JP6379649B2 - 両側テレセントリック光学系 - Google Patents

両側テレセントリック光学系 Download PDF

Info

Publication number
JP6379649B2
JP6379649B2 JP2014097998A JP2014097998A JP6379649B2 JP 6379649 B2 JP6379649 B2 JP 6379649B2 JP 2014097998 A JP2014097998 A JP 2014097998A JP 2014097998 A JP2014097998 A JP 2014097998A JP 6379649 B2 JP6379649 B2 JP 6379649B2
Authority
JP
Japan
Prior art keywords
lens
optical system
telecentric optical
double
front group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014097998A
Other languages
English (en)
Other versions
JP2015215459A (ja
Inventor
康正 杉原
康正 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2014097998A priority Critical patent/JP6379649B2/ja
Publication of JP2015215459A publication Critical patent/JP2015215459A/ja
Application granted granted Critical
Publication of JP6379649B2 publication Critical patent/JP6379649B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Description

本発明は、物体側にテレセントリックであるとともに像側にテレセントリックである両側テレセントリック光学系に関する。
光学系の1つに、両側テレセントリック光学系があり、例えば、特許文献1および特許文献2に開示されている。
この特許文献1に開示された等倍投影レンズは、両凸の正の第1レンズと、正メニスカスの第2レンズと、正メニスカスの第3レンズと、負メニスカスの第4レンズと、負メニスカスの第5レンズと、正メニスカスの第6レンズと、正メニスカスの第7レンズと、両凸の正の第8レンズとから対称に構成されている。
前記特許文献2に開示された対称型テレセントリック光学系は、開口絞りに関して対称に配置された前群GFと後群GRとからなり、前記前群GFは、物体側から順に、開口絞り側に曲率半径の絶対値の小さい方の面を向けた正レンズL1と、開口絞り側に曲率半径の絶対値の大きい方の面を向けた正レンズL2と、開口絞り側に凹面を向けた負レンズL3とを備え、前記後群GRは、前記開口絞り側から順に、開口絞り側に凹面を向けた負レンズL4と、開口絞り側に曲率半径の絶対値の大きい方の面を向けた正レンズL5と、開口絞り側に曲率半径の絶対値の小さい方の面を向けた正レンズL6とを備えて構成されている。
特開平04−333814号公報 特開平09−080306号公報
ところで、これら特許文献1および特許文献2には、1または複数の実施例が開示されている。それら実施例のコンストラクションデータから、入射側光束の主光線が平行となるように入射させた場合における射出側主光線が光軸となす角度をそれぞれ算出すると、特許文献1では、前記角度は、4度以上であり、特許文献2では、前記角度は、0.5度以上である。したがって、これら特許文献1および特許文献2に開示された各光学系は、必ずしもテレセントリック性能が良好であるとは言えず、これら特許文献1および特許文献2に開示された各光学系には、テレセントリック性能を改善する余地がある。
本発明は、上述の事情に鑑みて為された発明であり、その目的は、よりテレセントリック性能を向上させた両側テレセントリック光学系を提供することである。
本発明は、上記技術的課題を解決するために、以下のような構成を有する両側テレセントリック光学系を提供するものである。なお、以下の説明において使用されている用語は、本明細書においては、次の通り定義されているものとする。
(a)屈折率は、波長405nmに対する屈折率である。
(b)レンズについて、「凹」、「凸」または「メニスカス」という表記を用いた場合、これらは光軸近傍(レンズの中心付近)でのレンズ形状を表しているものとする。
本発明の一態様にかかる両側テレセントリック光学系は、物体側より像側へ順に前群と後群とを備え、前記前群は、物体側より像側へ順に、負の屈折力を有し、単レンズである第1レンズと、正の屈折力を有し、単レンズである第2レンズと、物体側に凸面を向けた第3レンズと、像側に凹面を向けた第4レンズとから成り、前記後群は、光軸上の所定の位置を対称点として前記前群と対称である第5ないし第8レンズから成り、前記前群および前記後群それぞれは、前記前群の後方焦点と前記後群の前方焦点とが前記所定の位置で略一致するように、配置されていることを特徴とする。
前群および後群が所定の位置で対称型に配置される両側テレセントリック光学系では、そのテレセントリック性を向上させるためには、物体面を開口絞りとみなしてそこを通過する平行光が、前群に入射し、そしてこの前群によって前記所定の位置(対称点)で焦点を結ぶとした場合に、この焦点位置(前記所定の位置(対称点))における球面収差を良好に補正する必要がある。両側テレセントリック光学系において、仮に、第1レンズが正の屈折力を有する正レンズであると(プラスリードであると)、アンダーに成り過ぎて球面収差が悪化してしまい、その結果、テレセントリック性能が悪化してしまう。前記両側テレセントリック光学系は、第1レンズを負の屈折力を有する負レンズとすることによって(マイナスリードにすることによって)、第1レンズに球面収差を補正過剰にさせる働きを持たせ、この第1レンズに続く正レンズの第2レンズによるアンダーの球面収差と合わせて全体として適切な球面収差を得ることができる。そして、前記両側テレセントリック光学系は、後群が前群に対して対称型であるので光束が同様の光路を逆向きに辿るから、光軸に平行に、すなわち、良好なテレセントリック性を持って光束を射出できる。
ここで、「入射側にテレセントリック」とは、物体から発する主光線が各物体高さにおいても光軸と平行になるように光学系に入射させた場合に、開口絞り中心を通過することを意味する。「射出側のテレセントリック性」とは、各物体高さから発した光束の主光線が光学系を射出し像面を通過する際の光軸に対する傾きで定義される。
また、他の一態様では、上述の両側テレセントリック光学系において、下記(1)の条件式を満たすことを特徴とする。
−3<f1/f<−0.5 ・・・(1)
ただし、f1は、前記第1レンズの焦点距離であり、fは、前記前群の合成焦点距離である。
f1/fは、全体の屈折力に対する第1レンズの屈折力の割合であり、条件式(1)は、第1レンズの屈折力を適切に設定するための式である。前記条件式(1)の下限を下回ると、前記球面収差を補正過剰にする働きが弱まり、したがって、テレセントリック性能が悪化し、好ましくない。一方、前記条件式(1)の上限を上回ると、前記球面収差が補正され過ぎてテレセントリック性能が悪化し、好ましくない。また、ペッツバール和が正に大きくなり過ぎて非点収差や像面性が悪化し、好ましくない。
また、他の一態様では、上述の両側テレセントリック光学系において、下記(2)の条件式を満たすことを特徴とする。
0.2<R8/f<0.35 ・・・(2)
ただし、R8は、前記第4レンズの像側面の曲率半径であり、fは、前群の合成焦点距離である。
R8/fは、前記所定の位置での収差を適切に設定するための式である。また、像面湾曲の点では、前記条件式(2)の下限を下回ると、ペッツバール和がプラス(+)に大きくなり、像面性がアンダーになり過ぎて好ましくない。また、物体面から出て像面に結像する状態の球面収差がオーバーになり過ぎて好ましくない、一方、前記条件式(2)の上限を上回ると、ペッツバール和がマイナス(−)に大きくなり、像面性がオーバーになり過ぎて好ましくない。また、上記球面収差がアンダーになり過ぎ、結像性能が悪化し、好ましくない。
また、他の一態様では、上述の両側テレセントリック光学系において、下記(3)の条件式を満たすことを特徴とする。
−3<PD/f4<−0.2 ・・・(3)
ただし、PDは、物体面から前記第1レンズの物体側面までの距離であり、f4は、前記第4レンズの焦点距離である。
PDが長いと、物体面から前記第1レンズの物体側面までの間に、種々の部材を配置できるので、PDは、長い方が好ましい。PD/f4は、このPDの長さを適切に設定するための式である。また、像面湾曲の点では、前記条件式(3)の下限を下回ると、ペッツバール和がプラス(+)に大きくなり、像面性がアンダーになり過ぎて好ましくない。一方、前記条件式(3)の上限を上回ると、ペッツバール和がマイナス(−)に大きくなり、像面性がオーバーになり過ぎて好ましくない。
また、他の一態様では、上述の両側テレセントリック光学系において、前記所定の位置に配置された開口絞りをさらに備えることを特徴とする。
このような両側テレセントリック光学系は、開口絞りをさらに備えるので、この開口絞りの開口径を設定することで、所望の開口数(NA)に設定できる。
本発明にかかる両側テレセントリック光学系は、よりテレセントリック性能を向上できる。
実施形態における両側テレセントリック光学系の説明のための、その構成を模式的に示したレンズ断面図である。 実施例1の両側テレセントリック光学系におけるレンズの配列を示す断面図である。 実施例2の両側テレセントリック光学系におけるレンズの配列を示す断面図である。 実施例3の両側テレセントリック光学系におけるレンズの配列を示す断面図である。 実施例4の両側テレセントリック光学系におけるレンズの配列を示す断面図である。 実施例5の両側テレセントリック光学系におけるレンズの配列を示す断面図である。 実施例6の両側テレセントリック光学系におけるレンズの配列を示す断面図である。 実施例7の両側テレセントリック光学系におけるレンズの配列を示す断面図である。 実施例1における両側テレセントリック光学系の縦収差図である。 実施例1における両側テレセントリック光学系のテレセントリック性を示す図である。 実施例2における両側テレセントリック光学系の縦収差図である。 実施例2における両側テレセントリック光学系のテレセントリック性を示す図である。 実施例3における両側テレセントリック光学系の縦収差図である。 実施例3における両側テレセントリック光学系のテレセントリック性を示す図である。 実施例4における両側テレセントリック光学系の縦収差図である。 実施例4における両側テレセントリック光学系のテレセントリック性を示す図である。 実施例5における両側テレセントリック光学系の縦収差図である。 実施例5における両側テレセントリック光学系のテレセントリック性を示す図である。 実施例6における両側テレセントリック光学系の縦収差図である。 実施例6における両側テレセントリック光学系のテレセントリック性を示す図である。 実施例7における両側テレセントリック光学系の縦収差図である。 実施例7における両側テレセントリック光学系のテレセントリック性を示す図である。
以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。
図1は、実施形態における両側テレセントリック光学系の説明のための、その構成を模式的に示したレンズ断面図である。
本実施形態における両側テレセントリック光学系は、光軸と主光線が物体側で平行に見なせる物体側テレセントリック性を有するとともに、光軸と主光線が像側で平行に見なせる像側テレセントリック性を有する光学系である。このような実施形態の両側テレセントリック光学系1は、例えば、図1に示すように、物体側より像側へ順に配置される前群10と後群20とを備える。
この前群10は、物体側より像側へ順に、負の屈折力を有する第1レンズ11と、正の屈折力を有する第2レンズ12と、所定の屈折力を有する第3レンズ13と、所定の屈折力を有する第4レンズ14とから成る。より具体的には、図1に示す例では、第1レンズ11は、像側に凹面を向けた負メニスカスレンズであり、第2レンズ12は、両凸の正レンズであり、第3レンズ13は、物体側に凸面を向けた正メニスカスレンズであり、そして、第4レンズ14は、像側に凹面を向けた負メニスカスレンズである。
後群20は、光軸AX上の所定の位置FPを対称点として前群10と対称である第5ないし第8レンズ21〜24から成る。すなわち、後群20は、物体側より像側へ順に、所定の屈折力を有する第5レンズ21と、所定の屈折力を有する第6レンズ22と、正の屈折力を有する第7レンズ23と、負の屈折力を有する第8レンズ24とから成る。言い換えれば、後群20は、像側から物体側へ順に、負の屈折力を有する第8レンズ24と、正の屈折力を有する第7レンズ23と、所定の屈折力を有する第6レンズ22と、所定の屈折力を有する第5レンズ21とから成る。より具体的には、図1に示す例では、第5レンズ21は、物体側に凹面を向けた負メニスカスレンズであり、第4レンズ14と同様のレンズを、物体側面および像側面を第4レンズ14の配置態様に対して反転させて配置されたものである。第6レンズ22は、像側に凸面を向けた正メニスカスレンズであり、第3レンズ13と同様のレンズを、物体側面および像側面を第3レンズ13の配置態様に対して反転させて配置されたものである。第7レンズ23は、両凸の正レンズであり、第2レンズ12と同様のレンズを、物体側面および像側面を第2レンズ12の配置態様に対して反転させて配置されたものである。第8レンズ24は、物体側に凹面を向けた負メニスカスレンズであり、第1レンズ11と同様のレンズを、物体側面および像側面を第1レンズ11の配置態様に対して反転させて配置されたものである。
これら第1ないし第8レンズ11〜14、21〜24は、例えばガラスモールドレンズであってよく、また例えば、プラスチック等の樹脂材料製レンズであってよい。
そして、これら前群10および後群20それぞれは、前群10の後方焦点FRと後群20の前方焦点FFとが前記所定の位置(対称点)FPで略一致するように、配置されている。
さらに、本実施形態における両側テレセントリック光学系1は、前記所定の位置(対称点)に光学絞り30が配置されている。光学絞り30は、開口絞りや可変絞りであってよい。
本実施形態のように、前群10および後群20が開口絞り30を挟んで対称型に配置される両側テレセントリック光学系1では、そのテレセントリック性を向上させるためには、物体面を開口絞りとみなしてそこを通過する平行光が、前群10に入射し、そしてこの前群10によって本来の開口絞り位置(前記所定の位置(対称点)FP)で焦点を結ぶとした場合に、この焦点位置(前記所定の位置(対称点)FP)における球面収差を良好に補正する必要がある。両側テレセントリック光学系において、仮に、最も物体側に配置される最初の第1レンズが正の屈折力を有する正レンズであると(プラスリードであると)、アンダーに成り過ぎて球面収差が悪化してしまい、その結果、テレセントリック性能が悪化してしまう。一方、本実施形態における両側テレセントリック光学系1では、上述したように、最初の第1レンズ11が負の屈折力を有する負レンズであり、マイナスリードにすることによって、この負レンズの第1レンズ11によって球面収差を補正過剰にできるので、第1レンズ11に続く第2レンズ12の正レンズによるアンダーの球面収差と合わせることで、両側テレセントリック光学系1全体として適切な球面収差を実現できる。そして、後群20が前群10に対して対称型であるので光束が同様の光路を逆向きに辿るから、本実施形態における両側テレセントリック光学系1は、光軸AXに平行に、すなわち、良好なテレセントリック性を持って光束を射出できる。
また、本実施形態における両側テレセントリック光学系1は、開口絞り30を備えるので、この開口絞り30の開口径を設定することで、所望の開口数(NA)に設定できる。
なお、上述の作用効果の説明では、開口絞り30を用いて説明したが、開口絞り30は、上述のように開口数(NA)を設定するための部材であり、両側テレセントリック光学系1にとって必ずしも必須の構成部材ではない。
そして、上述の実施形態の両側テレセントリック光学系1において、第1レンズ11の焦点距離をf1とし、前群10の合成焦点距離をfとした場合に、好ましくは、両側テレセントリック光学系1は、次式(1)の条件式を満たす。
−3<f1/f<−0.5 ・・・(1)
f1/fは、全体の屈折力に対する第1レンズ11の屈折力の割合であり、条件式(1)は、第1レンズ11の屈折力を適切に設定するための式である。前記条件式(1)の下限を下回ると、前記球面収差を補正過剰にする働きが弱まり、したがって、テレセントリック性能が悪化し、好ましくない。一方、前記条件式(1)の上限を上回ると、前記球面収差が補正され過ぎてテレセントリック性能が悪化し、好ましくない。また、ペッツバール和が正に大きくなり過ぎて非点収差や像面性が悪化し、好ましくない。
また、上述の実施形態の両側テレセントリック光学系1において、第4レンズ14の像側面の曲率半径をR8とする場合に、好ましくは、両側テレセントリック光学系1は、下記(2)の条件式を満たす。
0.2<R8/f<0.35 ・・・(2)
R8/fは、前記所定の位置(対称点)FPでの収差を適切に設定するための式である。また、像面湾曲の点では、前記条件式(2)の下限を下回ると、ペッツバール和がプラス(+)に大きくなり、像面性がアンダーになり過ぎて好ましくない。また、物体面から出て像面に結像する状態の球面収差がオーバーになり過ぎて好ましくない、一方、前記条件式(2)の上限を上回ると、ペッツバール和がマイナス(−)に大きくなり、像面性がオーバーになり過ぎて好ましくない。また、上記球面収差がアンダーになり過ぎ、結像性能が悪化し、好ましくない。
なお、この条件式(2)を満たす場合において、両側テレセントリック光学系1は、さらに、上記条件式(1)を満たしてもよい。
また、上述の実施形態の両側テレセントリック光学系1において、物体面から第1レンズ11の物体側面までの距離をPDとし、第4レンズ14の焦点距離をf4とした場合に、好ましくは、両側テレセントリック光学系1は、下記(3)の条件式を満たす。
−3<PD/f4<−0.2 ・・・(3)
PDが長いと、物体面から第1レンズ11の物体側面までの間に、種々の部材を配置できるので、PDは、長い方が好ましい。PD/f4は、このPDの長さを適切に設定するための式である。また、像面湾曲の点では、前記条件式(3)の下限を下回ると、ペッツバール和がプラス(+)に大きくなり、像面性がアンダーになり過ぎて好ましくない。一方、前記条件式(3)の上限を上回ると、ペッツバール和がマイナス(−)に大きくなり、像面性がオーバーになり過ぎて好ましくない。
なお、この条件式(3)を満たす場合において、両側テレセントリック光学系1は、さらに、上記条件式(1)および上記条件式(2)の少なくとも一方を満たしてもよい。
以下、図1に示したような両側テレセントリック光学系1の具体的な構成を、図面を参照しつつ説明する。
図2ないし図8は、実施例1ないし実施例7における両側テレセントリック光学系におけるレンズの配列を示す断面図である。図9、図11、図13、図15、図17、図19および図21は、実施例1ないし実施例7における両側テレセントリック光学系の縦収差図である。図10、図12、図14、図16、図18、図20および図22は、実施例1ないし実施例7における両側テレセントリック光学系のテレセントリック性を示す図である。
実施例1〜7の両側テレセントリック光学系1A〜1Gは、図2ないし図8のそれぞれに示すように、大略、物体側より像側へ順に、前群Grfと、開口絞りSTと、開口絞りSTを対称面として前群Grfと対称な後群Grrとを備える。前群Grfは、物体側より像側へ順に、負の屈折力を有する第1レンズL1と、正の屈折力を有する第2レンズL2と、所定の屈折力を有する第3レンズL3と、所定の屈折力を有する第4レンズL4とから成る。後群Grrは、物体側より像側へ順に、開口絞りSTを対称面として、第1ないし第4レンズL1〜L4の各配置位置および各レンズ形状と対称である各配置位置および各レンズ形状を持つ第5ないし第8レンズL5〜L8からなる。
より詳しくは、各実施例1〜7の両側テレセントリック光学系1A〜1Gは、第1ないし第8レンズL1〜L8が物体側から像側へ順に、次のように構成されている。
実施例1、3、4、5、6および7の両側テレセントリック光学系1A、1C、1D、1E、1F、1Gの場合について説明すると、前群Grfにおいて、第1レンズL1は、像側に凹面を向けた負メニスカスレンズであり、第2レンズL2は、両凸の正レンズであり、第3レンズL3は、物体側に凸面を向けた正メニスカスレンズであり、そして、第4レンズL4は、像側に凹面を向けた負メニスカスレンズである。後群Grrにおいて、第5レンズL5は、物体側に凹面を向けた負メニスカスレンズであり、第6レンズL6は、像側に凸面を向けた正メニスカスレンズであり、第7レンズL7は、両凸の正レンズであり、そして、第8レンズL8は、物体側に凹面を向けた負メニスカスレンズである。
一方、実施例1の両側テレセントリック光学系1Aに対し、実施例2の両側テレセントリック光学系1Bでは、第1および第3レンズL1、L3の各レンズ形状が異なっている。したがって、実施例2の両側テレセントリック光学系1Bでは、実施例1の両側テレセントリック光学系1Aに対し、第5および第7レンズL5、L7の各レンズ形状も異なっている。すなわち、実施例2の両側テレセントリック光学系1Bの場合について説明すると、前群Grfにおいて、第1レンズL1は、両凹の負レンズであり、第2レンズL2は、両凸の正レンズであり、第3レンズL3は、両凸の正レンズであり、そして、第4レンズL4は、像側に凹面を向けた負メニスカスレンズである。後群Grrにおいて、第5レンズL5は、物体側に凹面を向けた負メニスカスレンズであり、第6レンズL6は、両凸の正レンズであり、第7レンズL7は、両凸の正レンズであり、そして、第8レンズL8は、両凹の負レンズである。
図2ないし図8の各図において、各レンズ面に付されている番号ri(i=1,2,3,・・・)は、物体側から数えた場合のi番目のレンズ面(ただし、レンズの接合面は1つの面として数えるものとする。)である。なお、開口絞りSTの面も1つの面として扱っている。このような取り扱いおよび符号の意義は、各実施例についても同様である。ただし、全く同一のものであるという意味ではなく、例えば、各実施例の各図を通じて、最も物体側に配置されるレンズ面には、同じ符号(r1)が付されているが、後述のコンストラクションデータに示すように、これらの曲率等が各実施例1〜7を通じて同一であるという意味ではない。
このような構成の下で、各実施例1〜7の撮像光学系1A〜1Gにおいて、物体側から入射した光線は、光軸AXに沿って、順に、第1レンズL1、第2レンズL2、第3レンズL3、第4レンズL4、開口絞りST、第5レンズL5、第6レンズL6、第7レンズL7および第8レンズL8を通過し、所定の位置の像面に物体の光学像を形成する。
これら各実施例1〜7の両側テレセントリック光学系1A〜1Gにおける、各レンズのコンストラクションデータは、次の通りである。
まず、実施例1の両側テレセントリック光学系1Aにおける、各レンズのコンストラクションデータを以下に示す。
数値実施例1
単位 mm
面データ
面番号 r d nd(405nm)
物面 ∞
1 63.326 3.600 1.70421
2 44.483 36.584
3 91.104 19.311 1.67032
4 -141.931 1.000
5 36.170 10.179 1.71793
6 97.588 1.907
7 85.400 3.599 1.62323
8 24.243 156.995
9(絞り)
10 -24.243 3.599 1.62323
11 -85.400 1.907
12 -97.588 10.179 1.71793
13 -36.170 1.000
14 141.931 19.311 1.67032
15 -91.104 36.584
16 -44.483 3.600 1.70421
17 -63.326
像面 ∞
各種データ
PD(mm) 70
f1(mm) -230.494
f4(mm) -55.573
f(mm) 100
f1/f -2.3049
R8/f 0.2424
PD/f4 -1.2596
NA 0.05
最大像高(mm) 18
次に、実施例2の両側テレセントリック光学系1Bにおける、各レンズのコンストラクションデータを以下に示す。
数値実施例2
単位 mm
面データ
面番号 r d nd(405nm)
物面 ∞
1 -53.1529 7.001248 1.741729
2 182.3729 5.205396
3 2751.789 11.65703 1.846083
4 -65.4454 0.49166
5 71.68686 20.00052 1.751656
6 -1474.99 18.07543
7 35.9702 5.029742 1.704205
8 28.73059 163.981
9(絞り)
10 -28.7306 5.029742 1.704205
11 -35.9702 18.07543
12 1474.99 20.00052 1.751656
13 -71.6869 0.49166
14 65.44544 11.65703 1.846083
15 -2751.79 5.205396
16 -182.373 7.001248 1.741729
17 53.15285
像面 ∞
各種データ
PD(mm) 80
f1(mm) -54.795
f4(mm) -284.338
f(mm) 100
f1/f -0.5479
R8/f 0.2873
PD/f4 -0.2814
NA 0.05
最大像高(mm) 21
次に、実施例3の両側テレセントリック光学系1Cにおける、各レンズのコンストラクションデータを以下に示す。
数値実施例3
単位 mm
面データ
面番号 r d nd(405nm)
物面 ∞
1 73.305 3.600 1.70421
2 48.341 20.144
3 74.504 19.447 1.67032
4 -184.922 0.999
5 32.788 9.164 1.71793
6 65.570 1.751
7 56.605 3.583 1.62323
8 22.596 147.491
9(絞り)
10 -22.596 3.583 1.62323
11 -56.605 1.751
12 -65.570 9.164 1.71793
13 -32.788 0.999
14 184.922 19.447 1.67032
15 -74.504 20.144
16 -48.341 3.600 1.70421
17 -73.305
像面 ∞
各種データ
PD(mm) 90
f1(mm) -214.346
f4(mm) -62.891
f(mm) 100
f1/f -2.1435
R8/f 0.2260
PD/f4 -1.4311
NA 0.05
最大像高(mm) 18
次に、実施例4の両側テレセントリック光学系1Dにおける、各レンズのコンストラクションデータを以下に示す。
数値実施例4
単位 mm
面データ
面番号 r d nd(405nm)
物面 ∞
1 91.269 3.600 1.62323
2 49.373 7.444
3 63.252 8.270 1.76483
4 -863.787 0.999
5 33.078 8.792 1.71793
6 65.345 1.058
7 49.782 5.000 1.62323
8 22.413 144.695
9(絞り)
10 -22.413 5.000 1.62323
11 -49.782 1.058
12 -65.345 8.792 1.71793
13 -33.078 0.999
14 863.787 8.270 1.76483
15 -63.252 7.444
16 -49.373 3.600 1.62323
17 -91.269
像面 ∞
各種データ
PD(mm) 110
f1(mm) -178.472
f4(mm) -70.346
f(mm) 100
f1/f -1.7847
R8/f 0.2241
PD/f4 -1.5637
NA 0.05
最大像高(mm) 18
次に、実施例5の両側テレセントリック光学系1Eにおける、各レンズのコンストラクションデータを以下に示す。
数値実施例5
単位 mm
面データ
面番号 r d nd(405nm)
物面 ∞
1 166.989 5.124 1.62323
2 61.350 4.996
3 86.687 8.742 1.67032
4 -220.809 0.459
5 41.795 22.420 1.67032
6 81.098 1.939
7 39.604 5.682 1.62323
8 24.025 121.985
9(絞り)
10 -24.025 5.682 1.62323
11 -39.604 1.939
12 -81.098 22.420 1.67032
13 -41.795 0.459
14 220.809 8.742 1.67032
15 -86.687 4.996
16 -61.350 5.124 1.62323
17 -166.989
像面 ∞
各種データ
PD(mm) 120
f1(mm) -158.562
f4(mm) -113.961
f(mm) 100
f1/f -1.5856
R8/f 0.2403
PD/f4 -1.0530
NA 0.04
最大像高(mm) 21
次に、実施例6の両側テレセントリック光学系1Fにおける、各レンズのコンストラクションデータを以下に示す。
数値実施例6
単位 mm
面データ
面番号 r d nd(405nm)
物面 ∞
1 81.350 4.000 1.72966
2 56.023 2.918
3 57.536 20.001 1.79908
4 -319.973 0.499
5 41.333 8.068 1.74446
6 103.197 4.212
7 700.641 5.001 1.65758
8 28.998 115.665
9(絞り)
10 -28.998 5.001 1.65758
11 -700.641 4.212
12 -103.197 8.068 1.74446
13 -41.333 0.499
14 319.973 20.001 1.79908
15 -57.536 2.918
16 -56.023 4.000 1.72966
17 -81.350
像面 ∞
各種データ
PD(mm) 130
f1(mm) -264.224
f4(mm) -46.138
f(mm) 100
f1/f -2.6422
R8/f 0.2900
PD/f4 -2.8176
NA 0.05
最大像高(mm) 21
次に、実施例7の両側テレセントリック光学系1Gにおける、各レンズのコンストラクションデータを以下に示す。
数値実施例7
単位 mm
面データ
面番号 r d nd(405nm)
物面 ∞
1 190.009 7.001 1.74173
2 79.198 6.267
3 215.773 7.308 1.75166
4 -166.423 0.487
5 56.181 20.014 1.79908
6 352.159 20.012
7 114.582 5.020 1.62323
8 34.278 92.266
9(絞り)
10 -34.278 5.020 1.62323
11 -114.582 20.012
12 -352.159 20.014 1.79908
13 -56.181 0.487
14 166.423 7.308 1.75166
15 -215.773 6.267
16 -79.198 7.001 1.74173
17 -190.009
像面 ∞
各種データ
PD(mm) 130
f1(mm) -188.152
f4(mm) -80.408
f(mm) 100
f1/f -1.8815
R8/f 0.3428
PD/f4 -1.6168
NA 0.05
最大像高(mm) 21
上記の面データにおいて、面番号は、図2ないし図8に示した各レンズ面に付した符号ri(i=1,2,3,…)の番号iが対応する。
また、“r”は、各面の曲率半径(単位はmm)を、“d”は、光軸上の各レンズ面の間隔(軸上面間隔)を、そして、“nd”は、各レンズの波長405nmに対する屈折率をそれぞれ示している。なお、開口絞りSTの面は、平面であり、その曲率半径は、∞(無限大)である。また、開口絞りSTの物体側に位置する第4レンズL4の像側面r8の面間隔は、開口絞りSTとの面間隔ではなく、開口絞りSTの像側に位置する第5レンズL5の物体側面r10との面間隔である(面r8と面r9との間の距離)。開口絞りSTは、これら第4レンズL4の像側面r8と第5レンズL5の物体側面r10との中央位置に位置している。
以上のようなレンズ配置、構成のもとでの、各実施例1〜7の両側テレセントリック光学系1A〜1Gにおける各収差が、図9、図11、図13、図15、図17、図19および図21それぞれに示されており、それらのテレセントリック性が、図10、図12、図14、図16、図18、図20および図22に示されている。
これら図9、図11、図13、図15、図17、図19および図21の(A)および(B)それぞれには、物体距離PDにおける球面収差および像面湾曲が示されている。球面収差の横軸は、焦点位置のずれをmm単位で表しており、その縦軸は、最大入射高で規格化した値で表している。像面湾曲の横軸は、焦点位置のずれをmm単位で表しており、その縦軸は、像高をmm単位で表している。また、球面収差の図中、実線は、波長400nm、破線は、波長405nm、そして、一点差線は、波長410nmにおける結果をそれぞれ表している。そして、像面湾曲の図中、実線は、タンジェンシャル(メリディオナル)面(M)、破線は、サジタル(ラディアル)面(S)における結果をそれぞれ表している。また、図10、図12、図14、図16、図18、図20および図22の横軸は、角度であり、その縦軸は、像高をmm単位で表している。
以上、説明したように、上記実施例1〜7における両側テレセントリック光学系1A〜1Gは、上述の各条件を満足している結果、収差を改善しつつ、|0.10|以下や|0.05|以下で、従来の光学系より、よりテレセントリック性能を向上している。
本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
AX 光軸
ST 開口絞り
1、1A〜1G 両側テレセントリック光学系
10、Grf 前群
20、Grr 後群
30 光学絞り
11、L1 第1レンズ
12、L2 第2レンズ
13、L3 第3レンズ
14、L4 第4レンズ
21、L5 第5レンズ
22、L6 第6レンズ
23、L7 第7レンズ
24、L8 第8レンズ

Claims (5)

  1. 物体側より像側へ順に前群と後群とを備え、
    前記前群は、物体側より像側へ順に、負の屈折力を有し、単レンズである第1レンズと、正の屈折力を有し、単レンズである第2レンズと、物体側に凸面を向けた第3レンズと、像側に凹面を向けた第4レンズとから成り、
    前記後群は、光軸上の所定の位置を対称点として前記前群と対称である第5ないし第8レンズから成り、
    前記前群および前記後群それぞれは、前記前群の後方焦点と前記後群の前方焦点とが前記所定の位置で略一致するように、配置されていること
    を特徴とする両側テレセントリック光学系。
  2. 下記(1)の条件式を満たすこと
    を特徴とする請求項1に記載の両側テレセントリック光学系。
    −3<f1/f<−0.5 ・・・(1)
    ただし、
    f1;前記第1レンズの焦点距離
    f;前記前群の合成焦点距離
  3. 下記(2)の条件式を満たすこと
    を特徴とする請求項1または請求項2に記載の両側テレセントリック光学系。
    0.2<R8/f<0.35 ・・・(2)
    ただし、
    R8;前記第4レンズの像側面の曲率半径
    f;前群の合成焦点距離
  4. 下記(3)の条件式を満たすこと
    を特徴とする請求項1ないし請求項3のいずれか1項に記載の両側テレセントリック光学系。
    −3<PD/f4<−0.2 ・・・(3)
    ただし、
    PD;物体面から前記第1レンズの物体側面までの距離
    f4;前記第4レンズの焦点距離
  5. 前記所定の位置に配置された開口絞りをさらに備えること
    を特徴とする請求項1ないし請求項4のいずれか1項に記載の両側テレセントリック光学系。
JP2014097998A 2014-05-09 2014-05-09 両側テレセントリック光学系 Active JP6379649B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014097998A JP6379649B2 (ja) 2014-05-09 2014-05-09 両側テレセントリック光学系

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014097998A JP6379649B2 (ja) 2014-05-09 2014-05-09 両側テレセントリック光学系

Publications (2)

Publication Number Publication Date
JP2015215459A JP2015215459A (ja) 2015-12-03
JP6379649B2 true JP6379649B2 (ja) 2018-08-29

Family

ID=54752406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014097998A Active JP6379649B2 (ja) 2014-05-09 2014-05-09 両側テレセントリック光学系

Country Status (1)

Country Link
JP (1) JP6379649B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107589531B (zh) * 2017-10-10 2019-12-13 东莞万思自动化技术开发有限公司 一种红外光测径仪镜头
CN109164559B (zh) * 2018-10-11 2023-11-28 佛山科学技术学院 一种大数值孔径近红外物像双侧远心光学系统
CN109116517B (zh) * 2018-10-19 2023-10-10 广东奥普特科技股份有限公司 一种高倍率大靶面高解析度线扫机器视觉镜头
CN110007439B (zh) * 2019-04-29 2023-11-28 佛山科学技术学院 一种数字航空测绘全色相机远心光学系统
CN110441889A (zh) * 2019-09-12 2019-11-12 舜宇光学(中山)有限公司 一种定焦镜头
CN113433679A (zh) * 2021-07-06 2021-09-24 深圳市视清科技有限公司 光学镜头和摄像设备
CN114994881B (zh) * 2022-06-24 2023-07-25 苏州大学 一种快照式光谱共焦位移传感器色散镜头及其设计方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077145B2 (ja) * 1985-11-22 1995-01-30 ミノルタ株式会社 有限共役距離における変倍光学系
JPS63316817A (ja) * 1987-06-19 1988-12-26 Dainippon Screen Mfg Co Ltd 変倍可能なテレセントリック結像光学系
JPH01145617A (ja) * 1987-12-02 1989-06-07 Ricoh Co Ltd 広変倍複写機用ズームレンズ
JP3026648B2 (ja) * 1991-05-09 2000-03-27 旭光学工業株式会社 等倍投影レンズ
DE59500569D1 (de) * 1995-06-03 1997-10-02 Schneider Co Optische Werke Beidseitig telezentrisches Messobjektiv
JP3430738B2 (ja) * 1995-09-18 2003-07-28 株式会社ニコン 対称型テレセントリック光学系
EP2016455A2 (en) * 2006-05-05 2009-01-21 Corning Incorporated Distortion tuning of a quasi-telecentric imaging lens

Also Published As

Publication number Publication date
JP2015215459A (ja) 2015-12-03

Similar Documents

Publication Publication Date Title
JP6379649B2 (ja) 両側テレセントリック光学系
JP2019086526A5 (ja)
CN109491045B (zh) 光学系统和图像拾取装置
JP5818209B2 (ja) マクロレンズ
JP5496809B2 (ja) 撮像レンズおよび撮像装置
JP5566560B1 (ja) 内視鏡対物光学系
JP2011100094A5 (ja)
JP2019101059A5 (ja)
JP2015072424A5 (ja)
JP6619968B2 (ja) 撮像レンズおよび撮像装置
JP2010181634A (ja) マクロレンズ
JP2005352060A (ja) 小型の大口径広角レンズおよびこれを備えたカメラ
JP6540052B2 (ja) 結像光学系
WO2016067838A1 (ja) 内視鏡用対物光学系
JP2015156010A5 (ja)
JP6230770B1 (ja) 内視鏡用対物光学系
JP2014197102A5 (ja)
JP2020012925A5 (ja)
JP2017181857A (ja) 広角レンズ
JP2011107313A5 (ja)
JP2006030581A (ja) 大口径広角レンズ
JP2015135392A5 (ja)
JP5078818B2 (ja) 明るい撮影レンズ系及びそれを用いた電子撮像装置
JP2014197095A5 (ja)
JP2014142520A (ja) 撮像レンズ系

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180716

R150 Certificate of patent or registration of utility model

Ref document number: 6379649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150