JP6373666B2 - Method for designing through hole of steel frame, and steel frame including through hole - Google Patents

Method for designing through hole of steel frame, and steel frame including through hole Download PDF

Info

Publication number
JP6373666B2
JP6373666B2 JP2014141361A JP2014141361A JP6373666B2 JP 6373666 B2 JP6373666 B2 JP 6373666B2 JP 2014141361 A JP2014141361 A JP 2014141361A JP 2014141361 A JP2014141361 A JP 2014141361A JP 6373666 B2 JP6373666 B2 JP 6373666B2
Authority
JP
Japan
Prior art keywords
hole
reinforcing bar
steel frame
bars
reinforcing bars
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014141361A
Other languages
Japanese (ja)
Other versions
JP2016018429A (en
Inventor
忠 成瀬
忠 成瀬
晃治 青田
晃治 青田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Original Assignee
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp filed Critical Maeda Corp
Priority to JP2014141361A priority Critical patent/JP6373666B2/en
Publication of JP2016018429A publication Critical patent/JP2016018429A/en
Application granted granted Critical
Publication of JP6373666B2 publication Critical patent/JP6373666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鉄骨の貫通孔の設計方法、及び貫通孔を含む鉄骨に関する。   The present invention relates to a method for designing a through hole of a steel frame, and a steel frame including the through hole.

鉄筋コンクリート(RC:reinforced concrete)造又は鉄骨鉄筋コンクリート(SRC:steel reinforced concrete)造の接合構造、又は接合方法として、種々の技術がある。例えば、特許文献1には、鉄骨鉄筋コンクリート造柱の座屈強度を向上するため、鉄骨のウェブに穿孔部を形成し、この穿孔部にコ字型に成形したコ型補強筋を挿通させ、反対側からも穿孔部にコ型補強筋を挿通させてコ型補強筋同士を非結合でオーバーラップさせ、そのオーバーラップ部分の中央に鉄骨のウェブが位置するように配置し、鉄骨のフランジに近接してこのフランジを取り囲むようにコ型補強筋を配筋することが開示されている。また、特許文献2には、鋼材に設けた穿孔部に鉄筋を挿通し、柱への鉄筋の定着長さとして、その鉄筋径の30倍から40倍程度を確保することが必要であったことが開示されている。また、特許文献2には、鉄筋をコンクリート中で強く拘束することで、定着長さを鉄筋径の10倍以下にできることが開示されている。また、特許文献3には、補強筋の継手部分の溶接作業を省略するため、補強筋の先端同士をウェブ鋼板の穿孔部の左右から互いに重なり合うように挿通させることが開示されている。   There are various techniques as a joining structure or a joining method of a reinforced concrete (RC) structure or a steel reinforced concrete (SRC) structure. For example, in Patent Document 1, in order to improve the buckling strength of a steel reinforced concrete column, a perforated portion is formed in a steel web, and a U-shaped reinforcing bar formed in a U-shape is inserted into the perforated portion. From the side, the U-shaped reinforcing bars are inserted into the perforated part so that the U-shaped reinforcing bars overlap with each other, and the steel web is positioned in the center of the overlapping part, and close to the steel flange. Thus, it is disclosed that a U-shaped reinforcing bar is arranged so as to surround the flange. Moreover, in Patent Document 2, it was necessary to insert a reinforcing bar into a perforated part provided in a steel material, and to secure about 30 to 40 times the diameter of the reinforcing bar as a fixing length of the reinforcing bar to the column. Is disclosed. Patent Document 2 discloses that the fixing length can be made 10 times or less the diameter of the reinforcing bar by strongly restraining the reinforcing bar in the concrete. Patent Document 3 discloses that the reinforcing bars are inserted so that the ends of the reinforcing bars overlap with each other from the left and right of the perforated portion of the web steel plate in order to omit the welding operation of the joint portion of the reinforcing bars.

特許第3943252号公報Japanese Patent No. 3943252 特開2000−73496号公報JP 2000-73496 A 特許第3611473号公報Japanese Patent No. 3611473

鉄骨のウェブに貫通孔を形成し、この貫通孔に2本の鉄筋を通し重ね継手とする技術がある。従来の重ね継手では、貫通孔の径は、鉄筋2本分よりも大きく設計されていた。例えば、一方の鉄筋の最外径をD1、他方の鉄筋の最外径をD2とすると、貫通孔の孔径φは、次の式で算出できる。αは、孔径と鉄筋との間に隙間を形成するための補正値で、例えば2〜3mmに設定することができる。
φ=D1+D2+α
There is a technique in which a through hole is formed in a steel web, and two reinforcing bars are passed through the through hole to form a lap joint. In the conventional lap joint, the diameter of the through hole was designed to be larger than that of two reinforcing bars. For example, if the outermost diameter of one reinforcing bar is D1 and the outermost diameter of the other reinforcing bar is D2, the hole diameter φ of the through hole can be calculated by the following equation. α is a correction value for forming a gap between the hole diameter and the reinforcing bar, and can be set to 2 to 3 mm, for example.
φ = D1 + D2 + α

一方で、例えば、1枚のウェブに2以上の貫通孔を形成する場合、隣り合う貫通孔同士の最小間隔は孔径に比例する。また、鉛直方向に並んだ複数の貫通孔の孔径(直径)の総長さとウェブ高さとの比(断面欠損比)には、制限を設けることが一般的である。そのため、孔径が大きくなると鉄筋(例えば、せん断補強鉄筋)の段数が制約を受け、重ね継手にできない場合もある。   On the other hand, for example, when two or more through holes are formed in one web, the minimum interval between adjacent through holes is proportional to the hole diameter. Moreover, it is common to provide a restriction on the ratio (cross-sectional defect ratio) between the total length of the diameters (diameters) of a plurality of through holes arranged in the vertical direction and the web height. Therefore, when the hole diameter is increased, the number of steps of reinforcing bars (for example, shear reinforcing bars) is restricted, and there may be a case where a lap joint cannot be formed.

本発明は、上記の問題に鑑み、鉄筋の強度を維持し、鉄骨のウェブの貫通孔の孔径を従来よりも小さくする技術を提供することを課題とする。   In view of the above-described problems, an object of the present invention is to provide a technique for maintaining the strength of a reinforcing bar and reducing the diameter of a through hole of a steel frame web as compared with the conventional technique.

本発明では、上記課題を解決するため、貫通孔を通す少なくとも2本の鉄筋のうち少なくとも一本の鉄筋を束ね筋とし、束ね筋を構成する鉄筋の断面積の和が、原設計の鉄筋の断面積を下回らず、かつ、貫通孔の孔径が原設計の孔径よりも小さくなるように貫通孔の
孔径を設計することとした。
In the present invention, in order to solve the above-described problem, at least one of the reinforcing bars that pass through the through hole is used as a binding bar, and the sum of the cross-sectional areas of the reinforcing bars constituting the binding bar is the same as that of the originally designed reinforcing bar. The hole diameter of the through hole was designed so as not to be smaller than the cross-sectional area and so that the hole diameter of the through hole was smaller than the original designed hole diameter.

詳細には、本発明は、鉄骨鉄筋コンクリート構造物の鉄骨のウェブに設ける鉄骨の貫通孔の設計方法であって、前記鉄骨の貫通孔にラップして通す2本の鉄筋の外径に基づいて当該鉄骨の貫通孔の孔径を取得し、かつ、前記鉄筋の断面積を取得する原設計処理と、前記鉄骨の貫通孔に通す鉄筋のうち少なくとも一本の鉄筋を複数の鉄筋を束ねた束ね筋とし、当該束ね筋の断面積の和が、原設計処理で取得した鉄筋の断面積を下回らず、かつ、前記鉄骨の貫通孔の孔径が原設計処理で取得した孔径よりも小さくなるように孔径を設計する修正処理と、を含む。鉄骨の貫通孔の設計方法は、コンピュータが行ってもよい。   Specifically, the present invention is a method for designing a through hole of a steel frame provided in a steel web of a steel reinforced concrete structure, which is based on the outer diameters of two reinforcing bars that are wrapped and passed through the through hole of the steel frame. An original design process for obtaining the hole diameter of the through-hole of the steel frame and obtaining the cross-sectional area of the reinforcing bar, and at least one of the reinforcing bars that pass through the through-hole of the steel frame is a bundled bar that bundles a plurality of reinforcing bars. The hole diameter is set so that the sum of the cross-sectional areas of the bundled bars does not fall below the cross-sectional area of the reinforcing bars acquired in the original design process, and the hole diameter of the through hole of the steel frame is smaller than the hole diameter acquired in the original design process. Modification processing to design. A computer may perform the design method of the through hole of the steel frame.

貫通孔の孔径を原設計処理で算出した孔径(以下、基準径ともいう)よりも小さく設計することで、例えば、貫通孔同士の間隔を従来よりも狭くでき、鉄骨のウェブに設ける貫通孔の位置などの設計の自由度がより向上する。また、ウェブ1枚当たりの貫通孔に通すことができる鉄筋の数が増え、鉄筋の断面積を増すことができるため、鉄筋をコンクリートにより強く定着することができる。また、貫通孔を基準径よりも小さく設計することができるので、基準径とした場合と比較して、鉄骨の断面欠損を少なくすることができる。また、束ね筋の断面積の和が、原設計処理で算出した鉄筋の断面積を下回らないようにすることで、鉄筋の引張強さを確保することができる。   By designing the diameter of the through-holes to be smaller than the hole diameter calculated in the original design process (hereinafter also referred to as the reference diameter), for example, the interval between the through-holes can be made narrower than before, and the through-holes provided in the steel web The degree of freedom in design such as position is further improved. Further, since the number of reinforcing bars that can be passed through the through hole per web increases and the cross-sectional area of the reinforcing bars can be increased, the reinforcing bars can be firmly fixed to the concrete. In addition, since the through hole can be designed to be smaller than the reference diameter, the cross-sectional defect of the steel frame can be reduced as compared with the case of using the reference diameter. Further, the tensile strength of the reinforcing bars can be ensured by preventing the sum of the cross-sectional areas of the binding bars from being less than the cross-sectional area of the reinforcing bars calculated in the original design process.

また、本発明に係る鉄骨の貫通孔の設計方法において、前記原設計処理では、前記鉄骨の貫通孔にラップして通す2本の鉄筋の周長を取得し、前記修正処理では、前記束ね筋の周長の和が、原設計処理で算出した鉄筋の周長を下回らないように孔径を設計してもよい。これにより鉄筋の付着力を高めることができる。   Further, in the method for designing a through hole of a steel frame according to the present invention, in the original design process, a circumference of two reinforcing bars that are wrapped and passed through the through hole of the steel frame is obtained, and in the correction process, the bundled bar The hole diameter may be designed so that the sum of the perimeters does not fall below the perimeter of the reinforcing bars calculated in the original design process. Thereby, the adhesive force of a reinforcing bar can be raised.

ここで、本発明は、鉄骨の貫通孔の設計装置として特定することもできる。例えば、本発明は、鉄骨鉄筋コンクリート構造物の鉄骨のウェブに設ける鉄骨の貫通孔の設計装置であって、前記鉄骨の貫通孔にラップして通す2本の鉄筋の外径に基づいて当該鉄骨の貫通孔の孔径を算出し、かつ、前記鉄筋の断面積を算出する原設計処理部と、前記鉄骨の貫通孔に通す鉄筋のうち少なくとも一本の鉄筋を複数の鉄筋を束ねた束ね筋とし、当該束ね筋の断面積の和が、原設計処理部で算出した鉄筋の断面積を下回らず、かつ、前記鉄骨の貫通孔の孔径が原設計処理部で算出した孔径よりも小さくなるように孔径を設計する修正処理部と、を含むものでもよい。   Here, this invention can also be specified as a design apparatus of the through-hole of a steel frame. For example, the present invention is a design device for a through hole of a steel frame provided in a steel web of a steel reinforced concrete structure, and is based on the outer diameter of two rebars that are wrapped and passed through the through hole of the steel frame. Calculate the hole diameter of the through-hole, and calculate the cross-sectional area of the reinforcing bar, and at least one of the reinforcing bars that pass through the through-hole of the steel frame as a bundled bar that bundles a plurality of reinforcing bars, The hole diameter is such that the sum of the cross-sectional areas of the bundled bars does not fall below the cross-sectional area of the reinforcing bars calculated by the original design processing unit, and the hole diameter of the through hole of the steel frame is smaller than the hole diameter calculated by the original design processing unit And a correction processing unit for designing

また、本発明は、鉄骨の貫通孔の設計プログラムとして特定することもできる。例えば、本発明は、鉄骨鉄筋コンクリート構造物の鉄骨のウェブに設ける鉄骨の貫通孔の設計プログラムであって、前記鉄骨の貫通孔にラップして通す2本の鉄筋の外径に基づいて当該鉄骨の貫通孔の孔径を算出し、かつ、前記鉄筋の断面積を算出する原設計ステップと、前記鉄骨の貫通孔に通す鉄筋のうち少なくとも一本の鉄筋を複数の鉄筋を束ねた束ね筋とし、当該束ね筋の断面積の和が、原設計ステップで算出した鉄筋の断面積を下回らず、かつ、前記鉄骨の貫通孔の孔径が原設計ステップで算出した孔径よりも小さくなるように孔径を設計する修正ステップと、を含む処理をコンピュータに実行させるようにしてもよい。   Moreover, this invention can also be specified as a design program of the through-hole of a steel frame. For example, the present invention is a design program for a through hole of a steel frame provided in a steel web of a steel reinforced concrete structure, and the structure of the steel frame is based on the outer diameter of two rebars that are wrapped and passed through the through hole of the steel frame. The original design step of calculating the hole diameter of the through-hole and calculating the cross-sectional area of the reinforcing bar, and at least one of the reinforcing bars that pass through the through-hole of the steel frame as a binding bar that bundles a plurality of reinforcing bars, Design the hole diameter so that the sum of the cross-sectional areas of the bundle bars does not fall below the cross-sectional area of the reinforcing bars calculated in the original design step, and the hole diameter of the through hole of the steel frame is smaller than the hole diameter calculated in the original design step You may make it make a computer perform the process containing a correction step.

また、本発明は、上記プログラムを記録した記録媒体として特定することもできる。この場合、コンピュータ等に、この記録媒体のプログラムを読み込ませて実行させることにより、その機能を提供させることができる。なお、コンピュータ等が読み取り可能な記録媒体とは、データやプログラム等の情報を電気的、磁気的、光学的、機械的、又は化学的作用によって蓄積し、コンピュータ等から読み取ることができる記録媒体をいう。   The present invention can also be specified as a recording medium on which the program is recorded. In this case, the function can be provided by causing a computer or the like to read and execute the program of the recording medium. Note that a computer-readable recording medium is a recording medium that accumulates information such as data and programs by electrical, magnetic, optical, mechanical, or chemical action and can be read from a computer or the like. Say.

ここで、上述した本発明に係る鉄骨の貫通孔の設計方法等は、鉄骨のウェブに貫通孔を形成し、この貫通孔に2本の鉄筋を通し重ね継手とする重ね継手の貫通孔の設計に好適に
用いることができる。また、本発明に係る鉄骨の貫通孔の設計方法は、直線状の第1構造体と当該第1構造体が接続される直線状の第2構造体が接合する、鉄骨鉄筋コンクリート構造物の接合構造のウェブの貫通孔の設計に好適に用いることができる。
Here, in the above-described method for designing a through hole of a steel frame according to the present invention, a through hole is formed in a steel web, and two reinforcing bars are passed through the through hole to design a lap joint. Can be suitably used. Moreover, the design method of the through-hole of the steel frame which concerns on this invention is the joining structure of the steel reinforced concrete structure which the linear 2nd structure to which the said 1st structure and the said 1st structure are connected joins. It can use suitably for the design of the through-hole of this web.

鉄骨鉄筋コンクリート構造物の接合構造は、前記第2構造体の鉄骨であって、当該鉄骨のウェブに、前記第1構造体の鉄筋が通る貫通孔を有する鉄骨と、前記第1構造体の鉄筋と、を備え、前記第1構造体の鉄筋は、端部が前記貫通孔を通る直線状の鉄筋と、前記ウェブを基準として前記直線状の鉄筋の反対側に位置し、前記貫通孔を通り前記直線状の鉄筋の端部と接続される直線状のラップ領域と、当該ラップ領域に連なる変形された定着領域とを含む定着鉄筋と、を有するものでもよい。   The joint structure of the steel reinforced concrete structure is a steel frame of the second structure, and a steel frame having a through hole through which the reinforcing bar of the first structure passes through the web of the steel frame, and the reinforcing bar of the first structure The reinforcing bar of the first structure is positioned on the opposite side of the linear reinforcing bar with the end portion passing through the through hole and the linear reinforcing bar with respect to the web, and passes through the through hole. You may have a fixed reinforcing bar containing the linear wrap area | region connected with the edge part of a linear reinforcing bar, and the deformed fixing area | region connected to the said wrap area | region.

上記接合構造では、第1構造体の鉄筋が、直線状の鉄筋と、定着鉄筋とによって構成されている。定着鉄筋は、鉄骨のウェブを基準として、直線状の鉄筋の反対側に位置し、直線状の鉄筋の反対側から鉄骨のウェブの貫通孔に通すことができる。そのため、例えば第1構造体として、L形状に折り曲げた長い鉄筋をウェブの貫通孔に通す必要がないので、施工性が向上する。また、第1構造体の直線状の鉄筋の端部と定着鉄筋のラップ領域は、鉄骨のウェブの貫通孔に通されて接続され、鉄骨のフランジに挟まれたコンクリート中に位置する。そのため、第1構造体の鉄筋は、コンクリートに強く定着される。特に、定着鉄筋の定着領域は、変形されており、当該直線状の鉄筋に引張力が作用した場合、ラップ領域のコンクリートを介して発生する定着鉄筋の同方向の引張力の割合を増大させることができる。この定着鉄筋の引張力は、作用反作用の原理から、直線状の鉄筋に作用する引張力に対して反対方向の反力、つまり定着力として作用する。以上の関係を式で表現すると、以下のようになる。
直線状の鉄筋に作用する引張力=ラップ領域を介して定着鉄筋に生じる引張力+ウェブで抵抗する圧縮力+周辺コンクリートへの付着力
In the joint structure, the reinforcing bar of the first structure is constituted by a linear reinforcing bar and a fixing reinforcing bar. The fixing reinforcing bar is located on the opposite side of the linear reinforcing bar with respect to the steel web, and can be passed through the through hole of the steel web from the opposite side of the linear reinforcing bar. Therefore, for example, as the first structure, it is not necessary to pass a long reinforcing bar bent in an L shape through the through-hole of the web, so that workability is improved. Further, the end portion of the linear reinforcing bar of the first structure and the wrapping region of the fixing reinforcing bar are connected through the through hole of the steel web and are located in the concrete sandwiched between the flanges of the steel frame. Therefore, the reinforcing bar of the first structure is firmly fixed to the concrete. In particular, the fixing region of the fixing reinforcing bar is deformed, and when a tensile force acts on the linear reinforcing bar, the proportion of the tensile force in the same direction of the fixing reinforcing bar generated through the concrete in the lap region is increased. Can do. From the principle of action and reaction, the tensile force of the fixing reinforcing bar acts as a reaction force in the opposite direction to the tensile force acting on the linear reinforcing bar, that is, as a fixing force. The above relationship can be expressed as an expression as follows.
Tensile force acting on linear reinforcing bars = Tensile force generated on anchored reinforcing bars through the lap region + Compression force resisting web + Adhesive force on surrounding concrete

第1構造体、第2構造体には、柱、梁、桁等が含まれる。上記接合構造は、所謂、梁の鉛直方向に段差がある場合を含む十字形接合部、ト形接合部、T形接合部、L形接合部、片持ち梁の接合部など、柱、梁、桁等の構造体が接合する接合部に適用することができる。また、上記接合構造は、第2構造体に鉄骨を含む構造物に適用可能である。換言すると、第2構造体は、SRC造であることが好ましいが、第1構造体は、SRC造の他、RC造でもよい。構造物は、建築構造物の他、土木構造物でもよい。   The first structure and the second structure include columns, beams, girders, and the like. The above-mentioned joint structure includes a so-called cross-shaped joint including a case where there is a step in the vertical direction of the beam, a toroidal joint, a T-shaped joint, an L-shaped joint, a cantilever joint, a column, a beam, The present invention can be applied to a joint where structures such as girders are joined. Moreover, the said joining structure is applicable to the structure which contains a steel frame in a 2nd structure. In other words, the second structure is preferably made of SRC, but the first structure may be made of RC instead of SRC. The structure may be a civil engineering structure as well as a building structure.

また、本発明は、貫通孔を含む鉄骨として特定することもできる。例えば、本発明は、鉄骨鉄筋コンクリート構造物の鉄骨のウェブに設けられ、原設計において少なくとも2本の鉄筋が通るよう設計された貫通孔を含む鉄骨であって、少なくとも一本の鉄筋を複数の鉄筋を束ねた束ね筋とし、当該束ね筋の断面積の和が、原設計における一本の鉄筋の断面積を下回らず、かつ、前記貫通孔の孔径が原設計の孔径よりも小さくなるように設計された貫通孔を含む鉄骨である。   Moreover, this invention can also be specified as a steel frame containing a through-hole. For example, the present invention is a steel frame provided in a steel web of a steel reinforced concrete structure and including a through-hole designed to pass at least two reinforcing bars in the original design, wherein at least one reinforcing bar is a plurality of reinforcing bars. Designed so that the sum of the cross-sectional areas of the bundling bars does not fall below the cross-sectional area of one reinforcing bar in the original design, and the hole diameter of the through hole is smaller than the hole diameter of the original design It is a steel frame containing the made through-hole.

貫通孔の孔径を原設計の孔径(以下、基準径ともいう)よりも小さく設計することで、例えば、貫通孔同士の間隔を従来よりも狭くでき、鉄骨のウェブに設ける貫通孔の位置などの設計の自由度がより向上する。ウェブ1枚当たりの貫通孔に通すことができる鉄筋の数が増え、鉄筋の断面積を増すことができるため、鉄筋をコンクリートにより強く定着することができる。また、貫通孔を基準径よりも小さく設計することができるので、基準径とした場合と比較して、鉄骨の断面欠損を少なくすることができる。また、束ね筋の断面積の和が、原設計の鉄筋の断面積を下回らないよう設計することで、鉄筋の引張強さを確保することができる。   By designing the hole diameter of the through holes to be smaller than the original designed hole diameter (hereinafter also referred to as the reference diameter), for example, the interval between the through holes can be made narrower than before, such as the position of the through holes provided in the steel web. More freedom in design. Since the number of reinforcing bars that can be passed through the through hole per web increases and the cross-sectional area of the reinforcing bars can be increased, the reinforcing bars can be firmly fixed to the concrete. In addition, since the through hole can be designed to be smaller than the reference diameter, the cross-sectional defect of the steel frame can be reduced as compared with the case of using the reference diameter. Moreover, the tensile strength of a reinforcing bar can be ensured by designing so that the sum of the cross-sectional areas of the bundled bars does not fall below the cross-sectional area of the originally designed reinforcing bars.

本発明によれば、鉄筋の強度を維持し、鉄骨のウェブの貫通孔の孔径を従来よりも小さくする技術を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the technique which maintains the intensity | strength of a reinforcing bar and makes the hole diameter of the through-hole of a steel-frame web smaller than before can be provided.

図1は、第1実施形態に係る鉄骨鉄筋コンクリート造の柱の断面図を示す。FIG. 1 shows a cross-sectional view of a steel reinforced concrete column according to the first embodiment. 図2は、第1実施形態に係る鉄骨の貫通孔の設計装置の構成を示す。FIG. 2 shows the configuration of a steel through-hole design device according to the first embodiment. 図3は、第1実施形態に係る鉄骨の貫通孔の設計処理フローを示す。FIG. 3 shows a design processing flow of the through hole of the steel frame according to the first embodiment. 図4は、原設計による鉄筋の外径、断面積、周長、孔径を示す。FIG. 4 shows the outer diameter, cross-sectional area, perimeter, and hole diameter of the reinforcing bar according to the original design. 図5は、コ型補強筋用の貫通孔と挿入されるコ型補強筋との関係を示す。FIG. 5 shows the relationship between the through hole for the U-shaped reinforcing bar and the inserted U-shaped reinforcing bar. 図6は、束ね筋を用いた場合の総断面積、総周長、孔径等を示す。FIG. 6 shows a total cross-sectional area, a total perimeter, a hole diameter, and the like when a bundled line is used. 図7は、第2実施形態に係る接合構造を含む多層建築物の斜視図を示す。FIG. 7 is a perspective view of a multilayer building including the joint structure according to the second embodiment. 図8は、第2実施形態に係る接合構造を含む多層建築物の平面図の一例を示す。FIG. 8: shows an example of the top view of the multilayer building containing the joining structure which concerns on 2nd Embodiment. 図9は、図8のA−A断面の拡大図を示す。FIG. 9 shows an enlarged view of the AA cross section of FIG. 図10は、第2実施形態に係る接合構造の原理図を示す。FIG. 10 shows a principle diagram of the joint structure according to the second embodiment. 図11は、第2実施形態に係る接合構造の接合方法を示す。FIG. 11 shows a bonding method of the bonding structure according to the second embodiment. 図12は、第3実施形態に係る鉄骨鉄筋コンクリート造の柱の断面図を示す。FIG. 12 shows a cross-sectional view of a steel reinforced concrete column according to the third embodiment.

<第1実施形態>
<<多層建築物の構成>>
図1は、第1実施形態に係る鉄骨鉄筋コンクリート造の柱の断面図を示す。このような柱101は、例えば、SRC造のマンションや商業ビル等の多層建築物の柱である。以下、このような鉄骨鉄筋コンクリート造の柱を構成する鉄骨の貫通孔の設計方法を例に説明する。
<First Embodiment>
<< Configuration of multi-layer building >>
FIG. 1 shows a cross-sectional view of a steel reinforced concrete column according to the first embodiment. Such a pillar 101 is, for example, a pillar of a multi-layered building such as an SRC apartment or commercial building. Hereinafter, a method for designing a through hole of a steel frame constituting such a steel reinforced concrete column will be described as an example.

柱101は、中心に十字状に交差させた十字型鉄骨103が配置され、十字型鉄骨103の周囲に垂直方向に延びる柱の主筋104が断面視正方形の柱101の表面の内側に所定の間隔を空けて複数配置されている。柱の主筋104は、全体として正方形を成すように配置され、この柱の主筋104に沿うように環状のスターラップ105が配置されている。   The pillar 101 has a cruciform steel frame 103 that is crossed in the shape of a cross in the center, and column main bars 104 extending in the vertical direction around the cruciform steel frame 103 at a predetermined interval inside the surface of the pillar 101 having a square cross section. Multiple are arranged with a gap. The column main bars 104 are arranged to form a square as a whole, and an annular stirrup 105 is arranged along the column main bars 104.

十字型鉄骨103は、H形鉄骨のウェブを十字状に交差させて一体的に構成したもので、十字型鉄骨のウェブ133、十字型鉄骨のフランジ131によって構成されている。十字型鉄骨103の一方のウェブ133には、同一高さに、コ型補強筋151,152の先端部が通るコ型補強筋用の貫通孔134が2カ所設けられている。十字型鉄骨の他方のウェブ133にも、同一高さに、コ型補強筋151,152が通るコ型補強筋用の貫通孔134が2カ所設けられている。但し、十字型鉄骨の一方のコ型補強筋用の貫通孔134と、十字型鉄骨の他方のコ型補強筋用の貫通孔134は、各貫通孔を通るコ型補強筋151,152が干渉しないよう、高さ位置が異なるように設けられている。   The cross-shaped steel frame 103 is formed integrally by crossing an H-shaped steel web in a cross shape, and includes a cross-shaped steel web 133 and a cross-shaped steel flange 131. One web 133 of the cross-shaped steel frame 103 is provided with two through holes 134 for the U-shaped reinforcing bars through which the tips of the U-shaped reinforcing bars 151 and 152 pass at the same height. The other web 133 of the cross-shaped steel frame is also provided with two through holes 134 for the U-shaped reinforcing bars through which the U-shaped reinforcing bars 151 and 152 pass at the same height. However, the through-hole 134 for one U-shaped reinforcing bar of the cross-shaped steel frame and the through-hole 134 for the other U-shaped reinforcing bar of the cross-shaped steel frame are interfered by the U-shaped reinforcing bars 151 and 152 passing through each through-hole. In order to avoid this, the height positions are different.

コ型補強筋151,152は、いずれもコ型形状であり、対向する2つのコ型補強筋151,152の先端部同士が十字型鉄骨103のコ型補強筋用の貫通孔134を通りラップしている。コ型補強筋151,152は、十字型鉄骨のフランジ131に近接し、十字型鉄骨のフランジ131を取り囲むように設けられている。   Each of the U-shaped reinforcing bars 151 and 152 has a U-shaped shape, and the tip portions of the two opposing U-shaped reinforcing bars 151 and 152 pass through the through hole 134 for the U-shaped reinforcing bar of the cross-shaped steel frame 103 and wrap. doing. The U-shaped reinforcing bars 151 and 152 are provided close to the flange 131 of the cruciform steel frame so as to surround the flange 131 of the cruciform steel frame.

第1実施形態では、対向するコ型補強筋151,152のうち、少なくとも何れか一方が束ね筋で構成されている。そのため、コ型補強筋用の貫通孔134の孔径が従来の孔径(基準径)よりも小さく設計されている。   In the first embodiment, at least one of the opposing U-shaped reinforcing bars 151 and 152 is formed by a bundled bar. Therefore, the hole diameter of the through hole 134 for the U-shaped reinforcing bar is designed to be smaller than the conventional hole diameter (reference diameter).

<<鉄骨の貫通孔の設計装置>>
図2は、第1実施形態に係る鉄骨の貫通孔の設計装置201の構成を示す。鉄骨の貫通孔の設計装置201(以下、単に設計装置ともいう)は、例えば汎用のコンピュータによって構成され、CPU202(中央演算処理装置)及びメモリ203を有する情報処理装置204、キーボード、マウスからなる入力装置205、ディスプレイからなる表示装置206を備える。入力装置205は、情報の入力や各種設定操作を受け付ける。CPU202は、メモリ203に格納された鉄骨の貫通孔の設計プログラムを実行し、鉄筋の外径等に基づいて鉄骨の貫通孔(第1実施形態ではコ型補強筋用の貫通孔134)の孔径を算出する。設計装置201は、タブレット端末、携帯端末によって構成してもよい。また、コンピュータ、タブレット端末、及び携帯端末では、情報の受け付け、算出結果の表示のみを行い、コンピュータ、タブレット端末、及び携帯端末とネットワークを介して接続されたサーバ上で鉄骨の貫通孔の孔径を算出してもよい。この場合、算出結果は、ネットワークを介して接続されたコンピュータ、タブレット端末、及び携帯端末に送信することができる。
<< Steel through-hole design device >>
FIG. 2 shows the configuration of the steel through-hole design apparatus 201 according to the first embodiment. A steel through-hole design device 201 (hereinafter also simply referred to as a design device) is configured by, for example, a general-purpose computer, and includes an information processing device 204 having a CPU 202 (central processing unit) and a memory 203, a keyboard, and a mouse. A device 205 and a display device 206 including a display are provided. The input device 205 receives information input and various setting operations. The CPU 202 executes a design program for the through hole of the steel frame stored in the memory 203, and the hole diameter of the through hole of the steel frame (the through hole 134 for the U-shaped reinforcing bar in the first embodiment) based on the outer diameter of the rebar and the like. Is calculated. The design device 201 may be configured by a tablet terminal or a mobile terminal. Computers, tablet terminals, and portable terminals only accept information and display calculation results. The diameter of the through-holes in the steel frame is set on the computer, tablet terminal, and server connected to the portable terminal via the network. It may be calculated. In this case, the calculation result can be transmitted to a computer, a tablet terminal, and a mobile terminal connected via a network.

<<設計処理>>
図3は、第1実施形態に係る鉄骨の貫通孔の設計処理フローを示す。この処理は、鉄骨の貫通孔の設計処理プログラムが起動されることで開始される。ステップS01では、設計装置201は、原設計処理を実行する。具体的には、設計装置201は、鉄骨の貫通孔(コ型補強筋用の貫通孔134)にラップして通す2本の鉄筋(コ型補強筋151,152)の外径(例えば、呼び径)に基づいて当該鉄骨の貫通孔の孔径(例えば、最外径)を取得する。また、設計装置201は、鉄筋(コ型補強筋151,152)の断面積、鉄筋の周長、及び孔径(基準径)を取得する。
<< Design process >>
FIG. 3 shows a design processing flow of the through hole of the steel frame according to the first embodiment. This process is started by starting a design processing program for a through-hole of a steel frame. In step S01, the design apparatus 201 executes an original design process. Specifically, the design device 201 wraps and passes the outer diameter (for example, nominal size) of the two reinforcing bars (co-shaped reinforcing bars 151 and 152) that are wrapped and passed through the through-holes of the steel frame (through holes 134 for the U-shaped reinforcing bars). The diameter (for example, the outermost diameter) of the through hole of the steel frame is acquired based on the diameter). In addition, the design device 201 acquires the cross-sectional area of the reinforcing bars (co-shaped reinforcing bars 151 and 152), the circumferential length of the reinforcing bars, and the hole diameter (reference diameter).

ここで、図4は、原設計による鉄筋の外径、断面積、周長、孔径を示す。図4では、呼び径毎に、原設計における、鉄筋の最外径、鉄筋の断面積、鉄筋の周長、貫通孔の孔径が示されている。図4に相当するテーブルを予めメモリ203に格納し、設計装置201は、呼び径の入力を受け付け、テーブルにアクセスして、鉄筋の最外径、鉄筋の断面積、鉄筋の周長、貫通孔の孔径を取得することができる。鉄筋の断面積、鉄筋の周長、貫通孔の孔径は、計算により算出してもよい。例えば、一方の鉄筋(コ型補強筋151)の最外径をD1、他方の鉄筋(コ型補強筋152)の最外径をD2とすると、貫通孔(コ型補強筋用の貫通孔134の孔径φは、次の式で算出できる。αは、孔径と鉄筋との間に隙間を形成するための補正値で、例えば2〜3mmに設定することができる。原設計処理が完了すると、ステップS02へ進む。
φ=D1+D2+α
Here, FIG. 4 shows the outer diameter, cross-sectional area, circumferential length, and hole diameter of the reinforcing bar by the original design. In FIG. 4, the outermost diameter of the reinforcing bar, the cross-sectional area of the reinforcing bar, the circumferential length of the reinforcing bar, and the hole diameter of the through hole are shown for each nominal diameter. A table corresponding to FIG. 4 is stored in the memory 203 in advance, and the design apparatus 201 accepts an input of a nominal diameter, accesses the table, and has the outermost diameter of the reinforcing bar, the cross-sectional area of the reinforcing bar, the peripheral length of the reinforcing bar, and the through hole. Can be obtained. The cross-sectional area of the reinforcing bar, the circumferential length of the reinforcing bar, and the hole diameter of the through-hole may be calculated. For example, assuming that the outermost diameter of one reinforcing bar (co-shaped reinforcing bar 151) is D1, and the outermost diameter of the other reinforcing bar (co-shaped reinforcing bar 152) is D2, a through hole (through hole 134 for the co-shaped reinforcing bar). Can be calculated by the following formula: α is a correction value for forming a gap between the hole diameter and the reinforcing bar, and can be set to 2 to 3 mm, for example. Proceed to step S02.
φ = D1 + D2 + α

ステップS02では、設計装置201は、修正処理を実行する。具体的には、設計装置201は、鉄骨の貫通孔(コ型補強筋用の貫通孔134)に通す鉄筋(コ型補強筋151,152)のうち少なくとも一本の鉄筋を複数の鉄筋を束ねた束ね筋とし、当該束ね筋の断面積の和が、原設計処理で取得した鉄筋の断面積を下回らず、かつ、鉄骨の貫通孔の孔径が原設計処理で取得した孔径よりも小さくなるように孔径を設計する。ここで、図5は、鉄骨の貫通孔と挿入される鉄筋との関係を示す。設計装置201は、図5に対応する画像を表示装置206に表示させ、入力装置205を介して、束ね筋の種類(例えば、図5の(a)、(b)、(c)、(d))を受け付けるようにしてもよい。   In step S02, the design apparatus 201 executes a correction process. Specifically, the design apparatus 201 bundles a plurality of reinforcing bars with at least one reinforcing bar out of the reinforcing bars (co-shaped reinforcing bars 151 and 152) passed through the through-holes of the steel frame (through holes 134 for the U-shaped reinforcing bars). The sum of the cross-sectional areas of the binding bars is not less than the cross-sectional area of the reinforcing bars acquired in the original design process, and the hole diameter of the through hole of the steel frame is smaller than the hole diameter acquired in the original design process. Design the hole diameter. Here, FIG. 5 shows the relationship between the through-hole of a steel frame and the reinforcing bar inserted. The design device 201 displays an image corresponding to FIG. 5 on the display device 206, and via the input device 205, the type of the binding line (for example, (a), (b), (c), (d) of FIG. )) May be accepted.

図5(a)は、ラップする鉄筋6,7(例えば、コ型補強筋151,152)を各1本ずつ、貫通孔34(例えば、コ型補強筋用の貫通孔134)に通した場合を示す。図5(a)は、原設計によるもので、この場合の孔径が原設計の基準径となる。   FIG. 5A shows a case in which the wrapping reinforcing bars 6 and 7 (for example, the U-shaped reinforcing bars 151 and 152) are passed through the through holes 34 (for example, the through holes 134 for the U-shaped reinforcing bars) one by one. Indicates. FIG. 5A is based on the original design, and the hole diameter in this case becomes the reference diameter of the original design.

図5(b)は、一方の鉄筋6(例えば、コ型補強筋151)は1本で、他方の鉄筋7(例えば、コ型補強筋152)を2本の鉄筋を束ねた束ね筋7a,7aとした場合を示す。他方の鉄筋7を束ね筋7a,7aで構成することで、貫通孔34aの孔径が、点線で示す基準径よりも小さくなっている。なお、鉄筋の引張強さは、鉄筋の断面積(例えば、異形鉄筋の公証断面積)から求めることができるので、束ね筋7a,7aを構成する鉄筋の断面積の和が、原設計の他方の鉄筋7の断面積を下回らないように設計する必要がある。また、鉄筋の付着力は、鉄筋の周長(例えば、異形鉄筋の公証周長)から求めることができるので、束ね筋7a,7aを構成する鉄筋の周長の和が、原設計の他方の鉄筋7の周長を下回らないように設計する必要がある。   FIG. 5B shows that one reinforcing bar 6 (for example, a U-shaped reinforcing bar 151) is one, and the other reinforcing bar 7 (for example, a U-shaped reinforcing bar 152) is a bundled bar 7a in which two reinforcing bars are bundled. 7a is shown. By configuring the other reinforcing bar 7 with the bundling bars 7a and 7a, the hole diameter of the through hole 34a is smaller than the reference diameter indicated by the dotted line. In addition, since the tensile strength of a reinforcing bar can be calculated | required from the cross-sectional area of a reinforcing bar (for example, notarized cross-sectional area of a deformed reinforcing bar), the sum of the cross-sectional areas of the reinforcing bars constituting the bundled bars 7a and 7a is the other of the original design. It is necessary to design so as not to be smaller than the cross-sectional area of the reinforcing bar 7. Further, since the adhesion force of the reinforcing bars can be obtained from the circumferential length of the reinforcing bars (for example, the notarized circumferential length of the deformed reinforcing bars), the sum of the circumferential lengths of the reinforcing bars constituting the binding bars 7a and 7a is the other of the original design. It is necessary to design so as not to fall below the circumference of the reinforcing bar 7.

図5(c)は、鉄筋6,7(例えば、コ型補強筋151,152)を何れも2本の鉄筋を束ねた束ね筋6a,7bとし、かつ、一方の鉄筋6(例えば、コ型補強筋151)を構成する束ね筋6aと他方の鉄筋7(例えば、コ型補強筋152)を構成する束ね筋7bの鉄筋径を同じとした場合を示す。2本の鉄筋6,7(例えば、コ型補強筋151,152)を何れも束ね筋6a,7bで構成することで、貫通孔34bの孔径が、点線で示す基準径よりも小さくなっている。なお、鉄筋の引張強さを確保するため、束ね筋6a,7bを構成する鉄筋の断面積の和が、原設計の鉄筋6,7の断面積を下回らないように設計する必要がある。また、鉄筋の付着力を確保するため、束ね筋6a,7bを構成する鉄筋の周長の和が、原設計の2本の鉄筋6,7の周長を下回らないように設計する必要がある。   FIG. 5 (c) shows that the reinforcing bars 6 and 7 (for example, the U-shaped reinforcing bars 151 and 152) are the binding bars 6a and 7b in which two reinforcing bars are bundled, and one reinforcing bar 6 (for example, the U-shaped reinforcing bar). A case is shown in which the bundle reinforcing bars 6a constituting the reinforcing bars 151) and the reinforcing bars 7b constituting the other reinforcing bars 7 (for example, the U-shaped reinforcing bars 152) have the same diameter. By configuring the two reinforcing bars 6 and 7 (for example, the U-shaped reinforcing bars 151 and 152) by the bundled bars 6a and 7b, the hole diameter of the through hole 34b is smaller than the reference diameter indicated by the dotted line. . In order to secure the tensile strength of the reinforcing bars, it is necessary to design so that the sum of the cross-sectional areas of the reinforcing bars constituting the binding bars 6a and 7b does not fall below the cross-sectional area of the originally designed reinforcing bars 6 and 7. Moreover, in order to ensure the adhesive strength of the reinforcing bars, it is necessary to design the sum of the peripheral lengths of the reinforcing bars constituting the bundled bars 6a and 7b so as not to fall below the peripheral length of the two reinforcing bars 6 and 7 of the original design. .

図5(d)は、一方の鉄筋6(例えば、コ型補強筋151)を2本の鉄筋を束ねた束ね筋6a,6bとし、他方の鉄筋7(例えば、コ型補強筋152)を2本の鉄筋を束ねた束ね筋7a、7bとし、かつ、一方の鉄筋6の束ね筋6a,6bの径を異ならせ、他方の鉄筋7の束ね筋7a,7bの径を異ならせた場合を示す。束ね筋6aと束ね筋7aの径は同じであり、束ね筋6bと束ね筋7bの径は同じである。上記のように構成することで、貫通孔34cの孔径が、点線で示す基準径よりも小さくなっている。なお、鉄筋の引張強さを確保するため、一方の束ね筋6a,6b、他方の束ね筋7a,7bを構成する鉄筋の断面積の和が、原設計の直線状の鉄筋6及び定着鉄筋7の断面積を下回らないように設計する必要がある。また、鉄筋の付着力を確保するため、一方の鉄筋6の束ね筋6a,6b、他方の鉄筋7の束ね筋7a,7bを構成する鉄筋の周長の和が、原設計の一方の鉄筋6及び他方の鉄筋7の周長を下回らないように設計する必要がある。   In FIG. 5D, one reinforcing bar 6 (for example, the U-shaped reinforcing bar 151) is a binding bar 6a, 6b obtained by binding two reinforcing bars, and the other reinforcing bar 7 (for example, the U-type reinforcing bar 152) is 2 A case where the reinforcing bars 7a and 7b are formed by binding the reinforcing bars of the book, the diameters of the binding bars 6a and 6b of one reinforcing bar 6 are made different, and the diameters of the binding bars 7a and 7b of the other reinforcing bar 7 are made different is shown. . The diameters of the binding muscles 6a and 7a are the same, and the diameters of the binding muscles 6b and 7b are the same. By configuring as described above, the hole diameter of the through hole 34c is smaller than the reference diameter indicated by the dotted line. In addition, in order to ensure the tensile strength of the reinforcing bars, the sum of the cross-sectional areas of the reinforcing bars constituting the one reinforcing bars 6a and 6b and the other binding bars 7a and 7b is the linear reinforcing bar 6 and the fixing reinforcing bar 7 of the original design. It is necessary to design so as not to be less than the cross-sectional area. In addition, in order to secure the adhesion of the reinforcing bars, the sum of the circumferences of the reinforcing bars constituting the binding bars 6a and 6b of one reinforcing bar 6 and the binding bars 7a and 7b of the other reinforcing bar 7 is one reinforcing bar 6 of the original design. And it is necessary to design so that it may not fall below the circumference of the other reinforcing bar 7.

ここで、図6は、束ね筋を用いた場合の総断面積、総周長、孔径等を示す。図6において、束ね筋を採用した場合の束ね筋ごとの、束ね筋の総断面積、断面積比、束ね筋の総周長、周長比、束ね筋を用いた場合の孔径、孔径比が示されている。束ね筋「2−D10」、「2−D13」、「2−D16」、及び「2−D19」は、図5(c)のように、一方の鉄筋6(例えば、コ型補強筋151)と他方の鉄筋7(例えば、コ型補強筋152)を何れも2本の鉄筋を束ねた束ね筋6a,7bとし、かつ、一方の鉄筋6を構成する束ね筋6a,6aと他方の鉄筋7を構成する束ね筋7b,7bの鉄筋径を同じとした場合を示す。束ね筋「D13+D16」は、図5(d)のように、一方の鉄筋6を2本の鉄筋を束ねた束ね筋6a,6bとし、他方の鉄筋7を2本の鉄筋を束ねた束ね筋7a、7bとし、かつ、一方の鉄筋6の束ね筋6a,6bの径を異ならせ、他方の鉄筋の束ね筋7a,7bの径を異ならせた場合を示す。束ね筋6aと束ね筋7aの径は同じであり、束ね筋6bと束ね筋7bの径は同じである。   Here, FIG. 6 shows a total cross-sectional area, a total perimeter, a hole diameter, and the like in the case of using a binding line. In FIG. 6, the total cross-sectional area and cross-sectional area ratio of the bundled muscles, the total circumference and circumference ratio of the bundled muscles, and the hole diameter and the hole diameter ratio when the bundled muscles are used for each bundled muscle when the bundled muscles are adopted. It is shown. The binding bars “2-D10”, “2-D13”, “2-D16”, and “2-D19” have one reinforcing bar 6 (for example, a U-shaped reinforcing bar 151) as shown in FIG. And the other reinforcing bar 7 (for example, the U-shaped reinforcing bar 152) are the binding bars 6a and 7b in which two reinforcing bars are bundled, and the binding bars 6a and 6a constituting one reinforcing bar 6 and the other reinforcing bar 7 A case where the reinforcing bar diameters of the bundling bars 7b and 7b constituting the same are made the same. As shown in FIG. 5 (d), the binding bar “D13 + D16” has one reinforcing bar 6 as a binding bar 6a, 6b in which two reinforcing bars are bundled, and the other reinforcing bar 7 as a binding bar 7a in which two reinforcing bars are bundled. 7b, and the diameters of the binding bars 6a, 6b of one reinforcing bar 6 are made different, and the diameters of the binding bars 7a, 7b of the other reinforcing bar are made different. The diameters of the binding muscles 6a and 7a are the same, and the diameters of the binding muscles 6b and 7b are the same.

図6に相当するテーブルを予めメモリに格納し、設計装置201は、束ね筋の種類の入力を受け付け、テーブルにアクセスして、束ね筋の総断面積、断面積比、束ね筋の総周長、周長比、束ね筋を用いた場合の孔径、孔径比を取得することができる。束ね筋の総周長、周長比、束ね筋を用いた場合の孔径、孔径比は、計算により算出してもよい。   The table corresponding to FIG. 6 is stored in the memory in advance, and the design apparatus 201 receives input of the type of the binding line, accesses the table, and accesses the table to determine the total cross-sectional area of the binding line, the cross-sectional area ratio, and the total circumference of the binding line. Further, it is possible to obtain the circumference ratio and the hole diameter and the hole diameter ratio in the case where the bundling muscle is used. The total perimeter of the bundling bars, the circumference ratio, and the hole diameter and hole diameter ratio when the bundling bars are used may be calculated.

例えば、計算による場合、原設計処理では、一方の鉄筋6(例えば、コ型補強筋151)、及び他方の鉄筋7(例えば、コ型補強筋152)の呼び径がD16の場合、貫通孔34(例えば、コ型補強筋用の貫通孔134)の孔径は38mmとなる。
孔径=D(最外径)×2+α(間隔)
For example, in the case of calculation, in the original design process, when the nominal diameter of one reinforcing bar 6 (for example, the U-shaped reinforcing bar 151) and the other reinforcing bar 7 (for example, the U-shaped reinforcing bar 152) is D16, the through hole 34 is used. The hole diameter of the through hole 134 (for example, the U-shaped reinforcing bar) is 38 mm.
Hole diameter = D (outer diameter) x 2 + α (interval)

これに対し、束ね筋(2−D13)を用いると、貫通孔34b(例えば、コ型補強筋用の貫通孔134)の孔径は34mmとなる。rは、束ね筋6a,7bの半径を示す。
孔径=2r+2×2r/√2
On the other hand, when the bundled line (2-D13) is used, the hole diameter of the through hole 34b (for example, the through hole 134 for the U-shaped reinforcing bar) is 34 mm. r indicates the radius of the bunches 6a and 7b.
Pore size = 2r + 2 × 2r / √2

そして、設計装置201は、算出結果を表示装置206に表示させるようにしてもよい。例えば、設計装置201は、束ね筋6a,7bを用いた場合の貫通孔34cの孔径は34mmで、原設計の孔径38mmを下回り(孔径比:0.89)、貫通孔34の孔径を原設計よりも小さくできる旨を表示する。また、表示装置206は、束ね筋6a,7bの総断面積は254mm2で、原設計の鉄筋(コ型補強筋)の断面積199mm2を上回り(断面積比:1.28)、鉄筋の引張強さが増している旨を表示する。また、設計装置201は、束ね筋6a,7bの総周長は80mmで、原設計の鉄筋(コ型補強筋)の周長50mmを上回り(周長比:1.60)、鉄筋のコンクリートへの付着力が増している旨を表示する。これは、換言すると、原設計と同等の付着力とする場合には、束ね筋の長さを短くできることを意味する。 Then, the design device 201 may display the calculation result on the display device 206. For example, in the design apparatus 201, the hole diameter of the through hole 34c when the bundled bars 6a and 7b are used is 34 mm, which is lower than the hole diameter 38 mm of the original design (hole diameter ratio: 0.89), and the hole diameter of the through hole 34 is the original design. To the effect that it can be made smaller. Further, the display device 206, bundled muscle 6a, the total cross-sectional area of 7b is 254 mm 2, greater than the cross-sectional area 199Mm 2 of the original design rebar (co type Reinforcement) (sectional area ratio: 1.28), rebar Displays that the tensile strength has increased. In addition, the design device 201 has a total perimeter of the bundling bars 6a and 7b of 80 mm, which exceeds the perimeter of the originally designed reinforcing bar (co-shaped reinforcing bar) 50 mm (peripheral length ratio: 1.60). The fact that the adhesive force of the is increasing is displayed. In other words, this means that the length of the bundling line can be shortened when the adhesive force is equal to that of the original design.

<効果>
鉄骨(十字型鉄骨103)のウェブに形成される貫通孔(コ型補強筋用の貫通孔134)を基準径よりも小さく設計することで、例えば、貫通孔(コ型補強筋用の貫通孔134)同士の間隔を従来よりも狭くでき、鉄骨(十字型鉄骨103)のウェブに設ける貫通孔(コ型補強用の貫通孔134)の位置などの設計自由度がより向上する。また、鉄筋の引張強さを確保するため、束ね筋6a,7bを構成する鉄筋の断面積の和が、原設計の鉄筋(コ型補強筋151,152)の断面積を下回らないように設計することで、多層建築物の強度を原設計と同等か向上することができる。また、鉄筋の付着力を確保するため、束ね筋を構成する鉄筋の周長の和が、原設計の鉄筋(コ型補強筋151,152)の周長を下回らないように設計することで、多層建築物の柱101の強度を原設計と同等か向上することができる。また、貫通孔(コ型補強用の貫通孔134)を基準径よりも小さく設計することができるので、基準径とした場合と比較して、鉄骨の断面欠損を少なくすることができる。その結果、多層建築物の強度を原設計と同等か向上することができる。
<Effect>
By designing the through hole (through hole 134 for the U-shaped reinforcing bar) formed in the web of the steel frame (cross-shaped steel frame 103) to be smaller than the reference diameter, for example, the through hole (through hole for the U-shaped reinforcing bar) 134) the distance between them can be made narrower than before, and the degree of freedom in design, such as the position of the through hole (through hole 134 for U-shaped reinforcement) provided in the web of the steel frame (cross-shaped steel frame 103), is further improved. Further, in order to ensure the tensile strength of the reinforcing bars, the sum of the cross-sectional areas of the reinforcing bars constituting the binding bars 6a and 7b is designed not to be lower than the cross-sectional area of the originally designed reinforcing bars (co-shaped reinforcing bars 151 and 152). By doing so, the strength of the multi-layered building can be improved to be equivalent to the original design. Moreover, in order to ensure the adhesive strength of a reinforcing bar, it is designed so that the sum of the peripheral lengths of the reinforcing bars constituting the bundled bars does not fall below the peripheral length of the originally designed reinforcing bars (co-shaped reinforcing bars 151, 152). The strength of the pillar 101 of the multi-layer building can be improved or equal to the original design. Further, since the through hole (through hole 134 for reinforcing the U-shaped reinforcing member) can be designed to be smaller than the reference diameter, the cross-sectional defect of the steel frame can be reduced as compared with the case of using the reference diameter. As a result, the strength of the multi-layered building can be improved to be equivalent to the original design.

<第2実施形態>
図7は、第2実施形態に係る接合構造を含む多層建築物の斜視図を示す。図8は、第2実施形態に係る接合構造を含む多層建築物の平面図の一例を示す。図9は、図8のA−A断面の拡大図を示す。
Second Embodiment
FIG. 7 is a perspective view of a multilayer building including the joint structure according to the second embodiment. FIG. 8: shows an example of the top view of the multilayer building containing the joining structure which concerns on 2nd Embodiment. FIG. 9 shows an enlarged view of the AA cross section of FIG.

第1実施形態で説明した貫通孔の設計方法等は、以下に説明する多層建築物Mにも適用できる。多層建築物Mは、SRC造のマンションや商業ビル等の建築構造物を想定したもので、複数階からなる。以下の説明では、図8,9に示すように、垂直方向に延びる柱(外柱)1に、桁方向に延びる大梁2及び梁間方向に延びる大梁21の端部が接続された柱梁接合部(所謂、ト形接合部)の接合構造10を構成する鉄骨3のウェブ33に貫通孔34が形成されている。   The through-hole design method described in the first embodiment can be applied to a multilayer building M described below. The multi-layered building M is assumed to be a building structure such as an SRC apartment or commercial building, and is composed of a plurality of floors. In the following description, as shown in FIGS. 8 and 9, a column beam joint in which the ends of a large beam 2 extending in the beam direction and a large beam 21 extending in the inter-beam direction are connected to a column (outer column) 1 extending in the vertical direction. A through hole 34 is formed in the web 33 of the steel frame 3 that constitutes the joining structure 10 of a so-called toroidal joint.

なお、接合構造10は、上記に限定されない。接合構造10は、梁同士、柱と梁、柱と桁等がT形状に接合する接合部に好適に用いることができる。このような接合部には、最上部の梁と柱がT形状に接続される接合部(例えば、T形接合部)、大梁と小梁がT形状に接続される接合部、外柱と片持ち梁(バルコニーなど)がT形状に接続される接合部等
が例示される。なお、鉄骨を含む構造体に接続される構造体は、鉄筋を含む構造体であればよく、SRC造、RC造の何れでもよい。また、接合構造10は、建築構造物の他、土木構造物に適用してもよい。
Note that the bonding structure 10 is not limited to the above. The joint structure 10 can be suitably used for a joint where beams, columns and beams, columns and girders, etc. are joined in a T shape. Such a joint includes a joint where the uppermost beam and column are connected in a T shape (for example, a T-shaped joint), a joint where a large beam and a small beam are connected in a T shape, an outer column and a piece. Examples include a joint where a cantilever (such as a balcony) is connected in a T shape. In addition, the structure connected to the structure containing a steel frame should just be a structure containing a reinforcing bar, and may be either SRC structure or RC structure. Moreover, you may apply the joining structure 10 to a civil engineering structure other than a building structure.

桁方向に延びる大梁2(本発明の第2構造体に相当する)は、中心にH形の鉄骨3が配置され、鉄骨3の周囲に桁方向に延びる大梁の主筋(主鉄筋)4が断面視長方形の大梁2の表面の内側に所定の間隔を空けて複数配置されている。桁方向に延びる大梁の主筋4は、全体として長方形を成すように配置され、この桁方向に延びる大梁の主筋4に沿うように環状のスターラップ5が配置されている。桁方向に延びる大梁の主筋4には、異形鉄筋が用いられている。桁方向に延びる大梁の主筋4の径やこの主筋4同士の間隔は、多層建築物Mに応じて適宜設計される。スターラップ5の径やスターラップ5同士の間隔も、多層建築物Mに応じて適宜設計される。   A large beam 2 (corresponding to the second structure of the present invention) extending in the girder direction has an H-shaped steel frame 3 disposed at the center, and a main beam (main reinforcing bar) 4 of the large beam extending in the girder direction around the steel frame 3 has a cross section. A plurality of beams are arranged at predetermined intervals inside the surface of the large beam 2 having a rectangular shape. The main beam 4 of the large beam extending in the girder direction is arranged so as to form a rectangle as a whole, and an annular stirrup 5 is arranged along the main beam 4 of the large beam extending in the beam direction. Deformed bars are used for the main bars 4 of the large beams extending in the girder direction. The diameter of the main bars 4 of the large beams extending in the girder direction and the interval between the main bars 4 are appropriately designed according to the multilayer building M. The diameter of the star wrap 5 and the interval between the star wraps 5 are also appropriately designed according to the multilayer building M.

第2実施形態に係る鉄骨3は、上記のようにH形であり、長方形のウェブ33と、ウェブ33の両端部にウェブ33と直交して連なる、長方形のフランジ31,32と、によって構成されている。フランジ31,32は、対向している。ウェブ33には、梁間方向に延びる大梁21(本発明の第1構造体)の主筋40の一部が通る貫通孔34が垂直方向に2カ所設けられている。貫通孔34は、円形であり、梁間方向に延びる大梁21の主筋40を構成する直線状の鉄筋6と定着鉄筋7とが通る孔径を有する。この孔径は、本発明の基準径に相当する。例えば、直線状の鉄筋6の最外径をD1、定着鉄筋7の最外径をD2とすると、貫通孔の孔径φは、次の式で算出できる。αは、孔径と鉄筋との間に隙間を形成するための補正値で、例えば2〜3mmに設定することができる。なお、第2実施形態では、D1=D2である。
φ=D1+D2+α
The steel frame 3 according to the second embodiment is H-shaped as described above, and includes a rectangular web 33 and rectangular flanges 31 and 32 that are connected to both ends of the web 33 at right angles to the web 33. ing. The flanges 31 and 32 are opposed to each other. The web 33 is provided with two through holes 34 in the vertical direction through which a part of the main bar 40 of the large beam 21 (the first structure of the present invention) extending in the inter-beam direction. The through-hole 34 is circular and has a hole diameter through which the linear reinforcing bar 6 and the fixing reinforcing bar 7 constituting the main reinforcing bar 40 of the large beam 21 extending in the beam-to-beam direction pass. This hole diameter corresponds to the reference diameter of the present invention. For example, if the outermost diameter of the linear reinforcing bar 6 is D1 and the outermost diameter of the fixing reinforcing bar 7 is D2, the hole diameter φ of the through hole can be calculated by the following equation. α is a correction value for forming a gap between the hole diameter and the reinforcing bar, and can be set to 2 to 3 mm, for example. In the second embodiment, D1 = D2.
φ = D1 + D2 + α

梁間方向に延びる大梁の主筋40は、上端筋と下端筋の夫々が2段筋となっている。上端筋の上段の鉄筋61と下端筋の下段の鉄筋61は、何れもL形状であり、鉄骨3の外側、かつスターラップ5の内側に配置されている。また、上端筋の上段の鉄筋61と下端筋の下段の鉄筋61との間に位置する2本の鉄筋、すなわち、上端筋の下段の鉄筋及び下端筋の上段の鉄筋(本発明の第1構造体の鉄筋に相当する)は、直線状の鉄筋6と、定着鉄筋7によって構成され、垂直方向において間隔を空けて穿孔された貫通孔34に夫々挿入されている。直線状の鉄筋6と、定着鉄筋7には、何れも異形鉄筋が用いられている。直線状の鉄筋6は、端部が貫通孔34に通され、定着鉄筋7のラップ領域と接続される。接続には、結束線8が用いられている。接続は、ウェブ33を基準として、内側(直線状の鉄筋側)と外側(定着鉄筋側)の2カ所で行われている。なお、第1実施形態では、定着鉄筋7の定着領域71が互いに向き合うように配置されているが、定着鉄筋7の定着領域71の向きは、鉄骨3のフランジ31,32、他の鉄筋、又は定着鉄筋7同士が干渉しないよう適宜変更することができる。   The main beam 40 of the large beam extending in the beam-to-beam direction has a two-level bar at each of the upper and lower bars. The upper reinforcing bar 61 at the upper end and the lower reinforcing bar 61 at the lower end are both L-shaped and are arranged outside the steel frame 3 and inside the stirrup 5. Further, two reinforcing bars located between the upper reinforcing bar 61 of the upper end and the lower reinforcing bar 61 of the lower end, that is, the lower reinforcing bar of the upper end and the upper reinforcing bar of the lower end (the first structure of the present invention). (Corresponding to a reinforcing bar of the body) is composed of a linear reinforcing bar 6 and a fixing reinforcing bar 7 and is inserted into through-holes 34 which are drilled at intervals in the vertical direction. Both the linear reinforcing bar 6 and the fixing reinforcing bar 7 are deformed reinforcing bars. The end of the linear reinforcing bar 6 is passed through the through hole 34 and connected to the wrap region of the fixing reinforcing bar 7. A tie wire 8 is used for connection. The connection is made at two locations on the inner side (straight reinforcing bar side) and the outer side (fixed reinforcing bar side) with the web 33 as a reference. In the first embodiment, the fixing regions 71 of the fixing reinforcing bars 7 are arranged so as to face each other. The fixing reinforcing bars 7 can be appropriately changed so as not to interfere with each other.

定着鉄筋7は、全体としてL形状であり、直線状のラップ領域72と、この直線状のラップ領域72を延出させた領域がウェブ33と平行になるようにウェブ側に折り曲げられた定着領域71と、によって構成されている。ラップ領域72の長さは、フランジ31,32の幅よりもやや短く設計されている。また、定着領域71の長さは、フランジ31,32の間隔よりも短く設計されている。その結果、定着鉄筋7は、鉄骨3のフランジ31,32との間に挟まれるコンクリート中に位置するようになっている。   The fixing reinforcing bar 7 has an L shape as a whole, and a fixing region that is bent to the web side so that a linear wrap region 72 and a region where the linear wrap region 72 is extended are parallel to the web 33. 71. The length of the wrap region 72 is designed to be slightly shorter than the width of the flanges 31 and 32. The length of the fixing region 71 is designed to be shorter than the interval between the flanges 31 and 32. As a result, the fixing reinforcing bar 7 is located in the concrete sandwiched between the flanges 31 and 32 of the steel frame 3.

ここで図10は、第2実施形態に係る接合構造の原理図を示す。梁間方向に延びる大梁の主筋40の一部、すなわち直線状の鉄筋6と定着鉄筋7のラップ領域72に引張力Bが加わると、直線状の鉄筋6と定着鉄筋7のラップ領域72の周囲にせん断力Cが作用する。また、直線状の鉄筋6と定着鉄筋7のラップ領域72とウェブ33との間に圧縮力Dが
作用する。圧縮力Dは、力のベクトル分解によって、ウェブ1に垂直な力E1と平行な力E2として作用し、E1はウェブ自体を面外方向に押すとともに、ウェブを介して反対側のコンクリートを押す。また、E2はフランジ31,32を押す。一方で、フランジ31,32は、固定されているため、コンクリートを押し戻す反作用を発揮する。その結果、コンクリートと、直線状の鉄筋6及び定着鉄筋7との定着性が向上する。
Here, FIG. 10 shows a principle diagram of the joint structure according to the second embodiment. When a tensile force B is applied to a part of the main reinforcement 40 of the large beam extending in the beam-to-beam direction, that is, the wrap region 72 of the linear reinforcing bar 6 and the fixing reinforcing bar 7, around the wrap region 72 of the linear reinforcing bar 6 and the fixing reinforcing bar 7. A shearing force C acts. Further, a compressive force D acts between the lap region 72 of the linear reinforcing bar 6 and the fixing reinforcing bar 7 and the web 33. The compressive force D acts as a force E2 that is perpendicular to the web 1 and parallel to the force E1 by vector decomposition of the force. The E1 pushes the web itself in an out-of-plane direction and pushes the opposite concrete through the web. E2 pushes the flanges 31, 32. On the other hand, since the flanges 31 and 32 are fixed, they exert a reaction to push back the concrete. As a result, the fixing property between the concrete and the linear reinforcing bars 6 and the fixing reinforcing bars 7 is improved.

また、ラップ領域72と定着領域71との間に位置する角部とウェブ33との間には、特に強いコンクリートを圧縮する支圧力Fが作用する。また、定着領域71には、付着力Gが作用する。支圧力F及び付着力Gが作用することで、直線状の鉄筋6及び定着鉄筋7との定着性が更に向上する。   Further, a supporting pressure F that compresses particularly strong concrete acts between the corner portion positioned between the wrap region 72 and the fixing region 71 and the web 33. Further, an adhesion force G acts on the fixing region 71. By the support pressure F and the adhesion force G acting, the fixing property with the linear reinforcing bar 6 and the fixing reinforcing bar 7 is further improved.

<<接合方法>>
図11は、第2実施形態に係る接合構造の接合方法の一例を示す。以下に説明する接合方法は、多層建築物Mの鉄骨組立工程完了後、鉄筋組立工程で行うことができる。但し、穿孔工程については、鉄骨組立工程前に行ってもよい。第1実施形態で説明した貫通孔の設計処理(原設計処理、修正処理)を穿孔工程前に行うことで、貫通孔の孔径を設計することができる。
<< Join method >>
FIG. 11 shows an example of a bonding method of the bonding structure according to the second embodiment. The joining method described below can be performed in the reinforcing bar assembling process after the steel frame assembling process of the multilayer building M is completed. However, the drilling process may be performed before the steel frame assembly process. By performing the through hole design process (original design process, correction process) described in the first embodiment before the drilling step, the hole diameter of the through hole can be designed.

設計処理について簡単に説明すると、設計処理の原設計処理(図3参照)では、設計装置201は、原設計処理を実行する。具体的には、設計装置201は、鉄骨の貫通孔34にラップして通す2本の鉄筋(直線状の鉄筋6、定着鉄筋7)の外径(例えば、呼び径)に基づいて当該鉄骨の貫通孔の孔径(例えば、最外径)を取得する。また、設計装置201は、鉄筋(直線状の鉄筋6、定着鉄筋7)の断面積、鉄筋の周長、及び孔径(基準径)を取得する。   The design process will be briefly described. In the original design process (see FIG. 3) of the design process, the design apparatus 201 executes the original design process. Specifically, the design apparatus 201, based on the outer diameters (for example, nominal diameters) of two reinforcing bars (straight reinforcing bars 6 and anchoring reinforcing bars 7) wrapped and passed through the through-holes 34 of the steel frame, The hole diameter (for example, outermost diameter) of the through hole is acquired. Further, the design device 201 acquires the cross-sectional area of the reinforcing bars (the linear reinforcing bars 6 and the fixing reinforcing bars 7), the perimeter of the reinforcing bars, and the hole diameter (reference diameter).

計処理の修正処理では、設計装置201は、鉄骨の貫通孔34に通す鉄筋(直線状の鉄筋6、定着鉄筋7)のうち少なくとも一本の鉄筋を複数の鉄筋を束ねた束ね筋とし、当該束ね筋の断面積の和が、原設計処理で取得した鉄筋の断面積を下回らず、かつ、鉄骨の貫通孔の孔径が原設計処理で取得した孔径よりも小さくなるように孔径を設計する。以上により、貫通孔の孔径が設計される。   In the correction process of the meter process, the design device 201 uses at least one reinforcing bar among the reinforcing bars (the linear reinforcing bar 6 and the fixed reinforcing bar 7) to be passed through the through hole 34 of the steel frame as a binding bar obtained by binding a plurality of reinforcing bars. The hole diameter is designed so that the sum of the cross-sectional areas of the bundle bars does not fall below the cross-sectional area of the reinforcing bar acquired in the original design process, and the hole diameter of the through hole of the steel frame is smaller than the hole diameter acquired in the original design process. Thus, the hole diameter of the through hole is designed.

穿孔工程では、鉄骨のウェブ33に貫通孔34が形成される。なお、穿孔工程は、鉄骨の組立前に行ってもよく、また、鉄骨の組立後に行ってもよい。鉄筋挿入工程では、貫通孔34に梁間方向に延びる大梁の主筋4が挿入される。貫通孔34に梁間方向に延びる大梁の主筋40のうちの一部である直線状の鉄筋6が、端部が外側に突出するよう、内側から貫通孔34に挿入される。一方、定着鉄筋7は、鉄骨3のウェブ33を基準として、直線状の鉄筋6とは反対側から、端部が内側に突出するよう貫通孔34に挿入される。なお、直線状の鉄筋6と定着鉄筋7は、どちらを先に貫通孔34に挿入してもよいが、直線状の鉄筋6を先に挿入した方が定着鉄筋7の接続が容易となる。   In the drilling process, through holes 34 are formed in the steel web 33. Note that the perforating step may be performed before the steel frame is assembled or may be performed after the steel frame is assembled. In the reinforcing bar insertion step, the main beam 4 of the large beam extending in the direction between the beams is inserted into the through hole 34. A straight reinforcing bar 6, which is a part of the main beam 40 of the large beam extending in the inter-beam direction in the through hole 34, is inserted into the through hole 34 from the inside so that the end portion protrudes outward. On the other hand, the fixing reinforcing bar 7 is inserted into the through hole 34 so that the end protrudes inward from the side opposite to the linear reinforcing bar 6 with respect to the web 33 of the steel frame 3. It should be noted that either the straight reinforcing bar 6 or the fixing reinforcing bar 7 may be inserted into the through-hole 34 first, but the connecting of the fixing reinforcing bar 7 becomes easier when the linear reinforcing bar 6 is inserted first.

次に、結束工程では、直線状の鉄筋6の端部と定着鉄筋7のラップ領域72が重ね合され、結束線8で結束(接続)される。本第1実施形態では、鉄骨3のウェブ33を基準として、内側と外側の各一か所で結束される。以上により、第1実施形態に係る接合構造の接合が完了する。その後、型枠組立工程、コンクリート打設工程、脱枠工程等が行われ、層単位で多層建築物Mが構築される。   Next, in the binding step, the end portions of the linear reinforcing bars 6 and the wrap regions 72 of the fixing reinforcing bars 7 are overlapped, and are bound (connected) by the binding wires 8. In the first embodiment, the webs 33 of the steel frame 3 are bound at one place on each of the inner side and the outer side. As described above, the joining of the joining structure according to the first embodiment is completed. Thereafter, a mold assembly process, a concrete placing process, a deframe process, and the like are performed, and the multilayer building M is constructed in units of layers.

<<効果>>
第2実施形態に係る接合構造10によれば、梁間方向に延びる大梁の主筋40の一部が、直線状の鉄筋6と、定着鉄筋7とによって構成されている。定着鉄筋7は、鉄骨3のウェブ33を基準として、直線状の鉄筋6の反対側に位置し、直線状の鉄筋6の反対側から
鉄骨のウェブ33の貫通孔34に通すことができる。そのため、例えば梁間方向に延びる大梁の主筋40としてL形状に折り曲げた長い鉄筋をウェブの貫通孔に通す必要がないので、施工性が向上する。また、直線状の鉄筋6の端部と定着鉄筋7のラップ領域72は、鉄骨3のウェブ33の貫通孔34に通され、結束線8で結束(接続)され、鉄骨3のフランジ31,32に挟まれたコンクリート中に位置する。そのため、梁間方向に延びる大梁の主筋40のうち、特に、直線状の鉄筋6と定着鉄筋7は、コンクリートに強く定着される。更に、ラップ領域72と定着領域71との間に位置する角部とウェブ33との間には、特に強い支圧力Fが作用する(図10参照)。また、定着領域71には、付着力Gが作用する(図10参照)。支圧力F及び付着力Gが作用することで、直線状の鉄筋6及び定着鉄筋7との定着性が更に向上する。
<< Effect >>
According to the joint structure 10 according to the second embodiment, a part of the main reinforcing bar 40 of the large beam extending in the inter-beam direction is constituted by the linear reinforcing bar 6 and the fixing reinforcing bar 7. The fixing reinforcing bar 7 is located on the opposite side of the linear reinforcing bar 6 with respect to the web 33 of the steel frame 3, and can pass through the through hole 34 of the steel web 33 from the opposite side of the linear reinforcing bar 6. For this reason, for example, it is not necessary to pass a long reinforcing bar bent in an L shape as the main reinforcing bar 40 of the large beam extending in the inter-beam direction, so that workability is improved. Further, the end portion of the linear reinforcing bar 6 and the wrap region 72 of the fixing reinforcing bar 7 are passed through the through hole 34 of the web 33 of the steel frame 3, and are bound (connected) by the binding wire 8, and the flanges 31 and 32 of the steel frame 3. Located in concrete sandwiched between. Therefore, among the main reinforcing bars 40 of the large beams extending in the inter-beam direction, in particular, the linear reinforcing bars 6 and the fixing reinforcing bars 7 are strongly fixed to the concrete. Further, a particularly strong supporting force F acts between the corner portion positioned between the wrap region 72 and the fixing region 71 and the web 33 (see FIG. 10). Further, an adhesion force G acts on the fixing region 71 (see FIG. 10). By the support pressure F and the adhesion force G acting, the fixing property with the linear reinforcing bar 6 and the fixing reinforcing bar 7 is further improved.

また、鉄骨3のウェブに形成される貫通孔34を基準径よりも小さく設計することで、例えば、貫通孔34同士の間隔を従来よりも狭くでき、鉄骨3のウェブに設ける貫通孔34の位置などの設計自由度がより向上する。また、鉄筋の引張強さを確保するため、束ね筋6a,7bを構成する鉄筋の断面積の和が、原設計の鉄筋6,7の断面積を下回らないように設計することで、多層建築物Mの強度を原設計と同等か向上することができる。また、鉄筋の付着力を確保するため、束ね筋6a,7bを構成する鉄筋の周長の和が、原設計の鉄筋6,7の周長を下回らないように設計することで、多層建築物Mの強度を原設計と同等か向上することができる。また、貫通孔34を基準径よりも小さく設計することができるので、基準径とした場合と比較して、鉄骨の断面欠損を少なくすることができる。その結果、多層建築物Mの強度を原設計と同等か向上することができる。   In addition, by designing the through holes 34 formed in the web of the steel frame 3 to be smaller than the reference diameter, for example, the interval between the through holes 34 can be made narrower than before, and the positions of the through holes 34 provided in the web of the steel frame 3 The degree of freedom in design is improved. In addition, in order to ensure the tensile strength of the reinforcing bars, it is designed so that the sum of the cross-sectional areas of the reinforcing bars constituting the binding bars 6a and 7b does not fall below the cross-sectional area of the originally designed reinforcing bars 6 and 7. The strength of the object M can be improved or equal to that of the original design. In addition, in order to ensure the adhesion of reinforcing bars, it is designed so that the sum of the perimeters of the reinforcing bars that make up the binding bars 6a, 7b does not fall below the perimeter of the originally designed reinforcing bars 6, 7. The strength of M can be improved to the same level as the original design. Moreover, since the through-hole 34 can be designed smaller than a reference diameter, the cross-sectional defect | deletion of a steel frame can be decreased compared with the case where it is set as a reference diameter. As a result, the strength of the multi-layered building M can be improved to be equivalent to the original design.

<第3実施形態>
図12は、第3実施形態に係る鉄骨鉄筋コンクリート造の柱の断面図を示す。このような柱101´は、第1実施形態の柱101と同じく、例えば、SRC造のマンションや商業ビル等の多層建築物の柱である。柱101´は、中心にT字状に交差させたT字型鉄骨103´が配置され、T字型鉄骨103´の周囲に垂直方向に延びる柱の主筋104が断面視正方形の柱101´の表面の内側に所定の間隔を空けて複数配置されている。柱の主筋104は、全体として正方形を成すように配置され、この柱の主筋104に沿うように環状のスターラップ105が配置されている。
<Third Embodiment>
FIG. 12 shows a cross-sectional view of a steel reinforced concrete column according to the third embodiment. Such a pillar 101 'is a pillar of a multi-layered building such as an SRC condominium or a commercial building, for example, like the pillar 101 of the first embodiment. The column 101 ′ has a T-shaped steel frame 103 ′ that intersects in a T shape at the center, and a column main bar 104 that extends in the vertical direction around the T-shaped steel frame 103 ′ has a square shape in the cross-sectional view of the column 101 ′. A plurality are arranged inside the surface at a predetermined interval. The column main bars 104 are arranged to form a square as a whole, and an annular stirrup 105 is arranged along the column main bars 104.

T字型鉄骨103´は、H形鉄骨のウェブを十字状に交差させて一体的に構成したもので、T字型鉄骨のウェブ133´、T字型鉄骨のフランジ131´によって構成されている。T字型鉄骨103´の一方のウェブ133´には、コ型補強筋151,152の先端部が通るコ型補強筋用の貫通孔134が1カ所設けられている。T字型鉄骨の他方のウェブ133´には、同一高さに、コ型補強筋151,152が通るコ型補強筋用の貫通孔134が2カ所設けられている。コ型補強筋151,152は、いずれもコ型形状であり、対向する2つのコ型補強筋151,152の先端部同士がT字型鉄骨103´のコ型補強筋用の貫通孔134を通りラップしている。第3実施形態では、対向するコ型補強筋151,152のうち、少なくとも何れか一方が束ね筋で構成されている。そのため、コ型補強筋用の貫通孔134の孔径が従来の孔径(基準径)よりも小さく設計されている。貫通孔の設計処理は、第1実施形態と同様である。よって、説明は割愛する。   The T-shaped steel frame 103 ′ is formed by integrally crossing an H-shaped steel web in a cross shape, and includes a T-shaped steel web 133 ′ and a T-shaped steel flange 131 ′. . One web 133 ′ of the T-shaped steel frame 103 ′ is provided with one through-hole 134 for a U-shaped reinforcing bar through which the distal ends of the U-shaped reinforcing bars 151 and 152 pass. The other web 133 'of the T-shaped steel frame is provided with two through holes 134 for U-shaped reinforcing bars through which the U-shaped reinforcing bars 151 and 152 pass at the same height. Each of the U-shaped reinforcing bars 151 and 152 has a U-shaped shape, and the tip portions of the two opposing U-shaped reinforcing bars 151 and 152 form a through hole 134 for the U-shaped reinforcing bar of the T-shaped steel frame 103 ′. Wrapping the street. In the third embodiment, at least one of the opposing U-shaped reinforcing bars 151 and 152 is constituted by a bundled bar. Therefore, the hole diameter of the through hole 134 for the U-shaped reinforcing bar is designed to be smaller than the conventional hole diameter (reference diameter). The through hole design process is the same as in the first embodiment. Therefore, explanation is omitted.

鉄骨(T字型鉄骨103´)のウェブに形成される貫通孔(コ型補強筋用の貫通孔134)を基準径よりも小さく設計することで、例えば、貫通孔(コ型補強筋用の貫通孔134)同士の間隔を従来よりも狭くでき、鉄骨(T字型鉄骨103´)のウェブに設ける貫通孔(コ型補強用の貫通孔134)の位置などの設計自由度がより向上する。また、鉄筋の引張強さを確保するため、束ね筋を構成する鉄筋の断面積の和が、原設計の鉄筋(コ型補強筋151,152)の断面積を下回らないように設計することで、多層建築物の強度を原設計と同等か向上することができる。また、鉄筋の付着力を確保するため、束ね筋を
構成する鉄筋の周長の和が、原設計の鉄筋(コ型補強筋151,152)の周長を下回らないように設計することで、多層建築物の柱101´の強度を原設計と同等か向上することができる。また、貫通孔(コ型補強用の貫通孔134)を基準径よりも小さく設計することができるので、基準径とした場合と比較して、鉄骨の断面欠損を少なくすることができる。その結果、多層建築物の強度を原設計と同等か向上することができる。
By designing the through hole (through hole 134 for the U-shaped reinforcing bar) formed in the web of the steel frame (T-shaped steel frame 103 ') to be smaller than the reference diameter, for example, the through hole (for the U-shaped reinforcing bar) The interval between the through holes 134) can be made narrower than before, and the degree of freedom in design such as the position of the through holes (through holes 134 for U-shaped reinforcement) provided in the web of the steel frame (T-shaped steel frame 103 ') is further improved. . In addition, in order to ensure the tensile strength of the reinforcing bars, it is designed so that the sum of the cross-sectional areas of the reinforcing bars constituting the bundle reinforcing bars does not fall below the cross-sectional area of the originally designed reinforcing bars (co-shaped reinforcing bars 151, 152). The strength of the multi-layer building can be improved to the same level as the original design. Moreover, in order to ensure the adhesive strength of a reinforcing bar, it is designed so that the sum of the peripheral lengths of the reinforcing bars constituting the bundled bars does not fall below the peripheral length of the originally designed reinforcing bars (co-shaped reinforcing bars 151, 152). The strength of the pillar 101 'of the multi-layer building can be improved or equal to that of the original design. Further, since the through hole (through hole 134 for reinforcing the U-shaped reinforcing member) can be designed to be smaller than the reference diameter, the cross-sectional defect of the steel frame can be reduced as compared with the case of using the reference diameter. As a result, the strength of the multi-layered building can be improved to be equivalent to the original design.

以上、本発明の好適な実施形態を説明したが、本発明は、可能な限り実施形態を組み合わせて実施することができる。   Although the preferred embodiments of the present invention have been described above, the present invention can be implemented by combining the embodiments as much as possible.

1・・・外柱
2・・・桁方向に延びる大梁
21・・・梁間方向に延びる大梁
3・・・鉄骨
31、32・・・フランジ
33・・・ウェブ
34・・・貫通孔
4・・・主筋
5・・・スターラップ
6・・・直線状の鉄筋
7・・・定着鉄筋
71・・・定着領域
72・・・ラップ領域
8・・・結束線
101・・・柱
103・・・十字型鉄骨
104・・・柱の主筋
105・・・スターラップ
133・・・十字型鉄骨のウェブ
134・・・コ型補強筋用の貫通孔
151,152・・・コ型補強筋
201・・・設計装置
202・・・CPU
203・・・メモリ
204・・・情報処理装置
205・・・入力装置
206・・・表示装置
M・・・多層建築物
DESCRIPTION OF SYMBOLS 1 ... Outer pillar 2 ... Large beam extended in the direction of a girder 21 ... Large beam 3 extended in the direction between beams 3 ... Steel frame 31, 32 ... Flange 33 ... Web 34 ... Through-hole 4 ...・ Main bar 5 ... Star wrap 6 ... Linear reinforcing bar 7 ... Fixing reinforcing bar 71 ... Fixing area 72 ... Wrap area 8 ... Bundling wire 101 ... Column 103 ... Cross Type steel frame 104 ... Column main bar 105 ... Stirrup 133 ... Cross type steel web 134 ... Through holes 151, 152 for the U type reinforcement bars ... The U type reinforcement bars 201 ... Design device 202... CPU
203 ... Memory 204 ... Information processing device 205 ... Input device 206 ... Display device M ... Multi-layered building

Claims (3)

鉄骨鉄筋コンクリート構造物の鉄骨のウェブに設ける鉄骨の貫通孔の設計方法であって、
前記鉄骨の貫通孔にラップして通す2本の鉄筋の外径に基づいて当該鉄骨の貫通孔の孔径を取得し、かつ、前記鉄筋の断面積を取得する原設計処理と、
前記鉄骨の貫通孔に通す鉄筋のうち少なくとも一本の鉄筋を複数の鉄筋を束ねた束ね筋とし、当該束ね筋の断面積の和が、原設計処理で取得した鉄筋の断面積を下回らず、かつ、前記鉄骨の貫通孔の孔径が原設計処理で取得した孔径よりも小さくなるように孔径を設計する修正処理と、を含む鉄骨の貫通孔の設計方法。
A method for designing a through hole of a steel frame provided in a steel web of a steel reinforced concrete structure,
An original design process for obtaining the hole diameter of the through-hole of the steel frame based on the outer diameter of the two reinforcing bars passed through the steel-frame through-hole, and obtaining the cross-sectional area of the reinforcing bar;
Among the reinforcing bars that pass through the through-holes of the steel frame, at least one reinforcing bar is a binding bar that bundles a plurality of reinforcing bars, and the sum of the cross-sectional areas of the binding bars does not fall below the cross-sectional area of the reinforcing bar obtained in the original design process, And the correction process which designs a hole diameter so that the hole diameter of the through-hole of the said steel frame becomes smaller than the hole diameter acquired by the original design process, The design method of the through-hole of a steel frame including the correction process.
前記原設計処理では、前記鉄骨の貫通孔にラップして通す2本の鉄筋の周長を取得し、
前記修正処理では、前記束ね筋の周長の和が、原設計処理で算出した鉄筋の周長を下回らないように孔径を設計する、請求項1に記載の鉄骨の貫通孔の設計方法。
In the original design process, the circumference of the two reinforcing bars that are wrapped and passed through the through hole of the steel frame is obtained,
2. The method for designing a through-hole of a steel frame according to claim 1, wherein in the correction process, the hole diameter is designed so that the sum of the circumferences of the bundled bars does not fall below the circumference of the reinforcing bars calculated in the original design process.
鉄骨鉄筋コンクリート構造物の鉄骨のウェブに設けられ、原設計において少なくとも2本の鉄筋が通るよう設計された貫通孔を含む鉄骨であって、
少なくとも一本の鉄筋を複数の鉄筋を束ねた束ね筋とし、当該束ね筋の断面積の和が、原設計における一本の鉄筋の断面積を下回らず、かつ、前記貫通孔の孔径が原設計の孔径よりも小さくなるように設計された貫通孔を含む鉄骨。
A steel frame comprising a through hole provided in a steel web of a steel reinforced concrete structure and designed to pass at least two rebars in the original design;
At least one rebar is a bundle of multiple rebars, the sum of the cross-sectional areas of the rebar is not less than the cross-sectional area of the single rebar in the original design, and the hole diameter of the through hole is the original design A steel frame including a through-hole designed to be smaller than the hole diameter.
JP2014141361A 2014-07-09 2014-07-09 Method for designing through hole of steel frame, and steel frame including through hole Active JP6373666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014141361A JP6373666B2 (en) 2014-07-09 2014-07-09 Method for designing through hole of steel frame, and steel frame including through hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014141361A JP6373666B2 (en) 2014-07-09 2014-07-09 Method for designing through hole of steel frame, and steel frame including through hole

Publications (2)

Publication Number Publication Date
JP2016018429A JP2016018429A (en) 2016-02-01
JP6373666B2 true JP6373666B2 (en) 2018-08-15

Family

ID=55233600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014141361A Active JP6373666B2 (en) 2014-07-09 2014-07-09 Method for designing through hole of steel frame, and steel frame including through hole

Country Status (1)

Country Link
JP (1) JP6373666B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3372522B2 (en) * 2000-01-28 2003-02-04 オリエンタル建設株式会社 Non-pull type reaction force PC steel prestress force introduction device and prestress introduction method of concrete member using the device
JP2006144474A (en) * 2004-11-24 2006-06-08 Takenaka Komuten Co Ltd Shear reinforcing method and shear reinforcing structure for column and beam joint part
US9011616B2 (en) * 2008-08-30 2015-04-21 The Boeing Company Optimizing the shape of a composite structure

Also Published As

Publication number Publication date
JP2016018429A (en) 2016-02-01

Similar Documents

Publication Publication Date Title
JP2005351078A (en) Construction method of steel frame reinforced concrete column
JP5231836B2 (en) Connection structure
JP2007092301A (en) Structure for connecting column and beam together
JP6373666B2 (en) Method for designing through hole of steel frame, and steel frame including through hole
TWM576181U (en) Column confinement stirrup for steel frame and steel reinforced concrete strengthened seismic resistance structure
JP2016017335A (en) Joining structure and joining method
JP6204027B2 (en) Reinforced structure
JP2014163082A (en) Column-beam frame
JP2020148068A (en) Buckling prevention member and reinforcement structure of column
JP2006183311A (en) Reinforcing structure of circumference of opening section in reinforced concrete beam
JP2019189998A (en) Concrete floor structure and structure
JP2017203371A (en) Column-beam frame
JP7157401B2 (en) Joint structure of column-center-column assembly type restraint
JP2007327188A (en) Reinforced concrete body
JP6373667B2 (en) Joining structure and joining method
JP5784569B2 (en) Reinforced concrete beam opening reinforcement structure and beam reinforcement unit
JP2006233588A (en) Reinforcing bar with anchoring member and its manufacturing method
JP4298678B2 (en) Connection structure
JP2018071151A (en) Reinforcement structure of existing column
TWI769048B (en) Seismic Structural Column and Its Double-Core Reinforced Structure
JP6497482B2 (en) Beam-column joint structure
JP2011220107A (en) Reinforced concrete body
JP4750155B2 (en) Column and beam joint structure
JP3943252B2 (en) Steel reinforced concrete columns
JP2023008571A (en) Design method and construction method of fire resistance structure, and fire resistance structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180718

R150 Certificate of patent or registration of utility model

Ref document number: 6373666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150