JP6381458B2 - Method for removing finely divided catalyst for gas processing apparatus - Google Patents

Method for removing finely divided catalyst for gas processing apparatus Download PDF

Info

Publication number
JP6381458B2
JP6381458B2 JP2015035371A JP2015035371A JP6381458B2 JP 6381458 B2 JP6381458 B2 JP 6381458B2 JP 2015035371 A JP2015035371 A JP 2015035371A JP 2015035371 A JP2015035371 A JP 2015035371A JP 6381458 B2 JP6381458 B2 JP 6381458B2
Authority
JP
Japan
Prior art keywords
catalyst
gas
reforming
treatment
subdivided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015035371A
Other languages
Japanese (ja)
Other versions
JP2016155718A (en
Inventor
松本 明
明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2015035371A priority Critical patent/JP6381458B2/en
Publication of JP2016155718A publication Critical patent/JP2016155718A/en
Application granted granted Critical
Publication of JP6381458B2 publication Critical patent/JP6381458B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、触媒収容空間に粒状の触媒が収容されて、当該触媒を所定の処理温度に昇温させた状態で、触媒収容空間に供給される処理対象ガスに対して所定の処理を施す処理部が設けられたガス処理装置用の細分化触媒除去方法に関する。   In the present invention, a granular catalyst is accommodated in the catalyst accommodating space, and the target gas supplied to the catalyst accommodating space is subjected to a predetermined treatment in a state where the catalyst is heated to a predetermined treatment temperature. The present invention relates to a method for removing a segmented catalyst for a gas processing apparatus provided with a section.

かかるガス処理装置は、触媒収容空間に供給される処理対象ガスに対して、粒状の触媒により所定の処理を施すものであり、例えば、触媒収容空間に供給される原燃料ガスに対して、改質処理用の触媒により、水素ガスを主成分とする改質ガスに改質する改質処理を施す水素含有ガス生成用のガス処理装置がある。   Such a gas processing device performs a predetermined process on a processing target gas supplied to a catalyst storage space with a granular catalyst. For example, the gas processing apparatus is modified for a raw fuel gas supplied to a catalyst storage space. There is a gas processing apparatus for generating a hydrogen-containing gas that performs a reforming process for reforming a reformed gas containing hydrogen gas as a main component by a catalyst for quality treatment.

このようなガス処理装置では、装置の起動及び停止の繰り返しによる触媒収容空間を形成する部材の膨張収縮により、触媒収容空間に収容されている粒状の触媒に対して圧縮応力が繰り返し加わるので、粒状の触媒が圧壊して細分化する。そして、触媒が細分化した細分化触媒が触媒収容空間に収容されている粒状の触媒間の隙間に溜まると、処理対象ガスの通流が妨げられて、触媒収容空間を通流する処理対象ガスに偏流が生じることになるので、触媒収容空間において処理対象ガスに対して処理が施される領域が狭められて、処理対象ガスに所定の処理を施す処理能力が低下する。   In such a gas treatment device, the compressive stress is repeatedly applied to the granular catalyst accommodated in the catalyst accommodating space due to the expansion and contraction of the member forming the catalyst accommodating space by the repeated starting and stopping of the device. The catalyst is crushed and subdivided. Then, when the subdivided catalyst in which the catalyst is subdivided accumulates in the gaps between the granular catalysts housed in the catalyst housing space, the flow of the processing object gas is hindered, and the processing object gas flowing through the catalyst housing space As a result, a region where the processing target gas is processed in the catalyst accommodating space is narrowed, and the processing capability of performing the predetermined processing on the processing target gas is reduced.

そこで、従来のガス処理装置では、触媒収容空間の上部に処理対象ガス流入口を設けると共に、下部に処理対象ガス流出口を設けて、処理対象ガスを触媒収容空間内を下方に向けて流動させるように構成されると共に、処理対象ガス流出口の下方に、細分化触媒を処理対象ガス流路外に排出するための排出口及び細分化触媒を排出口に導くガイド部を備えた端板が備えられ、並びに、処理対象ガス流路が、処理対象ガスを端板に向けて通流させた後、向きを上方に転回させて処理部の側方を通流させるように構成されていた(例えば、特許文献1参照。)。   Therefore, in the conventional gas processing apparatus, the processing target gas inlet is provided in the upper part of the catalyst housing space, and the processing target gas outlet is provided in the lower part, so that the processing target gas flows downward in the catalyst housing space. And an end plate having a discharge port for discharging the subdivided catalyst out of the processing target gas flow path and a guide portion for guiding the subdivided catalyst to the discharge port below the gas outlet for processing. And the processing target gas flow path is configured to flow the processing target gas toward the end plate and then turn the direction upward to flow the side of the processing unit ( For example, see Patent Document 1.)

つまり、粒状の触媒間の隙間に溜まっている細分化触媒を処理対象ガスの流れに載せて触媒収容空間外に流動させて、端板の排出口を通過させることにより、細分化触媒を触媒収容空間から排出する構成となっていた。   In other words, the finely divided catalyst collected in the gaps between the granular catalysts is placed on the flow of the gas to be treated and flows out of the catalyst accommodating space, and passes through the outlet of the end plate, thereby accommodating the finely divided catalyst in the catalyst. It was configured to discharge from space.

特開2012−250873号公報JP 2012-250873 A

しかしながら、従来のガス処理装置では、以下に説明するように、触媒収容空間に溜まっている細分化触媒を十分に触媒収容空間から除去することができないために、運転時間の経過に伴う処理能力の低下が大きいという問題があった。
即ち、微小な細分化触媒は重量が軽いので処理対象ガスに載せて下流側に流動させ易いが、比較的大きい細分化触媒は、重量が比較的重いので、処理対象ガスに載せて下流側に流動させ難い。
又、処理対象ガスに水分が含まれている場合は、細分化触媒が周囲の触媒に付着し易いので、処理対象ガスに載せて下流側に流動させ難い。
However, in the conventional gas processing apparatus, as described below, since the fragmented catalyst accumulated in the catalyst housing space cannot be sufficiently removed from the catalyst housing space, the processing capacity of the operation time with the passage of time is reduced. There was a problem that the decrease was large.
In other words, since the finely divided catalyst is light in weight, it is easy to flow on the downstream side by placing it on the gas to be processed. However, since the relatively large finely divided catalyst is relatively heavy, it is placed on the gas to be processed on the downstream side. It is difficult to flow.
Further, when water is contained in the gas to be treated, the subdivided catalyst is likely to adhere to the surrounding catalyst, so that it is difficult to flow downstream on the gas to be treated.

本発明は、かかる実情に鑑みてなされたものであり、その目的は、運転時間の経過に伴う処理能力の低下を抑制し得るガス処理装置用の細分化触媒除去方法を提供することにある。   This invention is made | formed in view of this situation, The objective is to provide the fragmentation catalyst removal method for gas processing apparatuses which can suppress the fall of the processing capability accompanying progress of operation time.

上記目的を達成するための本発明に係るガス処理装置用の細分化触媒除去方法は、触媒収容空間に粒状の触媒が収容されて、当該触媒を所定の処理温度に昇温させた状態で、前記触媒収容空間に供給される処理対象ガスに対して所定の処理を施す処理部が設けられたガス処理装置用の細分化触媒除去方法であって、その特徴構成は、
前記触媒収容空間を、前記触媒が細かく分かれた細分化触媒の通過が可能な多孔状の仕切り体により、前記触媒が収容される上方の触媒収容部分と下方の細分化触媒収容部分とに区画し、且つ、前記触媒収容空間の前記触媒を振動させる加振手段を備えた細分化触媒除去構造を設け、
前記触媒収容空間の前記触媒収容部分から前記細分化触媒を除去する細分化触媒除去タイミングになったと判定すると、前記触媒収容空間への処理対象ガスの供給を停止した状態で、前記加振手段を作動させる細分化触媒除去運転を実行する点にある。
In order to achieve the above object, the method for removing a segmented catalyst for a gas processing apparatus according to the present invention, in which a granular catalyst is stored in a catalyst storage space and the catalyst is heated to a predetermined processing temperature, A subdivided catalyst removal method for a gas processing apparatus provided with a processing unit for performing a predetermined process on a processing target gas supplied to the catalyst containing space, the characteristic configuration is:
The catalyst housing space is partitioned into an upper catalyst housing portion for accommodating the catalyst and a lower fragmented catalyst housing portion by a porous partition that allows passage of the finely divided catalyst into which the catalyst is finely divided. And providing a subdivided catalyst removal structure provided with a vibration means for vibrating the catalyst in the catalyst housing space,
When it is determined that it is time to remove the finely divided catalyst from the catalyst accommodating portion of the catalyst accommodating space, the excitation means is stopped in a state where the supply of the processing target gas to the catalyst accommodating space is stopped. The point is to execute the operation of removing the subdivided catalyst to be operated.

上記特徴構成によれば、細分化触媒除去タイミングになったと判定すると、細分化触媒除去運転を実行する。
その細分化触媒除去運転では、触媒収容空間への処理対象ガスの供給を停止した状態で、加振手段を作動させて触媒収容空間の触媒を振動させるので、細分化触媒が処理対象ガスに載って処理部よりも下流の工程に流動するのが防止される状態で、粒状の触媒間の隙間に溜まっている細分化触媒を仕切り体を通過させて細分化触媒収容部分にふるい落とすことができる。
つまり、触媒収容空間の触媒を振動させるので、粒状の触媒間の隙間に溜まっている微小な細分化触媒は勿論のこと、比較的大きな細分化触媒も仕切り体を通過させて細分化触媒収容部分にふるい落とすことができる。
又、処理対象ガスに水分が含まれていて、細分化触媒が周囲の触媒に付着し易い場合でも、触媒収容空間の触媒を振動させることにより、周囲の触媒に付着し易い細分化触媒を仕切り体を通過させて細分化触媒収容部分にふるい落とすことができる。
このことにより、触媒収容空間を通流する処理対象ガスに偏流が生じるのを十分に抑制することができる。
従って、運転時間の経過に伴う処理能力の低下を抑制し得るガス処理装置用の細分化触媒除去方法を提供することができる。
According to the above characteristic configuration, when it is determined that it is time to remove the subdivided catalyst, the subdivided catalyst removing operation is executed.
In the subdivided catalyst removal operation, the supply of the processing target gas to the catalyst containing space is stopped, and the vibration means is operated to vibrate the catalyst in the catalyst containing space, so that the subdivided catalyst is placed on the processing target gas. Thus, the finely divided catalyst accumulated in the gaps between the granular catalysts can be passed through the partitioning body and screened into the finely divided catalyst accommodating portion in a state where it is prevented from flowing to a process downstream of the processing unit. .
In other words, since the catalyst in the catalyst housing space is vibrated, not only the finely divided catalyst accumulated in the gaps between the granular catalysts, but also the relatively large fragmented catalyst is allowed to pass through the partitioning body to receive the fragmented catalyst containing portion. Can be eliminated.
Even if the gas to be treated contains moisture and the finely divided catalyst easily adheres to the surrounding catalyst, the finely divided catalyst that easily adheres to the surrounding catalyst is partitioned by vibrating the catalyst in the catalyst housing space. It can be passed through the body and screened into the segmented catalyst containing part.
Thereby, it is possible to sufficiently suppress the occurrence of a drift in the gas to be processed flowing through the catalyst housing space.
Therefore, it is possible to provide a method for removing a fragmented catalyst for a gas processing apparatus that can suppress a decrease in processing capacity with the passage of operating time.

本発明に係るガス処理装置用の細分化触媒除去方法の更なる特徴構成は、前記触媒収容空間に供給される処理対象ガスの圧力が所定の設定圧力以上になると、前記細分化触媒除去タイミングになったと判定する点にある。   A further characteristic configuration of the method for removing a subdivided catalyst for a gas processing apparatus according to the present invention is that the subdivided catalyst removal timing is set when the pressure of the gas to be processed supplied to the catalyst containing space is equal to or higher than a predetermined set pressure. It is in the point to judge that it became.

上記特徴構成によれば、触媒収容空間に供給される処理対象ガスの圧力が所定の設定圧力以上になると、細分化触媒除去タイミングになったと判定する。
つまり、粒状の触媒の細分化が進行するほど、触媒収容部分において細分化触媒が溜まる領域が拡がるので、触媒収容空間に供給される処理対象ガスの圧力が上昇する。そこで、触媒収容空間に供給される処理対象ガスの圧力に基づいて、細分化触媒除去運転を実行すべきタイミング、即ち、細分化触媒除去タイミングになったことを、早過ぎることなく且つ遅過ぎることなく的確に判定することができる。
従って、細分化触媒除去運転を早過ぎることない且つ遅過ぎることのない適切なタイミングで実行することができるので、通常の運転の実行を妨げるのを一層抑制しながら、運転時間の経過に伴う処理能力の低下を的確に抑制することができる。
According to the above characteristic configuration, when the pressure of the gas to be processed supplied to the catalyst housing space is equal to or higher than a predetermined set pressure, it is determined that it is time to remove the segmented catalyst.
That is, as the granular catalyst is further fragmented, the area where the finely divided catalyst is accumulated in the catalyst accommodating portion is expanded, and the pressure of the processing target gas supplied to the catalyst accommodating space increases. Therefore, based on the pressure of the gas to be treated supplied to the catalyst housing space, the timing at which the subdivided catalyst removal operation should be executed, that is, the subdivided catalyst removal timing is not too early and too late. It can be judged accurately without any problems.
Accordingly, since the subdivided catalyst removal operation can be executed at an appropriate timing without being too early and not too late, the process associated with the passage of the operation time is further suppressed while preventing the normal operation from being obstructed. A decrease in ability can be accurately suppressed.

本発明に係るガス処理装置用の細分化触媒除去方法の更なる特徴構成は、前記処理部として、
前記触媒収容空間に改質処理用の触媒が収容されて、当該改質処理用の触媒を所定の改質処理用の処理温度に昇温させた状態で、前記触媒収容空間に供給される原燃料ガスに対して、水素ガスを主成分とする改質ガスに改質する改質処理を施す改質処理用の処理部と、
前記触媒収容空間に変成処理用の触媒が収容されて、当該変成処理用の触媒を所定の変成処理用の処理温度に昇温させた状態で、前記改質処理用の処理部で改質処理された改質ガスに対して、一酸化炭素ガスを二酸化炭素ガスに変成する変成処理を施す変成処理用の処理部とが設けられ、
前記改質処理用の処理部及び前記変成処理用の処理部のうちの少なくとも一つに対して、前記細分化触媒除去構造を設ける点にある。
A further characteristic configuration of the subdivided catalyst removal method for the gas processing apparatus according to the present invention is as the processing unit,
A catalyst for reforming treatment is accommodated in the catalyst accommodating space, and the raw material supplied to the catalyst accommodating space in a state where the temperature of the reforming catalyst is raised to a predetermined reforming treatment temperature. A processing unit for reforming processing for reforming the fuel gas into a reformed gas containing hydrogen gas as a main component;
A reforming treatment is accommodated in the catalyst housing space, and the reforming treatment is performed in the reforming treatment section in a state where the temperature of the transformation treatment catalyst is increased to a predetermined transformation treatment temperature. A modification processing unit for performing a modification process for transforming carbon monoxide gas into carbon dioxide gas with respect to the reformed gas,
The subdivided catalyst removal structure is provided for at least one of the reforming processing section and the modification processing section.

上記特徴構成によれば、改質処理用の処理部において、原燃料ガスに対して、水素ガスを主成分とする改質ガスに改質する改質処理が施され、変成処理用の処理部において、改質処理用の処理部で改質処理された改質ガスに対して、一酸化炭素ガスを二酸化炭素ガスに変成する変成処理が施されるので、一酸化炭素ガス濃度の低い水素リッチな水素含有ガスが生成される。
そして、改質処理用の処理部及び変成処理用の処理部のうちの少なくとも一つに対して、細分化触媒除去構造を設けて、細分化触媒除去運転を実行するので、改質処理用の触媒の細分化触媒及び変成処理用の触媒の細分化触媒のうちの少なくとも一方を、触媒収容部分から仕切り体を通過させて細分化触媒収容部分にふるい落とすことができる。
従って、改質処理及び変成処理のうちの少なくとも一方の運転時間の経過に伴う処理能力の低下を抑制することができるので、一酸化炭素ガス濃度の低い水素含有ガスを生成するためのガス処理装置において、運転時間の経過に伴う水素含有ガス生成能力の低下を抑制することができる。
According to the above characteristic configuration, the reforming process is performed by reforming the raw fuel gas into a reformed gas containing hydrogen gas as a main component in the reforming process unit. , A reforming process is performed on the reformed gas that has been reformed in the reforming processing unit to convert carbon monoxide gas into carbon dioxide gas, so that the hydrogen rich with a low carbon monoxide gas concentration. Hydrogen-containing gas is produced.
And, since at least one of the reforming processing section and the modification processing section is provided with a subdivided catalyst removing structure and performing a subdivided catalyst removing operation, At least one of the catalyst fragmentation catalyst and the shift treatment catalyst fragmentation catalyst can be passed through the partition from the catalyst housing portion and screened into the fragmentation catalyst housing portion.
Accordingly, since it is possible to suppress a decrease in processing capacity with the passage of the operating time of at least one of the reforming process and the modification process, a gas processing apparatus for generating a hydrogen-containing gas having a low carbon monoxide gas concentration In this case, it is possible to suppress a decrease in the hydrogen-containing gas generation capacity with the elapse of the operation time.

本発明に係るガス処理装置用の細分化触媒除去方法の更なる特徴構成は、前記処理部として、
前記触媒収容空間に脱硫処理用の触媒が収容されて、当該脱硫処理用の触媒を所定の脱硫処理用の処理温度に昇温させた状態で、前記改質処理用の処理部に供給される前の原燃料ガスに対して脱硫処理を施す脱硫処理用の処理部と、
前記触媒収容空間に選択除去処理用の触媒が収容されて、当該選択除去処理用の触媒を所定の選択除去処理用の処理温度に昇温させた状態で、前記変成処理用の処理部で変成処理された改質ガスに対して、一酸化炭素ガスを選択除去する選択除去処理を施す選択除去処理用の処理部とが設けられ、
前記脱硫処理用の処理部及び前記選択除去処理用の処理部のうちの少なくとも一つに対して、前記細分化触媒除去構造を設ける点にある。
A further characteristic configuration of the subdivided catalyst removal method for the gas processing apparatus according to the present invention is as the processing unit,
A catalyst for desulfurization treatment is accommodated in the catalyst accommodating space, and the catalyst for desulfurization treatment is supplied to the processing unit for reforming treatment in a state where the catalyst is heated to a predetermined treatment temperature for desulfurization treatment. A desulfurization treatment unit that desulfurizes the previous raw fuel gas;
A catalyst for selective removal treatment is accommodated in the catalyst accommodating space, and the catalyst for selective removal treatment is transformed to a predetermined treatment temperature for selective removal treatment in the state of the modification treatment section. A selective removal treatment processing unit for performing selective removal treatment for selectively removing carbon monoxide gas with respect to the treated reformed gas;
The subdivided catalyst removal structure is provided for at least one of the desulfurization treatment section and the selective removal treatment section.

上記特徴構成によれば、脱硫処理用の処理部において、改質処理用の処理部に供給される前の原燃料ガスに対して脱硫処理が施されるので、後工程の処理部(改質処理用、変成処理用及び選択除去処理用等の各処理部)の触媒の被毒を防止することができる。
又、選択除去処理用の処理部において、変成処理用の処理部で変成処理された改質ガスに対して、一酸化炭素ガスを選択除去する選択除去処理が施されるので、一酸化炭素ガス濃度が一層低い水素リッチな水素含有ガスを生成することができる。
そして、脱硫処理用の処理部及び選択除去処理用の処理部のうちの少なくとも一つに対して、細分化触媒除去構造を設けて、細分化触媒除去運転を実行するので、脱硫処理用の触媒の細分化触媒及び選択除去処理用の触媒の細分化触媒のうちの少なくとも一方を、触媒収容部分から仕切り体を通過させて細分化触媒収容部分にふるい落とすことができる。
従って、脱硫処理及び選択除去処理のうちの少なくとも一方の運転時間の経過に伴う処理能力の低下を抑制することができるので、一酸化炭素ガス濃度が更に低い水素含有ガスを生成するためのガス処理装置において、運転時間の経過に伴う水素含有ガス生成能力の低下を抑制することができる。
According to the above characteristic configuration, in the desulfurization processing unit, the desulfurization process is performed on the raw fuel gas before being supplied to the reforming processing unit. It is possible to prevent the poisoning of the catalyst in each processing section (for processing, modification processing, selective removal processing, etc.).
Further, in the selective removal treatment processing section, selective removal treatment for selectively removing carbon monoxide gas is performed on the reformed gas that has been subjected to the modification treatment in the modification treatment processing section. A hydrogen-rich hydrogen-containing gas having a lower concentration can be generated.
In addition, since at least one of the processing unit for desulfurization processing and the processing unit for selective removal processing is provided with a subdivided catalyst removal structure and a subdivided catalyst removal operation is performed, a catalyst for desulfurization processing At least one of the subdivided catalyst and the catalyst for selective removal treatment can be passed through the partition from the catalyst housing portion and screened into the subdivided catalyst housing portion.
Therefore, since it is possible to suppress a decrease in processing capacity with the passage of the operating time of at least one of the desulfurization process and the selective removal process, a gas process for generating a hydrogen-containing gas having a lower carbon monoxide gas concentration. In the apparatus, it is possible to suppress a decrease in the hydrogen-containing gas generation capacity with the elapse of the operation time.

本発明に係るガス処理装置用の細分化触媒除去方法の更なる特徴構成は、原動機を備えた補機を、前記細分化触媒除去構造を設けた前記処理部の触媒を振動させることが可能に設けて、
前記補機を前記加振手段として用いる点にある。
A further characteristic configuration of the method for removing a subdivided catalyst for a gas processing apparatus according to the present invention enables an auxiliary machine equipped with a prime mover to vibrate the catalyst of the processing unit provided with the subdivided catalyst removing structure. Provided,
The auxiliary machine is used as the vibration means.

上記特徴構成によれば、原動機を備えた補機を作動させると、細分化触媒除去構造を設けた処理部の触媒を振動させることができて、粒状の触媒間の隙間に溜まっている細分化触媒を触媒収容部分から細分化触媒収容部分にふるい落とすことができる。
つまり、ガス処理装置には、元々、原動機を備えた補機が備えられている。
そこで、その補機を加振手段として用いることにより、専用の加振手段を設けずに済むので、ガス処理装置の小型化及び低廉化を図りながら、運転時間の経過に伴う処理能力の低下を抑制することができる。
According to the above characteristic configuration, when the auxiliary machine equipped with the prime mover is operated, the catalyst of the processing unit provided with the subdivided catalyst removal structure can be vibrated and subdivided in the gaps between the granular catalysts. The catalyst can be screened off from the catalyst housing part to the fragmented catalyst housing part.
That is, the gas processing apparatus is originally provided with an auxiliary machine provided with a prime mover.
Therefore, by using the auxiliary machine as a vibration means, it is not necessary to provide a dedicated vibration means, so that the processing capacity is reduced with the passage of operating time while reducing the size and cost of the gas processing apparatus. Can be suppressed.

本発明に係るガス処理装置用の細分化触媒除去方法の更なる特徴構成は、前記改質処理用の触媒を前記改質処理用の処理温度に加熱する改質用バーナが設けられ、
前記改質用バーナに燃焼用空気を供給する送風手段が前記補機として設けられ、
前記送風手段を前記加振手段として用いる点にある。
A further characteristic configuration of the subdivided catalyst removal method for a gas treatment device according to the present invention is provided with a reforming burner for heating the reforming treatment catalyst to the reforming treatment temperature,
Blower means for supplying combustion air to the reforming burner is provided as the auxiliary machine,
The air blowing means is used as the vibration means.

上記特徴構成によれば、改質用バーナに燃焼用空気を供給する送風手段を、細分化触媒除去構造を設けた処理部の触媒を振動させるように設けると、その送風手段を加振手段として用いることができる。
つまり、改質処理における改質反応は吸熱反応であるので、改質処理用の触媒を改質処理用の処理温度に昇温させるために、元々、改質用バーナ、及び、その改質用バーナに燃焼用空気を供給する送風手段が設けられている。
そして、ガス処理装置の停止中に、送風手段を作動させても、その送風手段により送風される空気は触媒収容空間に供給されることがない。そこで、送風手段を加振手段として用いることにより、ガス処理装置の運転停止中に、細分化触媒除去運転を実行して加振手段として用いる送風手段を作動させても、処理対象ガスに対して施す処理に悪影響を与えることがないので、処理能力の低下を的確に抑制することができる。
従って、ガス処理装置の小型化及び低廉化を図りながら、運転時間の経過に伴う処理能力の低下を的確に抑制することができる。
According to the above characteristic configuration, when the blowing means for supplying combustion air to the reforming burner is provided so as to vibrate the catalyst of the processing unit provided with the subdivided catalyst removal structure, the blowing means is used as the vibrating means. Can be used.
That is, since the reforming reaction in the reforming process is an endothermic reaction, in order to raise the temperature of the reforming process catalyst to the reforming process temperature, the reforming burner and the reforming process are originally provided. Blowing means for supplying combustion air to the burner is provided.
And even if a ventilation means is operated while the gas processing apparatus is stopped, the air blown by the ventilation means is not supplied to the catalyst housing space. Therefore, by using the blowing means as the vibrating means, even if the blowing means used as the vibrating means is operated while the gas treatment apparatus is stopped, Since the processing to be performed is not adversely affected, it is possible to accurately suppress a decrease in processing capacity.
Accordingly, it is possible to accurately suppress a reduction in processing capacity with the passage of operation time while reducing the size and cost of the gas processing apparatus.

本発明に係るガス処理装置用の細分化触媒除去方法の更なる特徴構成は、各処理部の前記触媒収容空間が扁平状の各別の容器内に形成され、
各処理部の前記触媒収容空間を夫々形成する複数の前記容器が、容器厚さ方向を水平方向に向けた立ち姿勢にて前記容器厚さ方向に積層状態に並べられた状態で一体的に組み付けられて、容器積層体が構成され、
前記細分化触媒除去構造を設けた前記処理部の触媒の温度を前記処理温度よりも低い所定の設定温度以下にした状態で、前記細分化触媒除去運転を実行する点にある。
A further characteristic configuration of the fragmented catalyst removal method for a gas processing device according to the present invention is such that the catalyst accommodating space of each processing unit is formed in a separate flat container,
The plurality of containers that respectively form the catalyst housing spaces of the respective processing units are integrally assembled in a standing state with the container thickness direction oriented in the horizontal direction and arranged in a stacked state in the container thickness direction. The container laminate is configured,
The subdivided catalyst removal operation is performed in a state where the temperature of the catalyst of the processing unit provided with the subdivided catalyst removing structure is set to a predetermined set temperature lower than the processing temperature.

上記特徴構成によれば、容器積層体に組み付けられた複数の容器内の触媒を夫々に対応する処理温度に昇温させた状態では、隣接する容器間の伝熱により、各容器全体が昇温して膨張することにより、各容器の容積が増加するので、各容器内の触媒は沈下する。
一方、各容器内の触媒を夫々に対応する処理温度に昇温させる状態を停止すると、各容器全体が降温して収縮することにより、各容器内の容積が減少するので、各容器内の触媒は持ち上げられる。
According to the above characteristic configuration, in a state where the catalyst in the plurality of containers assembled in the container stack is heated to the corresponding processing temperature, the temperature of each container is increased by heat transfer between adjacent containers. As a result, the volume of each container increases, so that the catalyst in each container sinks.
On the other hand, when the state in which the catalyst in each container is raised to the corresponding processing temperature is stopped, the volume in each container is reduced by the temperature and contraction of the entire container, so the catalyst in each container is reduced. Is lifted.

そして、各容器内の触媒が沈下した状態で振動を加えると、触媒の圧壊が促進され易い。そこで、細分化触媒除去構造を設けた処理部の容器内の触媒の温度を処理温度よりも低い設定温度に低下させた状態で、細分化触媒除去運転を実行すると、触媒の圧壊の進行を十分に防止しながら、細分化触媒を触媒収容部分から細分化触媒収容部分へふるい落とすことができる。
従って、細分化触媒除去運転中の触媒の圧壊の促進を十分に防止して、触媒の耐久性を向上することができるので、運転時間の経過に伴う処理能力の低下をより一層抑制することができる。
And if a vibration is applied in the state where the catalyst in each container sinks, the collapse of the catalyst is easily promoted. Therefore, if the catalyst removal operation is performed in a state where the temperature of the catalyst in the container of the processing section provided with the fragmentation catalyst removal structure is lowered to a set temperature lower than the treatment temperature, the progress of the catalyst collapse is sufficiently performed. The finely divided catalyst can be screened from the catalyst containing portion to the finely divided catalyst containing portion.
Therefore, it is possible to sufficiently prevent the crushing of the catalyst during the subdivided catalyst removal operation and improve the durability of the catalyst, so that it is possible to further suppress the decrease in the processing capacity with the lapse of the operation time. it can.

本発明に係るガス処理装置用の細分化触媒除去方法の更なる特徴構成は、前記加振手段を、前記容器積層体を振動させるように設ける点にある。   A further characteristic configuration of the method for removing a fragmented catalyst for a gas processing apparatus according to the present invention is that the vibration means is provided so as to vibrate the container laminate.

上記特徴構成によれば、加振手段を作動させると、容器積層体全体を振動させることができるので、容器積層体を構成する複数の容器全ての内部の触媒を振動させることができる。
つまり、複数の処理部に細分化触媒除去構造を設けるにしても、加振手段としては、複数の処理部夫々の細分化触媒除去構造で共有する状態で1台設けるだけでよい。
従って、複数の処理部を有するガス処理装置において、低廉化を図りながら、複数の処理部について運転時間の経過に伴う処理能力の低下を抑制することができる。
According to the above characteristic configuration, when the vibration means is operated, the entire container stack can be vibrated, so that the catalyst inside all of the plurality of containers constituting the container stack can be vibrated.
That is, even if the subdivided catalyst removal structure is provided in the plurality of processing units, it is only necessary to provide one vibration unit in a state shared by the subdivided catalyst removal structures of the plurality of processing units.
Therefore, in the gas processing apparatus having a plurality of processing units, it is possible to suppress a reduction in processing capacity of the plurality of processing units with the passage of operating time while reducing the cost.

水素含有ガス生成装置の縦断正面図Longitudinal front view of hydrogen-containing gas generator 水素含有ガス生成装置の正面図Front view of hydrogen-containing gas generator 水素含有ガス生成装置の右側面図Right side view of hydrogen-containing gas generator 改質部を構成する容器の斜視図Perspective view of container constituting reforming unit 改質部を構成する容器の縦断右側面図Longitudinal right side view of the container constituting the reforming section 改質部を構成する容器の縦断正面図Longitudinal front view of the container constituting the reforming section 別実施形態に係る水素含有ガス生成装置の正面図Front view of a hydrogen-containing gas generator according to another embodiment

以下、図面に基づいて、本発明を水素含有ガス生成用のガス処理装置に適用した場合の実施形態を説明する。
図1、図5及び図6に示すように、水素含有ガス生成用のガス処理装置P(以下、水素含有ガス生成装置と記載する場合がある)は、触媒収容空間Rに粒状の触媒2c(1c,5c,6c)が収容されて、当該触媒を所定の処理温度に昇温させた状態で、触媒処理空間Rに供給される処理対象ガスに対して所定の処理を施す処理部Dが設けられている。
Hereinafter, an embodiment in the case where the present invention is applied to a gas processing apparatus for generating a hydrogen-containing gas will be described with reference to the drawings.
As shown in FIGS. 1, 5, and 6, a gas processing device P for generating a hydrogen-containing gas (hereinafter sometimes referred to as a hydrogen-containing gas generating device) includes a granular catalyst 2 c ( 1c, 5c, 6c) is provided, and a processing unit D is provided that performs a predetermined process on the processing target gas supplied to the catalyst processing space R in a state where the catalyst is heated to a predetermined processing temperature. It has been.

図1に示すように、この実施形態では、処理部Dとして、原燃料ガス供給路20を通して供給される炭化水素系の原燃料ガス(例えば、13A等の天然ガスベースの都市ガス)に対して脱硫処理を施す脱硫処理用の処理部(以下、脱硫部と記載する場合がある)1と、脱硫部1から供給される脱硫処理後の原燃料ガス(以下、脱硫原燃料ガスと記載する場合がある)に対して、水素ガスを主成分とする改質ガスに改質する改質処理を施す改質処理用の処理部(以下、改質部と記載する場合がある)2と、改質部2で改質処理された改質ガスに対して、一酸化炭素ガスを二酸化炭素ガスに変成する変成処理を施す変成処理用の処理部(以下、変成部と記載する場合がある)5と、変成部5で変成処理された改質ガスに対して、一酸化炭素ガスを選択酸化する選択酸化処理(選択除去処理の一例)を施す選択酸化処理用の処理部(選択除去処理用の処理部の一例であり、以下、選択酸化部と記載する場合がある)6とが設けられて、一酸化炭素ガス濃度の低い(例えば10ppm以下)水素リッチな水素含有ガスを生成するように構成されている。   As shown in FIG. 1, in this embodiment, as the processing unit D, a hydrocarbon-based raw fuel gas (for example, a natural gas-based city gas such as 13A) supplied through the raw fuel gas supply path 20 is used. A desulfurization treatment section (hereinafter, may be referred to as a desulfurization section) 1 for performing a desulfurization process, and a raw fuel gas after desulfurization treatment supplied from the desulfurization section 1 (hereinafter referred to as a desulfurization raw fuel gas) 2), a reforming treatment processing section (hereinafter sometimes referred to as a reforming section) 2 for performing a reforming process for reforming a reformed gas containing hydrogen gas as a main component, A treatment section for modification treatment that performs a modification treatment for transforming carbon monoxide gas into carbon dioxide gas with respect to the reformed gas reformed in the mass portion 2 (hereinafter sometimes referred to as a modification portion) 5 And carbon monoxide gas with respect to the reformed gas transformed in the transformation section 5 A selective oxidation treatment processing section (an example of a selective removal processing section, which may be referred to as a selective oxidation section hereinafter) 6 that performs selective oxidation treatment (an example of a selective removal process) for selective oxidation. It is provided so as to generate a hydrogen-rich hydrogen-containing gas having a low carbon monoxide gas concentration (for example, 10 ppm or less).

更に、水素含有ガス生成装置Pには、改質用水供給路21を通して供給される改質用水を加熱して水蒸気を生成する水蒸気生成部J、改質部2の改質触媒2cを改質処理温度に加熱する改質用バーナ3を備えた燃焼部4、改質部2で改質処理された改質ガス(この実施形態では、変成部5で変成処理された改質ガス)の一部をリサイクルガスとして原燃料ガス供給路20を通して供給される原燃料ガスに混合するリサイクルガス路22、及び、水素含有ガス生成装置の運転を制御する制御部C等が設けられている。   Further, in the hydrogen-containing gas generation device P, the reforming water supplied through the reforming water supply path 21 is heated to generate steam to generate steam, and the reforming catalyst 2c of the reforming unit 2 is reformed. A part of the reformed gas reformed in the reforming unit 2 (in this embodiment, the reformed gas reformed in the shift unit 5) provided with the reforming burner 3 that is heated to a temperature. A recycle gas passage 22 for mixing the raw gas into the raw fuel gas supplied through the raw fuel gas supply passage 20 as a recycle gas, a control unit C for controlling the operation of the hydrogen-containing gas generation device, and the like are provided.

そして、水素含有ガス生成装置Pにて生成された水素含有ガスは燃料ガスとして、燃料ガス供給路23を通じて燃料電池Gに供給される。
水素含有ガス生成装置Pの脱硫部1に原燃料ガスを供給する原燃料ガス供給路20には、燃料電池Gの出力電力を調整すべく、脱硫部1に供給される原燃料ガスの流量を調整する原燃料ガス流量調整弁7、及び、原燃料ガス供給路20を通して供給される原燃料ガスの圧力を検出する原燃料ガス供給圧検出器19が設けられている。
The hydrogen-containing gas generated by the hydrogen-containing gas generator P is supplied to the fuel cell G through the fuel gas supply path 23 as fuel gas.
In the raw fuel gas supply path 20 for supplying the raw fuel gas to the desulfurization unit 1 of the hydrogen-containing gas generator P, the flow rate of the raw fuel gas supplied to the desulfurization unit 1 is adjusted in order to adjust the output power of the fuel cell G. A raw fuel gas flow rate adjusting valve 7 to be adjusted and a raw fuel gas supply pressure detector 19 for detecting the pressure of the raw fuel gas supplied through the raw fuel gas supply path 20 are provided.

この実施形態では、触媒収容空間Rを、触媒が細かく分かれた細分化触媒の通過が可能な多孔状の仕切り網46(仕切り体の一例)により、触媒が収容される上方の触媒収容部分Raと下方の細分化触媒収容部分Rbとに区画し、且つ、触媒収容空間Rの触媒を振動させるバイブレータ50(加振手段の一例)を備えた細分化触媒除去構造Mが設けられている。この細分化触媒除去構造Mは、脱硫部1、改質部2、変成部5及び選択酸化部6の各処理部Dに設けられている。   In this embodiment, the catalyst housing space R is separated from the upper catalyst housing portion Ra in which the catalyst is housed by a porous partition net 46 (an example of a partition body) through which the finely divided catalyst can be passed. A subdivided catalyst removal structure M is provided that is divided into a lower subdivided catalyst housing portion Rb and includes a vibrator 50 (an example of a vibrating means) that vibrates the catalyst in the catalyst housing space R. This subdivided catalyst removal structure M is provided in each processing part D of the desulfurization part 1, the reforming part 2, the shift part 5 and the selective oxidation part 6.

次に、図1に基づいて、水素含有ガス生成装置Pの各部について、説明を加える。
燃料電池Gは、周知であるので詳細な説明及び図示を省略して簡単に説明すると、例えば、固体高分子膜を電解質層とするセルを複数積層状態に設けた固体高分子型に構成され、各セルの燃料極に水素含有ガス生成装置Pから燃料ガス供給路23を通して燃料ガスを供給し、各セルの酸素極に反応用空気ブロア31により空気を供給して、水素と酸素との電気化学反応により発電を行うように構成されている。又、冷却水ポンプ32により燃料電池Gに冷却水を通流させて、各セルから発生する熱を回収するように構成されている。
Next, based on FIG. 1, description will be added about each part of the hydrogen containing gas production | generation apparatus P. FIG.
Since the fuel cell G is well known and will not be described in detail and briefly described, for example, the fuel cell G is configured in a solid polymer type in which a plurality of cells having a solid polymer membrane as an electrolyte layer are provided in a stacked state, Fuel gas is supplied from the hydrogen-containing gas generating device P to the fuel electrode of each cell through the fuel gas supply path 23, and air is supplied to the oxygen electrode of each cell by the reaction air blower 31, so that the electrochemistry of hydrogen and oxygen is performed. It is comprised so that electric power generation may be performed by reaction. Further, the cooling water pump 32 is configured to cause the cooling water to flow through the fuel cell G, and to recover the heat generated from each cell.

脱硫部1の触媒収容空間Rに、脱硫処理用の触媒(以下、脱硫触媒と記載する場合がある)1cが収容されている。
そして、脱硫部1は、脱硫触媒1cを所定の脱硫処理用の処理温度(例えば200〜270℃の範囲で、以下、脱硫処理温度と記載する場合がある)に昇温させた状態で、リサイクル路22を通して混合されるリサイクルガス中の水素ガスにより原燃料ガス中の硫黄化合物が水素化すると共に、その水素化物を吸着して脱硫する。脱硫触媒1cは、触媒作用させる物質をセラミック製等の多孔質粒状体に担持させて構成される。ちなみに、脱硫部1における脱硫反応は発熱反応である。
A catalyst for desulfurization treatment (hereinafter sometimes referred to as a desulfurization catalyst) 1c is accommodated in the catalyst accommodation space R of the desulfurization section 1.
The desulfurization unit 1 recycles the desulfurization catalyst 1c in a state in which the desulfurization catalyst 1c is heated to a predetermined desulfurization treatment temperature (for example, in the range of 200 to 270 ° C., hereinafter sometimes referred to as a desulfurization treatment temperature). The sulfur compound in the raw fuel gas is hydrogenated by the hydrogen gas in the recycle gas mixed through the passage 22, and the hydride is adsorbed and desulfurized. The desulfurization catalyst 1c is configured by supporting a catalytic substance on a porous granular material such as ceramic. Incidentally, the desulfurization reaction in the desulfurization part 1 is an exothermic reaction.

改質部2の触媒収容空間Rに、改質処理用の触媒(以下、改質触媒と記載する場合がある)2cが収容され、その改質部2の触媒収容空間Rには、水蒸気生成部Jで生成された水蒸気が混合された状態で、脱硫原燃料ガスが供給される。
そして、改質部2は、改質触媒2cを所定の改質処理用の処理温度(例えば600〜700℃の範囲で、以下、改質処理温度と記載する場合がある)に昇温させた状態で、原燃料ガスがメタンガスを主成分とする天然ガスである場合、下記の反応式にてメタンガスを水蒸気と反応させて、水素ガスと一酸化炭素ガスとを含む改質ガスに改質処理する。改質触媒2cは、ルテニウム、ニッケル、白金等の触媒作用させる物質をセラミック製等の多孔質粒状体に担持させて構成される。ちなみに、改質部2における改質反応は吸熱反応である。
A catalyst for reforming treatment (hereinafter sometimes referred to as a reforming catalyst) 2c is accommodated in the catalyst accommodating space R of the reforming unit 2, and steam generation is performed in the catalyst accommodating space R of the reforming unit 2. Desulfurized raw fuel gas is supplied in a state in which the water vapor generated in part J is mixed.
Then, the reforming unit 2 raises the temperature of the reforming catalyst 2c to a predetermined reforming processing temperature (for example, in the range of 600 to 700 ° C., hereinafter may be referred to as the reforming processing temperature). In the state, when the raw fuel gas is a natural gas mainly composed of methane gas, the methane gas is reacted with water vapor according to the following reaction formula to be reformed into a reformed gas containing hydrogen gas and carbon monoxide gas. To do. The reforming catalyst 2c is configured by supporting a catalytically acting substance such as ruthenium, nickel, platinum or the like on a porous granular material made of ceramic or the like. Incidentally, the reforming reaction in the reforming unit 2 is an endothermic reaction.

CH4+H2O→CO+3H2 CH 4 + H 2 O → CO + 3H 2

変成部5の触媒収容空間Rに、変成処理用の触媒(以下、変成触媒と記載する場合がある)5cが収容されている。
そして、変成部5は、変成触媒5cを所定の変成処理用の処理温度(例えば150〜250℃の範囲で、以下、変成処理温度と記載する場合がある)に昇温させた状態で、下記の反応式にて改質ガス中の一酸化炭素ガスを水蒸気と反応させて、二酸化炭素ガスに変成させる。変成触媒5cは、白金、ルテニウム、ロジウム等の触媒作用させる物質をセラミック製等の多孔質粒状体に担持させて構成される。ちなみに、変成部5における変成反応は発熱反応である。
In the catalyst housing space R of the shift section 5, a shift processing catalyst (hereinafter sometimes referred to as a shift catalyst) 5 c is stored.
Then, the shift section 5 raises the shift catalyst 5c to a predetermined shift processing temperature (for example, in the range of 150 to 250 ° C., hereinafter may be referred to as the shift processing temperature), and In this reaction formula, carbon monoxide gas in the reformed gas is reacted with water vapor to be transformed into carbon dioxide gas. The shift catalyst 5c is configured by supporting a catalytic substance such as platinum, ruthenium, rhodium, etc. on a porous granular material made of ceramic or the like. Incidentally, the metamorphic reaction in the metamorphic part 5 is an exothermic reaction.

CO+H2O→CO2+H2 CO + H 2 O → CO 2 + H 2

選択酸化部6の触媒収容空間Rに、選択酸化処理用の触媒(以下、選択酸化触媒と記載する場合がある)6cが収容されている。
そして、選択酸化部6では、選択酸化触媒6cを所定の選択酸化処理用の処理温度(例えば、80〜100℃の範囲で、以下、選択酸化処理温度と記載する場合がある)に昇温させた状態で、変成処理後の改質ガス中に残っている一酸化炭素ガスを選択酸化させる。選択酸化触媒6cは、白金、ルテニウム、ロジウム等の触媒作用させる物質をセラミック製等の多孔質粒状体に担持させて構成される。ちなみに、選択酸化部6における酸化反応は発熱反応である。
A catalyst for selective oxidation treatment (hereinafter sometimes referred to as a selective oxidation catalyst) 6c is accommodated in the catalyst accommodating space R of the selective oxidation unit 6.
In the selective oxidation unit 6, the selective oxidation catalyst 6 c is raised to a predetermined selective oxidation treatment temperature (for example, in the range of 80 to 100 ° C., hereinafter may be referred to as a selective oxidation treatment temperature). In this state, the carbon monoxide gas remaining in the reformed gas after the modification treatment is selectively oxidized. The selective oxidation catalyst 6c is configured by supporting a catalytic substance such as platinum, ruthenium, rhodium, etc. on a porous granular material made of ceramic or the like. Incidentally, the oxidation reaction in the selective oxidation unit 6 is an exothermic reaction.

燃焼部4には、その内部の燃焼空間でガス燃料を燃焼させるように改質用バーナ3が備えられ、その改質用バーナ3の燃焼量を調整することにより、改質部2の改質触媒2cを改質処理温度に加熱するように構成されている。
改質用バーナ3には、燃料電池Gの燃料極から水素が残存した状態で排出されるオフガスがオフガス路24を通してガス燃料として供給され、並びに、燃焼用空気ブロア33により燃焼用空気供給路25を通して燃焼用空気が供給される。又、改質部2の改質触媒2cを改質処理温度に加熱するに当たって、オフガスだけでは不足する不足分として、都市ガス(13A等)がガス燃料供給路26を通して改質用バーナ3に供給される。ガス燃料供給路26には、都市ガスの流量を調整するガス燃料流量調整弁38が設けられ、そのガス燃料流量調整弁38を制御して都市ガスの流量を調整することにより、改質用バーナ3の燃焼量を調整する。
The combustion section 4 is provided with a reforming burner 3 so as to burn gas fuel in the combustion space inside the combustion section 4, and the reforming of the reforming section 2 is adjusted by adjusting the combustion amount of the reforming burner 3. The catalyst 2c is configured to be heated to the reforming treatment temperature.
Off-gas discharged from the fuel electrode of the fuel cell G in a state where hydrogen remains is supplied to the reforming burner 3 as gas fuel through the off-gas passage 24, and a combustion air supply passage 25 is supplied by the combustion air blower 33. Combustion air is supplied through. In addition, when the reforming catalyst 2c of the reforming section 2 is heated to the reforming treatment temperature, city gas (13A, etc.) is supplied to the reforming burner 3 through the gas fuel supply path 26 as an insufficient amount that is insufficient with only off-gas. Is done. The gas fuel supply passage 26 is provided with a gas fuel flow rate adjustment valve 38 for adjusting the flow rate of the city gas. By controlling the gas fuel flow rate adjustment valve 38 and adjusting the flow rate of the city gas, a reforming burner is provided. 3 is adjusted.

水蒸気生成部Jは、燃焼部4から排出された改質用バーナ3の燃焼ガスを通流させる加熱用排ガス通流部8と、改質水ポンプ34により改質用水供給路21を通して供給される改質用水を加熱用排ガス通流部8による加熱にて蒸発させる蒸発処理部9とを備えて構成されている。   The water vapor generating part J is supplied through the reforming water supply path 21 by the heating exhaust gas flow part 8 for passing the combustion gas of the reforming burner 3 discharged from the combustion part 4 and the reforming water pump 34. And an evaporating unit 9 for evaporating the reforming water by heating with the heating exhaust gas flow unit 8.

又、水素含有ガス生成装置Pには、改質部2から排出された高温の改質ガスを通流させて、改質部2を保温する保温用通流部10、改質部2から排出された高温の改質ガスにより脱硫部1にて脱硫された脱硫原燃料ガスを加熱する脱硫後原燃料用熱交換器Ea、その脱硫後原燃料用熱交換器Eaにて熱交換後の改質ガスにより脱硫部1にて脱硫処理する原燃料ガスを加熱する脱硫前原燃料用熱交換器Eb、及び、加熱用排ガス通流部8から排出された燃焼ガスを通流させてその燃焼ガスにより変成部5を冷却する冷却用排ガス通流部11が設けられている。   The hydrogen-containing gas generating device P is passed through the high-temperature reformed gas discharged from the reforming unit 2 to keep the reforming unit 2 warm, and is discharged from the reforming unit 2. The desulfurized raw fuel heat exchanger Ea that heats the desulfurized raw fuel gas desulfurized in the desulfurization unit 1 by the high-temperature reformed gas that has been desulfurized, and the modified after heat exchange in the raw fuel heat exchanger Ea after desulfurization The raw fuel gas to be desulfurized in the desulfurization section 1 is heated by the raw gas, the raw fuel heat exchanger Eb before desulfurization, and the combustion gas discharged from the heating exhaust gas flow section 8 is passed through the combustion gas. A cooling exhaust gas flow passage 11 for cooling the metamorphic portion 5 is provided.

脱硫後原燃料用熱交換器Eaは、保温用通流部10から排出された改質ガスを通流させる上流側改質ガス通流部12と、改質部2に供給する脱硫原燃料ガスを通流させる脱硫後原燃料通流部13とを熱交換自在に設けて構成され、脱硫前原燃料用熱交換器Ebは、上流側改質ガス通流部12から排出された改質ガスを通流させる下流側改質ガス通流部14と、脱硫部1に供給する原燃料ガスを通流させる脱硫前原燃料通流部15とを熱交換自在に設けて構成されている。   The desulfurized raw fuel heat exchanger Ea includes an upstream reformed gas flow section 12 through which the reformed gas discharged from the heat retaining flow section 10 flows, and a desulfurized raw fuel gas supplied to the reformed section 2. A heat exchanger Eb for raw fuel before desulfurization is configured to allow the reformed gas discharged from the upstream reformed gas flow portion 12 to be exchanged with the post-desulfurized raw fuel flow portion 13 through which heat is passed. A downstream side reformed gas flow part 14 to be passed and a raw fuel gas flow part 15 before desulfurization to flow the raw fuel gas supplied to the desulfurization part 1 are provided so as to be capable of heat exchange.

更に、水素含有ガス生成装置Pには、起動時に、脱硫部1を脱硫処理温度に加熱する脱硫部用ヒータ35、変成部5を変成処理温度に加熱する2個の変成部用ヒータ36、選択酸化部6を冷却する冷却用ファン37、及び、変成部5から排出された改質ガスと水蒸気生成部Jの蒸発処理部9へ供給される改質用水とを熱交換させて、改質用水を予熱する原料水予熱用熱交換器16が設けられている。ちなみに、脱硫部用ヒータ35、変成部用ヒータ36は電気ヒータにより構成されている。   Furthermore, the hydrogen-containing gas generator P includes a desulfurization section heater 35 that heats the desulfurization section 1 to the desulfurization processing temperature, and two shift section heaters 36 that heat the shift section 5 to the transformation process temperature at the time of startup. The cooling fan 37 that cools the oxidation unit 6, and the reforming gas discharged from the shift unit 5 and the reforming water supplied to the evaporation processing unit 9 of the steam generation unit J are heat-exchanged to provide reforming water. The raw material water preheating heat exchanger 16 is provided for preheating the water. Incidentally, the desulfurization part heater 35 and the transformation part heater 36 are constituted by electric heaters.

図1〜図3に示すように、水素含有ガス生成装置Pを構成する各部は、内部に内部空間Sを形成する扁平状の複数の容器Bを用いて構成されている。
そして、複数の容器Bが、容器厚さ方向を水平方向に向けた立ち姿勢にて容器厚さ方向に積層状態に並べられた状態で、容器並び方向両側から押し付け機構K(図2及び図3参照)にて押し付けられることにより一体的に組み付けられて、容器積層体Aが構成されている。
As shown in FIGS. 1-3, each part which comprises the hydrogen-containing gas production | generation apparatus P is comprised using the several flat container B which forms the internal space S inside.
Then, in a state where the plurality of containers B are arranged in a stacked state in the container thickness direction in a standing posture with the container thickness direction oriented in the horizontal direction, the pressing mechanism K (FIGS. 2 and 3) The container laminated body A is configured by being integrally assembled by being pressed in (see).

各容器Bは、ステンレス等の伝熱性を有する耐熱金属製であり、容器Bには、内部空間Sを1つ形成するものや、内部空間Sを二つ形成するものがある。ちなみに、内部空間Sを二つ形成する容器Bは、図4に示すように、一対の皿形状容器形成部材41の間に平板状の区画部材42を位置させた状態で、周辺部が溶接接続されて、内部に二つの偏平な内部空間Sが区画形成され、図示を省略するが、内部空間Sを一つ形成する容器Bは、皿形状容器形成部材と平板状容器形成部材とが周辺部を溶接接続されて、内部に一つの偏平な内部空間Sが区画形成されている。   Each container B is made of a heat-resistant metal having heat conductivity such as stainless steel, and the container B includes one that forms one internal space S and one that forms two internal spaces S. Incidentally, as shown in FIG. 4, the container B that forms two internal spaces S is welded and connected at the periphery with a flat partition member 42 positioned between a pair of dish-shaped container forming members 41. Then, two flat internal spaces S are defined in the interior, and illustration is omitted, but the container B forming one internal space S has a dish-shaped container forming member and a flat container forming member in the peripheral part. Are connected to each other by welding to form a flat inner space S.

各容器Bには、必要に応じて、ノズル状のガス流入口43や、ガス流出口44が取り付けられ、又、内部空間Sを二つ有する容器Bの区画部材42には、必要に応じて、両側の空間を連通する連通口45が設けられている。   A nozzle-like gas inlet 43 and a gas outlet 44 are attached to each container B as necessary, and the partition member 42 of the container B having two internal spaces S is provided as necessary. A communication port 45 that communicates the space on both sides is provided.

この実施形態では、水素含有ガス生成装置Pは、9個の容器Bを用いて構成されている。尚、9個の容器Bの区別が明確になるように、便宜上、容器を示す符合Bの後に、図1及び図2において左からの並び順を示す符合1,2,3……………9を付す。ちなみに、左から3個目の容器B3は、内部空間Sを一つ区画形成するものであり、それ以外の8個の容器Bは、内部空間Sを二つ区画形成するものである。
尚、図4は、左から2個目の容器B2を示すものであり、この容器B2は、詳細は後述するが、燃焼部4と改質部2を構成するものである。
In this embodiment, the hydrogen-containing gas generation device P is configured using nine containers B. In order to clarify the distinction of the nine containers B, for the sake of convenience, the reference numerals 1, 2, 3 indicating the arrangement order from the left in FIG. 1 and FIG. 9 is attached. Incidentally, the third container B3 from the left forms one internal space S, and the other eight containers B form two internal spaces S.
FIG. 4 shows the second container B2 from the left, and this container B2 constitutes the combustion section 4 and the reforming section 2 as will be described in detail later.

図1に示すように、左端の容器B1における左側の内部空間Sを有する部分にて加熱用排ガス通流部8が構成され、右側の内部空間Sを有する部分にて蒸発処理部9が構成されている。つまり、この左端の容器B1により、水蒸気生成部Jが構成されている。   As shown in FIG. 1, a heating exhaust gas flow section 8 is configured in a portion having the left internal space S in the leftmost container B <b> 1, and an evaporation processing section 9 is configured in a portion having the right internal space S. ing. That is, the water vapor generating part J is configured by the leftmost container B1.

左から2個目の容器B2における左側の内部空間Sを燃焼空間として、左側の内部空間Sを有する部分にて燃焼部4が構成され、右側の内部空間Sを触媒収容空間Rとして改質触媒2cを収容して、右側の内部空間Sを有する部分により改質部2が構成されている。   The left internal space S in the second container B2 from the left is the combustion space, the combustion section 4 is configured in the portion having the left internal space S, and the right internal space S is the catalyst housing space R. The reforming unit 2 is configured by a portion that accommodates 2c and has the right internal space S.

左から3個目の容器B3により、保温用通流部10が構成されている。
左から4個目の容器B4における左側の内部空間Sを有する部分により、上流側改質ガス通流部12が構成され、右側の内部空間Sを有する部分により、脱硫後原燃料通流部13が構成されている。つまり、この左から4個目の容器B4にて、脱硫後原燃料用熱交換器Eaが構成されている。
The third container B3 from the left constitutes the heat retaining flow-through portion 10.
The upstream reformed gas flow passage 12 is constituted by the portion having the left internal space S in the fourth container B4 from the left, and the raw fuel flow passage 13 after desulfurization is constituted by the portion having the right internal space S. Is configured. That is, the desulfurized raw fuel heat exchanger Ea is configured by the fourth container B4 from the left.

左から5個目の容器B5における左側の内部空間Sを触媒収容空間Rとして脱硫触媒1cを収容して、左側の内部空間Sを有する部分により脱硫部1が構成され、右側の内部空間Sを有する部分により、脱硫前原燃料通流部15が構成されている。
この左から5個目の容器B5における左側、即ち、脱硫部1側の側面に当て付けた状態で、脱硫部用ヒータ35が設けられている。
The desulfurization catalyst 1c is accommodated with the left inner space S in the fifth container B5 from the left as the catalyst accommodating space R, and the desulfurization part 1 is configured by the portion having the left inner space S. The part which has it comprises the raw fuel flow part 15 before desulfurization.
A desulfurization section heater 35 is provided on the left side of the fifth container B5 from the left, that is, in a state of being applied to the side surface on the desulfurization section 1 side.

左から6個目の容器B6における左側の内部空間Sを有する部分により、下流側改質ガス通流部14が構成され、右側の内部空間Sを触媒収容空間Rとして変成触媒5cを収容して、右側の内部空間Sを有する部分により変成部5が構成されている。
左から7個目の容器B7における左側の内部空間Sを触媒収容空間Rとして変成触媒5cを収容して、左側の内部空間Sを有する部分により変成部5が構成され、右側の内部空間Sを有する部分により、冷却用排ガス通流部11が構成されている。
The portion having the left internal space S in the sixth container B6 from the left constitutes the downstream reformed gas flow section 14, and the shift catalyst 5c is accommodated with the right internal space S as the catalyst accommodating space R. The metamorphic portion 5 is constituted by the portion having the right internal space S.
The left inner space S in the seventh container B7 from the left is used as the catalyst housing space R to accommodate the shift catalyst 5c, and the shift section 5 is configured by the portion having the left inner space S. The cooling exhaust gas flow passage portion 11 is configured by the portion having the same.

左から8個目の容器B8における左右の内部空間Sをいずれも触媒収容空間Rとして変成触媒5cを収容して、左から8個目の容器B8により変成部5が構成されている。
つまり、左から6個目の容器B6にて構成される変成部5、左から7個目の容器B7にて構成される変成部5、左から8個目の容器B8にて構成される変成部5を、夫々、1段目、2段目、3段目として、順に改質ガスを通流させるように構成されて、変成部5が3段に設けられている。
The left and right internal spaces S in the eighth container B8 from the left are used as the catalyst housing space R to house the shift catalyst 5c, and the shift section 5 is configured by the eighth container B8 from the left.
That is, the metamorphic portion 5 composed of the sixth container B6 from the left, the metamorphic portion 5 composed of the seventh container B7 from the left, and the metamorphic portion composed of the eighth container B8 from the left The parts 5 are configured as a first stage, a second stage, and a third stage, respectively, so that the reformed gas is allowed to flow in order, and the transformation section 5 is provided in three stages.

2個の変成部用ヒータ36のうちの1個は、左から6個目の容器B6と7個目の容器B7との間に設けられ、残りの1個は、左から8個目の容器B8における右側の側面に当て付けた状態で設けられている。   One of the two transformer heaters 36 is provided between the sixth container B6 and the seventh container B7 from the left, and the remaining one is the eighth container from the left. It is provided in a state of being applied to the right side surface in B8.

左から9個目、即ち右端の容器B9における左側の内部空間Sを有する部分は、何にも用いずに伝熱調整用とされ、右側の内部空間Sを触媒収容空間Rとして選択酸化触媒6cを収容して、右側の内部空間Sを有する部分により選択酸化部6が構成されている。   The ninth portion from the left, that is, the portion having the left inner space S in the rightmost container B9 is used for heat transfer adjustment without being used for anything, and the selective oxidation catalyst 6c is used with the right inner space S as the catalyst housing space R. The selective oxidation unit 6 is configured by a portion having the right internal space S.

そして、9個の容器Bが、左端の容器B1と左から2個目の容器B2との間、左から3個目の容器B3と左から4個目の容器B4の間、及び、左から4個目の容器B4と左から5個目の容器B5との間の夫々に断熱材18が配置された状態で、押し付け機構Kにより容器並び方向両側から押し付けられて、密接状態に並べて設けられ、更に、選択酸化部6を構成する右端の容器B9の側方に、その容器B9に向けて通風するように冷却用ファン37が設けられている。   Nine containers B are located between the leftmost container B1 and the second container B2 from the left, between the third container B3 from the left and the fourth container B4 from the left, and from the left. In a state where the heat insulating material 18 is disposed between the fourth container B4 and the fifth container B5 from the left, they are pressed by the pressing mechanism K from both sides in the container alignment direction, and are arranged in close contact. Further, a cooling fan 37 is provided on the side of the rightmost container B9 constituting the selective oxidation unit 6 so as to ventilate the container B9.

図2及び図3に示すように、押し付け機構Kは、容器積層体Aにおける容器並び方向両端の容器Bに各別に当て付けて配置される一対の保持板51と、それら一対の保持板51を連結する6組のネジ式連結手段とを備えて構成されている。
ネジ式連結手段は、ボルト52、一対のナット53及び一対のスプリングワッシャ54から成る。
一対の保持板51夫々はL字状に形成され、それら一対の保持板51が正面視で線対称形態で配置される。
そして、ボルト52の両端夫々が、保持板51に挿通された状態で、両側からスプリングワッシャ54を介してナット53にて締め付けられることにより、複数の容器Bが容器並び方向に直交する方向での相対移動が許容される状態で容器並び方向両側から押し付けられる構成とされている。又、スプリングワッシャ54の伸縮作用により、各容器Bの容器並び方向での膨張収縮も許容される構成とされている。
As shown in FIGS. 2 and 3, the pressing mechanism K includes a pair of holding plates 51 arranged to be respectively applied to the containers B at both ends of the container stack A in the container arrangement direction, and the pair of holding plates 51. And six sets of screw-type connecting means to be connected.
The screw type connecting means includes a bolt 52, a pair of nuts 53, and a pair of spring washers 54.
Each of the pair of holding plates 51 is formed in an L shape, and the pair of holding plates 51 are arranged in a line-symmetric form in a front view.
And the both ends of the volt | bolt 52 are tightened with the nut 53 via the spring washer 54 from the both sides in the state inserted in the holding | maintenance board 51, and the some container B in the direction orthogonal to a container arrangement direction It is configured to be pressed from both sides of the container arrangement direction in a state where relative movement is allowed. Further, the expansion and contraction of each container B in the container alignment direction is allowed by the expansion and contraction action of the spring washer 54.

上述のような配置形態で9個の容器Bを配置するに当たっては、改質部2を改質処理温度に維持するように、改質用バーナ3の燃焼量を調整し、且つ、選択酸化部6を選択酸化処理温度に維持するように、冷却用ファン37の通風量を調節して冷却能力を調節することにより、脱硫部1及び変成部5がそれぞれの処理温度になるように、隣接するもの同士の伝熱状態が予め設定されている。
尚、水素含有ガス生成装置Pの起動時には、脱硫部用ヒータ35を加熱作動させて、脱硫部1を脱硫処理温度に加熱し、並びに、2個の変成部用ヒータ36を加熱作動させて、変成部5を変成処理温度に加熱するように構成されている。
In arranging the nine containers B in the arrangement form as described above, the combustion amount of the reforming burner 3 is adjusted so as to maintain the reforming unit 2 at the reforming treatment temperature, and the selective oxidation unit. By adjusting the cooling capacity by adjusting the air flow rate of the cooling fan 37 so as to maintain 6 at the selective oxidation treatment temperature, the desulfurization unit 1 and the transformation unit 5 are adjacent to each other at the treatment temperature. The heat transfer state between things is preset.
When the hydrogen-containing gas generator P is started, the desulfurization section heater 35 is heated to operate, the desulfurization section 1 is heated to the desulfurization processing temperature, and the two shift section heaters 36 are heated to operate. The shift section 5 is configured to be heated to the shift processing temperature.

図示を省略するが、脱硫部1、改質部2、変成部5及び選択酸化部6夫々には、夫々の触媒の温度を検出する温度センサが設けられている。   Although not shown, each of the desulfurization unit 1, the reforming unit 2, the shift unit 5 and the selective oxidation unit 6 is provided with a temperature sensor for detecting the temperature of each catalyst.

図2及び図3に示すように、一対の保持板51を設置面(図示省略)上に設置すると、容器積層体Aは、一対の保持板51により設置面から離間した状態で保持される。   As shown in FIGS. 2 and 3, when the pair of holding plates 51 are installed on the installation surface (not shown), the container laminate A is held in a state of being separated from the installation surface by the pair of holding plates 51.

次に、図1に基づいて、各容器Bに流体を供給したり、各容器Bから流体を排出するための、各容器Bに対する流路の接続形態について説明する。尚、各容器B内の内部空間Sにおいては、流体を上部から供給して下方側に向けて通流させて下部から排出する、あるいは、流体を下部から供給して上方側に向けて通流させて上部から排出するように、流体を上下方向に通流させるので、各流路は、各容器Bの内部空間Sの上端部又は下端部に接続される。   Next, the connection form of the flow path to each container B for supplying the fluid to each container B and discharging the fluid from each container B will be described with reference to FIG. In the internal space S in each container B, the fluid is supplied from the upper part and flows downward and discharged from the lower part, or the fluid is supplied from the lower part and flows upward. Since the fluid flows in the vertical direction so as to be discharged from the upper portion, each flow path is connected to the upper end portion or the lower end portion of the internal space S of each container B.

原燃料ガス供給路20が脱硫前原燃料通流部15に接続され、脱硫部1と脱硫後原燃料通流部13とが、その脱硫後原燃料通流部13と改質部2とが、その改質部2と保温用通流部10とが、その保温用通流部10と上流側改質ガス通流部12とが、その上流側改質ガス通流部12と下流側改質ガス通流部14とが、1段目の変成部5と2段目の変成部5とが、2段目の変成部5と3段目の変成部5とが、3段目の変成部5と選択酸化部6とが、夫々、ガス処理流路27にて接続され、更に、その選択酸化部6と燃料電池Gの燃料ガス供給部とが燃料ガス供給路23にて接続されている。   The raw fuel gas supply path 20 is connected to the raw fuel flow section 15 before desulfurization, the desulfurization section 1 and the raw fuel flow section 13 after desulfurization, the raw fuel flow section 13 and the reforming section 2 after desulfurization, The reforming section 2 and the heat retaining flow section 10 are composed of the heat retaining flow section 10 and the upstream reformed gas flowing section 12, and the upstream reformed gas flow section 12 and the downstream reforming section. The gas flow section 14 is the first stage transformation section 5 and the second stage transformation section 5 is the second stage transformation section 5 and the third stage transformation section 5 is the third stage transformation section. 5 and the selective oxidation unit 6 are connected to each other through a gas processing channel 27, and the selective oxidation unit 6 and a fuel gas supply unit of the fuel cell G are connected to each other through a fuel gas supply channel 23. .

3段目の変成部5と選択酸化部6とを接続するガス処理流路27と改質用水供給路21とにわたって、原料水予熱用熱交換器16が設けられている。
又、脱硫部1と脱硫後原燃料通流部13とを接続するガス処理流路27には、脱硫原燃料ガスに水蒸気を混合させるためのエジェクタ17が設けられている。
A raw material water preheating heat exchanger 16 is provided across the gas processing flow path 27 and the reforming water supply path 21 that connect the third stage shift section 5 and the selective oxidation section 6.
Further, an ejector 17 for mixing water vapor into the desulfurized raw fuel gas is provided in the gas processing flow path 27 that connects the desulfurized section 1 and the raw fuel flow-through section 13 after desulfurization.

更に、3段目の変成部5と選択酸化部6を接続するガス処理流路27には、燃焼用空気ブロア33から選択酸化用空気が供給される選択酸化用空気供給路28が接続されて、変成部54にて変成処理された改質ガスに選択酸化用空気を混合させて選択酸化部6に供給するように構成されている。   Further, a selective oxidation air supply path 28 to which selective oxidation air is supplied from the combustion air blower 33 is connected to the gas processing flow path 27 that connects the third stage shift section 5 and the selective oxidation section 6. The reformed gas converted by the shift unit 54 is mixed with selective oxidation air and supplied to the selective oxidation unit 6.

燃焼部4と加熱用排ガス通流部8とが、その加熱用排ガス通流部8と冷却用排ガス通流部11が、夫々、燃焼ガス流路29にて接続されて、燃焼部4から排出される燃焼ガスを、加熱用排ガス通流部8、冷却用排ガス通流部11の順に通流させて排出するように構成されている。   The combustion part 4 and the heating exhaust gas flow part 8 are connected to the heating exhaust gas flow part 8 and the cooling exhaust gas flow part 11 via the combustion gas flow path 29, respectively, and discharged from the combustion part 4. The combustion gas to be discharged is configured to flow through the heating exhaust gas flow portion 8 and the cooling exhaust gas flow portion 11 in this order to be discharged.

前述の改質用水供給路21が、蒸発処理部9の下端に接続され、加熱用排ガス通流部8による加熱により蒸発処理部9にて生成された水蒸気を導く水蒸気流路30がエジェクタ17に接続されている。   The reforming water supply path 21 is connected to the lower end of the evaporation processing section 9, and a steam flow path 30 that guides the steam generated in the evaporation processing section 9 by heating by the heating exhaust gas flow section 8 is provided to the ejector 17. It is connected.

つまり、原燃料ガス供給路20を通して供給される原燃料ガスを脱硫部1にて脱硫処理し、その脱硫原燃料ガスに、蒸発処理部9にて生成されて水蒸気路30を通して供給される水蒸気をエジェクタ17にて混合させ、その水蒸気を混合させた脱硫原燃料ガスを改質部2にて改質処理し、その改質ガスを1段目、2段目、3段目の変成部5にて変成処理し、その変成処理した改質ガスを選択酸化部6にて選択酸化処理して、一酸化炭素濃度の低い水素含有ガスを生成し、その水素含有ガスを燃料ガスとして燃料ガス供給路23を通じて燃料電池Gに供給するように構成されている。   That is, the raw fuel gas supplied through the raw fuel gas supply path 20 is desulfurized in the desulfurization unit 1, and the steam generated in the evaporation processing unit 9 and supplied through the water vapor path 30 is supplied to the desulfurized raw fuel gas. The desulfurized raw fuel gas mixed with the ejector 17 and mixed with the steam is reformed in the reforming unit 2, and the reformed gas is supplied to the first, second, and third stage transformation units 5. Then, the reformed reformed gas is selectively oxidized in the selective oxidation unit 6 to generate a hydrogen-containing gas having a low carbon monoxide concentration, and the hydrogen-containing gas is used as a fuel gas to supply a fuel gas. 23 to supply to the fuel cell G.

次に、脱硫部1、改質部2、変成部5及び選択酸化部6の夫々に対して設けられた細分化触媒除去構造Mについて説明を加える。
尚、脱硫部1、改質部2、変成部5及び選択酸化部6夫々に設けられた細分化触媒除去構造Mは、同様の構成であるので、図5及び図6に、改質部2に設けられた細分化触媒除去構造Mを図示して、以下では、図5及び図6に基づいて、改質部2に設けられた細分化触媒除去構造Mを対象にして説明する。尚、図5は、左から2個目の容器B2(以下、単に容器B2と略記する場合がある)における改質部2を構成する部分の縦断右側面図であり、図6は、容器B2の縦断正面図である。
Next, the subdivided catalyst removal structure M provided for each of the desulfurization unit 1, the reforming unit 2, the shift unit 5, and the selective oxidation unit 6 will be described.
Since the subdivided catalyst removal structure M provided in each of the desulfurization unit 1, the reforming unit 2, the shift unit 5 and the selective oxidation unit 6 has the same configuration, FIG. 5 and FIG. In the following, the subdivided catalyst removal structure M provided in the reforming unit 2 will be described with reference to FIGS. 5 and 6. FIG. 5 is a vertical right side view of a portion constituting the reforming unit 2 in the second container B2 from the left (hereinafter sometimes simply referred to as container B2), and FIG. FIG.

図4にも示すように、容器B2については、左側の皿形状容器形成部材41の上端部分に、左側の内部空間S(燃焼部4の燃焼空間となる)の上端部分に連通する状態で、ガス流出口44が取り付けられ、右側の皿形状容器形成部材41の上端部分に、右側の内部空間S(改質部2の触媒収容空間Rとなる)の上端部分に連通する状態で、ガス流入口43が取り付けられ、右側の皿形状容器形成部材41の下端部分に、右側の内部空間Sの下端部分に連通する状態で、ガス流出口44が取り付けられている。   As shown in FIG. 4, the container B2 communicates with the upper end portion of the left dish-shaped container forming member 41 to the upper end portion of the left inner space S (which becomes the combustion space of the combustion unit 4). A gas flow outlet 44 is attached to the upper end portion of the right dish-shaped container forming member 41 and communicates with the upper end portion of the right inner space S (which becomes the catalyst housing space R of the reforming unit 2). An inlet 43 is attached, and a gas outlet 44 is attached to a lower end portion of the right dish-shaped container forming member 41 so as to communicate with a lower end portion of the right inner space S.

脱硫後原燃料通流部13から送出された脱硫原燃料ガスを改質部2に受け入れるガス処理流路27が、容器B2における右側の皿形状容器形成部材41の上端部分のガス流入口43に接続され、改質部2で改質処理された改質ガスを保温用通流部10に送出するガス処理流路27が、容器B2における右側の皿形状容器形成部材41の下端部分のガス流出口44に接続される。
又、改質用バーナ3の燃焼ガスを燃焼部4から加熱用排ガス通流部8に送出する燃焼ガス流路29が、容器B2における左側の皿形状容器形成部材41の上端部分のガス流出口44に接続される。
A gas processing flow path 27 for receiving the desulfurized raw fuel gas sent from the raw fuel flow section 13 after desulfurization into the reforming section 2 is formed in the gas inlet 43 at the upper end portion of the right dish-shaped container forming member 41 in the container B2. A gas processing flow path 27 that sends the reformed gas that is connected and reformed in the reforming section 2 to the heat retaining flow-through section 10 has a gas flow in the lower end portion of the right dish-shaped container forming member 41 in the container B2. Connected to outlet 44.
A combustion gas passage 29 for sending the combustion gas of the reforming burner 3 from the combustion section 4 to the heating exhaust gas flow section 8 is a gas outlet at the upper end portion of the left dish-shaped container forming member 41 in the container B2. 44.

容器B2の右側の内部空間Sにて構成される改質部2用の触媒収容空間Rにおける上下方向の中間部の下方寄りで且つガス流出口44の接続部よりも上方の箇所に、仕切り網46が触媒収容空間Rを上下に区画するように設けられて、触媒収容空間Rが、上方側の触媒収容部分Raと下方側の細分化触媒収容部分Rbとに区画される。
仕切り網46は、細分化していない正常な粒状の触媒(改質部2の場合は改質触媒2c)は通過させず、細分化触媒(改質部2の場合は改質触媒2cの細分化触媒2s)を通過可能なものが用いられ、例えば、目開き(線と線の間の隙間の大きさ)0.4mmのSUS製の網が用いられる。
In the catalyst storage space R for the reforming unit 2 constituted by the internal space S on the right side of the container B2, a partition net is provided at a position near the lower part of the middle part in the vertical direction and above the connection part of the gas outlet 44. 46 is provided so as to partition the catalyst housing space R up and down, and the catalyst housing space R is partitioned into an upper catalyst housing portion Ra and a lower segmented catalyst housing portion Rb.
The partition net 46 does not pass a normal granular catalyst (reformed catalyst 2c in the case of the reforming unit 2) that has not been subdivided, and does not pass through the subdivided catalyst (reformed catalyst 2c in the case of the reforming unit 2). A catalyst that can pass through the catalyst 2s) is used, and, for example, a mesh made of SUS having a mesh opening (size of a gap between the lines) of 0.4 mm is used.

そして、容器B2の左側の内部空間Sにて構成される触媒収容空間Rの触媒収容部分Raに、改質触媒2cが仕切り網46により受けられる状態で収容される。   Then, the reforming catalyst 2c is accommodated in the catalyst accommodating portion Ra of the catalyst accommodating space R constituted by the left inner space S of the container B2 in a state where it is received by the partition net 46.

詳細な説明及び図示を省略するが、図1に示すように、左から5個目の容器B5の左側の内部空間Sにて構成される脱硫部1用の触媒収容空間R、左から6個目の容器B6の右側の内部空間S、左から7個目の容器B7の左側の内部空間S及び左から8個目の容器B7の左右の内部空間Sの夫々にて構成される変成部5用の触媒収容空間R、並びに、右端の容器B9の左側の内部空間Sにて構成される選択酸化部6用の触媒収容空間Rの夫々にも、同様に、仕切り網46が設けられて、各触媒収容空間Rが、上方側の触媒収容部分Raと下方側の細分化触媒収容部分Rbとに区画される。   Although detailed explanation and illustration are omitted, as shown in FIG. 1, the catalyst storage space R for the desulfurization section 1 constituted by the left inner space S of the fifth container B5 from the left, six from the left The metamorphic section 5 is composed of an inner space S on the right side of the container B6 of the eye, an inner space S on the left side of the seventh container B7 from the left, and an inner space S on the left and right of the eighth container B7 from the left. Similarly, a partition net 46 is provided in each of the catalyst housing space R and the catalyst housing space R for the selective oxidation unit 6 constituted by the left inner space S of the rightmost container B9. Each catalyst housing space R is partitioned into an upper catalyst housing portion Ra and a lower fragmented catalyst housing portion Rb.

そして、脱硫部1用、変成部5用、選択酸化部6用の各触媒収容空間Rの触媒収容部分Raに、夫々、脱硫触媒1c、変成触媒5c、選択酸化触媒6cが仕切り網46により受けられる状態で収容される。   The desulfurization catalyst 1c, the shift catalyst 5c, and the selective oxidation catalyst 6c are received by the partition net 46 in the catalyst storage portions Ra of the catalyst storage spaces R for the desulfurization unit 1, the shift unit 5, and the selective oxidation unit 6, respectively. Is accommodated in a state where

図2にも示すように、バイブレータ50は、設置面から離間し且つ容器積層体Aの下端面に当て付けられた状態で、容器積層体Aに保持されることにより、容器積層体Aを振動させるように設けられる。
バイブレータ50は、周知であるので、詳細な説明および図示を省略して、簡単に説明すると、モーターの回転軸に重心を偏らせた状態で重りを取り付けて、回転軸を回転させることにより、振動を生じさせる構成である。
As shown in FIG. 2, the vibrator 50 vibrates the container laminate A by being held by the container laminate A while being spaced from the installation surface and being applied to the lower end surface of the container laminate A. Is provided.
Since the vibrator 50 is well known, a detailed description and illustration thereof will be omitted. Briefly, the vibrator 50 is attached with a weight with its center of gravity biased to the rotation shaft of the motor, and is rotated by rotating the rotation shaft. It is the structure which produces.

そして、バイブレータ50を作動させると、容器積層体Aに加振されて容器積層体A全体が振動することになり、脱硫部1の触媒収容空間Rの脱硫触媒1c、改質部2の触媒収容空間Rの改質触媒2c、変成部5の触媒収容空間Rの変成触媒5c、及び、選択酸化部6の触媒収容空間Rの選択酸化触媒6cを振動させることができる。   When the vibrator 50 is operated, the container stack A is vibrated and the entire container stack A vibrates, so that the desulfurization catalyst 1c in the catalyst storage space R of the desulfurization unit 1 and the catalyst storage of the reforming unit 2 are accommodated. The reforming catalyst 2c in the space R, the shift catalyst 5c in the catalyst storage space R of the shift converter 5, and the selective oxidation catalyst 6c in the catalyst storage space R of the selective oxidation section 6 can be vibrated.

つまり、この実施形態では、脱硫部1、改質部2、変成部5及び選択酸化部6の夫々に対して、細分化触媒除去構造Mがバイブレータ50を共有する状態で設けられることになる。   That is, in this embodiment, the subdivided catalyst removal structure M is provided in a state where the vibrator 50 is shared with respect to each of the desulfurization unit 1, the reforming unit 2, the shift unit 5, and the selective oxidation unit 6.

次に、制御部Cの制御動作について説明する。
制御部Cは、運転開始が指令されると、改質部2を改質処理温度に維持するように、改質用バーナ3の燃焼量を調整すべくガス燃料流量調整弁38を制御すると共に、選択酸化部6を選択酸化処理温度に維持するように、冷却用ファン37の通風量を調節し、並びに、電力負荷に追従して燃料電池Cの出力電力を出力電力調整範囲で調整すべく、脱硫部1に供給される原燃料ガスの流量を通常流量調整範囲内で調整するように、原燃料ガス流量調整弁7を制御する通常運転を実行する。
制御部Cは、運転停止が指令されると、改質用バーナ3を消火させ、冷却用ファン37を停止させ、並びに、原燃料ガス流量調整弁7を閉じて、原燃料ガス供給路20からの原燃料ガスの供給を停止することにより、通常運転を終了する。
Next, the control operation of the control unit C will be described.
When the operation start is commanded, the control unit C controls the gas fuel flow rate adjustment valve 38 to adjust the combustion amount of the reforming burner 3 so as to maintain the reforming unit 2 at the reforming processing temperature. In order to maintain the selective oxidation unit 6 at the selective oxidation treatment temperature, the air flow rate of the cooling fan 37 is adjusted, and the output power of the fuel cell C is adjusted within the output power adjustment range following the power load. Then, a normal operation for controlling the raw fuel gas flow rate adjustment valve 7 is executed so as to adjust the flow rate of the raw fuel gas supplied to the desulfurization unit 1 within the normal flow rate adjustment range.
When the operation stop is instructed, the control unit C extinguishes the reforming burner 3, stops the cooling fan 37, closes the raw fuel gas flow rate adjustment valve 7, and starts from the raw fuel gas supply path 20. The normal operation is terminated by stopping the supply of the raw fuel gas.

次に、水素含有ガス生成装置の細分化触媒除去方法について説明する。
触媒収容空間Rの触媒収容部分Raから細分化触媒を除去する細分化触媒除去タイミングになったと判定すると、原燃料ガス流量調整弁7を閉じて触媒収容空間Rへの処理対象ガスの供給を停止した状態で、バイブレータ50を作動させる細分化触媒除去運転を実行する。
通常運転が終了して、原燃料ガス流量調整弁7を閉じられると、脱硫部1の触媒収容空間Rへの処理対象ガスとしての原燃料ガスの供給が停止され、改質部2の触媒収容空間Rへの処理対象ガスとしての脱硫原燃料ガスの供給が停止され、変成部5の触媒収容空間Rへの処理対象ガスとしての改質ガスの供給が停止され、並びに、選択酸化部6の触媒収容空間Rへの処理対象ガスとしての変成処理後の改質ガスの供給が停止される。
そこで、細分化触媒除去運転は、通常運転の停止時に実行する。
Next, a method for removing a fragmented catalyst from the hydrogen-containing gas generator will be described.
When it is determined that it is time to remove the fragmented catalyst from the catalyst housing portion Ra of the catalyst housing space R, the raw fuel gas flow rate adjustment valve 7 is closed to stop the supply of the processing target gas to the catalyst housing space R In this state, the subdivided catalyst removing operation for operating the vibrator 50 is executed.
When the normal operation is finished and the raw fuel gas flow rate adjustment valve 7 is closed, the supply of the raw fuel gas as the processing target gas to the catalyst housing space R of the desulfurization unit 1 is stopped, and the catalyst housing of the reforming unit 2 is accommodated. The supply of the desulfurized raw fuel gas as the processing target gas to the space R is stopped, the supply of the reformed gas as the processing target gas to the catalyst housing space R of the shift unit 5 is stopped, and the selective oxidation unit 6 The supply of the reformed gas after the modification process as the process target gas to the catalyst housing space R is stopped.
Therefore, the subdivided catalyst removal operation is executed when the normal operation is stopped.

この実施形態では、触媒収容空間Rに供給される処理対象ガスの圧力が通常よりも高い所定の設定圧力以上になり、その状態がタイミング判定用の設定時間継続すると、細分化触媒除去タイミングになったと判定する。ちなみに、設定圧力としては、例えば、予め設定した通常時の圧力よりも30%程度高い圧力に設定される。
つまり、原燃料ガス供給圧検出器19により検出される原燃料ガスの圧力が設定圧力以上になり、その状態がタイミング判定用の設定時間継続すると、細分化触媒除去タイミングになったと判定する。
In this embodiment, when the pressure of the gas to be processed supplied to the catalyst housing space R becomes equal to or higher than a predetermined set pressure that is higher than normal and the state continues for a set time for timing determination, the subdivided catalyst removal timing is reached. It is determined that Incidentally, as the set pressure, for example, a pressure that is about 30% higher than the preset normal pressure is set.
That is, when the pressure of the raw fuel gas detected by the raw fuel gas supply pressure detector 19 becomes equal to or higher than the set pressure and the state continues for the set time for timing determination, it is determined that the subdivided catalyst removal timing has come.

この実施形態では、細分化触媒除去運転(細分化触媒除去方法)を制御部Cにより実行させるように構成され、以下、その制御動作を説明する。
制御部Cは、通常運転の実行中は、原燃料ガス供給圧検出器19により検出され原燃料ガスの圧力を監視し、その検出圧力が設定圧力以上になり、その状態がタイミング判定用の設定時間継続すると、次に、運転停止の指令に基づいて通常運転を終了したときに、改質部2の温度が細分化触媒除去運転開始用の設定温度(例えば、60℃)にまで低下するのを待って、バイブレータ50を作動させて細分化触媒除去運転を開始し、開始後、細分化触媒除去運転用の設定時間が経過すると、バイブレータ50を停止させて細分化触媒除去運転を終了する。ちなみに、細分化触媒除去運転用の設定時間としては、細分化触媒除去運転を実行することにより、触媒収容部分Raから細分化触媒を十分に除去することができる時間に設定する。
In this embodiment, the subdivided catalyst removal operation (subdivided catalyst removal method) is configured to be executed by the control unit C, and the control operation will be described below.
The control unit C monitors the pressure of the raw fuel gas detected by the raw fuel gas supply pressure detector 19 during normal operation, and the detected pressure becomes equal to or higher than the set pressure, and the state is set for timing determination. If the time continues, then, when the normal operation is terminated based on the operation stop command, the temperature of the reforming unit 2 decreases to the set temperature for starting the subdivided catalyst removal operation (for example, 60 ° C.). Then, the vibrator 50 is activated to start the subdivided catalyst removal operation. After the start, when the set time for the subdivided catalyst removal operation elapses, the vibrator 50 is stopped and the subdivided catalyst removal operation is ended. Incidentally, the set time for the subdivided catalyst removal operation is set to a time during which the subdivided catalyst can be sufficiently removed from the catalyst housing portion Ra by executing the subdivided catalyst removal operation.

細分化触媒除去運転が実行されると、図5(b)及び図6(b)に示すように、改質部2の触媒収容空間Rにおける触媒収容部分Raの改質触媒2cが振動させられるので、その改質触媒2c中に混ざっている改質触媒2cの細分化触媒2sが、仕切り網46を通過して細分化触媒収容部分Rbにふるい落とされる。   When the subdivided catalyst removal operation is executed, the reforming catalyst 2c of the catalyst housing portion Ra in the catalyst housing space R of the reforming portion 2 is vibrated as shown in FIGS. 5 (b) and 6 (b). Therefore, the subdivided catalyst 2s of the reforming catalyst 2c mixed in the reforming catalyst 2c passes through the partition net 46 and is screened to the subdivided catalyst housing portion Rb.

図示を省略するが、脱硫部1の触媒収容空間Rにおける触媒収容部分Raの脱硫触媒1cも振動させられるので、その脱硫触媒1c中に混ざっている脱硫触媒1cの細分化触媒1sも、仕切り網46を通過して細分化触媒収容部分Rbにふるい落とされる。
又、変成部5の触媒収容空間Rにおける触媒収容部分Raの変成触媒5cも振動させられるので、その変成触媒5c中に混ざっている変成触媒5cの細分化触媒5sも、仕切り網46を通過して細分化触媒収容部分Rbにふるい落とされる。
又、選択酸化部6の触媒収容空間Rにおける触媒収容部分Raの選択酸化触媒6cも振動させられるので、その選択酸化触媒6c中に混ざっている選択酸化触媒6cの細分化触媒6sも、仕切り網46を通過して細分化触媒収容部分Rbにふるい落とされる。
Although illustration is omitted, since the desulfurization catalyst 1c of the catalyst housing portion Ra in the catalyst housing space R of the desulfurization section 1 is also vibrated, the subdivided catalyst 1s of the desulfurization catalyst 1c mixed in the desulfurization catalyst 1c is also separated by a partition network. After passing through 46, the finely divided catalyst containing portion Rb is screened off.
Further, since the shift catalyst 5c in the catalyst housing portion Ra in the catalyst housing space R of the shift section 5 is also vibrated, the subdivided catalyst 5s of the shift catalyst 5c mixed in the shift catalyst 5c also passes through the partition net 46. Then, it is screened out into the segmented catalyst housing portion Rb.
Further, since the selective oxidation catalyst 6c of the catalyst housing portion Ra in the catalyst housing space R of the selective oxidation unit 6 is also vibrated, the subdivided catalyst 6s of the selective oxidation catalyst 6c mixed in the selective oxidation catalyst 6c is also separated from the partition network. After passing through 46, the finely divided catalyst containing portion Rb is screened off.

従って、脱硫部1の触媒収容空間Rを通流する原燃料ガスに偏流が生じるのを防止することができるので、時間経過に伴う脱硫処理能力の低下を抑制することができる。
又、改質部2の触媒収容空間Rを通流する脱硫原燃料ガスに偏流が生じるのを防止することができるので、時間経過に伴う改質処理能力の低下を抑制することができる。
又、変成部5の触媒収容空間Rを通流する改質ガスの偏流を抑制することができるので、時間経過に伴う変成処理能力の低下を抑制することができる。
更に、選択酸化部6の触媒収容空間Rを通流する変成処理後の改質ガスの偏流を抑制することができるので、時間経過に伴う選択酸化処理能力の低下を抑制することができる。
要するに、一酸化炭素ガス濃度が低い水素リッチな水素含有ガスを生成する水素含有ガス生成装置Pにおいて、時間経過に伴う水素含有ガス生成能力の低下を抑制することができる。
Accordingly, since it is possible to prevent the raw fuel gas flowing through the catalyst housing space R of the desulfurization section 1 from drifting, it is possible to suppress a decrease in the desulfurization processing capacity with the passage of time.
Moreover, since it is possible to prevent a drift in the desulfurization raw fuel gas flowing through the catalyst housing space R of the reforming unit 2, it is possible to suppress a decrease in reforming treatment capacity over time.
Moreover, since the uneven flow of the reformed gas flowing through the catalyst housing space R of the shift section 5 can be suppressed, it is possible to suppress a decrease in shift processing capacity with time.
Furthermore, since the uneven flow of the reformed gas after the shift treatment flowing through the catalyst housing space R of the selective oxidation unit 6 can be suppressed, it is possible to suppress a decrease in the selective oxidation treatment capability with time.
In short, in the hydrogen-containing gas generation device P that generates a hydrogen-rich hydrogen-containing gas with a low carbon monoxide gas concentration, it is possible to suppress a decrease in the hydrogen-containing gas generation capability with time.

〔別実施形態〕
(A)上述の水素含有ガス生成装置Pでは、原動機(電動モータ等)を備えた補機Hとして、反応用空気ブロア31、冷却水ポンプ32、燃焼用空気ブロア33、改質水ポンプ34等が設けられる。そして、これらのうち、水素含有ガス生成装置Pの停止中に作動させても、水素含有ガス生成装置Pに悪影響を与えないものを、容器積層体Aを振動させることが可能に設けて、その補機Hを加振手段として用いることができる。
例えば、改質用バーナ3に燃焼用空気を供給する燃焼用空気ブロア33(送風手段の一例)や、冷却水ポンプ32は、水素含有ガス生成装置Pの停止中に作動させても水素含有ガス生成装置Pに悪影響を与えない補機Hである。
そこで、図7に示すように、バイブレータ50に代えて、燃焼用空気ブロア33を、設置面から離間し且つ容器積層体Aの下端面に当て付けた状態で、容器積層体Aに保持することにより、容器積層体Aを振動させることが可能に設けると、燃焼用空気ブロア33を加振手段として用いることができる。
又、図示を省略するが、冷却水ポンプ32を、燃焼用空気ブロア33の場合と同様に容器積層体Aを振動させることが可能に設けると、冷却水ポンプ32を加振手段として用いることができる。
[Another embodiment]
(A) In the hydrogen-containing gas generating device P described above, as an auxiliary machine H equipped with a prime mover (electric motor or the like), a reaction air blower 31, a cooling water pump 32, a combustion air blower 33, a reforming water pump 34, etc. Is provided. And among these, even if it operates while the hydrogen-containing gas generating device P is stopped, the one that does not adversely affect the hydrogen-containing gas generating device P is provided so that the container stack A can be vibrated. The auxiliary machine H can be used as a vibration means.
For example, even if the combustion air blower 33 (an example of a blowing unit) for supplying combustion air to the reforming burner 3 or the cooling water pump 32 is operated while the hydrogen-containing gas generator P is stopped, the hydrogen-containing gas This is an auxiliary machine H that does not adversely affect the generator P.
Therefore, as shown in FIG. 7, instead of the vibrator 50, the combustion air blower 33 is held on the container laminated body A in a state of being spaced from the installation surface and applied to the lower end surface of the container laminated body A. Thus, when the container stack A is provided so as to be vibrated, the combustion air blower 33 can be used as the vibration means.
Although illustration is omitted, if the cooling water pump 32 is provided so as to vibrate the container stack A as in the case of the combustion air blower 33, the cooling water pump 32 can be used as the vibration means. it can.

(B)上記の実施形態では、脱硫部1、改質部2、変成部5及び選択酸化部6夫々を各別の扁平状の容器Bを用いて構成すると共に、それら複数の容器Bを上述のように一体的に組み付けて、容器積層体Aを構成した。そして、加振手段(上記の実施形態ではバイブレータ50)を容器積層体Aを振動させるよう設けて、脱硫部1、改質部2、変成部5及び選択酸化部6の全てに対して、細分化触媒除去構造Mを設ける場合について例示した。
これに代えて、加振手段を容器積層体Aを振動させるよう設ける場合でも、仕切り網46を脱硫部1、改質部2、変成部5及び選択酸化部6のうちの一部に設けることにより、細分化触媒除去構造Mを脱硫部1、改質部2、変成部5及び選択酸化部6のうちの一部に設けても良い。
(B) In the above embodiment, each of the desulfurization unit 1, the reforming unit 2, the transformation unit 5 and the selective oxidation unit 6 is configured using a separate flat container B, and the plurality of containers B are described above. The container laminate A was constructed by assembling integrally as described above. Then, an oscillating means (vibrator 50 in the above embodiment) is provided so as to vibrate the container laminate A, so that the desulfurization unit 1, the reforming unit 2, the transformation unit 5 and the selective oxidation unit 6 are all subdivided. The case of providing the catalyst for removing catalyst M was illustrated.
Instead of this, even when the vibrating means is provided so as to vibrate the container laminate A, the partition net 46 is provided in a part of the desulfurization unit 1, the reforming unit 2, the transformation unit 5, and the selective oxidation unit 6. Accordingly, the subdivided catalyst removal structure M may be provided in a part of the desulfurization unit 1, the reforming unit 2, the conversion unit 5, and the selective oxidation unit 6.

又、脱硫部1、改質部2、変成部5及び選択酸化部6を夫々別体に設けて、それらの全て、あるいは、一部に細分化触媒除去構造Mを設けても良い。   Further, the desulfurization unit 1, the reforming unit 2, the shift unit 5 and the selective oxidation unit 6 may be provided separately, and the subdivided catalyst removal structure M may be provided in all or part of them.

(C)改質部2及びその改質部2を加熱する燃焼部4の具体的な構成としては、上記の実施形態の如く、各別の扁平状の容器Bを用いて構成する場合に限定されるものではない。
例えば、外筒の内部に内筒を設けて、内筒内を燃焼空間として内筒を用いて燃焼部を形成し、内筒と外筒との間の空間を触媒収容空間Rとして、内筒と外筒とを用いて改質部2を形成する構成でも良い。
この場合は、改質用バーナ3を燃焼させて、触媒収容空間Rの改質触媒2cを改質処理温度に昇温させた状態では、外筒に比べて内筒が大きく膨張するので、触媒収容空間Rの容積が少なくなって、触媒収容空間Rの改質触媒2は持ち上げられる。
逆に、改質用バーナ3を消火させて、触媒収容空間Rの改質触媒2cを改質処理温度に昇温させる状態を停止すると、外筒に比べて内筒が大きく収縮するので、触媒収容空間Rの容積が増加して、触媒収容空間Rの改質触媒2は沈下する。
従って、この場合は、細分化触媒除去運転を、改質用バーナ3を燃焼させて、触媒収容空間Rの改質触媒2cを改質処理温度に昇温させた状態で実行するのが好ましい。
(C) The specific configuration of the reforming unit 2 and the combustion unit 4 that heats the reforming unit 2 is limited to the configuration using each of the different flat containers B as in the above embodiment. Is not to be done.
For example, an inner cylinder is provided inside the outer cylinder, the inner cylinder is used as a combustion space to form a combustion portion using the inner cylinder, and a space between the inner cylinder and the outer cylinder is defined as a catalyst housing space R. A configuration in which the reforming portion 2 is formed using the outer cylinder and the outer cylinder may be used.
In this case, in the state where the reforming burner 3 is burned and the reforming catalyst 2c in the catalyst housing space R is heated to the reforming treatment temperature, the inner cylinder expands more than the outer cylinder. The volume of the storage space R decreases, and the reforming catalyst 2 in the catalyst storage space R is lifted.
Conversely, when the reforming burner 3 is extinguished and the state in which the temperature of the reforming catalyst 2c in the catalyst housing space R is raised to the reforming temperature is stopped, the inner cylinder contracts more greatly than the outer cylinder. As the volume of the storage space R increases, the reforming catalyst 2 in the catalyst storage space R sinks.
Therefore, in this case, it is preferable to execute the subdivided catalyst removal operation in a state where the reforming burner 3 is combusted and the reforming catalyst 2c in the catalyst housing space R is heated to the reforming treatment temperature.

(D)上記の実施形態では、通常運転の実行中に細分化触媒除去タイミングになったと判定すると、次に運転停止の指令に基づいて通常運転を終了したときに、細分化触媒除去運転を実行したが、通常運転の実行中に細分化触媒除去タイミングになったと判定すると、通常運転を強制的に終了させて、細分化触媒除去運転を実行しても良い。
又、上記の実施形態では、細分化触媒除去運転を制御部Cに自動的に実行させるように構成したが、細分化触媒除去運転を手動操作により実行するように構成しても良い。
(D) In the above embodiment, when it is determined that the timing for removing the subdivided catalyst is reached during execution of the normal operation, the subdivided catalyst removal operation is executed when the normal operation is terminated next based on the operation stop command. However, if it is determined that the timing for removing the subdivided catalyst is reached during execution of the normal operation, the normal operation may be forcibly terminated and the subdivided catalyst removal operation may be executed.
In the above embodiment, the subdivided catalyst removal operation is automatically executed by the control unit C. However, the subdivided catalyst removal operation may be executed manually.

(E)細分化触媒除去タイミングであると判定するための条件は、上記の実施形態で例示した条件、即ち、触媒収容空間Rに供給される処理対象ガスの圧力が設定圧力以上になって、しかも、その状態がタイミング判定用の設定時間継続する条件に限定されるものではない。
例えば、触媒収容空間Rに供給される処理対象ガスの圧力が設定圧力以上になる条件、通常運転の累積実行時間が所定の設定時間に達する条件、通常運転における脱硫部1への原燃料ガスの累積流量が所定の設定流量に達する条件、燃料電池Gの累積発電量が所定の設定発電量に達する条件等、種々の条件を適用することができる。
(E) The condition for determining that it is the timing for removing the subdivided catalyst is the condition exemplified in the above embodiment, that is, the pressure of the gas to be treated supplied to the catalyst housing space R is equal to or higher than the set pressure, Moreover, the condition is not limited to the condition that the set time for timing determination continues.
For example, a condition in which the pressure of the processing target gas supplied to the catalyst housing space R is equal to or higher than a set pressure, a condition in which the cumulative execution time of normal operation reaches a predetermined set time, and the raw fuel gas to the desulfurization unit 1 in normal operation Various conditions can be applied, such as a condition that the cumulative flow rate reaches a predetermined set flow rate, and a condition that the cumulative power generation amount of the fuel cell G reaches a predetermined set power generation amount.

(F)細分化触媒除去構造Mを設けた処理部D(上記の実施形態では、脱硫部1、改質部2、変成部5及び選択酸化部6)に対する処理対象ガスの給排形態は、上記の実施形態で例示した給排形態に限定されるものではない。
例えば、改質部2に対する処理対象ガスである脱硫原燃料ガスの給排形態は、上記の実施形態では、上方から供給して下方から排出させる形態としたが、逆に、下方から供給して上方から排出させる形態としても良いし、左右両側方の一方側から供給して他方側から排出させる形態としても良い。
(F) The supply / discharge mode of the gas to be processed with respect to the processing unit D (in the above embodiment, the desulfurization unit 1, the reforming unit 2, the shift unit 5 and the selective oxidation unit 6) provided with the subdivided catalyst removal structure M is as follows: It is not limited to the supply / discharge form illustrated in the above embodiment.
For example, the supply / discharge mode of the desulfurization raw fuel gas that is the processing target gas to the reforming unit 2 is a mode of supplying from above and discharging from below, but conversely, supplying from below It is good also as a form discharged | emitted from upper direction, and good also as a form supplied from one side of both right and left sides, and discharged | emitted from the other side.

(G)選択除去処理用の処理部の具体的な例として、上記の実施形態では、改質ガス中の一酸化炭素ガスを選択酸化して除去する選択酸化部6(即ち、選択酸化処理用の処理部)を設けたが、これに代えて、触媒収容空間Rに選択メタン化触媒を収容して、改質ガス中の一酸化炭素ガスを選択的にメタン化して除去する選択メタン化処理用の処理部を設けても良い。 (G) As a specific example of the processing section for selective removal processing, in the above embodiment, the selective oxidation section 6 (that is, for selective oxidation processing) that selectively oxidizes and removes carbon monoxide gas in the reformed gas. However, instead of this, a selective methanation treatment in which the selective methanation catalyst is accommodated in the catalyst accommodating space R and the carbon monoxide gas in the reformed gas is selectively methanated and removed. A processing unit may be provided.

(H)本発明に係る細分化触媒除去方法を適用可能なガス処理装置は、上記の実施形態で例示した水素含有ガス生成用のガス処理装置に限定されるものではない。
例えば、水素含有ガス生成用のガス処理装置に適用する場合でも、上記の実施形態のように脱硫部1、改質部2、変成部5及び選択酸化部6の全てを設けたものに限定されるものではなく、少なくとも改質部2を設けたものに適用することができる。
又、水素含有ガス生成用のガス処理装置の用途としては、上記の実施形態で例示した燃料電池用に限定されるものではなく、水素精製(濃縮)装置用等、種々の用途の水素含有ガス生成用のガス処理装置に適用することができる。
又、燃焼排ガスの処理用、臭気性排ガスの脱臭処理用等、種々の用途で用いるガス処理装置に適用することができる。
(H) The gas processing apparatus to which the subdivided catalyst removal method according to the present invention is applicable is not limited to the gas processing apparatus for generating a hydrogen-containing gas exemplified in the above embodiment.
For example, even when applied to a gas processing apparatus for generating a hydrogen-containing gas, the present invention is limited to a configuration in which all of the desulfurization unit 1, the reforming unit 2, the shift unit 5 and the selective oxidation unit 6 are provided as in the above embodiment. However, the present invention can be applied to at least the modified portion 2 provided.
In addition, the use of the gas treatment apparatus for generating the hydrogen-containing gas is not limited to the fuel cell exemplified in the above embodiment, but the hydrogen-containing gas for various uses such as for a hydrogen purification (concentration) apparatus. It can be applied to a gas processing apparatus for generation.
Further, the present invention can be applied to gas treatment apparatuses used for various purposes such as treatment of combustion exhaust gas and deodorization treatment of odorous exhaust gas.

尚、上記の実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、又、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。   Note that the configuration disclosed in the above embodiment (including another embodiment, the same applies hereinafter) can be applied in combination with the configuration disclosed in the other embodiment as long as no contradiction occurs. The embodiments disclosed in this specification are exemplifications, and the embodiments of the present invention are not limited thereto, and can be appropriately modified without departing from the object of the present invention.

以上説明したように、運転時間の経過に伴う処理能力の低下を抑制し得るガス処理装置用の細分化触媒除去方法を提供することができる。   As described above, it is possible to provide a method for removing a segmented catalyst for a gas processing apparatus that can suppress a decrease in processing capacity with the passage of operating time.

1 脱硫部(脱硫処理用の処理部)
1c 脱硫触媒(脱硫処理用の触媒)
1s 細分化触媒
2 改質部(改質処理用の処理部)
2c 改質触媒(改質処理用の触媒)
2s 細分化触媒
3 改質用バーナ
5 変成部(変成処理用の処理部)
5c 変成触媒(変成処理用の触媒)
5s 細分化触媒
6 選択酸化部(選択除去処理用の処理部)
6c 選択酸化触媒(選択除去処理用の触媒)
6s 細分化触媒
33 燃焼用空気ブロア(送風手段)
46 仕切り網(仕切り体)
50 バイブレータ(加振手段)
A 容器積層体
B 容器
D 処理部
H 補機
M 細分化触媒除去構造
R 触媒収容空間
Ra 触媒収容部分
Rb 細分化触媒収容部分
1 Desulfurization section (treatment section for desulfurization treatment)
1c Desulfurization catalyst (catalyst for desulfurization treatment)
1s Subdivided catalyst 2 Reforming part (Processing part for reforming treatment)
2c reforming catalyst (catalyst for reforming treatment)
2s Subdivided catalyst 3 Reforming burner 5 Metamorphic section (processing section for metamorphic treatment)
5c shift catalyst (catalyst for shift treatment)
5s Subdivided catalyst 6 Selective oxidation part (Processing part for selective removal treatment)
6c selective oxidation catalyst (catalyst for selective removal treatment)
6s Subdivided catalyst 33 Combustion air blower (air blowing means)
46 Partition net (partition body)
50 Vibrator (vibration means)
A Container laminated body B Container D Processing part H Auxiliary machine M Subdivision catalyst removal structure R Catalyst accommodation space Ra Catalyst accommodation part Rb Subdivision catalyst accommodation part

Claims (8)

触媒収容空間に粒状の触媒が収容されて、当該触媒を所定の処理温度に昇温させた状態で、前記触媒収容空間に供給される処理対象ガスに対して所定の処理を施す処理部が設けられたガス処理装置用の細分化触媒除去方法であって、
前記触媒収容空間を、前記触媒が細かく分かれた細分化触媒の通過が可能な多孔状の仕切り体により、前記触媒が収容される上方の触媒収容部分と下方の細分化触媒収容部分とに区画し、且つ、前記触媒収容空間の前記触媒を振動させる加振手段を備えた細分化触媒除去構造を設け、
前記触媒収容空間の前記触媒収容部分から前記細分化触媒を除去する細分化触媒除去タイミングになったと判定すると、前記触媒収容空間への処理対象ガスの供給を停止した状態で、前記加振手段を作動させる細分化触媒除去運転を実行するガス処理装置用の細分化触媒除去方法。
A processing unit is provided that performs a predetermined process on the processing target gas supplied to the catalyst storage space in a state where a granular catalyst is stored in the catalyst storage space and the catalyst is heated to a predetermined processing temperature. A subdivided catalyst removal method for a gas processing apparatus, comprising:
The catalyst housing space is partitioned into an upper catalyst housing portion for accommodating the catalyst and a lower fragmented catalyst housing portion by a porous partition that allows passage of the finely divided catalyst into which the catalyst is finely divided. And providing a subdivided catalyst removal structure provided with a vibration means for vibrating the catalyst in the catalyst housing space,
When it is determined that it is time to remove the finely divided catalyst from the catalyst accommodating portion of the catalyst accommodating space, the excitation means is stopped in a state where the supply of the processing target gas to the catalyst accommodating space is stopped. A subdivided catalyst removal method for a gas processing apparatus that executes a subdivided catalyst removal operation to be operated.
前記触媒収容空間に供給される処理対象ガスの圧力が所定の設定圧力以上になると、前記細分化触媒除去タイミングになったと判定する請求項1に記載のガス処理装置用の細分化触媒除去方法。   The subdivided catalyst removal method for a gas processing apparatus according to claim 1, wherein when the pressure of the processing target gas supplied to the catalyst containing space is equal to or higher than a predetermined set pressure, it is determined that the subdivided catalyst removal timing has come. 前記処理部として、
前記触媒収容空間に改質処理用の触媒が収容されて、当該改質処理用の触媒を所定の改質処理用の処理温度に昇温させた状態で、前記触媒収容空間に供給される原燃料ガスに対して、水素ガスを主成分とする改質ガスに改質する改質処理を施す改質処理用の処理部と、
前記触媒収容空間に変成処理用の触媒が収容されて、当該変成処理用の触媒を所定の変成処理用の処理温度に昇温させた状態で、前記改質処理用の処理部で改質処理された改質ガスに対して、一酸化炭素ガスを二酸化炭素ガスに変成する変成処理を施す変成処理用の処理部とが設けられ、
前記改質処理用の処理部及び前記変成処理用の処理部のうちの少なくとも一つに対して、前記細分化触媒除去構造を設ける請求項1又は2に記載のガス処理装置用の細分化触媒除去方法。
As the processing unit,
A catalyst for reforming treatment is accommodated in the catalyst accommodating space, and the raw material supplied to the catalyst accommodating space in a state where the temperature of the reforming catalyst is raised to a predetermined reforming treatment temperature. A processing unit for reforming processing for reforming the fuel gas into a reformed gas containing hydrogen gas as a main component;
A reforming treatment is accommodated in the catalyst housing space, and the reforming treatment is performed in the reforming treatment section in a state where the temperature of the transformation treatment catalyst is increased to a predetermined transformation treatment temperature. A modification processing unit for performing a modification process for transforming carbon monoxide gas into carbon dioxide gas with respect to the reformed gas,
The subdivided catalyst for a gas processing apparatus according to claim 1 or 2, wherein the subdivided catalyst removing structure is provided for at least one of the reforming processing unit and the shift processing unit. Removal method.
前記処理部として、
前記触媒収容空間に脱硫処理用の触媒が収容されて、当該脱硫処理用の触媒を所定の脱硫処理用の処理温度に昇温させた状態で、前記改質処理用の処理部に供給される前の原燃料ガスに対して脱硫処理を施す脱硫処理用の処理部と、
前記触媒収容空間に選択除去処理用の触媒が収容されて、当該選択除去処理用の触媒を所定の選択除去処理用の処理温度に昇温させた状態で、前記変成処理用の処理部で変成処理された改質ガスに対して、一酸化炭素ガスを選択除去する選択除去処理を施す選択除去処理用の処理部とが設けられ、
前記脱硫処理用の処理部及び前記選択除去処理用の処理部のうちの少なくとも一つに対して、前記細分化触媒除去構造を設ける請求項3に記載のガス処理装置用の細分化触媒除去方法。
As the processing unit,
A catalyst for desulfurization treatment is accommodated in the catalyst accommodating space, and the catalyst for desulfurization treatment is supplied to the processing unit for reforming treatment in a state where the catalyst is heated to a predetermined treatment temperature for desulfurization treatment. A desulfurization treatment unit that desulfurizes the previous raw fuel gas;
A catalyst for selective removal treatment is accommodated in the catalyst accommodating space, and the catalyst for selective removal treatment is transformed to a predetermined treatment temperature for selective removal treatment in the state of the modification treatment section. A selective removal treatment processing unit for performing selective removal treatment for selectively removing carbon monoxide gas with respect to the treated reformed gas;
The subdivided catalyst removal method for a gas processing device according to claim 3, wherein the subdivided catalyst removal structure is provided for at least one of the desulfurization treatment section and the selective removal treatment section. .
原動機を備えた補機を、前記細分化触媒除去構造を設けた前記処理部の触媒を振動させることが可能に設けて、
前記補機を前記加振手段として用いる請求項3又は4に記載のガス処理装置用の細分化触媒除去方法。
An auxiliary machine equipped with a prime mover is provided so as to vibrate the catalyst of the processing unit provided with the subdivided catalyst removal structure,
The subdivided catalyst removal method for a gas processing apparatus according to claim 3 or 4, wherein the auxiliary machine is used as the vibration means.
前記改質処理用の触媒を前記改質処理用の処理温度に加熱する改質用バーナが設けられ、
前記改質用バーナに燃焼用空気を供給する送風手段が前記補機として設けられ、
前記送風手段を前記加振手段として用いる請求項5に記載のガス処理装置用の細分化触媒除去方法。
A reforming burner is provided for heating the reforming catalyst to the reforming treatment temperature;
Blower means for supplying combustion air to the reforming burner is provided as the auxiliary machine,
The method for removing a fragmented catalyst for a gas processing apparatus according to claim 5, wherein the blowing means is used as the vibration means.
各処理部の前記触媒収容空間が扁平状の各別の容器内に形成され、
各処理部の前記触媒収容空間を夫々形成する複数の前記容器が、容器厚さ方向を水平方向に向けた立ち姿勢にて前記容器厚さ方向に積層状態に並べられた状態で一体的に組み付けられて、容器積層体が構成され、
前記細分化触媒除去構造を設けた前記処理部の触媒の温度を前記処理温度よりも低い所定の設定温度以下にした状態で、前記細分化触媒除去運転を実行する請求項3〜6のいずれか1項に記載のガス処理装置用の細分化触媒除去方法。
The catalyst housing space of each processing unit is formed in a separate flat container,
The plurality of containers that respectively form the catalyst housing spaces of the respective processing units are integrally assembled in a standing state with the container thickness direction oriented in the horizontal direction and arranged in a stacked state in the container thickness direction. The container laminate is configured,
The subdivided catalyst removal operation is performed in a state where the temperature of the catalyst of the processing unit provided with the subdivided catalyst removing structure is set to a predetermined set temperature lower than the processing temperature or less. A method for removing a fragmented catalyst for a gas treatment device according to item 1.
前記加振手段を、前記容器積層体を振動させるように設ける請求項7に記載のガス処理装置用の細分化触媒除去方法。   The subdivided catalyst removal method for a gas processing apparatus according to claim 7, wherein the vibration means is provided so as to vibrate the container stack.
JP2015035371A 2015-02-25 2015-02-25 Method for removing finely divided catalyst for gas processing apparatus Active JP6381458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015035371A JP6381458B2 (en) 2015-02-25 2015-02-25 Method for removing finely divided catalyst for gas processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015035371A JP6381458B2 (en) 2015-02-25 2015-02-25 Method for removing finely divided catalyst for gas processing apparatus

Publications (2)

Publication Number Publication Date
JP2016155718A JP2016155718A (en) 2016-09-01
JP6381458B2 true JP6381458B2 (en) 2018-08-29

Family

ID=56825015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015035371A Active JP6381458B2 (en) 2015-02-25 2015-02-25 Method for removing finely divided catalyst for gas processing apparatus

Country Status (1)

Country Link
JP (1) JP6381458B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5167258A (en) * 1974-12-09 1976-06-10 Babcock Hitachi Kk
JPS572035Y2 (en) * 1977-05-20 1982-01-13
WO2007040146A1 (en) * 2005-09-30 2007-04-12 Matsushita Electric Industrial Co., Ltd. Hydrogen production device and fuel cell system
JP2009023859A (en) * 2007-07-18 2009-02-05 Nippon Suiso Kk Hydrocarbon gas reforming method using oxyhydrogen flame and hydrocarbon gas reforming apparatus
JP2012250873A (en) * 2011-06-02 2012-12-20 Panasonic Corp Hydrogen generation apparatus, and fuel cell system using the same
JP5924969B2 (en) * 2012-02-14 2016-05-25 新日鐵住金株式会社 Granule processing equipment

Also Published As

Publication number Publication date
JP2016155718A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP2000178003A (en) Liquid treating device
JP2003148881A (en) Three-fluid heat exchanger
JP2003160306A (en) Hydrogen containing gas generator
JP5324752B2 (en) Hydrogen-containing gas generator
JP6381458B2 (en) Method for removing finely divided catalyst for gas processing apparatus
JP5336696B2 (en) Fluid processing apparatus and manufacturing method thereof
JP4429032B2 (en) Method for operating hydrogen-containing gas generator and hydrogen-containing gas generator
JP4531320B2 (en) Operation control method for hydrogen-containing gas generator
JP5725851B2 (en) Fuel cell device
JP4646527B2 (en) Reformer
JP2008303099A (en) Fuel cell reformer
JP4624382B2 (en) Operation control method for hydrogen-containing gas generator
JP5249622B2 (en) Method for starting hydrogen-containing gas generator
JP6381457B2 (en) Hydrogen-containing gas generator and method for operating hydrogen-containing gas generator
JP5643707B2 (en) Hydrogen-containing gas generator
JP6521832B2 (en) Hydrogen-containing gas generator
JP6523133B2 (en) Hydrogen-containing gas generator
JP5938563B2 (en) HYDROGEN GENERATOR AND CATALYST PACKING METHOD FOR HYDROGEN GENERATOR
JP4431455B2 (en) Reformer
JP4872760B2 (en) Operation control method and apparatus for fuel processor
JP2015140285A (en) Method for operating hydrogen-containing gas generation apparatus, and hydrogen-containing gas generation apparatus
JP2002080204A (en) Shutting-down and maintaining method for hydrogen- containing gas generator
JPH10324501A (en) Carbon monoxide remover and method for starting carbon monoxide remover
JP3927310B2 (en) Carbon monoxide remover
JP5643706B2 (en) Hydrogen-containing gas generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180731

R150 Certificate of patent or registration of utility model

Ref document number: 6381458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150