サセプタ37の外周部分の同心円上に等間隔で配置された複数の基板載置部39と、サセプタ37の上方に対向配置されて、チャンバー35内に一様な天井を区画形成する対向面部材41とを備えている。
The market is constantly demanding efficient and productive manufacturing methods and systems. Presently highly productive manufacturing systems utilize metal organic vapor phase epitaxy (MOCVD), which deposits material on several substrates.
8 is a cross-sectional view of the vapor phase growth apparatus 31 disclosed in Patent Document 1, and FIG. 9 is an enlarged view of a part of FIG.
The vapor phase growth apparatus 31 has a flat cylindrical chamber 35 having a source gas introduction nozzle 33 disposed at the lower center, a susceptor 37 made of disc-like graphite, and a concentric circle on the outer periphery of the susceptor 37 at equal intervals. A plurality of substrate placement portions 39 arranged and an opposing surface member 41 that is disposed to face the susceptor 37 and that defines a uniform ceiling in the chamber 35 are provided.

チャンバー35は、サセプタ37側のチャンバー本体35bと、該チャンバー本体35bの周壁上部にOリング36を介して気密に装着されるチャンバー蓋35aとに分割形成されている。チャンバー本体35bの底部中央部には、サセプタ37を回転させるための回転駆動軸が設けられ、該回転駆動軸でサセプタ37を回転させることにより、基板43を保持した基板載置部39がサセプタ37の中心に対して公転するとともに、サセプタ37の外周に設けられた自転歯車機構によって自転する仕組みになっている。
また、基板載置部39の下方には、基板43を加熱するためのヒーター45がリング状に配設され、サセプタ37の外周側にはリング状の排気通路が設けられている。
The chamber 35 is divided and formed into a chamber body 35b on the susceptor 37 side and a chamber lid 35a that is airtightly mounted on the upper peripheral wall of the chamber body 35b via an O-ring 36. A rotation drive shaft for rotating the susceptor 37 is provided at the center of the bottom of the chamber main body 35b. By rotating the susceptor 37 with the rotation drive shaft, the substrate mounting portion 39 holding the substrate 43 is moved to the susceptor 37. The center of the susceptor 37 revolves around the center of the susceptor 37 and rotates by a rotating gear mechanism.
A heater 45 for heating the substrate 43 is disposed in a ring shape below the substrate mounting portion 39, and a ring-shaped exhaust passage is provided on the outer peripheral side of the susceptor 37.

サセプタ37は円環板状からなり、中央の開口部の周りには、薄膜が形成される基板43が載置される基板載置部39が周方向に等間隔に複数設けられている。なお、図8、図9は基板載置部39に基板43を載置した状態を示している。   The susceptor 37 is formed in an annular plate shape, and a plurality of substrate placement portions 39 on which a substrate 43 on which a thin film is formed is placed at equal intervals in the circumferential direction around the central opening. 8 and 9 show a state in which the substrate 43 is placed on the substrate placing portion 39. FIG.

サセプタ37の上面には、サセプタ37における基板載置部39以外の部分を覆うサセプタ上面カバー47が載置されている。したがって、対向面部材41とサセプタ上面カバー47ならびに基板載置部39に載置された基板43とよって挟まれた空間は、気相成長の原料ガス流路49となり、反応性生物が堆積する。
サセプタ上面カバー47は、サセプタ37が反応物で汚染されるのを防ぐ目的で設置されている。汚れた対向面部材41並びにサセプタ上面カバー47をチャンバー35から取り出して新たな対向面部材41並びにサセプタ上面カバー47を設置することで、パーティクル汚染の防止、かつ安定した成膜が可能である。
A susceptor upper surface cover 47 that covers a portion of the susceptor 37 other than the substrate mounting portion 39 is placed on the upper surface of the susceptor 37. Therefore, a space sandwiched between the opposing surface member 41, the susceptor upper surface cover 47, and the substrate 43 placed on the substrate placement portion 39 becomes a source gas flow path 49 for vapor phase growth, and reactive organisms accumulate.
The susceptor upper surface cover 47 is installed for the purpose of preventing the susceptor 37 from being contaminated with the reactant. By removing the dirty opposing surface member 41 and susceptor upper surface cover 47 from the chamber 35 and installing a new opposing surface member 41 and susceptor upper surface cover 47, particle contamination can be prevented and stable film formation can be achieved.

このような、一般的な気相成長装置の反応室内に設置される対向面部材やサセプタ上面カバーは、耐熱性に優れ、原料ガスとの反応性が低い石英ガラスで形成されている。
この石英ガラスは、赤外線をほとんど吸収しないため、新品の状態や洗浄後の状態では熱(赤外線)が逃げるが、気相成長を何回か繰り返し行って原料ガスに接する対向面部材に反応生成物等が堆積してある程度汚れた状態になると熱(赤外線)の逃げ量が減少する。このため、対向面部材が新品や洗浄直後の状態からある程度使用するまでの期間は、熱的な環境が安定せず、薄膜の再現性が十分ではないという問題がある。
また、石英ガラスは繰り返し使用されると、反応生成物の熱膨張・熱収縮によって生ずる膜応力による疲労から突然割れることがあり、生産性の低下を招くという問題もある。
The facing member and the susceptor upper surface cover installed in the reaction chamber of such a general vapor phase growth apparatus are made of quartz glass having excellent heat resistance and low reactivity with the source gas.
This quartz glass hardly absorbs infrared rays, so heat (infrared rays) escapes in a new state or after cleaning, but the reaction product is formed on the facing member that contacts the source gas by repeating vapor phase growth several times. The amount of escape of heat (infrared rays) decreases when the particles accumulate to a certain degree of contamination. For this reason, there is a problem that the thermal environment is not stable and the reproducibility of the thin film is not sufficient during the period from when the facing member is new or after it is used to a certain extent.
Further, when quartz glass is used repeatedly, there is a problem that it may suddenly crack due to fatigue due to film stress caused by thermal expansion and contraction of the reaction product, resulting in a decrease in productivity.

この点、特許文献2においては、対向面部材である石英ガラスの外側に赤外線の吸収力が石英ガラスより高いグラファイトなどの材料を配置して、石英ガラスを透過した赤外線を外側に出さないようにすることで温度再現性を向上する工夫がなされている。   In this regard, in Patent Document 2, a material such as graphite having a higher infrared absorption capacity than quartz glass is disposed outside the quartz glass which is the facing member so that infrared rays transmitted through the quartz glass are not emitted to the outside. In order to improve the temperature reproducibility, it has been devised.

特開2012―178488号公報JP 2012-178488 A 特開2008−177187号公報JP 2008-177187 A 特許第5317278号公報Japanese Patent No. 5317278

特許文献2によれば、温度再現性の向上は望めるものの、石英ガラスに反応生成物が堆積することによる石英ガラスの破損の問題は残されており、また石英ガラスの破損とは別に以下のような問題もある。   According to Patent Document 2, although improvement in temperature reproducibility can be expected, there remains a problem of damage to quartz glass due to deposition of reaction products on quartz glass. There are also problems.

反応室内の原料ガスに接触する面、特に対向面部材の表面に反応生成物等が堆積すると、前述のように反応室内の熱環境は安定するものの、堆積物に起因するパーティクルが薄膜中に混入して薄膜の性能を低下させる原因となる。
特に窒化ガリウム系の反応生成物と熱膨張率の差が大きい石英ガラスで構成された対向面部材では、石英ガラス上に堆積した反応生成物と石英ガラスとの加熱時の変形量の違いから、反応生成物と石英ガラスとの密着性が低下し、堆積した反応生成物がパーティクルとなって基板上に落ちやすいといった問題があった。
When reaction products accumulate on the surface in contact with the source gas in the reaction chamber, especially on the surface of the opposing surface, the thermal environment in the reaction chamber stabilizes as described above, but particles resulting from the deposit are mixed into the thin film. As a result, the performance of the thin film is reduced.
Especially in the facing member composed of quartz glass with a large difference in thermal expansion coefficient from the reaction product of gallium nitride, due to the difference in deformation amount during heating of the reaction product deposited on the quartz glass and the quartz glass, There was a problem that the adhesion between the reaction product and the quartz glass was lowered, and the deposited reaction product was likely to fall on the substrate as particles.

また、高温に加熱された炉内では熱輻射や対流伝熱によって原料ガス導入ノズルの先端温度が上昇し、原料ガスの熱分解温度が低い場合には、原料ガスが原料ガス導入ノズルから噴出するとすぐに熱分解してしまい所定の薄膜成長を行えなくなることがあった。
特に、原料ガス導入ノズルをサセプタの中心部に配置して、原料ガス導入ノズルの外周上に複数の基板を配置するものでは、原料ガス導入ノズルが全周方向から加熱されるために、一般的な横型反応室の原料ガス導入ノズルよりも高温になりやすく、原料ガスの熱分解も生じやすくなっている。このため、グラファイトのような材料を対向面部材に使用した場合には、石英ガラスより赤外線吸収率が高いため、原料ガスの熱分解がさらに生じやすくなり、問題が生ずる。
In addition, in the furnace heated to a high temperature, the tip temperature of the source gas introduction nozzle rises due to thermal radiation or convection heat transfer, and when the source gas has a low thermal decomposition temperature, the source gas is ejected from the source gas introduction nozzle. There was a case where it was thermally decomposed immediately and a predetermined thin film growth could not be performed.
In particular, in the case where the source gas introduction nozzle is arranged at the center of the susceptor and a plurality of substrates are arranged on the outer periphery of the source gas introduction nozzle, the source gas introduction nozzle is heated from the entire circumferential direction. The temperature tends to be higher than that of the raw material gas introduction nozzle of a horizontal reaction chamber, and thermal decomposition of the raw material gas tends to occur. For this reason, when a material such as graphite is used for the facing surface member, since the infrared absorption rate is higher than that of quartz glass, the thermal decomposition of the raw material gas is more likely to occur, causing a problem.

特許文献1に示されるような、多数枚基板に薄膜成長を行う装置では、反応生成物で汚れた対向面部材やサセプタ上面カバーなど大型部品は自動搬送機構を用いて装置外へ搬送される。このような自動搬送機構で搬送できる部品においては、搬送に耐えうる構造が必要であり、複雑な構造は採用できない。
そのため、特許文献3で用いられているような輻射防止や低熱伝導部材を単純にガス流路の表面に貼り合わせるような構造では、複雑であるため使用することができない。
In an apparatus for growing a thin film on a large number of substrates as disclosed in Patent Document 1, large parts such as an opposing surface member and a susceptor upper surface cover that are contaminated with reaction products are transported outside the apparatus using an automatic transport mechanism. A component that can be conveyed by such an automatic conveyance mechanism requires a structure that can withstand conveyance, and a complicated structure cannot be adopted.
For this reason, a structure in which a radiation preventing or low heat conducting member as used in Patent Document 3 is simply bonded to the surface of the gas flow path is complicated and cannot be used.

上記の説明では、ガス流路を形成する対向面部材について説明したが、同様の課題はサセプタ上面カバーにおいても存在する。   In the above description, the facing surface member that forms the gas flow path has been described, but the same problem exists in the susceptor upper surface cover.

本発明は、かかる課題を解決するためになされたものであり、温度再現性に優れ、かつパーティクルによる基板汚染の問題や原料ガスの早期の熱分解の問題の生じない対向面部材及び/又はサセプタ上面カバーを備えた気相成長装置を得ることを目的としている。   The present invention has been made to solve such a problem, and is an opposing surface member and / or susceptor that is excellent in temperature reproducibility and does not cause problems of substrate contamination due to particles and problems of early thermal decomposition of source gas. It aims at obtaining the vapor phase growth apparatus provided with the upper surface cover.

(1)本発明に係る気相成長装置は、反応室内に配置されて基板を保持する円盤状のサセプタと、該サセプタの中心部に配置されて該サセプタの径方向に向けて原料ガスを噴射する原料ガス導入ノズルと、前記サセプタ上に載置されて前記サセプタにおける基板保持部以外を覆うサセプタ上面カバーと、該サセプタ上面カバーとの間に所定の間隔を離して対向配置されて前記原料ガスの流路を形成する円盤状の対向面部材とを備えた気相成長装置であって、
前記対向面部材は、該対向面部材の内周側を形成する対向面内側部材と、該対向面内側部材の径方向外側であって少なくとも前記基板が載置される部位の直上を含む部位を形成すると共に前記対向面内側部材と分割可能な対向面外側部材とを備えてなり、
前記対向面内側部材の外周縁には外周側が一段下がった段部が形成され、前記対向面外側部材の内周面には前記段部に載置可能な逆段部が形成され、前記対向面内側部材の段部に前記対向面外側部材の逆段部を載置した状態で、前記対向面内側部材と前記対向面外側部材の上面が面一になるように構成され、
前記対向面内側部材は前記対向面外側部材よりも赤外線吸収率が小さい物質で形成され、前記対向面外側部材は、その熱膨張率が反応生成物の熱膨張率と近く、その差が30%以内である物質で形成されていることを特徴とするものである。
(1) A vapor phase growth apparatus according to the present invention includes a disk-shaped susceptor that is disposed in a reaction chamber and holds a substrate, and a source gas that is disposed at the center of the susceptor and injects the source gas toward the radial direction of the susceptor. A raw material gas introduction nozzle, a susceptor upper surface cover that is placed on the susceptor and covers a portion other than a substrate holding portion of the susceptor, and the susceptor upper surface cover is disposed to face each other with a predetermined gap therebetween. A vapor phase growth apparatus comprising a disk-shaped facing surface member that forms a flow path of
The facing surface member includes a facing surface inner member forming an inner peripheral side of the facing surface member, and a portion including at least a portion on the radial outer side of the facing surface inner member and a portion on which the substrate is placed. And comprising the opposing surface inner member and the splitting opposing surface outer member,
A stepped portion whose outer peripheral side is lowered by one step is formed on the outer peripheral edge of the facing surface inner member, and a reverse stepped portion that can be placed on the stepped portion is formed on the inner peripheral surface of the facing surface outer member. In a state where the opposite step portion of the facing surface outer member is placed on the step portion of the inner member, the upper surface of the facing surface inner member and the facing surface outer member are configured to be flush with each other.
The opposing surface inner member is formed of a material having a smaller infrared absorption rate than the opposing surface outer member, and the opposing surface outer member has a thermal expansion coefficient close to that of the reaction product, and the difference is 30%. It is characterized by being formed of a substance that is within.

)また、上記(1)に記載のものにおいて、前記対向面内側部材を形成する物質が石英ガラス又はサファイアガラスであり、前記対向面外側部材を形成する物質がグラファイト、炭化珪素コートグラファイトまたは炭化珪素バルク材であることを特徴とするものである。 ( 2 ) Further, in the above (1), the material forming the facing surface inner member is quartz glass or sapphire glass, and the material forming the facing surface outer member is graphite, silicon carbide coated graphite or It is a silicon carbide bulk material.

)また、上記(1)又は(2)に記載のものにおいて、前記対向面外側部材は、前記サセプタ上に配置された基板の温度や成膜状況を監視するための光を通す貫通穴を有し、該貫通の周囲に前記対向面外側部材よりも断熱性の高い部材で囲んだことを特徴とするものである。 ( 3 ) Further, in the above (1) or (2) , the opposing surface outer member is a through hole through which light passes for monitoring the temperature of the substrate disposed on the susceptor and the film formation state. The through hole is surrounded by a member having higher heat insulation than the opposing surface outer member.

)また、上記()に記載のものにおいて、前記対向面外側部材よりも断熱性の高い部材が、石英ガラスまたはサファイアガラスであることを特徴とするものである。 ( 4 ) Further, in the above ( 3 ), the member having higher heat insulation than the facing surface outer member is quartz glass or sapphire glass.

)また、上記(1)乃至()のいずれかに記載のものにおいて、前記サセプタ上面カバーは、該サセプタ上面カバーの内周側を形成するサセプタ上面カバー内側部材と、該サセプタ上面カバー内側部材の径方向外側を形成するサセプタ上面カバー外側部材とを備えてなり、該サセプタ上面カバー内側部材は、前記サセプタ上面カバー外側部材よりも赤外線吸収率が小さい物質で形成され、前記サセプタ上面カバー外側部材はその熱膨張率が反応生成物の熱膨張率と近く、その差が30%以内である物質で形成されていることを特徴とするものである。 ( 5 ) Further, in any of the above (1) to ( 4 ), the susceptor upper surface cover includes a susceptor upper surface cover inner member forming an inner peripheral side of the susceptor upper surface cover, and the susceptor upper surface cover. A susceptor upper surface cover outer member that forms a radially outer side of the inner member, and the susceptor upper surface cover inner member is formed of a material having an infrared absorption rate smaller than that of the susceptor upper surface cover outer member, and the susceptor upper surface cover The outer member is characterized by being formed of a material having a coefficient of thermal expansion close to that of the reaction product, and a difference within 30%.

)また、上記()に記載のものにおいて、前記サセプタ上面カバー内側部材を形成する物質が石英ガラス又はサファイアガラスであり、前記サセプタ上面カバー外側部材を形成する物質がグラファイト、炭化珪素コートグラファイトまたは炭化珪素バルク材であることを特徴とするものである。 ( 6 ) Further, in the above ( 5 ), the material forming the susceptor upper surface cover inner member is quartz glass or sapphire glass, and the material forming the susceptor upper surface cover outer member is graphite, silicon carbide coating It is a graphite or silicon carbide bulk material.

(7)本発明に係る気相成長装置は、反応室内に配置されて基板を保持する円盤状のサセプタと、該サセプタの中心部に配置されて該サセプタの径方向に向けて原料ガスを噴射する原料ガス導入ノズルと、前記サセプタ上に載置されて前記サセプタにおける基板保持部以外を覆うサセプタ上面カバーと、該サセプタ上面カバーとの間に所定の間隔を離して対向配置されて前記原料ガスの流路を形成する円盤状の対向面部材とを備えた気相成長装置であって、
前記サセプタ上面カバーは、該サセプタ上面カバーの内周側を形成するサセプタ上面カバー内側部材と、該サセプタ上面カバー内側部材の径方向外側を形成すると共に前記サセプタ上面カバー内側部材と分割可能なサセプタ上面カバー外側部材とを備えてなり、
前記サセプタ上面カバー外側部材の内周縁には内周側が一段下がった段部が形成され、前記サセプタ上面カバー内側部材の外周面には前記段部に載置可能な逆段部が形成され、前記サセプタ上面カバー外側部材の段部に前記サセプタ上面カバー内側部材の逆段部を載置した状態で、前記サセプタ上面カバー外側部材と前記サセプタ上面カバー内側部材上面が面一になるように構成され、
前記サセプタ上面カバー側部材は、前記サセプタ上面カバー側部材よりも赤外線吸収率が小さい物質で形成され、前記サセプタ上面カバー外側部材はその熱膨張率が反応生成物の熱膨張率と近く、その差が30%以内である物質で形成されていることを特徴とするものである。
(7) A vapor phase growth apparatus according to the present invention includes a disc-shaped susceptor that is disposed in a reaction chamber and holds a substrate, and a source gas that is disposed at the center of the susceptor and injects the source gas toward the radial direction of the susceptor. A raw material gas introduction nozzle, a susceptor upper surface cover that is placed on the susceptor and covers a portion other than a substrate holding portion of the susceptor, and the susceptor upper surface cover is disposed to face each other with a predetermined gap therebetween. A vapor phase growth apparatus comprising a disk-shaped facing surface member that forms a flow path of
The susceptor upper surface cover includes a susceptor upper surface cover inner member that forms an inner peripheral side of the susceptor upper surface cover, and a susceptor upper surface cover inner member that forms a radially outer side of the susceptor upper surface cover inner member and is separable from the susceptor upper surface cover inner member. A cover outer member,
The inner peripheral edge of the susceptor upper surface cover outer member is formed with a step portion whose inner peripheral side is lowered by one step, and the outer peripheral surface of the susceptor upper surface cover inner member is formed with a reverse step portion that can be placed on the step portion, The susceptor upper surface cover outer member and the susceptor upper surface cover inner member upper surface are configured to be flush with each other, with the reverse step portion of the susceptor upper surface cover inner member placed on the step portion of the susceptor upper surface cover outer member,
The susceptor top cover member, said susceptor top cover outer side infrared absorptivity than member is formed with a small material, the susceptor top cover outer member near the thermal expansion coefficient of the thermal expansion coefficient reaction product, It is characterized by being formed of a substance whose difference is within 30%.

)また、上記()に記載のものにおいて、前記サセプタ上面カバー内側部材を形成する物質が石英ガラス又はサファイアガラスであり、前記サセプタ上面カバー外側部材を形成する物質がグラファイト、炭化珪素コートグラファイトまたは炭化珪素バルク材であることを特徴とするものである。 ( 8 ) Further, in the above ( 7 ), the material forming the susceptor upper surface cover inner member is quartz glass or sapphire glass, and the material forming the susceptor upper surface cover outer member is graphite, silicon carbide coating It is a graphite or silicon carbide bulk material.

本発明においては、対向面部材を、該対向面部材の内周側を形成する対向面内側部材と、該対向面内側部材の径方向外側であって少なくとも前記基板が載置される部位の直上を含む部位を形成する対向面外側部材とで構成し、前記対向面内側部材は前記対向面外側部材よりも赤外線吸収率が小さい物質で形成され、前記対向面外側部材は、その熱膨張率が反応生成物の熱膨張率と近く、その差が30%以内である物質で形成されていることにより、炉内の基板以外に堆積する反応生成物による環境温度変化が小さくなり、基板に成膜された膜質の再現性が高くなる。
また、基板上流側での既成反応を抑制しつつ、基板へ落ちるパーティクルを大幅に減少させることができる。
さらに、反応生成物の膜応力を緩和できることから、対向面部材を繰り返し使用できる回数が増え、炉内部材のライフタイムが伸び、生産性を向上させることができる。
In the present invention, the facing surface member includes a facing surface inner member that forms the inner peripheral side of the facing surface member, and a portion that is radially outside the facing surface inner member and at least directly above the portion on which the substrate is placed. And the opposite surface inner member is formed of a material having a smaller infrared absorption rate than the opposite surface outer member, and the opposite surface outer member has a coefficient of thermal expansion. Because it is made of a material that is close to the thermal expansion coefficient of the reaction product and the difference is within 30%, the environmental temperature change due to the reaction product deposited on the substrate other than the substrate in the furnace is reduced, and the film is formed on the substrate. The reproducibility of the film quality is increased.
In addition, particles falling on the substrate can be greatly reduced while suppressing an existing reaction on the upstream side of the substrate.
Furthermore, since the film stress of the reaction product can be alleviated, the number of times the facing surface member can be used repeatedly increases, the lifetime of the in-furnace member increases, and the productivity can be improved.

本発明の一実施の形態に係る気相成長装置を説明する説明図であって、本発明に係る対向面部材を反応炉内に設置状態を示している。It is explanatory drawing explaining the vapor phase growth apparatus which concerns on one embodiment of this invention, Comprising: The opposing surface member which concerns on this invention has shown the installation state in the reaction furnace. 本発明の一実施の形態に係る対向面部材を説明する説明図であって、平面視した状態を示している。It is explanatory drawing explaining the opposing surface member which concerns on one embodiment of this invention, Comprising: The state seen planarly is shown. 本発明の一実施の形態に係る対向面部材の他の態様の説明図であり、一部を拡大して示す図である。It is explanatory drawing of the other aspect of the opposing surface member which concerns on one embodiment of this invention, and is a figure which expands and shows a part. 本発明の他の実施の形態に係る気相成長装置を説明する説明図であって、本発明に係るサセプタ上面カバー及び対向面部材を反応炉内に設置状態を示している。It is explanatory drawing explaining the vapor phase growth apparatus which concerns on other embodiment of this invention, Comprising: The susceptor upper surface cover and opposing surface member which concern on this invention are shown in the installation state in the reactor. 本発明の一実施の形態に係るサセプタ上面カバーを説明する説明図であって、平面視した状態を示している。It is explanatory drawing explaining the susceptor upper surface cover which concerns on one embodiment of this invention, Comprising: The state seen planarly is shown. 実施例に係る実験結果を示すグラフである(その1)。It is a graph which shows the experimental result which concerns on an Example (the 1). 実施例に係る実験結果を示すグラフである(その2)。It is a graph which shows the experimental result which concerns on an Example (the 2). 従来の気相成長装置の説明図である。It is explanatory drawing of the conventional vapor phase growth apparatus. 図8の一部を拡大して示す拡大図である。It is an enlarged view which expands and shows a part of FIG.

[実施の形態1]
本実施の形態に係る気相成長装置のチャンバー等の基本構造は、図8に示した従来例と同様であるので、説明を省略し、以下においては要部のみを図1〜図3に基づいて説明する。なお、図1〜3において、図8に示した従来例と同一部分には同一の符号を付してある。
本実施の形態に係る気相成長装置は、図1に示すように、反応室内に配置されて基板43を保持する円盤状のサセプタ37と、サセプタ37の中心部に配置されてサセプタ37の径方向に向けて原料ガスを噴射する原料ガス導入ノズル33と、サセプタ37における基板保持部以外を覆うサセプタ上面カバー47と、サセプタ上面カバー47との間に所定の間隔を離して対向配置されて原料ガスの流路を形成する円盤状の対向面部材1とを備えている。
[Embodiment 1]
Since the basic structure of the chamber and the like of the vapor phase growth apparatus according to the present embodiment is the same as that of the conventional example shown in FIG. 8, the description thereof is omitted, and only the main part is based on FIGS. I will explain. 1 to 3, the same reference numerals are given to the same parts as those in the conventional example shown in FIG. 8.
As shown in FIG. 1, the vapor phase growth apparatus according to the present embodiment includes a disc-shaped susceptor 37 that is disposed in a reaction chamber and holds a substrate 43, and a diameter of the susceptor 37 that is disposed at the center of the susceptor 37. The raw material gas introduction nozzle 33 that injects the raw material gas in the direction, the susceptor upper surface cover 47 that covers the substrate other than the substrate holding portion in the susceptor 37, and the susceptor upper surface cover 47 are arranged to face each other with a predetermined distance therebetween. And a disk-shaped opposing surface member 1 that forms a gas flow path.

対向面部材1は、サセプタ上面カバー47との間に所定の間隔を離して対向配置されてサセプタ上面カバー47と協働して原料ガスの流路を形成する円盤状の部材である。
対向面部材1は、対向面部材1の内周側を形成する対向面内側部材1aと、対向面内側部材1aの径方向外側であって少なくとも基板43が載置される部位の直上を含む部位を形成する対向面外側部材1bとを備えてなる。
The facing surface member 1 is a disk-shaped member that is disposed to face the susceptor upper surface cover 47 at a predetermined interval and cooperates with the susceptor upper surface cover 47 to form a flow path of the source gas.
The facing surface member 1 includes a facing surface inner member 1a that forms the inner peripheral side of the facing surface member 1, and a portion that includes at least a portion on the radial direction outer side of the facing surface inner member 1a and at least a portion on which the substrate 43 is placed. And an opposing surface outer member 1b.

対向面内側部材1aは対向面外側部材1bよりも赤外線吸収率が小さい物質で形成され、対向面外側部材1bは、その熱膨張率が反応生成物の熱膨張率と近く、その差が30%以内である物質で形成されている。
対向面部材1を形成する物質について、以下詳細に説明する。
The opposing surface inner member 1a is formed of a material having a smaller infrared absorption rate than the opposing surface outer member 1b. The opposing surface outer member 1b has a thermal expansion coefficient close to that of the reaction product, and the difference is 30%. It is made of a material that is within.
The substance which forms the opposing surface member 1 is demonstrated in detail below.

対向面部材1を形成する物質は、反応生成物とも関連するので、以下においては反応生成物の例として、窒化ガリウム(GaN)や窒化アルミニウム(AlN)を挙げ、また、対向面部材1に用いることのできる物質として石英ガラス、サファイアガラス、グラファイト、炭化珪素を例に挙げ、これらの物質について熱伝導率(W/cm・K)、熱膨張率(×10-6/K)、赤外線吸収率(at 1μm)、赤外線透過率(at 1μm)を表1に示す。
なお、赤外線吸収率(at 1μm)とはその波長の光が垂直に照射した場合に、その光エネルギーを熱エネルギーとして吸収できるか、という尺度を表している。よって吸収されなかった光エネルギーは全て反射又は透過する。
Since the substance forming the facing surface member 1 is also associated with the reaction product, examples of the reaction product include gallium nitride (GaN) and aluminum nitride (AlN), and are used for the facing surface member 1 below. Examples of materials that can be used include quartz glass, sapphire glass, graphite, and silicon carbide. These materials have thermal conductivity (W / cm · K), thermal expansion coefficient (× 10 -6 / K), and infrared absorption rate. Table 1 shows (at 1 μm) and infrared transmittance (at 1 μm).
The infrared absorptance (at 1 μm) represents a measure of whether or not the light energy can be absorbed as thermal energy when light of that wavelength is irradiated vertically. Therefore, all the light energy that has not been absorbed is reflected or transmitted.

対向面外側部材1bは赤外線吸収率が石英ガラスより大きい物質で、かつ反応生成物に近い熱膨張率を有する物質が好適である。
対向面外側部材1bの赤外線吸収率を石英ガラスより大きくすることで、原料ガスに接触する面に反応生成物が堆積しやすく、温度再現性に優れ反応室内の熱環境は安定する。
また、熱膨張率が反応生成物と近いことで、対向面外側部材1bに反応生成物が付着した場合において、熱膨張率の差が小さいことで、加熱時において反応生成物と対向面外側部材1bとの間に生ずるせん断力を小さく抑えることができ、反応生成物の剥れ落ちが少なくなりパーティクルの問題発生を抑制できる。
なお、対向面外側部材1bと反応生成物の熱膨張率の差としては、30%以内が好ましい。
The opposing surface outer member 1b is preferably made of a material having an infrared absorption rate larger than that of quartz glass and a coefficient of thermal expansion close to that of the reaction product.
By making the infrared absorption rate of the opposing surface outer member 1b larger than that of quartz glass, reaction products are easily deposited on the surface in contact with the source gas, and the temperature environment is excellent and the thermal environment in the reaction chamber is stabilized.
Further, when the reaction product adheres to the opposing surface outer member 1b because the thermal expansion coefficient is close to that of the reaction product, the difference between the thermal expansion coefficients is small, so that the reaction product and the opposing surface outer member are heated. The shearing force generated between 1b and 1b can be kept small, the reaction product is less peeled off, and the occurrence of particle problems can be suppressed.
In addition, as a difference of the thermal expansion coefficient of the opposing surface outer side member 1b and a reaction product, within 30% is preferable.

表1を見ると、グラファイトと炭化珪素はいずれも石英ガラスよりも赤外線吸収率が高い。
また、窒化ガリウムの場合熱膨張率が5.6(×10-6/K)であり、グラファイトの熱膨張率は5.0(×10-6/K)、炭化珪素の熱膨張率は4.2(×10-6/K)であることから、いずれも窒化ガリウムの熱膨張率との差が30%以内である。
また、窒化アルミニウムの熱膨張率は4.5(×10-6/K)であり、グラファイト及び炭化珪素のいずれも熱膨張率の差は30%以内である。
以上から、反応生成物が窒化ガリウム、窒化アルミニウムのいずれの場合であっても、対向面外側部材1bの材料として、グラファイトや炭化珪素が好適である。具体的には、グラファイト、炭化珪素コートグラファイトまたは炭化珪素バルク材を用いることが好適である。
Looking at Table 1, both graphite and silicon carbide have higher infrared absorptance than quartz glass.
In the case of gallium nitride, the thermal expansion coefficient is 5.6 (× 10 −6 / K), the thermal expansion coefficient of graphite is 5.0 (× 10 −6 / K), and the thermal expansion coefficient of silicon carbide is 4.2 (× 10 − 6 / K), the difference from the thermal expansion coefficient of gallium nitride is within 30%.
The thermal expansion coefficient of aluminum nitride is 4.5 (× 10 −6 / K), and the difference in thermal expansion coefficient between graphite and silicon carbide is within 30%.
From the above, regardless of whether the reaction product is gallium nitride or aluminum nitride, graphite or silicon carbide is suitable as the material of the facing surface outer member 1b. Specifically, it is preferable to use graphite, silicon carbide coated graphite or silicon carbide bulk material.

対向面内側部材1aは、対向面外側部材1bよりも赤外線吸収能力が小さく、断熱作用の大きい(熱伝導率が小さい)材料がよく、表1に示されるように、対向面外側部材1bとしてグラファイト又は炭化珪素を用いた場合には、石英ガラスやサファイアガラスはグラファイト及び炭化珪素よりも赤外線吸収率が小さいので好適である。特に石英ガラスは、グラファイトや炭化珪素に比べて熱伝導率が2けた小さいのでより好ましい。   The facing surface inner member 1a is preferably made of a material having a smaller infrared absorption capacity and a larger heat insulating action (lower thermal conductivity) than the facing surface outer member 1b. As shown in Table 1, graphite is used as the facing surface outer member 1b. Alternatively, when silicon carbide is used, quartz glass or sapphire glass is preferable because it has a smaller infrared absorption rate than graphite and silicon carbide. In particular, quartz glass is more preferable because it has a thermal conductivity that is two orders of magnitude smaller than that of graphite or silicon carbide.

対向面内側部材1aとして、石英ガラスやサファイアガラスを用いることで、原料ガス導入ノズル33の近傍に赤外線吸収能力の高いグラファイト又は炭化珪素を用いる場合よりも、温度上昇を防止できる。これにより、原料ガス導入ノズル33から基板直上までをガス分解温度より低い温度環境に保ち、原料ガスが基板直上に至るまでの間に原料ガスの熱分解が生ずるのを抑制できる。その結果、原料ガス導入ノズル33から基板直上までの対向面部材1には反応生成物が堆積しにくく、パーティクル発生の抑制効果がある。   By using quartz glass or sapphire glass as the facing surface inner member 1a, temperature rise can be prevented compared to the case of using graphite or silicon carbide having high infrared absorption capability in the vicinity of the source gas introduction nozzle 33. Thus, the temperature from the source gas introduction nozzle 33 to the position immediately above the substrate is maintained in a temperature environment lower than the gas decomposition temperature, and it is possible to suppress the thermal decomposition of the source gas before the source gas reaches the position immediately above the substrate. As a result, reaction products are unlikely to accumulate on the opposing surface member 1 from the source gas introduction nozzle 33 to just above the substrate, and there is an effect of suppressing particle generation.

対向面部材1は、図1に示すように、対向面内側部材1aと対向面外側部材1bが分割可能に構成されている。対向面内側部材1aの外周縁には外周側が一段下がった段部が形成され、対向面外側部材1bの内周面には段部に載置可能な逆段部が形成されている。対向面内側部材1aの段部に対向面外側部材1bの逆段部を載置した状態で、対向面内側部材1aと対向面外側部材1bの上面が面一になるように構成されている。
上記のように段部と逆段部を形成することで、対向面内側部材1aをノズル装置で持ち上げると対向面外側部材1bも同時に持ち上げることができ、自動搬送に好適である。
As shown in FIG. 1, the facing surface member 1 is configured such that the facing surface inner member 1 a and the facing surface outer member 1 b can be divided. A step portion whose outer peripheral side is lowered by one step is formed on the outer peripheral edge of the facing surface inner member 1a, and a reverse step portion that can be placed on the step portion is formed on the inner peripheral surface of the facing surface outer member 1b. The upper surface of the opposing surface inner member 1a and the opposing surface outer member 1b are configured to be flush with each other in a state where the opposite step portion of the opposing surface outer member 1b is placed on the step portion of the opposing surface inner member 1a.
By forming the stepped portion and the reverse stepped portion as described above, when the facing surface inner member 1a is lifted by the nozzle device, the facing surface outer member 1b can be lifted simultaneously, which is suitable for automatic conveyance.

基板載置部39に載置された基板43の温度や成膜状況を監視するため、対向面部材1には基板直上に光を通す貫通穴3を設ける場合がある。
上述したように、対向面外側部材1bをグラファイトや炭化珪素のように赤外線吸収率の高い材料で形成した場合、高温で温度安定性が高くなる。このため、対向面外側部材1bに貫通穴3を設けた場合には、貫通穴3に反応生成物が堆積しやすくなり、貫通穴3が塞がれやすくなる。
そこで、図3に示すように、貫通穴3の周辺部を対向面外側部材1bより熱伝導率の小さい部材で形成した断熱キャップ5で囲うことにより、貫通穴3の内側表面の温度上昇を防ぎ、反応生成物で貫通穴3が塞がれることを抑制できる。
In order to monitor the temperature and film formation state of the substrate 43 placed on the substrate platform 39, the opposing surface member 1 may be provided with a through hole 3 through which light passes directly above the substrate.
As described above, when the facing surface outer member 1b is formed of a material having a high infrared absorption rate such as graphite or silicon carbide, the temperature stability is increased at a high temperature. Therefore, if a through hole 3 provided on the opposite surface the outer member 1b, the reaction product into the through-hole 3 is easily deposited, the through-hole 3 easily blocked.
Therefore, as shown in FIG. 3, by surrounding the peripheral portion of the through hole 3 with a heat insulating cap 5 formed of a member having a lower thermal conductivity than the opposing surface outer member 1b, a temperature rise on the inner surface of the through hole 3 is prevented. The through hole 3 can be prevented from being blocked by the reaction product.

以上のように本実施の形態においては、対向面部材1を互いに分離可能な対向面内側部材1aと対向面外側部材1bで形成し、対向面内側部材1aは対向面外側部材1bよりも赤外線吸収率が小さい物質で形成され、対向面外側部材1bは、その熱膨張率が反応生成物の熱膨張率と近く、その差が30%以内である物質で形成されているので、温度再現性に優れ反応室内の熱環境が安定し、また反応生成物の剥れ落ちが少なくなりパーティクルの問題発生を抑制できる。
また、反応生成物と対向面外側部材1bの熱膨張率差による変形の度合いが小さくなるので、発生する膜応力が小さくなり、反応生成物が付着しても破損するという問題がない。
対向面内側部材1aについても、対向面部材1全体を石英ガラスで形成する場合よりも形状が小さいので、膜応力が発生したとしても、破損するリスクは大幅に減少できる。
また、原料ガス導入ノズル33から基板直上までをガス分解温度より低い温度環境に保ち、原料ガスが基板直上に至るまでの間に原料ガスの熱分解が生ずるのを抑制できる。
さらに、対向面内側部材1aと対向面外側部材1bが分割可能に構成されているので、自動搬送に好適である。
As described above, in the present embodiment, the facing surface member 1 is formed by the facing surface inner member 1a and the facing surface outer member 1b that can be separated from each other, and the facing surface inner member 1a absorbs infrared rays more than the facing surface outer member 1b. The opposing surface outer member 1b is formed of a material whose thermal expansion coefficient is close to the thermal expansion coefficient of the reaction product and the difference thereof is within 30%. The thermal environment in the excellent reaction chamber is stabilized, and the reaction product is less peeled off, thereby preventing the occurrence of particle problems.
Further, since the degree of deformation due to the difference in thermal expansion coefficient between the reaction product and the opposing surface outer member 1b is reduced, the generated film stress is reduced, and there is no problem of damage even if the reaction product adheres.
The opposing surface inner member 1a is also smaller in shape than the case where the entire opposing surface member 1 is made of quartz glass, so that the risk of breakage can be greatly reduced even if film stress occurs.
In addition, it is possible to maintain the temperature environment lower than the gas decomposition temperature from the source gas introduction nozzle 33 to just above the substrate, and to suppress the thermal decomposition of the source gas before the source gas reaches directly above the substrate.
Furthermore, since the opposing surface inner member 1a and the opposing surface outer member 1b are configured to be separable, they are suitable for automatic conveyance.

[実施の形態2]
図4は本発明の実施の形態2の説明図であり、実施の形態1と同一部分には同一の符号を付してある。
本実施の形態では、実施の形態1の構成に加えて、サセプタ上面カバー7を、サセプタ上面カバー7の内周側を形成するサセプタ上面カバー内側部材7aと、サセプタ上面カバー7内側部材の径方向外側を形成するサセプタ上面カバー外側部材7bとによって形成したものである。そして、サセプタ上面カバー内側部材7aを、前記サセプタ上面カバー外側部材7bよりも赤外線吸収率が小さい物質で形成し、前記サセプタ上面カバー外側部材7bはその熱膨張率が反応生成物の熱膨張率と近く、その差が30%以内である物質で形成されている。
[Embodiment 2]
FIG. 4 is an explanatory diagram of the second embodiment of the present invention, and the same reference numerals are given to the same parts as those of the first embodiment.
In the present embodiment, in addition to the configuration of the first embodiment, the susceptor upper surface cover 7 includes a susceptor upper surface cover inner member 7a that forms the inner peripheral side of the susceptor upper surface cover 7, and a radial direction of the susceptor upper surface cover 7 inner member. It is formed by the susceptor upper surface cover outer member 7b that forms the outer side. The susceptor upper surface cover inner member 7a is formed of a material having an infrared absorption rate smaller than that of the susceptor upper surface cover outer member 7b, and the thermal expansion coefficient of the susceptor upper surface cover outer member 7b is equal to the thermal expansion coefficient of the reaction product. It is made of a material that is close and the difference is within 30%.

<サセプタ上面カバー>
サセプタ上面カバー7は、図5に示すように、平面視でサセプタ37とほぼ同形の円環板状からなり、中央にノズル部の上部が挿入可能な中央開口部9と、中央開口部9の周りに複数の開口部11とを有している。
サセプタ上面カバー7は、サセプタ37上に載置されて原料ガスによる汚染や酸化等からサセプタ37を保護するものである。サセプタ上面カバー7がサセプタ37上に載置されると、サセプタ上面カバー7の上面とサセプタ37の基板載置部39に載置された基板43との上面とが面一になるようになっており、これらの面と対向面部材1の下面とで原料ガスの流路が形成されている。
<Susceptor top cover>
As shown in FIG. 5, the susceptor upper surface cover 7 has an annular plate shape substantially the same as the susceptor 37 in a plan view, and a central opening 9 into which the upper part of the nozzle portion can be inserted at the center, A plurality of openings 11 are provided around.
The susceptor upper surface cover 7 is placed on the susceptor 37 and protects the susceptor 37 from contamination or oxidation by the source gas. When the susceptor upper surface cover 7 is placed on the susceptor 37, the upper surface of the susceptor upper surface cover 7 and the upper surface of the substrate 43 placed on the substrate placement portion 39 of the susceptor 37 become flush with each other. The raw material gas flow path is formed by these surfaces and the lower surface of the opposing surface member 1.

<サセプタ上面カバー外側部材>
サセプタ上面カバー外側部材7bについて、熱膨張率が反応生成物の熱膨張率と近いものにする理由は、サセプタ上面カバー外側部材7bは基板43の近傍に配置されているため、付着した反応生成物が熱膨張時に剥がれてパーティクルの問題を生じないようにするためである。
熱膨張率の差としては、30%以内が好ましく、例えば反応生成物が窒化ガリウム、窒化アルミニウムの場合には、サセプタ上面カバー外側部材7bの材料として、グラファイトや炭化珪素が好適である。
<Susceptor top cover outer member>
The reason why the coefficient of thermal expansion of the susceptor upper surface cover outer member 7b is close to the coefficient of thermal expansion of the reaction product is that the susceptor upper surface cover outer member 7b is disposed in the vicinity of the substrate 43. This is to prevent the particles from peeling off during thermal expansion and causing the problem of particles.
The difference in coefficient of thermal expansion is preferably within 30%. For example, when the reaction product is gallium nitride or aluminum nitride, graphite or silicon carbide is suitable as the material of the susceptor upper surface cover outer member 7b.

サセプタ上面カバー内側部材7aは、対向面内側部材1aと同じ理由により、対向面外側部材1bやサセプタ上面カバー外側部材7bよりも赤外線吸収能力が小さく、断熱作用の大きい(熱伝導率が小さい)材料がよく、石英ガラスやサファイアガラスが好適である。特に石英ガラスは、グラファイトや炭化珪素に比べて熱伝導率が2けた小さいのでより好ましい。
サセプタ上面カバー内側部材7aとして、石英ガラスやサファイアガラスを用いることで、上述した対向面内側部材1aで述べたように、原料ガス導入ノズル33の近傍に赤外線吸収能力の高いグラファイト又は炭化珪素を用いる場合よりも、温度上昇を防止できる。これにより、原料ガス導入ノズル33から基板直上までをガス分解温度より低い温度環境に保ち、原料ガスが基板直上に至るまでの間に原料ガスの熱分解が生ずるのを抑制できた。その結果、原料ガス導入ノズル33から基板直上までの対向面部材1には反応生成物も堆積しにくく、パーティクル発生の抑制効果がある。特に、サセプタ上面カバー内側部材7aと対向面内側部材1aの両方を上記の材料で形成することで、上記の効果をより確実に奏することができる。
The susceptor upper surface cover inner member 7a is a material having a smaller infrared absorption capacity and a larger heat insulation effect (lower thermal conductivity) than the opposed surface outer member 1b and the susceptor upper surface cover outer member 7b for the same reason as the opposed surface inner member 1a. Quartz glass and sapphire glass are preferable. In particular, quartz glass is more preferable because it has a thermal conductivity that is two orders of magnitude smaller than that of graphite or silicon carbide.
By using quartz glass or sapphire glass as the susceptor upper surface cover inner member 7a, graphite or silicon carbide having a high infrared absorption ability is used in the vicinity of the source gas introduction nozzle 33 as described in the above-described facing surface inner member 1a. The temperature rise can be prevented more than the case. As a result, it was possible to keep the temperature environment lower than the gas decomposition temperature from the source gas introduction nozzle 33 to just above the substrate, and to suppress the thermal decomposition of the source gas until the source gas reaches directly above the substrate. As a result, it is difficult for reaction products to accumulate on the facing member 1 from the source gas introduction nozzle 33 to directly above the substrate, and there is an effect of suppressing the generation of particles. In particular, by forming both the susceptor upper surface cover inner member 7a and the opposing surface inner member 1a from the above material, the above-described effects can be more reliably exhibited.

本発明の効果を確認するための実験を行ったので、これについて以下説明する。
対向面部材とサセプタ上面カバーの組合せを3種類用いて、MOCVDでGaN系の発光デバイスを成膜し、製造された発光デバイスの繰り返し波長再現性の調査と基板上で観測されたパーティクル数の調査を行った。
対向面部材とサセプタ上面カバーの組合せは以下の3種類である。
1)従来例:対向面部材およびサセプタ上面カバーを石英ガラスのみで形成したもの。
2)実施例1:対向面部材を2分割し、対向面部材内側を石英ガラス、対向面部材外側をグラファイトで構成し、サセプタ上面カバーは全体を石英ガラスで形成したもの(実施の形態1で説明した態様)。
3)実施例2:対向面部材およびサセプタ上面カバーを2分割し、対向面内側部材及びサセプタ上面カバー内側部材を石英ガラスで形成し、対向面外側部材及びサセプタ上面カバー外側部材をグラファイトで形成したもの(実施の形態2で説明した態様)。
An experiment for confirming the effect of the present invention was performed, which will be described below.
Using three types of combinations of facing surface member and susceptor top cover, GaN-based light emitting devices were formed by MOCVD, and the reproducible wavelength reproducibility of the manufactured light emitting devices and the number of particles observed on the substrate were investigated. Went.
There are the following three types of combinations of the facing surface member and the susceptor upper surface cover.
1) Conventional example: A facing member and a susceptor upper surface cover formed only of quartz glass.
2) Example 1: The opposing surface member is divided into two, the inside of the opposing surface member is made of quartz glass, the outside of the opposing surface member is made of graphite, and the entire susceptor upper surface cover is made of quartz glass (in Embodiment 1) Described mode).
3) Example 2: The opposing surface member and the susceptor upper surface cover were divided into two, the opposing surface inner member and the susceptor upper surface cover inner member were formed of quartz glass, and the opposing surface outer member and the susceptor upper surface cover outer member were formed of graphite. Thing (mode demonstrated in Embodiment 2).

<繰り返し波長再現性>
図6は繰り返し波長再現性の調査結果を示すグラフであり、縦軸は成長目標とした発光波長に対して、どの程度変化したかの割合を示す発光波長変化率(%)であり、横軸が発光デバイスの成膜の繰り返し数である。
<Repetitive wavelength reproducibility>
FIG. 6 is a graph showing the results of repeated wavelength reproducibility, and the vertical axis represents the rate of change in emission wavelength (%) indicating the degree of change with respect to the emission wavelength targeted for growth, and the horizontal axis. Is the number of repetitions of film formation of the light emitting device.

従来例では成長を繰り返すごとに発光波長が小さく(短波に)なり、5回繰り返すと波長差に2%以上の差が発生していた。
これに対し、実施例1では、発光波長の再現性は大きく改善し、5回の繰り返しで波長差0.2%となった。さらに、実施例2では、さらに繰り返し再現性が向上し、5回の繰り返しで波長差0.1%未満となり、高精度な繰り返し再現性が得られた。
In the conventional example, each time the growth is repeated, the emission wavelength decreases (short wave), and when the growth is repeated five times, a difference of 2% or more occurs in the wavelength difference.
On the other hand, in Example 1, the reproducibility of the emission wavelength was greatly improved, and the wavelength difference was 0.2% after 5 repetitions. Furthermore, in Example 2, the repeatability was further improved, and the wavelength difference was less than 0.1% after 5 repetitions, and highly accurate repeatability was obtained.

<パーティクル数>
図7はパーティクル数調査についての結果を示すグラフであり、縦軸が基板上のパーティクル数の割合を示し、横軸が発光デバイスの成膜の繰り返し数である。
なお、パーティクルの大きさは0.5〜1.0mmサイズの比較的大きな、部材から剥がれたことが明らかであるものを測定した。
<Number of particles>
FIG. 7 is a graph showing the results of the particle number survey, where the vertical axis represents the ratio of the number of particles on the substrate, and the horizontal axis represents the number of repetitions of film formation of the light emitting device.
In addition, the particle | grain size measured comparatively big 0.5-1.0mm size, and it is clear that it was peeled from the member.

従来例はパーティクルが比較的多く発生し、1回目を100%とした場合、2回目では60%程度に低下したものの、その後は徐々に増加し、繰り返し回数が5回目には110%を超えた。
これに対し、実施例1の場合、最大値を示した繰り返し回数5回でも70%程度であり、最大値が大きく改善した。また、実施例1の場合、1回目よりも2回目ではパーティクル数が減少し、その後は徐々に増加の傾向があったが、増加割合は極めて小さかった。
実施例2の場合、最大値を示した繰り返し回数5回でも40%程度であり、最大値がさらに大きく改善した。また、1回目と2日目でのパーティクル数の逆転現象が見られず、繰り返しに従い、徐々に増加していったが、増加割合はさらに小さくなった。
In the conventional example, a relatively large number of particles were generated, and when the first time was set to 100%, the second time decreased to about 60%, but then gradually increased, and the number of repetitions exceeded 110% at the fifth time. .
On the other hand, in the case of Example 1, even when the number of repetitions showing the maximum value was 5 times, it was about 70%, and the maximum value was greatly improved. In the case of Example 1, the number of particles decreased at the second time than at the first time, and then gradually increased, but the increase rate was extremely small.
In the case of Example 2, even when the number of repetitions showing the maximum value was 5 times, it was about 40%, and the maximum value was further greatly improved. In addition, no reversal of the number of particles was observed between the first and second days, and gradually increased with repetition, but the rate of increase was further reduced.

<耐久性>
耐久性に関し、前述したように、従来の石英ガラスの対向板部材は100回程度の繰り返し使用で、おそらくは膜応力の繰り返しによる疲労破壊と思われるが、予期せず割れることが確認されていた。
これに対し、対向面部材を2分割し、対向面内側部材を石英ガラス、対向面外側部材をグラファイトで形成した場合、200回以上の繰り返し使用に耐えられ、2倍以上の延命効果が得られた。
対向面内側部材は形状が小さくなったことで、膜応力による形状変化が従来例より緩和されたと考えられる。また、対向面外側部材はグラファイトを使用したことで、反応生成物による膜応力が小さくなったことによると考えられる。
<Durability>
Regarding the durability, as described above, the conventional quartz glass facing plate member was repeatedly used about 100 times, and it was presumably cracked due to repeated film stress, but it was confirmed to crack unexpectedly.
On the other hand, when the opposing surface member is divided into two, the opposing surface inner member is formed of quartz glass, and the opposing surface outer member is formed of graphite, it can withstand repeated use over 200 times, and a life extension effect of twice or more can be obtained. It was.
It is considered that the shape change due to the film stress is more relaxed than the conventional example because the shape of the opposing surface inner member is reduced. In addition, it is considered that the membrane stress due to the reaction product is reduced by using graphite for the opposing surface outer member.

なお、上述したように対向板部材やサセプタ上面カバーを2分割し、それぞれに適した材質とする構造は自動搬送を用いる量産装置に限るものではなく、基板を1枚または数枚設置する小型のMOCVD装置においても適用可能である。   As described above, the structure in which the counter plate member and the susceptor upper surface cover are divided into two parts and are made of materials suitable for each is not limited to a mass production apparatus using automatic conveyance, but is a small-sized one or several substrates. The present invention can also be applied to an MOCVD apparatus.

1 対向面部材
1a 対向面内側部材
1b 対向面外側部材
3 貫通穴
5 断熱キャップ
7 サセプタ上面カバー
7a サセプタ上面カバー内側部材
7b サセプタ上面カバー外側部材
9 中央開口部
11 開口部
31 気相成長装置
33 原料ガス導入ノズル
35 チャンバー
35a チャンバー蓋
35b チャンバー本体
36 Oリング
37 サセプタ
39 基板載置部
41 対向面部材
43 基板
45 ヒーター
47 サセプタ上面カバー
49 原料ガス流路
DESCRIPTION OF SYMBOLS 1 Opposite surface member 1a Opposite surface inner member 1b Opposite surface outer member 3 Through hole 5 Thermal insulation cap 7 Susceptor upper surface cover 7a Susceptor upper surface cover inner member 7b Susceptor upper surface cover outer member 9 Central opening 11 Opening 31 Vapor growth apparatus 33 Raw material Gas introduction nozzle 35 Chamber 35a Chamber lid 35b Chamber body 36 O-ring 37 Susceptor 39 Substrate placement part 41 Opposing surface member 43 Substrate 45 Heater 47 Susceptor upper surface cover 49 Source gas flow path

Claims (8)

反応室内に配置されて基板を保持する円盤状のサセプタと、該サセプタの中心部に配置されて該サセプタの径方向に向けて原料ガスを噴射する原料ガス導入ノズルと、前記サセプタ上に載置されて前記サセプタにおける基板保持部以外を覆うサセプタ上面カバーと、該サセプタ上面カバーとの間に所定の間隔を離して対向配置されて前記原料ガスの流路を形成する円盤状の対向面部材とを備えた気相成長装置であって、
前記対向面部材は、該対向面部材の内周側を形成する対向面内側部材と、該対向面内側部材の径方向外側であって少なくとも前記基板が載置される部位の直上を含む部位を形成すると共に前記対向面内側部材と分割可能な対向面外側部材とを備えてなり、
前記対向面内側部材の外周縁には外周側が一段下がった段部が形成され、前記対向面外側部材の内周面には前記段部に載置可能な逆段部が形成され、前記対向面内側部材の段部に前記対向面外側部材の逆段部を載置した状態で、前記対向面内側部材と前記対向面外側部材の上面が面一になるように構成され、
前記対向面内側部材は前記対向面外側部材よりも赤外線吸収率が小さい物質で形成され、前記対向面外側部材は、その熱膨張率が反応生成物の熱膨張率と近く、その差が30%以内である物質で形成されていることを特徴とする気相成長装置。
A disc-shaped susceptor that is disposed in the reaction chamber and holds the substrate, a source gas introduction nozzle that is disposed at the center of the susceptor and injects a source gas in the radial direction of the susceptor, and is mounted on the susceptor A susceptor upper surface cover that covers the substrate other than the substrate holding portion in the susceptor, and a disk-shaped facing surface member that is disposed to be opposed to the susceptor upper surface cover with a predetermined distance therebetween to form the flow path of the source gas. A vapor phase growth apparatus comprising:
The facing surface member includes a facing surface inner member forming an inner peripheral side of the facing surface member, and a portion including at least a portion on the radial outer side of the facing surface inner member and a portion on which the substrate is placed. And comprising the opposing surface inner member and the splitting opposing surface outer member,
A stepped portion whose outer peripheral side is lowered by one step is formed on the outer peripheral edge of the facing surface inner member, and a reverse stepped portion that can be placed on the stepped portion is formed on the inner peripheral surface of the facing surface outer member. In a state where the opposite step portion of the facing surface outer member is placed on the step portion of the inner member, the upper surface of the facing surface inner member and the facing surface outer member are configured to be flush with each other.
The opposing surface inner member is formed of a material having a smaller infrared absorption rate than the opposing surface outer member, and the opposing surface outer member has a thermal expansion coefficient close to that of the reaction product, and the difference is 30%. A vapor phase growth apparatus characterized in that it is made of a material within the range.
前記対向面内側部材を形成する物質が石英ガラス又はサファイアガラスであり、前記対向面外側部材を形成する物質がグラファイト、炭化珪素コートグラファイトまたは炭化珪素バルク材であることを特徴とする請求項1記載の気相成長装置。   2. The material forming the facing surface inner member is quartz glass or sapphire glass, and the material forming the facing surface outer member is graphite, silicon carbide-coated graphite, or silicon carbide bulk material. Vapor growth equipment. 前記対向面外側部材は、前記サセプタ上に配置された基板の温度や成膜状況を監視するための光を通す貫通穴を有し、該貫通穴の周囲に前記対向面外側部材よりも断熱性の高い部材で囲んだことを特徴とする請求項1又は2記載の気相成長装置。   The opposing surface outer member has a through hole through which light for monitoring the temperature of the substrate disposed on the susceptor and the film formation state is passed, and is more thermally insulated than the opposing surface outer member around the through hole. The vapor phase growth apparatus according to claim 1, wherein the vapor phase growth apparatus is surrounded by a member having high height. 前記対向面外側部材よりも断熱性の高い部材が、石英ガラスまたはサファイアガラスであることを特徴とする請求項3に記載の気相成長装置。   4. The vapor phase growth apparatus according to claim 3, wherein the member having higher heat insulation than the opposing surface outer member is quartz glass or sapphire glass. 前記サセプタ上面カバーは、該サセプタ上面カバーの内周側を形成するサセプタ上面カバー内側部材と、該サセプタ上面カバー内側部材の径方向外側を形成するサセプタ上面カバー外側部材とを備えてなり、該サセプタ上面カバー内側部材は、前記サセプタ上面カバー外側部材よりも赤外線吸収率が小さい物質で形成され、前記サセプタ上面カバー外側部材はその熱膨張率が反応生成物の熱膨張率と近く、その差が30%以内である物質で形成されていることを特徴とする請求項1乃至4のいずれか一項に記載の気相成長装置。   The susceptor upper surface cover includes a susceptor upper surface cover inner member that forms an inner peripheral side of the susceptor upper surface cover, and a susceptor upper surface cover outer member that forms a radial outer side of the susceptor upper surface cover inner member. The upper cover inner member is formed of a material having a smaller infrared absorption rate than the susceptor upper cover outer member. The susceptor upper cover outer member has a thermal expansion coefficient close to that of the reaction product, and the difference is 30. 5. The vapor phase epitaxy apparatus according to claim 1, wherein the vapor phase epitaxy apparatus is made of a substance that is within a percentage. 前記サセプタ上面カバー内側部材を形成する物質が石英ガラス又はサファイアガラスであり、前記サセプタ上面カバー外側部材を形成する物質がグラファイト、炭化珪素コートグラファイトまたは炭化珪素バルク材であることを特徴とする請求項5記載の気相成長装置。   The material forming the susceptor upper surface cover inner member is quartz glass or sapphire glass, and the material forming the susceptor upper surface cover outer member is graphite, silicon carbide coated graphite, or silicon carbide bulk material. 5. The vapor phase growth apparatus according to 5. 反応室内に配置されて基板を保持する円盤状のサセプタと、該サセプタの中心部に配置されて該サセプタの径方向に向けて原料ガスを噴射する原料ガス導入ノズルと、前記サセプタ上に載置されて前記サセプタにおける基板保持部以外を覆うサセプタ上面カバーと、該サセプタ上面カバーとの間に所定の間隔を離して対向配置されて前記原料ガスの流路を形成する円盤状の対向面部材とを備えた気相成長装置であって、
前記サセプタ上面カバーは、該サセプタ上面カバーの内周側を形成するサセプタ上面カバー内側部材と、該サセプタ上面カバー内側部材の径方向外側を形成すると共に前記サセプタ上面カバー内側部材と分割可能なサセプタ上面カバー外側部材とを備えてなり、
前記サセプタ上面カバー外側部材の内周縁には内周側が一段下がった段部が形成され、前記サセプタ上面カバー内側部材の外周面には前記段部に載置可能な逆段部が形成され、前記サセプタ上面カバー外側部材の段部に前記サセプタ上面カバー内側部材の逆段部を載置した状態で、前記サセプタ上面カバー外側部材と前記サセプタ上面カバー内側部材上面が面一になるように構成され、
前記サセプタ上面カバー側部材は、前記サセプタ上面カバー側部材よりも赤外線吸収率が小さい物質で形成され、前記サセプタ上面カバー外側部材はその熱膨張率が反応生成物の熱膨張率と近く、その差が30%以内である物質で形成されていることを特徴とする気相成長装置。
A disc-shaped susceptor that is disposed in the reaction chamber and holds the substrate, a source gas introduction nozzle that is disposed at the center of the susceptor and injects a source gas in the radial direction of the susceptor, and is mounted on the susceptor A susceptor upper surface cover that covers the substrate other than the substrate holding portion in the susceptor, and a disk-shaped facing surface member that is disposed to be opposed to the susceptor upper surface cover with a predetermined distance therebetween to form the flow path of the source gas. A vapor phase growth apparatus comprising:
The susceptor upper surface cover includes a susceptor upper surface cover inner member that forms an inner peripheral side of the susceptor upper surface cover, and a susceptor upper surface cover inner member that forms a radially outer side of the susceptor upper surface cover inner member and is separable from the susceptor upper surface cover inner member. A cover outer member,
The inner peripheral edge of the susceptor upper surface cover outer member is formed with a step portion whose inner peripheral side is lowered by one step, and the outer peripheral surface of the susceptor upper surface cover inner member is formed with a reverse step portion that can be placed on the step portion, The susceptor upper surface cover outer member and the susceptor upper surface cover inner member upper surface are configured to be flush with each other, with the reverse step portion of the susceptor upper surface cover inner member placed on the step portion of the susceptor upper surface cover outer member,
The susceptor top cover member, said susceptor top cover outer side infrared absorptivity than member is formed with a small material, the susceptor top cover outer member near the thermal expansion coefficient of the thermal expansion coefficient reaction product, A vapor phase growth apparatus characterized in that the difference is made of a material within 30%.
前記サセプタ上面カバー内側部材を形成する物質が石英ガラス又はサファイアガラスであり、前記サセプタ上面カバー外側部材を形成する物質がグラファイト、炭化珪素コートグラファイトまたは炭化珪素バルク材であることを特徴とする請求項7記載の気相成長装置。   The material forming the susceptor upper surface cover inner member is quartz glass or sapphire glass, and the material forming the susceptor upper surface cover outer member is graphite, silicon carbide coated graphite, or silicon carbide bulk material. 8. The vapor phase growth apparatus according to 7.
JP2014160965A 2014-08-07 2014-08-07 Vapor growth equipment Active JP6382629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014160965A JP6382629B2 (en) 2014-08-07 2014-08-07 Vapor growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014160965A JP6382629B2 (en) 2014-08-07 2014-08-07 Vapor growth equipment

Publications (2)

Publication Number Publication Date
JP2016039225A JP2016039225A (en) 2016-03-22
JP6382629B2 true JP6382629B2 (en) 2018-08-29

Family

ID=55530075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014160965A Active JP6382629B2 (en) 2014-08-07 2014-08-07 Vapor growth equipment

Country Status (1)

Country Link
JP (1) JP6382629B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114737254B (en) * 2022-06-09 2022-08-23 芯三代半导体科技(苏州)有限公司 Silicon carbide epitaxial growth device and growth process method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682651B2 (en) * 1985-05-30 1994-10-19 株式会社日立製作所 Epitaxy insulating film for semiconductor device and manufacturing method thereof
JP2569321B2 (en) * 1987-03-13 1997-01-08 東洋炭素株式会社 Tray for vapor phase growth and vapor phase growth method
JPH04160094A (en) * 1990-10-19 1992-06-03 Furukawa Electric Co Ltd:The Vapor growth device for semiconductor thin film
JPH04179222A (en) * 1990-11-14 1992-06-25 Furukawa Electric Co Ltd:The Vapor growth apparatus for compound semiconductor
JP3772621B2 (en) * 2000-02-03 2006-05-10 株式会社日鉱マテリアルズ Vapor phase growth method and vapor phase growth apparatus
JP2009038143A (en) * 2007-07-31 2009-02-19 Sharp Corp Vapor growth device
JP5453768B2 (en) * 2008-11-05 2014-03-26 豊田合成株式会社 Compound semiconductor manufacturing apparatus, compound semiconductor manufacturing method, and compound semiconductor manufacturing jig
JP6013122B2 (en) * 2012-10-04 2016-10-25 大陽日酸株式会社 Vapor growth equipment

Also Published As

Publication number Publication date
JP2016039225A (en) 2016-03-22

Similar Documents

Publication Publication Date Title
JP6226648B2 (en) Method for manufacturing SiC epitaxial wafer
JP4262763B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP5283370B2 (en) Vapor growth apparatus and vapor growth method
TWI782760B (en) A coated liner assembly for a semiconductor processing chamber
JP2016184742A (en) Wafer carrier having tilt edge
CN110878430B (en) Apparatus for producing bulk silicon carbide
JP2013539209A (en) Exhaust system for CVD reactor
JP2013038153A (en) Manufacturing apparatus and method of epitaxial wafer
TWM531053U (en) Wafer carrier with a 14-pocket configuration
TWM531054U (en) Wafer carrier with a thirty-six pocket configuration
JP2013038152A (en) Manufacturing apparatus and method of epitaxial wafer
JP2018518592A (en) Heat shield ring for high growth rate EPI chamber
JP2021527963A (en) A device for measuring the susceptor surface temperature of a CVD reactor
JP6602145B2 (en) Substrate mounting table and vapor phase growth apparatus
JP6382629B2 (en) Vapor growth equipment
JP5440589B2 (en) Vapor growth apparatus and epitaxial wafer manufacturing method
JP4790449B2 (en) Vapor growth apparatus and vapor growth method
JP2014207357A (en) Susceptor and vapor phase growth device employing the same
TW202221158A (en) Apparatus and method for depositing a layer of semiconductor material on a substrate wafer
JP6335683B2 (en) SiC epitaxial wafer manufacturing equipment
TW201316445A (en) Wafer carrier with thermal features
JP2013093461A (en) Deposition apparatus
JP2012248764A (en) Cvd apparatus
JP6732483B2 (en) Substrate holding member and vapor phase growth apparatus
JP6078428B2 (en) Wafer support and chemical vapor deposition apparatus using the wafer support

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180802

R150 Certificate of patent or registration of utility model

Ref document number: 6382629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250