JP6380852B2 - Heat resistant, acid resistant, conductive metal material - Google Patents

Heat resistant, acid resistant, conductive metal material Download PDF

Info

Publication number
JP6380852B2
JP6380852B2 JP2015246802A JP2015246802A JP6380852B2 JP 6380852 B2 JP6380852 B2 JP 6380852B2 JP 2015246802 A JP2015246802 A JP 2015246802A JP 2015246802 A JP2015246802 A JP 2015246802A JP 6380852 B2 JP6380852 B2 JP 6380852B2
Authority
JP
Japan
Prior art keywords
tin
solder
silver
nanoparticles
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015246802A
Other languages
Japanese (ja)
Other versions
JP2017110274A (en
Inventor
巌 伊東
巌 伊東
Original Assignee
株式会社伊東化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社伊東化学研究所 filed Critical 株式会社伊東化学研究所
Priority to JP2015246802A priority Critical patent/JP6380852B2/en
Publication of JP2017110274A publication Critical patent/JP2017110274A/en
Application granted granted Critical
Publication of JP6380852B2 publication Critical patent/JP6380852B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Powder Metallurgy (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

本発明は、高温耐熱性及び耐酸性、導電性を持ち、且つ、従来の金属を成形するのではなく、成形した後に金属にする、全く新しい金属材料を提供するものである。   The present invention provides a completely new metal material that has high temperature heat resistance, acid resistance, and electrical conductivity, and that forms a metal after molding rather than molding a conventional metal.

導電性を有する接合剤及びペーストは電子回路の心臓部に使用され、主に半導体・機能部品の基板への接続並びにプリント配線の材料として使用されている。
従来、このペースト剤として長い間、所謂銀ペーストが使われてきたが、製剤の安定性や接合後の導電性、耐久性、耐熱性などに多くの問題を抱えている。特に、銀ペーストをプリント配線に使った場合、銀が耐酸性に弱いことに起因する溶出が起き、配線間を短絡させる、所謂マイグレーションが大きな問題となっている。
他方、最近はパワーモジュールを始め、多くの電子・電気部材は部分的に600℃以上の高熱に曝される場合が多く、この高温領域での耐熱性が求められている。しかしながら従来のはんだを中心とした加工材料の耐熱温度は最高でも300℃には至っていない。
Conductive bonding agents and pastes are used in the heart of electronic circuits, and are mainly used as materials for connecting semiconductors and functional parts to substrates and printed wiring.
Conventionally, so-called silver paste has been used for a long time as this paste agent, but it has many problems in the stability of the preparation, the conductivity after joining, the durability, the heat resistance and the like. In particular, when silver paste is used for printed wiring, elution due to the weak acid resistance of silver occurs, and so-called migration that short-circuits the wiring becomes a big problem.
On the other hand, recently, many electronic / electrical members such as power modules are often partially exposed to high heat of 600 ° C. or more, and heat resistance in this high temperature region is required. However, the heat-resistant temperature of conventional processing materials centering on solder has not reached 300 ° C. at the maximum.

そのため、所謂蝋付けに頼らざるを得ず、加工部を他から隔離して1000℃以上の耐熱性を確保した後に蝋付けをすると言う工程を踏まざるを得ない。ただ、幾ら厳重な囲いをしても加熱部分の周辺に熱が漏れ、その結果、部材に残存歪が生ずることは避けられなかった。 For this reason, it is necessary to rely on so-called brazing, and a process of brazing after securing the heat resistance of 1000 ° C. or higher by isolating the processed part from other parts is unavoidable. However, no matter how tightly the enclosure is, heat leaks around the heated portion, and as a result, residual strain is unavoidable in the member.

これらの諸問題を解決する手段として、例えば、特許第5442566号公報(特許文献1)等に示されている様に、新たに金属のナノ粒子を熔融したはんだ中で焼結・固化させる導電性接合剤が提案されている。 As means for solving these problems, for example, as disclosed in Japanese Patent No. 5442666 (Patent Document 1) and the like, a conductive material that is sintered and solidified in a newly melted solder of metal nanoparticles. Bonding agents have been proposed.

しかしながら、この技術は、理論上は画期的な技術であり、熔融したはんだはナノ粒子の繋ぎ材としては十分に機能しており、焼結後に取り出すと完全な塊になっていて、接着性や導電性もある。しかし、はんだ分が其の儘の形で内部に残っているため、再加熱するとはんだの部分が熔けて破断点となり、全体がバラバラになってしまう。つまり出来上がった焼結体は、使用したはんだの融点以上の耐熱性は持っていない。 However, this technology is theoretically an epoch-making technology, and the molten solder functions well as a binder for nanoparticles, and when taken out after sintering, it forms a complete mass, and adhesion There is also conductivity. However, since the solder content remains in the form of the ridge, when reheated, the solder portion melts and becomes a break point, and the whole becomes disjoint. In other words, the finished sintered body does not have heat resistance higher than the melting point of the solder used.

特許第5442566号Japanese Patent No. 544266

本発明は、上記先行特許技術を詳細に検討して、更なる改良を加えることにある。 The present invention is to examine the above-mentioned prior art technology in detail and add further improvements.

上記先行特許技術の一つの実施例である、銀のナノ粒子とビスマス・錫ハンダとを組み合わせた接合剤に於いて、その組成比を種々変えて、出来上がった焼結体の性能を精査した結果、その組成比に特異点が存在することが分かった。
即ち、ある特定の組成比にした場合のみに金属光沢が発現し、しかもこの焼結体はいずれも1000℃以上の耐熱性を持っていた。
つまり、本発明の基本的な技術構成は、所定の温度で剥離するべく予め設計された被覆材により被覆された低温焼結性を有する金属ナノ粒子と、当該剥離温度より低温の融点を有するハンダ粉末及び、当該融点以上で且つ当該剥離温度より低い温度で揮散するペースト化剤の三成分で構成された金属材料の内、金属ナノ粒子が銀のナノ粒子であって、ハンダ粉末が錫-ビスマス系ハンダの粉末であり、しかも当該両者の混合比が、錫系ハンダ成分1に対する当該ナノ銀成分の量が、0.91sn/a(但しs=錫系ハンダ中の錫の含有率wt%、a=銀のナノ粒子中の銀の純分wt%、n=1又は4の整数)である関係を満たしている事を特徴とする耐熱・耐酸・導電性金属材料である。
The results of scrutinizing the performance of the finished sintered body by varying the composition ratio in the bonding agent combining silver nanoparticles and bismuth / tin solder, which is an example of the above prior art. It was found that there was a singular point in the composition ratio.
That is, metallic luster was developed only when a specific composition ratio was used, and all of the sintered bodies had heat resistance of 1000 ° C. or higher.
In other words, the basic technical configuration of the present invention includes metal nanoparticles having low temperature sinterability coated with a coating material designed in advance to peel at a predetermined temperature, and solder having a melting point lower than the peeling temperature. Of the metal material composed of three components of powder and a pasting agent that evaporates at a temperature higher than the melting point and lower than the peeling temperature, the metal nanoparticles are silver nanoparticles, and the solder powder is tin-bismuth. The solder ratio of the two, and the mixing ratio of the two is such that the amount of the nano silver component relative to the tin solder component 1 is 0.91 sn / a (where s = the content of tin in the tin solder is wt%, a = a pure content of silver in silver nanoparticles wt%, n = 1 or an integer of 1 or 4 ), a heat-resistant / acid-resistant / conductive metal material.

本発明では、上記した技術構成を採用することによって、従来の欠点を改良し、高温耐熱性及び耐酸性、導電性を持ち、且つ、従来の金属を成形するのではなく、成形した後に金属にするという、全く新しい金属材料を製造することが初めて可能になったのである。   In the present invention, by adopting the above-described technical configuration, conventional defects are improved, high temperature heat resistance, acid resistance, and conductivity are obtained. For the first time, it became possible to produce completely new metal materials.

即ち、この焼結体を蛍光X線で解析した結果、いずれもBi・Sn/NAg(N=1〜4の整数)の構造を有する金属間化合物であり、しかも、DTA測定結果から、いずれも1000℃以上の耐熱性を持っていた。
即ち、銀のナノ粒子が焼結する際に、はんだ中の錫と反応して金属間化合物を作っているものと推定する。ただ、同時に、特異点以外の組成比では耐熱性が全く出ないことも分かった。
That is, as a result of analyzing this sintered body with fluorescent X-rays, all are intermetallic compounds having a structure of Bi.Sn/NAg (N = 1 to 4), and from the DTA measurement results, It had a heat resistance of 1000 ° C. or higher.
That is, when silver nanoparticles are sintered, it is presumed that they react with tin in the solder to form an intermetallic compound. However, at the same time, it was also found that heat resistance does not appear at all at composition ratios other than singularities.

銀の最大の欠点である耐酸性を改良するために、銀に錫を混ぜることは昔からやられており、現に、完全な金属間化合物は歯科治療具材として使用されている。
ただ、錫・銀の金属間化合物は錫原子に銀原子が3個ついた構造が他に比べて極端にエネルギーレベルが低いため、熔融して反応させた場合、他から層分離を起こして、中にある全ての金属間化合物がこの構造になってしまう。
例えば、銀の耐酸性を改良するのみの目的で、銀に少量の錫を混ぜた場合、この3量体の金属間化合物のみが銀中から層分離し、しかも、その層間が破断点となって全体が脆くなってしまう。そのため、実際には第三成分を混ぜて、出来るだけ金属間化合物を作らないような策が講じられている。
In order to improve acid resistance, which is the biggest drawback of silver, mixing tin with silver has long been done, and in fact, complete intermetallic compounds are used as dental treatment materials.
However, the intermetallic compound of tin and silver has a structure in which three silver atoms are attached to the tin atom, and its energy level is extremely low compared to the others. All the intermetallic compounds inside have this structure.
For example, when a small amount of tin is mixed with silver for the purpose of only improving the acid resistance of silver, only this trimeric intermetallic compound is separated from the silver, and the interlaminar layer becomes a break point. The whole becomes fragile. Therefore, in practice, measures are taken to avoid intermetallic compounds as much as possible by mixing the third component.

これに対し、本発明の場合は、銀と錫との反応は瞬時にごく限られた空間で起きて固化するため、所謂リフローによる原子の並び替えや反応点が他の空間に伝播して行く余裕がなく、考えられるエネルギーレベルの準安定な全ての構造を採り得る。
それ故、化学量論的に計算された限られた配合比の場合のみ純度の高い金属間化合物ができ、しかも、それ以外の配合組成では、未反応のハンダ粒子が分散して残り、その部分が破断点となって、焼結体を例えば150℃で再加熱すると、バラバラに崩壊して耐熱性や接着性は完全に無くなる。
On the other hand, in the case of the present invention, the reaction between silver and tin occurs instantaneously in a very limited space and solidifies. Therefore, the rearrangement of atoms by so-called reflow and reaction points propagate to other spaces. It is possible to adopt all metastable structures that have no room for energy levels.
Therefore, a high-purity intermetallic compound can be formed only in the case of a limited stoichiometrically calculated blending ratio, and in other blending compositions, unreacted solder particles remain dispersed, and the portion When the sintered body is reheated at, for example, 150 ° C., it breaks apart and completely loses heat resistance and adhesiveness.

更に、本発明の金属材料の特徴として、ペースト化された材料を簡単な加熱処理で金属にすることが挙げられる。
即ち、刷毛などを使って基板表面にペーストを塗布した後に加熱処理すればドライ銀メッキができ、スクリーン印刷などの方法で基板上に描線にした後に加熱処理すれば所謂プリント配線ができる。また、塊にして処理するケースとしては、3Dプリンター用の具材として使用し、装飾具や機械部品を作ることが考えられ、更にこのケースの興味深い事例としては、診療室内で成形加工ができる新しい歯科治療具材としての開発が挙げられる。
勿論、はんだや銀ペーストに代わる新たな接合剤への応用もできる。
特に、基板の表面の小さな凹凸の中に入り込み、其の儘固化することによって基板との間で強固な接合を実現するという、ナノ粒子の特色を生かせば、従来接合が不可能とされてきたアルミやステンレスなどあらゆる材質の基板への接合が可能となる。
Furthermore, a feature of the metal material of the present invention is that the pasted material is made into a metal by a simple heat treatment.
That is, dry silver plating can be performed by applying a paste after applying a paste to the substrate surface using a brush or the like, and so-called printed wiring can be obtained by drawing a line on the substrate by a method such as screen printing. In addition, it is conceivable to use it as a material for 3D printers as a lump processing case, and to make decorative tools and machine parts. In addition, an interesting example of this case is a new one that can be molded in the clinic. Development as a dental treatment tool can be mentioned.
Of course, it can be applied to a new bonding agent instead of solder or silver paste.
In particular, it has been considered impossible to join in the past if we take advantage of the characteristics of nanoparticles that enter into small irregularities on the surface of the substrate and solidify it to realize strong bonding with the substrate. Bonding to substrates of all materials such as aluminum and stainless steel is possible.

以下に本発明の耐熱・耐酸・導電性金属材料の詳細を述べる。
即ち、本発明に係る耐熱・耐酸・導電性金属材料の基本的な技術思想としては、所定の温度で剥離するべく予め設計された被覆材により被覆された低温焼結性を有する金属ナノ粒子と、当該剥離温度より低温の融点を有するハンダ粉末及び、当該融点以上で且つ当該剥離温度より低い温度で揮散するペースト化剤の三成分で構成された金属材料の内、金属ナノ粒子が銀のナノ粒子であって、ハンダ粉末が錫-ビスマス系ハンダの粉末であり、しかも当該両者の混合比が、錫系ハンダ成分1に対する当該ナノ銀成分の量が、0.91sn/a(但しs=錫系ハンダ中の錫の含有率wt%、a=銀のナノ粒子中の銀の純分wt%、n=1又は4の整数)である関係を満たしている事を特徴とする耐熱・耐酸・導電性金属材料である。

Details of the heat-resistant / acid-resistant / conductive metal material of the present invention will be described below.
That is, the basic technical idea of the heat-resistant / acid-resistant / conductive metal material according to the present invention includes low-temperature sinterable metal nanoparticles coated with a coating material designed in advance to be peeled off at a predetermined temperature. Among the metal materials composed of three components of solder powder having a melting point lower than the peeling temperature and a pasting agent that evaporates at a temperature higher than the melting point and lower than the peeling temperature, the metal nanoparticles are silver nanoparticles. The solder powder is a tin-bismuth solder powder, and the mixing ratio of the two is such that the amount of the nano silver component relative to the tin solder component 1 is 0.91 sn / a (where s = tin Heat resistance / acid resistance, characterized by satisfying the following relationship: tin content in solder based on wt%, a = pure silver wt% in silver nanoparticles, n = 1 or an integer of 4 It is a conductive metal material.

処で、本発明に於いては、低温焼結性を有する金属ナノ粒子とは粒子径が10nm以下の所謂シングルナノ粒子を指す。しかも、本発明では更に焼結過程で金属反応を起こさせる必要があり、一般的には粒子径が小さい程反応活性が高いので、ナノ粒子の粒子径は5nm以下が望ましい。ただ、現在までに粒子径5nm以下のナノ粒子が単独で存在しているのは金のナノ粒子と銀のナノ粒子のみであり、更に、ナノ粒子として実際に市販されているのは銀のナノ粒子しかない。
なお、シングルナノ金属粒子のヒト健康への影響評価は幾つかの報文はあるものの、最終的な結論は出ていない。それ故、厚生労働省は「揮散による労働者への吸入暴露を防ぐための粒子の湿潤」を行政指導しているが、その湿潤の程度や湿潤の方法などについての具体的な指示はない。
By the way, in the present invention, the metal nanoparticles having low-temperature sinterability refer to so-called single nanoparticles having a particle diameter of 10 nm or less. In addition, in the present invention, it is necessary to further cause a metal reaction in the sintering process. Generally, the smaller the particle size, the higher the reaction activity, and therefore the particle size of the nanoparticles is preferably 5 nm or less. However, to date, only gold nanoparticles and silver nanoparticles have existed alone with a particle size of 5 nm or less. Furthermore, silver nanoparticles are actually commercially available as nanoparticles. There are only particles.
Although there are several reports on the impact of single nanometal particles on human health, no final conclusion has been reached. Therefore, although the Ministry of Health, Labor and Welfare is instructing the government to “wet particles to prevent inhalation exposure to workers due to volatilization”, there is no specific instruction on the degree of wetting and the method of wetting.

一方錫系のハンダとしては、本発明における加熱処理工程に於いて、汎用性の高い熱源を用いて、尚且つ容易な制御系で温度制御ができる温度範囲は150℃から200℃の間と言われている。この付近に熔融点を持ち且つ一般に普及している低温ハンダは多くなく、135℃から145℃の範囲に熔融点を持つ、ビスマス・錫ハンダを使用することが望ましい。 On the other hand, as a tin solder, the temperature range in which the temperature can be controlled with a simple control system using a heat source having high versatility in the heat treatment process of the present invention is between 150 ° C. and 200 ° C. It has been broken. There are not many low-temperature solders having a melting point in the vicinity and generally spread, and it is desirable to use bismuth / tin solder having a melting point in the range of 135 ° C. to 145 ° C.

銀のナノ粒子とはんだ粉末との混合比は本技術の根幹をなすもので極めて重要である。即ち、銀のナノ粒子を熔融したはんだ中に分散させて焼結させると、銀のナノ粒子が持つ原子としての性質と、低温で焼結する際に発生する結合エネルギーによる発熱が反応熱に寄与することにより、はんだ中の錫との間で金属間化合物を形成する。
それ故、化学量論的に計算された0.91sn/a:1(但しs=錫系ハンダ中の錫の含有率wt%、a=銀のナノ粒子中の銀の純分wt%、n=1〜4の整数)の配合比の場合のみ、高い耐熱性能を持った純度の高い金属間化合物が得られるが、それ以外の配合組成では、未反応のハンダ粒子が分散して残り、その部分が破断点となって、例えば焼結体を150℃で再加熱すると、バラバラに崩壊して耐熱性や接着性は完全に無くなる。
The mixing ratio of silver nanoparticles and solder powder forms the basis of this technology and is extremely important. In other words, when silver nanoparticles are dispersed in a molten solder and sintered, the properties of the silver nanoparticles as atoms and the heat generated by the binding energy generated during sintering at low temperatures contribute to the reaction heat. By doing so, an intermetallic compound is formed with the tin in the solder.
Therefore, stoichiometrically calculated 0.91 sn / a: 1 (where s = wt% tin content in tin-based solder, a = pure silver wt% in silver nanoparticles, n = An integer of 1 to 4) only in the case of a compounding ratio, a highly pure intermetallic compound having high heat resistance is obtained, but in other compounding compositions, unreacted solder particles remain dispersed, When the portion becomes a break point, for example, when the sintered body is reheated at 150 ° C., it disintegrates and heat resistance and adhesiveness are completely lost.

本発明者は、上記したそれぞれの組成物に関する混合割合に関し、多数の実験と考察を繰り返した結果、当該はんだ粉末に対する銀のナノ粒子の重量の混合割合は、銀のナノ粒子とはんだ中の錫のそれぞれのモル質量比に極めて強く関連性を有するものであることを知得し、更に多数の実験と考察を繰り返して検討し、且つ工業化された場合の経済性の観点からの必要条件を加味した結果、銀のナノ粒子とはんだ中の錫のモル質量比は1乃至4が可能であることを知得し、且つ、当該の銀のナノ粒子とはんだ粉末のそれぞれの使用量の比率を、以下に示すそれぞれの重量%で示される値に設定することによって、本発明の目的が実現されることを知得したものである。
即ち、
銀のナノ粒子の混合比率=(0.91sn/a)/((0.91sn/a)+1)
であり、又、
はんだ粉末の混合比率=1/((0.91sn/a)+1)
但しs=はんだ粉末中の錫の含有率wt%、a=銀のナノ粒子中の銀の純分wt%
n=1〜4の整数
となる。
As a result of repeating a number of experiments and considerations regarding the mixing ratios for the respective compositions described above, the present inventor has found that the mixing ratio of the weight of silver nanoparticles to the solder powder is determined by the ratio of silver nanoparticles to tin in the solder. It has been found that they are extremely strongly related to their respective molar mass ratios, and many experiments and discussions are repeated, and the necessary conditions from the viewpoint of economics when industrialized are taken into account. As a result, it was found that the molar mass ratio between the silver nanoparticles and tin in the solder can be 1 to 4, and the ratio of the amount of each of the silver nanoparticles and solder powder used is It has been found that the object of the present invention is realized by setting the values shown in the respective weight percentages shown below.
That is,
Mixing ratio of silver nanoparticles = (0.91 sn / a) / ((0.91 sn / a) +1)
And also
Solder powder mixing ratio = 1 / ((0.91 sn / a) +1)
Where s = content of tin in solder powder wt%, a = silver pure content in silver nanoparticles wt%
n is an integer of 1 to 4.

以下に、本発明における当該耐熱・耐酸・導電性金属材料の製造方法の一例を示す具体例を実施例の形で説明するが、本発明は、下記の実施例の記載範囲内に特定されるものではないことは、言うまでもない。
実施例1
(n=4の場合)
185℃で剥離する高級アルコールで被覆した平均粒子径5nmの銀のナノ粒子(純銀分65wt%)とビスマス・錫のハンダ粉末(融点145℃、錫含有量41.8wt%)を70.1:29.9の混合比(重量ベース)で混ぜ、140℃近辺で揮散するテルペン油でペースト化して導電性接合剤を作る。ガラス板上に接合剤を滴下し、予め150℃に加熱した赤外線オーブン中で10分間加熱処理した後、200℃に昇温して更に10分間加熱処理する。
(実施例の結果)
できた焼結体を蛍光X線で解析した結果、Bi・Sn/4Agの金属間化合物が存在していた。更に、DTAの測定結果では1000℃以上の耐熱性があった。
Hereinafter, specific examples showing an example of a method for producing the heat-resistant / acid-resistant / conductive metal material in the present invention will be described in the form of examples, but the present invention is specified within the description range of the following examples. It goes without saying that it is not a thing.
Example 1
(When n = 4)
70.1: Silver nanoparticles having a mean particle diameter of 5 nm (pure silver content: 65 wt%) and bismuth / tin solder powder (melting point: 145 ° C., tin content: 41.8 wt%) coated with a higher alcohol peeled at 185 ° C. Mix at a mixing ratio (weight basis) of 29.9 and paste into terpene oil that evaporates around 140 ° C. to make a conductive bonding agent. A bonding agent is dropped on a glass plate and heat-treated in an infrared oven heated to 150 ° C. for 10 minutes, then heated to 200 ° C. and further heat-treated for 10 minutes.
(Result of Example)
As a result of analyzing the sintered body by X-ray fluorescence, an intermetallic compound of Bi · Sn / 4Ag was present. Furthermore, the DTA measurement result showed a heat resistance of 1000 ° C. or higher.

実施例2
(n=4で且つハンダ成分を若干増やした場合)
185℃で剥離する高級アルコールで被覆した平均粒子径5nmの銀のナノ粒子(純銀分65wt%)に、ビスマス−錫のハンダ粉末(融点145℃、錫含有量41.8wt%)を65.0:35.0の混合比(重量ベース)で混ぜ、140℃近辺で揮散するテルペン油でペースト化して導電性接合剤を作る。ガラス板上に接合剤を滴下し、予め150℃に加熱した赤外線オーブン中で10分間加熱処理した後、200℃に昇温して更に10分間加熱処理する。
(実施例の結果)
できた焼結体を蛍光X線で解析した結果、Bi・Sn/4Agの金属間化合物とBi・Snの合金が共存していた。更に、DTAの測定結果では145℃に吸熱のピークが存在しており、この部分が断点となって、この温度で全体が崩壊することが分かった。
Example 2
(When n = 4 and the solder component is slightly increased)
Silver nanoparticles having an average particle diameter of 5 nm (pure silver content: 65 wt%) coated with higher alcohol that is peeled off at 185 ° C. are mixed with bismuth-tin solder powder (melting point: 145 ° C., tin content: 41.8 wt%) at 65.0%. : Mix in a mixing ratio (weight basis) of 35.0, and paste into terpene oil that evaporates around 140 ° C. to make a conductive bonding agent. A bonding agent is dropped on a glass plate and heat-treated in an infrared oven heated to 150 ° C. for 10 minutes, then heated to 200 ° C. and further heat-treated for 10 minutes.
(Result of Example)
As a result of analyzing the sintered body by X-ray fluorescence, a Bi.Sn/4Ag intermetallic compound and a Bi.Sn alloy coexisted. Further, in the DTA measurement result, an endothermic peak was present at 145 ° C., and this part became a break point, and it was found that the whole collapsed at this temperature.

実施例3
(n=1の場合)
185℃で剥離する高級アルコールで被覆した平均粒子径5nmの銀のナノ粒子(純銀分65wt%)に、ビスマス−錫のハンダ粉末(融点145℃、錫含有量41.8wt%)を36.9:63.1混合比(重量ベース)で混ぜ、140℃近辺で揮散するテルペン油でペースト化して導電性接合剤を作る。ガラス板上に接合剤を滴下し、予め150℃に加熱した赤外線オーブン中で10分間加熱処理した後、200℃に昇温して更に10分間加熱処理する。
(実施例の結果)
できた焼結体を蛍光X線で解析した結果、Bi・Sn/Agの金属間化合物が存在していた。更に、DTAの測定結果では1000℃以上の耐熱性があった。
Example 3
(When n = 1)
Silver nanoparticles with a mean particle size of 5 nm (pure silver content 65 wt%) coated with a higher alcohol that is peeled off at 185 ° C., 36.9% of bismuth-tin solder powder (melting point 145 ° C., tin content 41.8 wt%) : Mix in 63.1 mixing ratio (weight basis), and paste into terpene oil that evaporates around 140 ° C. to make a conductive bonding agent. A bonding agent is dropped on a glass plate and heat-treated in an infrared oven heated to 150 ° C. for 10 minutes, then heated to 200 ° C. and further heat-treated for 10 minutes.
(Result of Example)
As a result of analyzing the sintered body by fluorescent X-ray, an intermetallic compound of Bi · Sn / Ag was present. Furthermore, the DTA measurement result showed a heat resistance of 1000 ° C. or higher.

実施例4
(n=1で且つハンダ分を若干増やした場合)
185℃で剥離する高級アルコールで被覆した平均粒子径5nmの銀のナノ粒子(純銀分65wt%)に、ビスマス−錫のハンダ粉末(融点145℃、錫含有量41.8wt%)を30.0:70.0の混合比(重量ベース)で混ぜ、140℃近辺で揮散するテルピン油でペースト化して導電性接合剤を作る。ガラス板上に接合剤を滴下し、予め150℃に加熱した赤外線オーブン中で10分間加熱処理した後、200℃に昇温して更に10分間加熱処理する。
(実施例の結果)
できた焼結体を蛍光X線で解析した結果、Bi・Sn/Agの金属間化合物とBi・Snの合金が共存していた。更に、DTAの測定結果では145℃に吸熱のピークが存在しており、この部分が断点となって、この温度で全体が崩壊することが分かった。
Example 4
(When n = 1 and the amount of solder is slightly increased)
Silver nanoparticles having an average particle diameter of 5 nm (pure silver content: 65 wt%) coated with a higher alcohol that is peeled off at 185 ° C. are mixed with 30.0% bismuth-tin solder powder (melting point: 145 ° C., tin content: 41.8 wt%). : Mix at a mixing ratio (weight basis) of 70.0, and paste into terpin oil that evaporates around 140 ° C. to make a conductive bonding agent. A bonding agent is dropped on a glass plate and heat-treated in an infrared oven heated to 150 ° C. for 10 minutes, then heated to 200 ° C. and further heat-treated for 10 minutes.
(Result of Example)
As a result of analyzing the sintered body by fluorescent X-ray, a Bi · Sn / Ag intermetallic compound and a Bi · Sn alloy coexisted. Further, in the DTA measurement result, an endothermic peak was present at 145 ° C., and this part became a break point, and it was found that the whole collapsed at this temperature.

Claims (1)

所定の温度で剥離するべく予め設計された被覆材により被覆された低温焼結性を有する金属ナノ粒子と、当該剥離温度より低温の融点を有するハンダ粉末及び、当該融点以上で且つ当該剥離温度より低い温度で揮散するペースト化剤の三成分で構成された金属材料の内、金属ナノ粒子が銀のナノ粒子であって、ハンダ粉末が錫-ビスマス系ハンダの粉末であり、しかも当該両者の混合比が、錫系ハンダ成分1に対する当該ナノ銀成分の量が、0.91sn/a(但しs=錫系ハンダ中の錫の含有率wt%、a=銀のナノ粒子中の銀の純分wt%、n=1又は4の整数)である関係を満たしている事を特徴とする耐熱・耐酸・導電性金属材料。
Metal nanoparticles having low temperature sinterability coated with a coating material designed in advance to peel at a predetermined temperature, solder powder having a melting point lower than the peeling temperature, and above the melting point and above the peeling temperature Among the metal materials composed of the three components of the pasting agent that volatilizes at a low temperature, the metal nanoparticles are silver nanoparticles, the solder powder is a tin-bismuth solder powder, and a mixture of the two The ratio is that the amount of the nanosilver component relative to the tin-based solder component 1 is 0.91 sn / a (where s = the tin content in the tin-based solder wt%, a = the pure silver content in the silver nanoparticles) wt%, n = 1 or an integer of 1 or 4 ), a heat-resistant / acid-resistant / conductive metal material.
JP2015246802A 2015-12-17 2015-12-17 Heat resistant, acid resistant, conductive metal material Expired - Fee Related JP6380852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015246802A JP6380852B2 (en) 2015-12-17 2015-12-17 Heat resistant, acid resistant, conductive metal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015246802A JP6380852B2 (en) 2015-12-17 2015-12-17 Heat resistant, acid resistant, conductive metal material

Publications (2)

Publication Number Publication Date
JP2017110274A JP2017110274A (en) 2017-06-22
JP6380852B2 true JP6380852B2 (en) 2018-08-29

Family

ID=59079420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015246802A Expired - Fee Related JP6380852B2 (en) 2015-12-17 2015-12-17 Heat resistant, acid resistant, conductive metal material

Country Status (1)

Country Link
JP (1) JP6380852B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109994373A (en) * 2019-04-12 2019-07-09 中国电子科技集团公司第三十八研究所 A kind of dress bare chip connection of micro-group and repair method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108406169B (en) * 2018-02-02 2020-09-11 北京交通大学 Welding joint and welding method of low-resistance yttrium high-temperature superconductor based on nano silver solder
JP6879512B2 (en) * 2018-09-20 2021-06-02 協立化学産業株式会社 Encapsulation composition
JP7300156B2 (en) * 2019-06-21 2023-06-29 協立化学産業株式会社 Joined body manufacturing method and semi-cured film manufacturing method
JP7333055B2 (en) * 2019-07-19 2023-08-24 協立化学産業株式会社 JOINING COMPOSITION, JOINT, AND MANUFACTURING METHOD THEREOF
JP7333056B2 (en) * 2019-07-19 2023-08-24 協立化学産業株式会社 JOINING COMPOSITION, JOINT, AND MANUFACTURING METHOD THEREOF

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4891846B2 (en) * 2007-06-26 2012-03-07 ハリマ化成株式会社 Ultra fine solder composition
KR101559605B1 (en) * 2008-02-06 2015-10-13 나믹스 가부시끼가이샤 Thermosetting conductive paste and laminated ceramic electronic component possessing external electrodes formed using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109994373A (en) * 2019-04-12 2019-07-09 中国电子科技集团公司第三十八研究所 A kind of dress bare chip connection of micro-group and repair method

Also Published As

Publication number Publication date
JP2017110274A (en) 2017-06-22

Similar Documents

Publication Publication Date Title
JP6380852B2 (en) Heat resistant, acid resistant, conductive metal material
JP6842500B2 (en) Lead-free solder paste and its manufacturing method
TWI461252B (en) A bonding method, a bonding structure, an electronic device, an electronic device manufacturing method, and an electronic component
JP6266137B2 (en) Composition containing fine metal particles
JP4753090B2 (en) Solder paste and electronic device
JP2014223678A5 (en)
WO2013132954A1 (en) Bonding method, bond structure, and manufacturing method for same
WO2013132953A1 (en) Bonding method, electronic device manufacturing method, and electronic component
JP5990758B2 (en) Solder material and manufacturing method thereof
JP5844299B2 (en) Bonding material, bonding structure
WO2013132942A1 (en) Bonding method, bond structure, and manufacturing method for same
JP2020520807A (en) Lead-free solder film for diffusion soldering and method for its manufacture
JP2010029868A (en) Lead-free solder paste, electronic circuit board using the same, and method for manufacturing the same
JP4624222B2 (en) Conductive part forming particles
JP2011251329A (en) High-temperature lead-free solder paste
JP6089243B2 (en) Manufacturing method of bonded structure
JP6936351B2 (en) Molded solder manufacturing method
JP2021017621A (en) Joint composition, joint body and method for producing the same
WO2017168925A1 (en) Joint
JP7137212B2 (en) FLUX, SOLDER COMPOSITION AND METHOD FOR MANUFACTURING JOINT
JP2018144076A (en) Metal powder for producing solder bump, paste for producing solder bump and production method of solder bump
JP2017087248A (en) Solder paste composition
WO2017073313A1 (en) Joining member and joining member joining method
JP2020157326A (en) Joining method of lead free solder material
JPWO2019117041A1 (en) Solder paste, joint structure and method for manufacturing the joint structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180719

R150 Certificate of patent or registration of utility model

Ref document number: 6380852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees