JP2016017335A - Joining structure and joining method - Google Patents

Joining structure and joining method Download PDF

Info

Publication number
JP2016017335A
JP2016017335A JP2014141360A JP2014141360A JP2016017335A JP 2016017335 A JP2016017335 A JP 2016017335A JP 2014141360 A JP2014141360 A JP 2014141360A JP 2014141360 A JP2014141360 A JP 2014141360A JP 2016017335 A JP2016017335 A JP 2016017335A
Authority
JP
Japan
Prior art keywords
reinforcing bar
linear
fixing
hole
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014141360A
Other languages
Japanese (ja)
Other versions
JP6373665B2 (en
Inventor
忠 成瀬
Tadashi Naruse
忠 成瀬
晃治 青田
Koji Aota
晃治 青田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Original Assignee
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp filed Critical Maeda Corp
Priority to JP2014141360A priority Critical patent/JP6373665B2/en
Publication of JP2016017335A publication Critical patent/JP2016017335A/en
Application granted granted Critical
Publication of JP6373665B2 publication Critical patent/JP6373665B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a technology on a joining structure capable of securing anchorage force, and also excellent in workability, in the joining structure of a steel frame reinforced concrete structure.SOLUTION: A joining structure of a steel frame reinforced concrete structure is provided for joining a linear first structure and a linear second structure for connecting the first structure, and in a steel frame of the second structure, a web of the steel frame is provided with a steel frame having a through-hole of passing a reinforcement of the first structure and the reinforcement of the first structure, and the reinforcement of the first structure comprises a linear reinforcement of passing an end part through the through-hole and an anchor reinforcement of including a linear lap area positioned on the opposite side of the linear reinforcement with the web as a reference and connected to the end part of the linear reinforcement by passing through the through-hole and a deformed anchor area of continuing with the lap area.SELECTED DRAWING: Figure 3

Description

本発明は、接合構造、及び接合方法に関する。   The present invention relates to a joining structure and a joining method.

鉄筋コンクリート(RC:reinforced concrete)造又は鉄骨鉄筋コンクリート(SRC:steel reinforced concrete)造の接合構造、又は接合方法として、種々の技術がある。例えば、特許文献1には、鋼材に設けた穿孔部に鉄筋を挿通し、柱への鉄筋の定着長さとして、その鉄筋径の30倍から40倍程度を確保することが必要であったことが開示されている。また、特許文献1には、鉄筋をコンクリート中で強く拘束することで、定着長さを鉄筋径の10倍以下にできることが開示されている。また、特許文献2には、鉄骨鉄筋コンクリート造柱の座屈強度を向上するため、鉄骨のウェブに穿孔部を形成し、この穿孔部にコ字型に成形したコ型補強筋を挿通させ、反対側からも穿孔部にコ型補強筋を挿通させてコ型補強筋同士を非結合でオーバーラップさせ、そのオーバーラップ部分の中央に鉄骨のウェブが位置するように配置し、鉄骨のフランジに近接してこのフランジを取り囲むようにコ型補強筋を配筋することが開示されている。また、特許文献3には、補強筋の継手部分の溶接作業を省略するため、補強筋の先端同士をウェブ鋼板の穿孔部の左右から互いに重なり合うように挿通させることが開示されている。   There are various techniques as a joining structure or a joining method of a reinforced concrete (RC) structure or a steel reinforced concrete (SRC) structure. For example, in Patent Document 1, it was necessary to insert a reinforcing bar into a perforated part provided in a steel material, and to secure about 30 to 40 times the reinforcing bar diameter as the fixing length of the reinforcing bar to the column. Is disclosed. Patent Document 1 discloses that the fixing length can be made 10 times or less of the diameter of the reinforcing bar by strongly restraining the reinforcing bar in the concrete. In Patent Document 2, in order to improve the buckling strength of a steel reinforced concrete column, a perforated portion is formed in a steel web, and a U-shaped reinforcing bar formed in a U-shape is inserted into the perforated portion. From the side, the U-shaped reinforcing bars are inserted into the perforated part so that the U-shaped reinforcing bars overlap with each other, and the steel web is positioned in the center of the overlapping part, and close to the steel flange. Thus, it is disclosed that a U-shaped reinforcing bar is arranged so as to surround the flange. Patent Document 3 discloses that the reinforcing bars are inserted so that the ends of the reinforcing bars overlap with each other from the left and right of the perforated portion of the web steel plate in order to omit the welding operation of the joint portion of the reinforcing bars.

特開2000−73496号公報JP 2000-73496 A 特許第3943252号公報Japanese Patent No. 3943252 特許第3611473号公報Japanese Patent No. 3611473

例えば、鉄骨鉄筋コンクリート造(以下、単にSRC造ともいう)の梁(大梁)の中間部に他のSRC造または鉄筋コンクリート造(以下、単にRC造ともいう)の梁(小梁)を接合する場合、大梁と小梁の上端高さが異なると、小梁(接続側)の主鉄筋が大梁(被接続側)の内部の鉄骨に干渉することがある。この場合、主に圧縮力が作用する小梁の下側主筋は大梁の鉄骨手前で折り曲げてコンクリートに定着させることも考えられる。但し、主に引張力が作用する小梁の上側主筋は引張力をコンクリートに十分に伝達できないなど、定着力を確保できないといった構造設計上の理由により、鉄骨のウェブに貫通孔をあけ、貫通孔に小梁の主筋を通してコンクリートに定着することの方が多い。しかしながら、例えばL形状に折り曲げた長い鉄筋を鉄骨ウェブの貫通孔に通すのは施工上困難である。   For example, when joining a beam (small beam) of another SRC structure or a reinforced concrete structure (hereinafter simply referred to as RC structure) to a middle portion of a beam (large beam) of a steel reinforced concrete structure (hereinafter also referred to as SRC structure), If the upper end height of the girder is different from that of the girder, the main rebar of the girder (connection side) may interfere with the steel frame inside the girder (connection side). In this case, it is conceivable that the lower main bar of the small beam on which the compressive force mainly acts is bent and fixed to the concrete before the steel beam of the large beam. However, due to structural design reasons such as the upper main bar of the small beam where the tensile force mainly acts cannot sufficiently secure the fixing force, for example, the tensile force cannot be sufficiently transmitted to the concrete, a through hole is made in the steel web. In many cases, it is fixed to concrete through the main beam of the small beam. However, for example, it is difficult in terms of construction to pass a long reinforcing bar bent into an L shape through the through hole of the steel frame web.

このような問題は、大梁と小梁の接合構造に限られたものではない。このような問題は、鉄骨鉄筋コンクリート構造物において、所謂、梁の鉛直方向に段差がある場合を含む十字形接合部、ト形接合部、T形接合部、L形接合部、片持ち梁の接合部など、平面視又は断面視において、梁、桁、柱などの構造体同士が接合する接合構造において、広く当てはまる。   Such a problem is not limited to the joint structure of a large beam and a small beam. In such a steel reinforced concrete structure, there is a problem that a so-called cruciform joint, toe joint, T joint, L joint, cantilever joint including a case where there is a step in the vertical direction of the beam. This is widely applied to a joint structure in which structures such as beams, girders, and columns are joined together in a plan view or a cross-sectional view.

本発明は、上記の問題に鑑み、構造体同士が接合する、鉄骨鉄筋コンクリート構造物の接合構造であって、定着力を確保でき、かつ、施工性に優れた接合構造に関する技術を提供することを課題とする。   In view of the above problems, the present invention is a structure for joining steel reinforced concrete structures in which structures are joined to each other, and can provide a technique related to a joined structure that can secure fixing force and is excellent in workability. Let it be an issue.

本発明では、上記課題を解決するため、鉄骨鉄筋コンクリート構造物を構成する構造体同士が接合する接合構造において、構造体の鉄骨のウェブに、構造体に接続する他の構造体の鉄筋が通る貫通孔を設け、この貫通孔に鉄筋を通すこととした。また、貫通孔に通す鉄筋は、貫通孔を通る直線状の鉄筋と、直線状の鉄筋の反対側から貫通孔に挿入され、直線状の鉄筋と接続される変形された定着鉄筋で構成することとした。   In the present invention, in order to solve the above-mentioned problem, in a joining structure in which structures constituting a steel reinforced concrete structure are joined together, a steel web of the structure passes through a reinforcing bar of another structure connected to the structure. A hole was provided, and the reinforcing bar was passed through this through hole. In addition, the reinforcing bar that passes through the through hole is composed of a linear reinforcing bar that passes through the through hole and a deformed anchoring reinforcing bar that is inserted into the through hole from the opposite side of the linear reinforcing bar and connected to the linear reinforcing bar. It was.

詳細には、本発明は、直線状の第1構造体と当該第1構造体が接続される直線状の第2構造体が接合する、鉄骨鉄筋コンクリート構造物の接合構造であって、前記第2構造体の鉄骨であって、当該鉄骨のウェブに、前記第1構造体の鉄筋が通る貫通孔を有する鉄骨と、前記第1構造体の鉄筋と、を備え、前記第1構造体の鉄筋は、端部が前記貫通孔を通る直線状の鉄筋と、前記ウェブを基準として前記直線状の鉄筋の反対側に位置し、前記貫通孔を通り前記直線状の鉄筋の端部と接続される直線状のラップ領域と、当該ラップ領域に連なる変形された定着領域とを含む定着鉄筋と、を有する。   Specifically, the present invention is a joint structure of a steel reinforced concrete structure in which a linear first structure and a linear second structure to which the first structure is connected are joined. A steel frame of a structure, comprising: a steel frame having a through hole through which the reinforcing bar of the first structure passes, and a reinforcing bar of the first structure, wherein the reinforcing bar of the first structure is A straight rebar that passes through the through hole, and a straight line that is located on the opposite side of the linear rebar with respect to the web and that is connected to the end of the straight rebar through the through hole. And a fixing reinforcing bar including a deformed fixing region connected to the wrapping region.

本発明に係る接合構造によれば、第1構造体の鉄筋が、直線状の鉄筋と、定着鉄筋とによって構成されている。定着鉄筋は、鉄骨のウェブを基準として、直線状の鉄筋の反対側に位置し、直線状の鉄筋の反対側から鉄骨のウェブの貫通孔に通すことができる。そのため、例えば第1構造体として、L形状に折り曲げた長い鉄筋をウェブの貫通孔に通す必要がないので、施工性が向上する。また、第1構造体の直線状の鉄筋の端部と定着鉄筋のラップ領域は、鉄骨のウェブの貫通孔に通されて接続され、鉄骨のフランジに挟まれたコンクリート中に位置する。そのため、第1構造体の鉄筋は、コンクリートに強く定着される。特に、定着鉄筋の定着領域は、変形されており、当該直線状の鉄筋に引張力が作用した場合、ラップ領域のコンクリートを介して発生する定着鉄筋の同方向の引張力の割合を増大させることができる。この定着鉄筋の引張力は、作用反作用の原理から、直線状の鉄筋に作用する引張力に対して反対方向の反力、つまり定着力として作用する。以上の関係を式で表現すると、以下のようになる。
直線状の鉄筋に作用する引張力=ラップ領域を介して定着鉄筋に生じる引張力+ウェブで抵抗する圧縮力+周辺コンクリートへの付着力
According to the joint structure according to the present invention, the reinforcing bar of the first structure is constituted by a linear reinforcing bar and a fixing reinforcing bar. The fixing reinforcing bar is located on the opposite side of the linear reinforcing bar with respect to the steel web, and can be passed through the through hole of the steel web from the opposite side of the linear reinforcing bar. Therefore, for example, as the first structure, it is not necessary to pass a long reinforcing bar bent in an L shape through the through-hole of the web, so that workability is improved. Further, the end portion of the linear reinforcing bar of the first structure and the wrapping region of the fixing reinforcing bar are connected through the through hole of the steel web and are located in the concrete sandwiched between the flanges of the steel frame. Therefore, the reinforcing bar of the first structure is firmly fixed to the concrete. In particular, the fixing region of the fixing reinforcing bar is deformed, and when a tensile force acts on the linear reinforcing bar, the proportion of the tensile force in the same direction of the fixing reinforcing bar generated through the concrete in the lap region is increased. Can do. From the principle of action and reaction, the tensile force of the fixing reinforcing bar acts as a reaction force in the opposite direction to the tensile force acting on the linear reinforcing bar, that is, as a fixing force. The above relationship can be expressed as an expression as follows.
Tensile force acting on linear reinforcing bars = Tensile force generated on anchored reinforcing bars through the lap region + Compression force resisting web + Adhesive force on surrounding concrete

第1構造体、第2構造体には、柱、梁、桁等が含まれる。本発明に係る接合構造は、所謂、ト形接合部、T形接合部、片持ち梁、L形接合部の接合部など、柱、梁、桁等の構造体が接合する接合部に適用することができる。また、本発明に係る接合構造は、第2構造体に鉄骨を含む構造物に適用可能である。換言すると、第2構造体は、SRC造であることが好ましいが、第1構造体は、SRC造の他、RC造でもよい。構造物は、建築構造物の他、土木構造物でもよい。   The first structure and the second structure include columns, beams, girders, and the like. The joint structure according to the present invention is applied to joints where structures such as columns, beams, girders, etc. join, such as joints of so-called to-joints, T-joints, cantilevers, and L-joints. be able to. The joint structure according to the present invention can be applied to a structure including a steel frame in the second structure. In other words, the second structure is preferably made of SRC, but the first structure may be made of RC instead of SRC. The structure may be a civil engineering structure as well as a building structure.

ここで、本発明に係る接合構造において、前記定着領域は、前記直線状のラップ領域の外径よりも突出した領域を有する構成としてもよい。突出した領域にコンクリートを支圧する支圧力、コンクリートに付着する付着力がより強く作用し、第1構造体の鉄筋を、コンクリートに強く定着することができる。突出した領域を有する定着鉄筋には、L形状の定着鉄筋、J形状の定着鉄筋が例示される。L形状の定着鉄筋の先端を更に折り曲げるようにしてもよい。また、突出した領域を有する定着鉄筋には、先端が潰され、定着領域の外径がラップ領域の外径よりも大きい形状を有する定着鉄筋や、プレート等が接続され、プレートがラップ領域の外径よりも外側に突出した形状等も含まれる。   Here, in the joining structure according to the present invention, the fixing region may have a region protruding from the outer diameter of the linear wrap region. The supporting pressure for supporting concrete in the protruding region and the adhesion force adhering to the concrete act more strongly, and the reinforcing bars of the first structure can be firmly fixed to the concrete. Examples of the fixing reinforcing bar having the protruding region include an L-shaped fixing reinforcing bar and a J-shaped fixing reinforcing bar. The tip of the L-shaped fixing rebar may be further bent. In addition, a fixing reinforcing bar having a protruding region is connected to a fixing reinforcing bar having a shape whose outer diameter is larger than the outer diameter of the wrapping region, a plate, or the like, and the plate is outside the wrapping region. A shape protruding outward from the diameter is also included.

また、本発明に係る接合構造において、前記貫通孔は、前記直線状の鉄筋と前記定着鉄筋とがそれぞれ1本通るように設計された場合を基準径とすると、前記直線状の鉄筋と、前記定着鉄筋とのうち、少なくとも何れか一方を複数本とし、前記基準径よりも小さくな
るように設計され、前記直線状の鉄筋と、前記定着鉄筋とのうち、少なくとも何れか一方は、前記貫通孔に複数本通されているようにしてもよい。
Further, in the joint structure according to the present invention, when the through hole is designed so that each of the linear reinforcing bar and the fixing reinforcing bar passes through one, the linear reinforcing bar, Among the fixed reinforcing bars, at least one of the reinforcing bars is designed to be smaller than the reference diameter, and at least one of the linear reinforcing bars and the fixing reinforcing bars is the through hole. A plurality of them may be passed through.

貫通孔を基準径よりも小さく設計することで、例えば、貫通孔同士の間隔を従来よりも狭くでき、鉄骨のウェブに設ける貫通孔の位置などの設計の自由度がより向上する。ウェブ1枚当たりの貫通孔に通すことができる鉄筋の数が増え、第1構造体の鉄筋の断面積を増すことができるため、第1構造体の鉄筋を、コンクリートにより強く定着することができる。また、貫通孔を基準径よりも小さく設計することができるので、基準径とした場合と比較して、鉄骨の断面欠損を少なくすることができる。なお、鉄筋の引張強さを確保するため、複数本とする鉄筋(束ね筋)の断面積の和が、原設計の鉄筋の断面積を下回らないように設計した方がよい。また、鉄筋の付着力を確保するため、束ね筋の周長の和が、原設計の鉄筋の周長を下回らないように設計した方がよい。   By designing the through-holes to be smaller than the reference diameter, for example, the interval between the through-holes can be made narrower than before, and the degree of freedom of design such as the positions of the through-holes provided in the steel web is further improved. Since the number of reinforcing bars that can be passed through the through hole per web increases and the cross-sectional area of the reinforcing bars of the first structure can be increased, the reinforcing bars of the first structure can be firmly fixed to the concrete. . In addition, since the through hole can be designed to be smaller than the reference diameter, the cross-sectional defect of the steel frame can be reduced as compared with the case of using the reference diameter. In order to secure the tensile strength of the reinforcing bars, it is better to design so that the sum of the cross-sectional areas of multiple reinforcing bars (bundle bars) does not fall below the cross-sectional area of the originally designed reinforcing bars. Moreover, in order to ensure the adhesive strength of a reinforcing bar, it is better to design so that the sum of the circumferential lengths of the bundled bars does not fall below the circumferential length of the originally designed reinforcing bars.

ここで、本発明は、接合方法として特定することができる。すなわち、本発明は、直線状の第1構造体と当該第1構造体が接続される直線状の第2構造体が接合する、鉄骨鉄筋コンクリート構造物の接合構造の接合方法であって、前記接合構造は、前記第2構造体の鉄骨であって、当該鉄骨のウェブに、前記第1構造体の鉄筋が通る貫通孔を有する鉄骨と、前記第1構造体の鉄筋と、を備え、前記第1構造体の鉄筋は、端部が前記貫通孔を通る直線状の鉄筋と、前記ウェブを基準として前記直線状の鉄筋の反対側に位置し、前記貫通孔を通り前記直線状の鉄筋の端部と接続される直線状のラップ領域と、当該ラップ領域に連なる変形された定着領域とを含む定着鉄筋と、を有し、前記定着鉄筋を前記直線状の鉄筋の反対側から前記貫通孔に通し、前記直線状の鉄筋の端部と前記定着鉄筋の直線状のラップ領域とを接続する、接合方法である。   Here, the present invention can be specified as a joining method. That is, the present invention is a method for joining a steel reinforced concrete structure joining structure in which a linear first structure and a linear second structure to which the first structure is connected are joined. The structure is a steel frame of the second structure, and includes a steel frame having a through hole through which the reinforcing bar of the first structure passes through the web of the steel frame, and the reinforcing bar of the first structure, The reinforcing bar of one structure is located on the opposite side of the linear reinforcing bar with the end part passing through the through hole and the linear reinforcing bar with respect to the web, and the end of the linear reinforcing bar passes through the through hole. And a fixed reinforcing bar including a deformed fixing region connected to the wrapping region, and the fixing reinforcing bar from the opposite side of the linear reinforcing bar to the through hole. Through the end of the linear reinforcing bar and the linear ladder of the anchoring reinforcing bar. Connecting the region is a joining method.

本発明に係る接合方法によれば、例えば第1構造体の代わりにL形状に折り曲げた長い鉄筋を鉄骨のウェブの貫通孔に通す必要がないので、施工性が向上する。また、直線状の鉄筋の端部と定着鉄筋のラップ領域は、鉄骨のウェブの貫通孔に通されて接続され、鉄骨のフランジに挟まれたコンクリート中に位置する。そのため、第1構造体の鉄筋を、コンクリートに強く定着することができる。   According to the joining method according to the present invention, for example, it is not necessary to pass a long reinforcing bar bent in an L shape instead of the first structure through the through hole of the steel web, so that workability is improved. Further, the end portion of the linear reinforcing bar and the lap region of the fixing reinforcing bar are connected through the through hole of the steel frame web, and are located in the concrete sandwiched between the flanges of the steel frame. Therefore, the reinforcing bar of the first structure can be firmly fixed on the concrete.

本発明によれば、構造体同士が接合する、鉄骨鉄筋コンクリート構造物の接合構造であって、定着力を確保でき、かつ、施工性に優れた接合構造に関する技術を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it is a joining structure of the steel frame reinforced concrete structure which structures join, Comprising: The technique regarding the joining structure which can ensure fixing force and was excellent in workability can be provided.

図1は、第1実施形態に係る接合構造を含む多層建築物の斜視図を示す。FIG. 1 is a perspective view of a multilayer building including a joint structure according to the first embodiment. 図2は、第1実施形態に係る接合構造を含む多層建築物の平面図の一例を示す。FIG. 2 shows an example of a plan view of a multilayer building including the joint structure according to the first embodiment. 図3は、図1のA−A断面の拡大図を示す。FIG. 3 shows an enlarged view of the AA cross section of FIG. 図4は、第1実施形態に係る接合構造の原理図を示す。FIG. 4 shows a principle diagram of the joint structure according to the first embodiment. 図5は、第1実施形態に係る接合構造の接合方法を示す。FIG. 5 shows a bonding method of the bonding structure according to the first embodiment. 図6は、第2実施形態に係る接合構造を示す。FIG. 6 shows a joint structure according to the second embodiment. 図7は、第3実施形態に係る接合構造を示す。FIG. 7 shows a joint structure according to the third embodiment. 図8は、第4実施形態に係る定着鉄筋の例を示す。FIG. 8 shows an example of a fixing reinforcing bar according to the fourth embodiment. 図9は、ウェブの貫通孔と挿入される鉄筋との関係を示す。FIG. 9 shows the relationship between the through-hole of the web and the reinforcing bar to be inserted. 図10は、束ね筋を用いた場合の総断面積、総周長、孔径等を示す。FIG. 10 shows a total cross-sectional area, a total perimeter, a hole diameter, and the like in the case where a bundled line is used.

次に、本発明の第1実施形態について図面に基づいて説明する。以下の第1実施形態で
は、鉄骨鉄筋コンクリート(SRC)造の多層建築物を例について説明する。以下の説明は例示であり、本発明は以下の内容に限定されるものではない。
Next, a first embodiment of the present invention will be described with reference to the drawings. In the following first embodiment, an example of a steel reinforced concrete (SRC) multi-layered building will be described. The following description is an example, and the present invention is not limited to the following contents.

<第1実施形態>
<<多層建築物の構成>>
図1は、第1実施形態に係る接合構造を含む多層建築物の斜視図を示す。図2は、第1実施形態に係る接合構造を含む多層建築物の平面図の一例を示す。図3は、図1のA−A断面の拡大図を示す。なお、図では、鉄骨や鉄筋は、簡略化して図示する。
<First Embodiment>
<< Configuration of multi-layer building >>
FIG. 1 is a perspective view of a multilayer building including a joint structure according to the first embodiment. FIG. 2 shows an example of a plan view of a multilayer building including the joint structure according to the first embodiment. FIG. 3 shows an enlarged view of the AA cross section of FIG. In the figure, the steel frame and the reinforcing bar are illustrated in a simplified manner.

多層建築物Mは、SRC造のマンションや商業ビル等の建築構造物を想定したもので、複数階からなる。以下の説明では、図2,3に示すように、垂直方向に延びる柱(外柱)1に、桁方向に延びる大梁2及び梁間方向に延びる大梁21の端部が接続された柱梁接合部(所謂、ト形接合部)の接合構造10を例に説明する。   The multi-layered building M is assumed to be a building structure such as an SRC apartment or commercial building, and is composed of a plurality of floors. In the following description, as shown in FIGS. 2 and 3, a column beam joint in which ends of a large beam 2 extending in the beam direction and a large beam 21 extending in the inter-beam direction are connected to a column (outer column) 1 extending in the vertical direction. An example of a joining structure 10 of a so-called G-shaped joint will be described.

なお、接合構造10は、上記に限定されない。接合構造10は、梁同士、柱と梁、柱と桁等が接合する接合部に好適に用いることができる。このような接合部には、最上部の梁と柱がT形状に接続される接合部(例えば、T形接合部)、大梁と小梁がT形状に接続される接合部、外柱と片持ち梁(バルコニーなど)がT形状に接続される接合部等が例示される。なお、鉄骨を含む構造体に接続される構造体は、鉄筋を含む構造体であればよく、SRC造、RC造の何れでもよい。また、接合構造10は、建築構造物の他、土木構造物に適用してもよい。   Note that the bonding structure 10 is not limited to the above. The joint structure 10 can be suitably used for a joint where beams, columns and beams, columns and girders, etc. are joined. Such a joint includes a joint where the uppermost beam and column are connected in a T shape (for example, a T-shaped joint), a joint where a large beam and a small beam are connected in a T shape, an outer column and a piece. Examples include a joint where a cantilever (such as a balcony) is connected in a T shape. In addition, the structure connected to the structure containing a steel frame should just be a structure containing a reinforcing bar, and may be either SRC structure or RC structure. Moreover, you may apply the joining structure 10 to a civil engineering structure other than a building structure.

桁方向に延びる大梁2(本発明の第2構造体に相当する)は、中心にH形の鉄骨3が配置され、鉄骨3の周囲に桁方向に延びる大梁の主筋(主鉄筋)4が断面視長方形の大梁2の表面の内側に所定の間隔を空けて複数配置されている。桁方向に延びる大梁の主筋4は、全体として長方形を成すように配置され、この桁方向に延びる大梁の主筋4に沿うように環状のスターラップ5が配置されている。桁方向に延びる大梁の主筋4には、異形鉄筋が用いられている。桁方向に延びる大梁の主筋4の径やこの主筋4同士の間隔は、多層建築物Mに応じて適宜設計される。スターラップ5の径やスターラップ5同士の間隔も、多層建築物Mに応じて適宜設計される。   A large beam 2 (corresponding to the second structure of the present invention) extending in the girder direction has an H-shaped steel frame 3 disposed at the center, and a main beam (main reinforcing bar) 4 of the large beam extending in the girder direction around the steel frame 3 has a cross section. A plurality of beams are arranged at predetermined intervals inside the surface of the large beam 2 having a rectangular shape. The main beam 4 of the large beam extending in the girder direction is arranged so as to form a rectangle as a whole, and an annular stirrup 5 is arranged along the main beam 4 of the large beam extending in the beam direction. Deformed bars are used for the main bars 4 of the large beams extending in the girder direction. The diameter of the main bars 4 of the large beams extending in the girder direction and the interval between the main bars 4 are appropriately designed according to the multilayer building M. The diameter of the star wrap 5 and the interval between the star wraps 5 are also appropriately designed according to the multilayer building M.

第1実施形態に係る鉄骨3は、上記のようにH形であり、長方形のウェブ33と、ウェブ33の両端部にウェブ33と直交して連なる、長方形のフランジ31,32と、によって構成されている。フランジ31,32は、対向している。ウェブ33には、梁間方向に延びる大梁21(本発明の第1構造体)の主筋40の一部が通る貫通孔34が垂直方向に2カ所設けられている。貫通孔34は、円形であり、梁間方向に延びる大梁21の主筋40を構成する直線状の鉄筋6と定着鉄筋7とが通る孔径を有する。この孔径は、本発明の基準径に相当する。例えば、直線状の鉄筋6の最外径をD1、定着鉄筋7の最外径をD2とすると、貫通孔の孔径φは、次の式で算出できる。αは、孔径と鉄筋との間に隙間を形成するための補正値で、例えば2〜3mmに設定することができる。なお、本第1実施形態では、D1=D2である。
φ=D1+D2+α
The steel frame 3 according to the first embodiment is H-shaped as described above, and includes a rectangular web 33 and rectangular flanges 31 and 32 that are connected to both ends of the web 33 at right angles to the web 33. ing. The flanges 31 and 32 are opposed to each other. The web 33 is provided with two through holes 34 in the vertical direction through which a part of the main bar 40 of the large beam 21 (the first structure of the present invention) extending in the inter-beam direction. The through-hole 34 is circular and has a hole diameter through which the linear reinforcing bar 6 and the fixing reinforcing bar 7 constituting the main reinforcing bar 40 of the large beam 21 extending in the beam-to-beam direction pass. This hole diameter corresponds to the reference diameter of the present invention. For example, if the outermost diameter of the linear reinforcing bar 6 is D1 and the outermost diameter of the fixing reinforcing bar 7 is D2, the hole diameter φ of the through hole can be calculated by the following equation. α is a correction value for forming a gap between the hole diameter and the reinforcing bar, and can be set to 2 to 3 mm, for example. In the first embodiment, D1 = D2.
φ = D1 + D2 + α

梁間方向に延びる大梁の主筋40は、上端筋と下端筋の夫々が2段筋となっている。上端筋の上段の鉄筋61と下端筋の下段の鉄筋61は、何れもL形状であり、鉄骨3の外側、かつスターラップ5の内側に配置されている。また、上端筋の上段の鉄筋61と下端筋の下段の鉄筋61との間に位置する2本の鉄筋、すなわち、上端筋の下段の鉄筋及び下端筋の上段の鉄筋(本発明の第1構造体の鉄筋に相当する)は、直線状の鉄筋6と、定着鉄筋7によって構成され、垂直方向において間隔を空けて穿孔された貫通孔34に夫々挿入されている。直線状の鉄筋6と、定着鉄筋7には、何れも異形鉄筋が用いられている。直
線状の鉄筋6は、端部が貫通孔34に通され、定着鉄筋7のラップ領域と接続される。接続には、結束線8が用いられている。接続は、ウェブ33を基準として、内側(直線状の鉄筋側)と外側(定着鉄筋側)の2カ所で行われている。なお、第1実施形態では、定着鉄筋7の定着領域71が互いに向き合うように配置されているが、定着鉄筋7の定着領域71の向きは、鉄骨3のフランジ31,32、他の鉄筋、又は定着鉄筋7同士が干渉しないよう適宜変更することができる。
The main beam 40 of the large beam extending in the beam-to-beam direction has a two-level bar at each of the upper and lower bars. The upper reinforcing bar 61 at the upper end and the lower reinforcing bar 61 at the lower end are both L-shaped and are arranged outside the steel frame 3 and inside the stirrup 5. Further, two reinforcing bars located between the upper reinforcing bar 61 of the upper end and the lower reinforcing bar 61 of the lower end, that is, the lower reinforcing bar of the upper end and the upper reinforcing bar of the lower end (the first structure of the present invention). (Corresponding to a reinforcing bar of the body) is composed of a linear reinforcing bar 6 and a fixing reinforcing bar 7 and is inserted into through-holes 34 which are drilled at intervals in the vertical direction. Both the linear reinforcing bar 6 and the fixing reinforcing bar 7 are deformed reinforcing bars. The end of the linear reinforcing bar 6 is passed through the through hole 34 and connected to the wrap region of the fixing reinforcing bar 7. A tie wire 8 is used for connection. The connection is made at two locations on the inner side (straight reinforcing bar side) and the outer side (fixed reinforcing bar side) with the web 33 as a reference. In the first embodiment, the fixing regions 71 of the fixing reinforcing bars 7 are arranged so as to face each other. However, the fixing regions 71 of the fixing reinforcing bars 7 are oriented in accordance with the flanges 31 and 32 of the steel frame 3, other reinforcing bars, or The fixing reinforcing bars 7 can be appropriately changed so as not to interfere with each other.

定着鉄筋7は、全体としてL形状であり、直線状のラップ領域72と、この直線状のラップ領域72を延出させた領域がウェブ33と平行になるようにウェブ側に折り曲げられた定着領域71と、によって構成されている。ラップ領域72の長さは、フランジ31,32の幅よりもやや短く設計されている。また、定着領域71の長さは、フランジ31,32の間隔よりも短く設計されている。その結果、定着鉄筋7は、鉄骨3のフランジ31,32との間に挟まれるコンクリート中に位置するようになっている。   The fixing reinforcing bar 7 has an L shape as a whole, and a fixing region that is bent to the web side so that a linear wrap region 72 and a region where the linear wrap region 72 is extended are parallel to the web 33. 71. The length of the wrap region 72 is designed to be slightly shorter than the width of the flanges 31 and 32. The length of the fixing region 71 is designed to be shorter than the interval between the flanges 31 and 32. As a result, the fixing reinforcing bar 7 is located in the concrete sandwiched between the flanges 31 and 32 of the steel frame 3.

ここで図4は、第1実施形態に係る接合構造の原理図を示す。梁間方向に延びる大梁の主筋40の一部、すなわち直線状の鉄筋6と定着鉄筋7のラップ領域72に引張力Bが加わると、直線状の鉄筋6と定着鉄筋7のラップ領域72の周囲にせん断力Cが作用する。また、直線状の鉄筋6と定着鉄筋7のラップ領域72とウェブ33との間に圧縮力Dが作用する。圧縮力Dは、力のベクトル分解によって、ウェブ1に垂直な力E1と平行な力E2として作用し、E1はウェブ自体を面外方向に押すとともに、ウェブを介して反対側のコンクリートを押す。また、E2はフランジ31,32を押す。一方で、フランジ31,32は、固定されているため、コンクリートを押し戻す反作用を発揮する。その結果、コンクリートと、直線状の鉄筋6及び定着鉄筋7との定着性が向上する。   Here, FIG. 4 shows a principle diagram of the bonding structure according to the first embodiment. When a tensile force B is applied to a part of the main reinforcement 40 of the large beam extending in the beam-to-beam direction, that is, the wrap region 72 of the linear reinforcing bar 6 and the fixing reinforcing bar 7, around the wrap region 72 of the linear reinforcing bar 6 and the fixing reinforcing bar 7. A shearing force C acts. Further, a compressive force D acts between the lap region 72 of the linear reinforcing bar 6 and the fixing reinforcing bar 7 and the web 33. The compressive force D acts as a force E2 that is perpendicular to the web 1 and parallel to the force E1 by vector decomposition of the force. The E1 pushes the web itself in an out-of-plane direction and pushes the opposite concrete through the web. E2 pushes the flanges 31, 32. On the other hand, since the flanges 31 and 32 are fixed, they exert a reaction to push back the concrete. As a result, the fixing property between the concrete and the linear reinforcing bars 6 and the fixing reinforcing bars 7 is improved.

また、ラップ領域72と定着領域71との間に位置する角部とウェブ33との間には、特に強いコンクリートを圧縮する支圧力Fが作用する。また、定着領域71には、付着力Gが作用する。支圧力F及び付着力Gが作用することで、直線状の鉄筋6及び定着鉄筋7との定着性が更に向上する。   Further, a supporting pressure F that compresses particularly strong concrete acts between the corner portion positioned between the wrap region 72 and the fixing region 71 and the web 33. Further, an adhesion force G acts on the fixing region 71. By the support pressure F and the adhesion force G acting, the fixing property with the linear reinforcing bar 6 and the fixing reinforcing bar 7 is further improved.

<<接合方法>>
図5は、第1実施形態に係る接合構造の接合方法の一例を示す。以下に説明する接合方法は、多層建築物Mの鉄骨組立工程完了後、鉄筋組立工程で行うことができる。但し、穿孔工程については、鉄骨組立工程前に行ってもよい。
<< Join method >>
FIG. 5 shows an example of a bonding method of the bonding structure according to the first embodiment. The joining method described below can be performed in the reinforcing bar assembling process after the steel frame assembling process of the multilayer building M is completed. However, the drilling process may be performed before the steel frame assembly process.

穿孔工程では、鉄骨のウェブ33に貫通孔34が形成される。なお、穿孔工程は、鉄骨の組立前に行ってもよく、また、鉄骨の組立後に行ってもよい。鉄筋挿入工程では、貫通孔34に梁間方向に延びる大梁の主筋4が挿入される。貫通孔34に梁間方向に延びる大梁の主筋40のうちの一部である直線状の鉄筋6が、端部が外側に突出するよう、内側から貫通孔34に挿入される。一方、定着鉄筋7は、鉄骨3のウェブ33を基準として、直線状の鉄筋6とは反対側から、端部が内側に突出するよう貫通孔34に挿入される。なお、直線状の鉄筋6と定着鉄筋7は、どちらを先に貫通孔34に挿入してもよいが、直線状の鉄筋6を先に挿入した方が定着鉄筋7の接続が容易となる。   In the drilling process, through holes 34 are formed in the steel web 33. Note that the perforating step may be performed before the steel frame is assembled or may be performed after the steel frame is assembled. In the reinforcing bar insertion step, the main beam 4 of the large beam extending in the direction between the beams is inserted into the through hole 34. A straight reinforcing bar 6, which is a part of the main beam 40 of the large beam extending in the inter-beam direction in the through hole 34, is inserted into the through hole 34 from the inside so that the end portion protrudes outward. On the other hand, the fixing reinforcing bar 7 is inserted into the through hole 34 so that the end protrudes inward from the side opposite to the linear reinforcing bar 6 with respect to the web 33 of the steel frame 3. It should be noted that either the straight reinforcing bar 6 or the fixing reinforcing bar 7 may be inserted into the through-hole 34 first, but the connecting of the fixing reinforcing bar 7 becomes easier when the linear reinforcing bar 6 is inserted first.

次に、結束工程では、直線状の鉄筋6の端部と定着鉄筋7のラップ領域72が重ね合され、結束線8で結束(接続)される。本第1実施形態では、鉄骨3のウェブ33を基準として、内側と外側の各一か所で結束される。以上により、第1実施形態に係る接合構造の接合が完了する。その後、型枠組立工程、コンクリート打設工程、脱枠工程等が行われ、層単位で多層建築物Mが構築される。   Next, in the binding step, the end portions of the linear reinforcing bars 6 and the wrap regions 72 of the fixing reinforcing bars 7 are overlapped, and are bound (connected) by the binding wires 8. In the first embodiment, the webs 33 of the steel frame 3 are bound at one place on each of the inner side and the outer side. As described above, the joining of the joining structure according to the first embodiment is completed. Thereafter, a mold assembly process, a concrete placing process, a deframe process, and the like are performed, and the multilayer building M is constructed in units of layers.

<<効果>>
第1実施形態に係る接合構造10によれば、梁間方向に延びる大梁の主筋40の一部が、直線状の鉄筋6と、定着鉄筋7とによって構成されている。定着鉄筋7は、鉄骨3のウェブ33を基準として、直線状の鉄筋6の反対側に位置し、直線状の鉄筋6の反対側から鉄骨のウェブ33の貫通孔34に通すことができる。そのため、例えば梁間方向に延びる大梁の主筋40としてL形状に折り曲げた長い鉄筋をウェブの貫通孔に通す必要がないので、施工性が向上する。また、直線状の鉄筋6の端部と定着鉄筋7のラップ領域72は、鉄骨3のウェブ33の貫通孔34に通され、結束線8で結束(接続)され、鉄骨3のフランジ31,32に挟まれたコンクリート中に位置する。そのため、梁間方向に延びる大梁の主筋40のうち、特に、直線状の鉄筋6と定着鉄筋7は、コンクリートに強く定着される。更に、ラップ領域72と定着領域71との間に位置する角部とウェブ33との間には、特に強い支圧力Fが作用する(図4参照)。また、定着領域71には、付着力Gが作用する(図4参照)。支圧力F及び付着力Gが作用することで、直線状の鉄筋6及び定着鉄筋7との定着性が更に向上する。
<< Effect >>
According to the joint structure 10 according to the first embodiment, a part of the main reinforcing bar 40 of the large beam extending in the inter-beam direction is constituted by the linear reinforcing bar 6 and the fixing reinforcing bar 7. The fixing reinforcing bar 7 is located on the opposite side of the linear reinforcing bar 6 with respect to the web 33 of the steel frame 3, and can pass through the through hole 34 of the steel web 33 from the opposite side of the linear reinforcing bar 6. For this reason, for example, it is not necessary to pass a long reinforcing bar bent in an L shape as the main reinforcing bar 40 of the large beam extending in the inter-beam direction, so that workability is improved. Further, the end portion of the linear reinforcing bar 6 and the wrap region 72 of the fixing reinforcing bar 7 are passed through the through hole 34 of the web 33 of the steel frame 3, and are bound (connected) by the binding wire 8, and the flanges 31 and 32 of the steel frame 3. Located in concrete sandwiched between. Therefore, among the main reinforcing bars 40 of the large beams extending in the inter-beam direction, in particular, the linear reinforcing bars 6 and the fixing reinforcing bars 7 are strongly fixed to the concrete. Furthermore, a particularly strong support pressure F acts between the corner portion located between the wrap region 72 and the fixing region 71 and the web 33 (see FIG. 4). Further, an adhesion force G acts on the fixing region 71 (see FIG. 4). By the support pressure F and the adhesion force G acting, the fixing property with the linear reinforcing bar 6 and the fixing reinforcing bar 7 is further improved.

<第2実施形態>
図6は、第2実施形態に係る接合構造を示す。なお、先に説明した実施形態に係る接合構造と同一の構成については、同一符号を付し、説明は割愛する。第2実施形態は、第1実施形態と同じく、接合構造が柱梁接合部に用いられている。但し、第2実施形態は、例えば床に段差を設ける場合を想定したもので、第2実施形態よりも梁間方向に延びる大梁21の梁せいが小さく、第1実施形態よりも梁の上端高さ位置が低く設計されている。そのため、第2実施形態の上端筋の上段の鉄筋は、鉄骨3の外側に配置することができない。そこで、第2実施形態では、上端筋の2段筋は、何れも直線状の鉄筋6と、定着鉄筋7によって構成され、上下方向において間隔を空けて穿孔された貫通孔34に夫々挿入されている。なお、第2実施形態では、梁間方向に延びる大梁21の梁せいが第2実施形態よりも小さいため、下端筋61は2段筋ではなく、1段筋となっている。なお、第2実施形態では、定着鉄筋7の定着領域71が何れもその先端が下方を指すように配置されているが、定着鉄筋7の定着領域71の向きは、鉄骨3のフランジ31,32、他の鉄筋、又は定着鉄筋7同士が干渉しないよう適宜変更することができる。
Second Embodiment
FIG. 6 shows a joint structure according to the second embodiment. In addition, about the structure same as the junction structure which concerns on embodiment described previously, the same code | symbol is attached | subjected and description is omitted. In the second embodiment, as in the first embodiment, the joint structure is used for the beam-column joint. However, in the second embodiment, for example, a case where a step is provided on the floor is assumed. The beam length of the large beam 21 extending in the inter-beam direction is smaller than that in the second embodiment, and the upper end height of the beam is lower than that in the first embodiment. Designed for low position. Therefore, the upper rebar of the upper end of the second embodiment cannot be arranged outside the steel frame 3. Therefore, in the second embodiment, the two upper bars of the upper rebar are each constituted by a linear rebar 6 and a fixing rebar 7 and inserted into through holes 34 that are perforated at intervals in the vertical direction. Yes. In the second embodiment, the beam of the large beam 21 extending in the beam-to-beam direction is smaller than that of the second embodiment, so that the lower end bar 61 is not a double bar but a single bar. In the second embodiment, the fixing region 71 of the fixing reinforcing bar 7 is arranged so that the tip thereof points downward, but the direction of the fixing region 71 of the fixing reinforcing bar 7 is set to the flanges 31 and 32 of the steel frame 3. The other reinforcing bars or the fixing reinforcing bars 7 can be appropriately changed so as not to interfere with each other.

以上説明したように、例えば床に段差を設ける必要がある場合のように、梁間方向に延びる大梁の上端高さ位置を高くし、上端筋については2段筋が必要とされるにもかかわらず、2段筋を鉄骨の外側に配置できない場合がある。第2実施形態では、2段筋の上端筋を何れもウェブ33を貫通させることで、上端筋について、2段筋の配置が可能となる。ウェブ33を貫通させる2段筋は、直線状の鉄筋6と、定着鉄筋7とによって構成することで、例えば直線状の鉄筋6に変えてL形状に折り曲げた長い鉄筋をウェブの貫通孔に通す必要がないので、施工性が向上する。また、直線状の鉄筋6の端部と定着鉄筋7のラップ領域72は、鉄骨3のウェブ33の貫通孔34に通され、結束線8で結束(接続)され、鉄骨3のフランジ31,32に挟まれたコンクリート中に位置する。そのため、梁間方向に延びる大梁の主筋40の一部、つまり直線状の鉄筋6と定着鉄筋7は、コンクリートに強く定着される。特に、ラップ領域72と定着領域71との間に位置する角部とウェブ33との間には、特に強い支圧力Fが作用する。また、定着領域71には、付着力Gが作用する。支圧力F及び付着力Gが作用することで、直線状の鉄筋6及び定着鉄筋7との定着性が更に向上する。   As explained above, for example, when it is necessary to provide a step on the floor, the upper end height position of the large beam extending in the inter-beam direction is increased and the upper end bar is required to have a two-step bar. There are cases in which the second stage reinforcement cannot be arranged outside the steel frame. In the second embodiment, the upper streak of the second streak is allowed to pass through the web 33 so that the second streak can be arranged with respect to the upper streak. The two-stage reinforcing bar that penetrates the web 33 is constituted by the linear reinforcing bar 6 and the fixing reinforcing bar 7, and for example, a long reinforcing bar bent into an L shape is passed through the through hole of the web instead of the linear reinforcing bar 6. Since it is not necessary, the workability is improved. Further, the end portion of the linear reinforcing bar 6 and the wrap region 72 of the fixing reinforcing bar 7 are passed through the through hole 34 of the web 33 of the steel frame 3, and are bound (connected) by the binding wire 8, and the flanges 31 and 32 of the steel frame 3. Located in concrete sandwiched between. Therefore, a part of the main reinforcing bar 40 of the large beam extending in the inter-beam direction, that is, the linear reinforcing bar 6 and the fixing reinforcing bar 7 are firmly fixed to the concrete. In particular, a particularly strong supporting force F acts between the corner portion positioned between the wrap region 72 and the fixing region 71 and the web 33. Further, an adhesion force G acts on the fixing region 71. By the support pressure F and the adhesion force G acting, the fixing property with the linear reinforcing bar 6 and the fixing reinforcing bar 7 is further improved.

<第3実施形態>
図7は、第3実施形態に係る接合構造を示す。なお、先に説明した実施形態に係る接合構造と同一の構成については、同一符号を付し、説明は割愛する。第3実施形態は、第1実施形態、第2実施形態と異なり、接合構造が梁同士の接合部、すなわち大梁2と小梁22の接合部に用いられている。第3実施形態では、小梁の主筋の上端筋が、直線状の鉄筋6と、定着鉄筋7によって構成され、ウェブ33に穿孔された貫通孔34に挿入されてい
る。なお、小梁22の梁せいは、大梁21の梁せいよりも小さいため、下端筋は2段筋ではなく、1段筋となっている。また、小梁の下端筋61は、主に圧縮力が作用し、引張力を考慮する必要性が低いことから、小梁の下端筋61は、ウェブ33を貫通させず、ウェブ33の手前で折り曲げられている。なお、小梁の上端筋の定着鉄筋7の定着領域71の先端が下方を指すように配置されているが、定着鉄筋7の定着領域71の向きは、鉄骨3のフランジ31,32、他の鉄筋に干渉しないよう適宜変更することができる。
<Third Embodiment>
FIG. 7 shows a joint structure according to the third embodiment. In addition, about the structure same as the junction structure which concerns on embodiment described previously, the same code | symbol is attached | subjected and description is omitted. The third embodiment is different from the first embodiment and the second embodiment in that the joint structure is used for the joint between the beams, that is, the joint between the large beam 2 and the small beam 22. In the third embodiment, the upper bar of the main reinforcing bar of the small beam is configured by the linear reinforcing bar 6 and the fixing reinforcing bar 7, and is inserted into the through hole 34 drilled in the web 33. In addition, since the beam of the small beam 22 is smaller than the beam of the large beam 21, the bottom line is not a double line but a single line. Further, the lower beam 61 of the small beam is mainly subjected to a compressive force, and it is not necessary to consider the tensile force. Therefore, the lower beam 61 of the small beam does not penetrate the web 33 and is in front of the web 33. It is bent. In addition, although it arrange | positions so that the front-end | tip of the fixing area | region 71 of the fixing bar 7 of the upper rebar of a small beam may point below, the direction of the fixing area 71 of the fixing bar 7 is the flanges 31 and 32 of the steel frame 3, other It can change suitably so that it may not interfere with a reinforcing bar.

以上説明したように、第3実施形態では、桁方向に延びる大梁2と小梁22との接合部において、上端筋を構成する直線状の鉄筋6及び定着鉄筋7をウェブ33に貫通させることで、上端筋の配置が可能となる。ウェブ33を貫通させる上端筋は、直線状の鉄筋6と、定着鉄筋7とによって構成することで、例えば小梁としてL形状に折り曲げた長い鉄筋をウェブの貫通孔に通す必要がないので、施工性が向上する。また、直線状の鉄筋6の端部と定着鉄筋7のラップ領域72は、鉄骨3のウェブ33の貫通孔34に通され、結束線8で結束(接続)され、鉄骨3のフランジ31,32に挟まれたコンクリート中に位置する。そのため、梁間方向に延びる大梁の主筋40の一部、つまり直線状の鉄筋と定着鉄筋7は、コンクリートに強く定着される。特に、ラップ領域72と定着領域71との間に位置する角部とウェブ33との間には、特に強い支圧力Fが作用する。また、定着領域71には、付着力Gが作用する。支圧力F及び付着力Gが作用することで、直線状の鉄筋6及び定着鉄筋7との定着性が更に向上する。   As described above, in the third embodiment, the linear reinforcing bar 6 and the fixing reinforcing bar 7 constituting the upper end bars are penetrated through the web 33 at the joint portion between the large beam 2 and the small beam 22 extending in the spar direction. , It is possible to arrange the upper streak. The upper bar that penetrates the web 33 is constituted by the linear reinforcing bar 6 and the fixing reinforcing bar 7, so that it is not necessary to pass a long reinforcing bar bent into an L shape as a small beam through the through hole of the web. Improves. Further, the end portion of the linear reinforcing bar 6 and the wrap region 72 of the fixing reinforcing bar 7 are passed through the through hole 34 of the web 33 of the steel frame 3, and are bound (connected) by the binding wire 8, and the flanges 31 and 32 of the steel frame 3. Located in concrete sandwiched between. Therefore, a part of the main reinforcing bar 40 of the large beam extending in the inter-beam direction, that is, the linear reinforcing bar and the fixing reinforcing bar 7 are firmly fixed to the concrete. In particular, a particularly strong supporting force F acts between the corner portion positioned between the wrap region 72 and the fixing region 71 and the web 33. Further, an adhesion force G acts on the fixing region 71. By the support pressure F and the adhesion force G acting, the fixing property with the linear reinforcing bar 6 and the fixing reinforcing bar 7 is further improved.

<第4実施形態>
第4実施形態では、定着鉄筋の他の形状について説明する。図8は、第4実施形態に係る定着鉄筋の例を示す。図8(a)では、定着鉄筋7aは、ラップ領域72aと、定着領域71aで構成され、定着領域71aが直線部分とその先端で折り返された返し部で構成されている。図8(b)では、定着鉄筋7bは、ラップ領域72bと、定着領域71bで構成され、定着領域71bがU形状である。図8(c)では、定着鉄筋7cは、ラップ領域72cと、定着領域71cで構成され、定着領域71cが直線領域とこの直線領域の途中に、直線領域を貫通するように接続されたプレートによって構成されている。図8(d)では、定着鉄筋7dは、ラップ領域72dと、定着領域71dで構成され、定着領域71dが、ラップ領域72dの端部が外側に膨らむように潰された形状である。図8(e)では、定着鉄筋7eは、ラップ領域72eと、定着領域71eで構成され、定着鉄筋7eは、定着領域71eがラップ領域72eの端部に接続されたプレートによって構成されている。
<Fourth embodiment>
In the fourth embodiment, another shape of the fixing reinforcing bar will be described. FIG. 8 shows an example of a fixing reinforcing bar according to the fourth embodiment. In FIG. 8A, the fixing reinforcing bar 7a is constituted by a wrap region 72a and a fixing region 71a, and the fixing region 71a is constituted by a straight portion and a return portion that is folded at the tip thereof. In FIG. 8B, the fixing reinforcing bar 7b includes a wrap region 72b and a fixing region 71b, and the fixing region 71b has a U shape. In FIG. 8C, the fixing reinforcing bar 7c is constituted by a wrap region 72c and a fixing region 71c, and the fixing region 71c is formed by a plate connected so as to penetrate the linear region in the middle of the linear region. It is configured. In FIG. 8D, the fixing reinforcing bar 7d is configured by a wrap region 72d and a fixing region 71d, and the fixing region 71d is crushed so that the end of the wrap region 72d swells outward. In FIG. 8E, the fixing reinforcing bar 7e is constituted by a wrap area 72e and a fixing area 71e, and the fixing reinforcing bar 7e is constituted by a plate in which the fixing area 71e is connected to an end of the wrap area 72e.

第4実施形態に係る定着鉄筋を用いた場合でも、直線状の鉄筋6と定着鉄筋7a,b,c,d,eのラップ領域72a,b,c,d,eに引張力Bが加わると、第1実施形態と同様に、直線状の鉄筋6と定着鉄筋7のラップ領域72a,b,c,d,eの周囲にせん断力が作用する。また、直線状の鉄筋6と定着鉄筋7a,b,c,d,eのラップ領域72a,b,c,d,eとウェブ(図示せず)との間に圧縮力Dが作用する。その結果、コンクリートと、直線状の鉄筋6及び定着鉄筋7a,b,c,d,eとの定着性が向上する。   Even when the fixing reinforcing bar according to the fourth embodiment is used, if a tensile force B is applied to the wrap regions 72a, b, c, d, e of the linear reinforcing bar 6 and the fixing reinforcing bars 7a, b, c, d, e. As in the first embodiment, a shearing force acts around the wrap regions 72a, b, c, d, e of the linear reinforcing bars 6 and the fixing reinforcing bars 7. Further, a compressive force D acts between the linear reinforcing bars 6 and the wrap regions 72a, b, c, d, e of the fixing reinforcing bars 7a, b, c, d, e and the web (not shown). As a result, the fixing property between the concrete and the linear reinforcing bars 6 and the fixing reinforcing bars 7a, b, c, d, e is improved.

また、ラップ領域72a,b,c,d,eと定着領域71a,b,c,d,eとの間に位置する角部とウェブ(図示せず)との間には、特に強いコンクリートを圧縮する支圧力Fが作用する。また、定着領域71a,b,c,d,eには、付着力Gが作用する。支圧力F及び付着力Gが作用することで、直線状の鉄筋6及び定着鉄筋7a,b,c,d,eとの定着性が更に向上する。   In addition, particularly strong concrete is used between corners located between the wrap areas 72a, b, c, d, e and the fixing areas 71a, b, c, d, e and the web (not shown). The supporting pressure F to be compressed acts. Further, an adhesion force G acts on the fixing regions 71a, b, c, d, and e. By the support pressure F and the adhesion force G acting, the fixing property with the linear reinforcing bar 6 and the fixing reinforcing bars 7a, b, c, d, e is further improved.

<第5実施形態>
第5実施形態では、直線状の鉄筋と定着鉄筋とのうち、少なくとも何れか一方を束ね筋
で構成し、鉄骨のウェブ33に穿孔する貫通孔34の径をより小さくする場合について説明する。
<Fifth Embodiment>
In the fifth embodiment, a case will be described in which at least one of a linear reinforcing bar and a fixing reinforcing bar is formed by a binding bar, and the diameter of the through hole 34 drilled in the steel web 33 is made smaller.

図9は、ウェブの貫通孔と挿入される鉄筋との関係を示す。図9(a)は、直線状の鉄筋6と定着鉄筋7を各1本ずつ、貫通孔34に通した場合を示す。図9(a)は、例えば第1実施形態で説明した態様であり、この場合の孔径が原設計の基準径となる。   FIG. 9 shows the relationship between the through-hole of the web and the reinforcing bar to be inserted. FIG. 9A shows a case where one straight reinforcing bar 6 and one fixed reinforcing bar 7 are passed through the through hole 34. FIG. 9A is an aspect described in the first embodiment, for example, and the hole diameter in this case becomes the reference diameter of the original design.

図9(b)は、直線状の鉄筋6は1本で、定着鉄筋7を2本の鉄筋を束ねた束ね筋7a,7aとした場合を示す。定着鉄筋7を束ね筋7a,7aで構成することで、貫通孔34aの孔径が、点線で示す基準径よりも小さくなっている。なお、鉄筋の引張強さは、鉄筋の断面積(例えば、異形鉄筋の公証断面積)から求めることができるので、束ね筋7a,7aを構成する鉄筋の断面積の和が、原設計の定着鉄筋6の断面積を下回らないように設計する必要がある。また、鉄筋の付着力は、鉄筋の周長(例えば、異形鉄筋の公証周長)から求めることができるので、束ね筋7a,7aを構成する鉄筋の周長の和が、原設計の定着鉄筋7の周長を下回らないように設計する必要がある。   FIG. 9B shows a case where the number of linear reinforcing bars 6 is one and the fixing reinforcing bars 7 are bundled bars 7a and 7a formed by binding two reinforcing bars. By configuring the fixing reinforcing bar 7 with the bundling bars 7a and 7a, the hole diameter of the through hole 34a is smaller than the reference diameter indicated by the dotted line. In addition, since the tensile strength of a reinforcing bar can be calculated | required from the cross-sectional area of a reinforcing bar (for example, notarized cross-sectional area of a deformed reinforcing bar), the sum of the cross-sectional areas of the reinforcing bars constituting the bundled bars 7a and 7a is established in the original design. It is necessary to design so that it does not fall below the cross-sectional area of the reinforcing bar 6. Further, since the adhesion force of the reinforcing bars can be obtained from the circumferential length of the reinforcing bars (for example, the notarized circumferential length of the deformed reinforcing bars), the sum of the circumferential lengths of the reinforcing bars constituting the bundling bars 7a and 7a is the fixed reinforcing bar of the original design. It is necessary to design so as not to fall below the circumference of 7.

図9(c)は、直線状の鉄筋6と定着鉄筋7を何れも2本の鉄筋を束ねた束ね筋6a,7bとし、かつ、直線状の鉄筋6を構成する束ね筋6aと定着鉄筋を構成する束ね筋7bの鉄筋径を同じとした場合を示す。直線状の鉄筋6と定着鉄筋7を束ね筋で構成することで、貫通孔34bの孔径が、点線で示す基準径よりも小さくなっている。なお、鉄筋の引張強さを確保するため、束ね筋6a,7bを構成する鉄筋の断面積の和が、原設計の直線状の鉄筋6及び定着鉄筋7の断面積を下回らないように設計する必要がある。また、鉄筋の付着力を確保するため、束ね筋6a,7bを構成する鉄筋の周長の和が、原設計の直線状の鉄筋6及び定着鉄筋7の周長を下回らないように設計する必要がある。   In FIG. 9C, the linear reinforcing bar 6 and the fixing reinforcing bar 7 are both bundled reinforcing bars 6a and 7b in which two reinforcing bars are bundled, and the binding reinforcing bar 6a and the fixing reinforcing bar constituting the linear reinforcing bar 6 are combined. The case where the reinforcing bar diameter of the bundling bars 7b to be configured is the same is shown. By configuring the linear reinforcing bar 6 and the fixing reinforcing bar 7 as a bundled bar, the hole diameter of the through hole 34b is smaller than the reference diameter indicated by the dotted line. In addition, in order to ensure the tensile strength of the reinforcing bars, the sum of the cross-sectional areas of the reinforcing bars constituting the binding bars 6a and 7b is designed so as not to be lower than the cross-sectional areas of the linear reinforcing bars 6 and the fixing reinforcing bars 7 of the original design. There is a need. In addition, in order to ensure the adhesion of the reinforcing bars, it is necessary to design the sum of the peripheral lengths of the reinforcing bars constituting the bundled bars 6a and 7b so as not to be less than the peripheral lengths of the linear reinforcing bars 6 and the fixing reinforcing bars 7 of the original design. There is.

図9(d)は、直線状の鉄筋6を2本の鉄筋を束ねた束ね筋6a,6bとし、定着鉄筋7を2本の鉄筋を束ねた束ね筋7a、7bとし、かつ、直線状の鉄筋6の束ね筋6a,6bの径を異ならせ、定着鉄筋の束ね筋7a,7bの径を異ならせた場合を示す。束ね筋6aと束ね筋7aの径は同じであり、束ね筋6bと束ね筋7bの径は同じである。上記のように構成することで、貫通孔34cの孔径が、点線で示す基準径よりも小さくなっている。なお、鉄筋の引張強さを確保するため、直線状の鉄筋6の束ね筋6a,6b、定着鉄筋7の束ね筋7a,7bを構成する鉄筋の断面積の和が、原設計の直線状の鉄筋6及び定着鉄筋7の断面積を下回らないように設計する必要がある。また、鉄筋の付着力を確保するため、直線状の鉄筋6の束ね筋6a,6b、定着鉄筋7の束ね筋7a,7bを構成する鉄筋の周長の和が、原設計の直線状の鉄筋6及び定着鉄筋7の周長を下回らないように設計する必要がある。   In FIG. 9D, the linear reinforcing bar 6 is a binding bar 6a, 6b in which two reinforcing bars are bundled, the fixing reinforcing bar 7 is a binding bar 7a, 7b in which two reinforcing bars are bundled, and a linear shape. The case where the diameters of the binding bars 6a and 6b of the reinforcing bar 6 are made different and the diameters of the binding bars 7a and 7b of the fixing reinforcing bar are made different is shown. The diameters of the binding muscles 6a and 7a are the same, and the diameters of the binding muscles 6b and 7b are the same. By configuring as described above, the hole diameter of the through hole 34c is smaller than the reference diameter indicated by the dotted line. In order to secure the tensile strength of the reinforcing bars, the sum of the cross-sectional areas of the reinforcing bars 6a and 6b of the linear reinforcing bars 6 and the reinforcing bars 7a and 7b of the fixed reinforcing bars 7 is the linear shape of the original design. It is necessary to design so that it does not fall below the cross-sectional area of the reinforcing bar 6 and the fixed reinforcing bar 7. Further, in order to ensure the adhesion of the reinforcing bars, the sum of the circumferences of the reinforcing bars constituting the binding bars 6a and 6b of the linear reinforcing bar 6 and the binding bars 7a and 7b of the fixing reinforcing bar 7 is the linear reinforcing bar of the original design. 6 and the fixing rebar 7 must be designed so as not to fall below the circumference.

ここで、図10は、束ね筋を用いた場合の総断面積、総周長、孔径等を示す。図10において、左側には、呼び径毎に、原設計における、鉄筋の最外径、鉄筋の断面積、鉄筋の周長、貫通孔の孔径が示されている。一方、図10の右側には、束ね筋を採用した場合の束ね筋ごとの、束ね筋の総断面積、断面積比、束ね筋の総周長、周長比、束ね筋を用いた場合の孔径、孔径比が示されている。束ね筋「2−D10」、「2−D13」、「2−D16」、及び「2−D19」は、図9(c)のように、直線状の鉄筋6と定着鉄筋7を何れも2本の鉄筋を束ねた束ね筋6a,7bとし、かつ、直線状の鉄筋を構成する束ね筋6a,6aと定着鉄筋7を構成する束ね筋7b,7bの鉄筋径を同じとした場合を示す。束ね筋「D13+D16」は、図9(d)のように、直線状の鉄筋6を2本の鉄筋を束ねた束ね筋6a,6bとし、定着鉄筋7を2本の鉄筋を束ねた束ね筋7a、7bとし、かつ、直線状の鉄筋6の束ね筋6a,6bの径を異ならせ、定着鉄筋の束ね筋7a,7bの径を異ならせた場合を示す。束ね筋6aと束ね筋7aの径は同じであり、束ね筋6bと束ね筋7bの径は同じである。   Here, FIG. 10 shows a total cross-sectional area, a total perimeter, a hole diameter, and the like when a bundled line is used. In FIG. 10, on the left side, for each nominal diameter, the outermost diameter of the reinforcing bar, the cross-sectional area of the reinforcing bar, the circumferential length of the reinforcing bar, and the hole diameter of the through hole in the original design are shown. On the other hand, on the right side of FIG. 10, the total cross-sectional area, cross-sectional area ratio, total circumference of the bundle muscle, circumference ratio, and the bundle muscle for each bundle muscle when the bundle muscle is adopted are used. The hole diameter and the hole diameter ratio are shown. As shown in FIG. 9C, the binding bars “2-D10”, “2-D13”, “2-D16”, and “2-D19” are both linear reinforcing bars 6 and fixing reinforcing bars 7. A case is shown in which the reinforcing bars 6a and 7b are formed by binding the reinforcing bars of the book, and the reinforcing bars 6a and 6a constituting the linear reinforcing bars and the reinforcing bars 7b and 7b constituting the fixing reinforcing bars 7 have the same diameter. As shown in FIG. 9 (d), the binding bar “D13 + D16” is a binding bar 6a, 6b obtained by binding two reinforcing bars to a linear reinforcing bar 6 and a binding bar 7a including two fixing bars. 7b, the diameters of the binding bars 6a, 6b of the linear reinforcing bar 6 are made different, and the diameters of the binding bars 7a, 7b of the fixing reinforcing bar are made different. The diameters of the binding muscles 6a and 7a are the same, and the diameters of the binding muscles 6b and 7b are the same.

例えば、原設計で、直線状の鉄筋6、及び定着鉄筋7の呼び径がD16の場合、貫通孔34の孔径は38mmとなる。
孔径=D(最外径)×2+α(間隔)
For example, in the original design, when the nominal diameter of the linear reinforcing bar 6 and the fixing reinforcing bar 7 is D16, the hole diameter of the through hole 34 is 38 mm.
Hole diameter = D (outer diameter) x 2 + α (interval)

これに対し、束ね筋(2−D13)を用いると、貫通孔34bの孔径は34mmとなる。rは、束ね筋6a,7bの半径を示す。
孔径=2r+2×2r/√2
On the other hand, when the bundled line (2-D13) is used, the hole diameter of the through hole 34b is 34 mm. r indicates the radius of the bunches 6a and 7b.
Pore size = 2r + 2 × 2r / √2

以上より、束ね筋6a,7bを用いた場合の貫通孔34cの孔径は34mmで、原設計の孔径38mmを下回り(孔径比:0.89)、貫通孔34の孔径を原設計よりも小さくできることが分かる。また、束ね筋6a,7bの総断面積は254mmで、原設計の鉄筋(直線状の鉄筋6、定着鉄筋7)の断面積199mmを上回り(断面積比:1.28)、鉄筋の引張強さが増していることが分かる。また、束ね筋6a,7bの総周長は80mmで、原設計の鉄筋(直線状の鉄筋6、定着鉄筋7)の周長50mmを上回り(周長比:1.60)、鉄筋のコンクリートへの付着力が増していることが分かる。換言すると、原設計と同等の付着力とする場合には、束ね筋の長さを短くできることが分かる。 From the above, the hole diameter of the through-hole 34c when the bundled bars 6a and 7b are used is 34 mm, which is lower than the hole diameter 38 mm of the original design (hole diameter ratio: 0.89), and the hole diameter of the through-hole 34 can be smaller than the original design. I understand. Further, in bundled muscle 6a, the total cross-sectional area of 7b is 254 mm 2, the original design of the reinforcing bar (straight rebar 6, fixing reinforcement 7) exceeds the cross-sectional area 199Mm 2 of (sectional area ratio: 1.28), rebar It can be seen that the tensile strength is increased. The total circumference of the bundled bars 6a and 7b is 80 mm, which exceeds the circumference of the originally designed reinforcing bar (straight reinforcing bar 6 and anchoring reinforcing bar 7) 50 mm (peripheral length ratio: 1.60), and goes to the concrete of the reinforcing bar. It can be seen that the adhesion force of is increased. In other words, it can be seen that the length of the bundling can be shortened when the adhesive force is equal to that of the original design.

ウェブ33の貫通孔34を基準径よりも小さく設計することで、例えば、貫通孔34同士の間隔を従来よりも狭くでき、鉄骨3のウェブ33に設ける貫通孔34の位置などの設計自由度がより向上する。また、鉄筋の引張強さを確保するため、束ね筋6a,7bを構成する鉄筋の断面積の和が、原設計の鉄筋(直線状の鉄筋6、定着鉄筋7)の断面積を下回らないように設計することで、多層建築物Mの強度を原設計と同等か向上することができる。また、鉄筋の付着力を確保するため、束ね筋6a,7bを構成する鉄筋の周長の和が、原設計の鉄筋(直線状の鉄筋6、定着鉄筋7)の周長を下回らないように設計することで、多層建築物Mの強度を原設計と同等か向上することができる。また、貫通孔34を基準径よりも小さく設計することができるので、基準径とした場合と比較して、鉄骨の断面欠損を少なくすることができる。その結果、多層建築物Mの強度を原設計と同等か向上することができる。   By designing the through-holes 34 of the web 33 to be smaller than the reference diameter, for example, the interval between the through-holes 34 can be made narrower than before, and the degree of design freedom such as the position of the through-holes 34 provided in the web 33 of the steel frame 3 is increased. More improved. In addition, in order to ensure the tensile strength of the reinforcing bars, the sum of the cross-sectional areas of the reinforcing bars constituting the binding bars 6a and 7b should not be less than the cross-sectional area of the originally designed reinforcing bars (the linear reinforcing bars 6 and the fixed reinforcing bars 7). By designing to, the intensity | strength of the multilayer building M can be improved to be equivalent to an original design. In addition, in order to ensure the adhesion of the reinforcing bars, the sum of the peripheral lengths of the reinforcing bars constituting the binding bars 6a and 7b should not be less than the peripheral length of the originally designed reinforcing bars (straight reinforcing bars 6, fixed reinforcing bars 7). By designing, the strength of the multi-layer building M can be improved or equal to that of the original design. Moreover, since the through-hole 34 can be designed smaller than a reference diameter, the cross-sectional defect | deletion of a steel frame can be decreased compared with the case where it is set as a reference diameter. As a result, the strength of the multi-layered building M can be improved to be equivalent to the original design.

以上、本発明の好適な実施形態を説明したが、本発明は、可能な限り実施形態を組み合わせて実施することができる。   Although the preferred embodiments of the present invention have been described above, the present invention can be implemented by combining the embodiments as much as possible.

1・・・外柱
2・・・桁方向に延びる大梁
21・・・梁間方向に延びる大梁
3・・・鉄骨
31、32・・・フランジ
33・・・ウェブ
34・・・貫通孔
4・・・主筋
5・・・スターラップ
6・・・直線状の鉄筋
7・・・定着鉄筋
71・・・定着領域
72・・・ラップ領域
8・・・結束線
M・・・多層建築物
DESCRIPTION OF SYMBOLS 1 ... Outer pillar 2 ... Large beam extended in the direction of a girder 21 ... Large beam 3 extended in the direction between beams 3 ... Steel frame 31, 32 ... Flange 33 ... Web 34 ... Through-hole 4 ...・ Main reinforcement 5 ... Star wrap 6 ... Linear reinforcement 7 ... Fixing reinforcement 71 ... Fixing area 72 ... Wrap area 8 ... Bundling wire M ... Multilayer building

Claims (5)

直線状の第1構造体と当該第1構造体が接続される直線状の第2構造体が接合する、鉄骨鉄筋コンクリート構造物の接合構造であって、
前記第2構造体の鉄骨であって、当該鉄骨のウェブに、前記第1構造体の鉄筋が通る貫通孔を有する鉄骨と、
前記第1構造体の鉄筋と、を備え、
前記第1構造体の鉄筋は、端部が前記貫通孔を通る直線状の鉄筋と、前記ウェブを基準として前記直線状の鉄筋の反対側に位置し、前記貫通孔を通り前記直線状の鉄筋の端部と接続される直線状のラップ領域と、当該ラップ領域に連なる変形された定着領域とを含む定着鉄筋と、を有する、接合構造。
A joining structure of a steel-framed reinforced concrete structure in which a linear first structure and a linear second structure to which the first structure is connected are joined.
A steel frame of the second structure, wherein the steel web has a through hole through which the reinforcing bar of the first structure passes,
A reinforcing bar of the first structure,
The rebar of the first structure is located on the opposite side of the linear rebar with the end portion passing through the through hole and the straight rebar with the web as a reference, and passes through the through hole. A joining structure having a linear wrap region connected to an end of the wrap region and a fixing reinforcing bar including a deformed fixing region connected to the wrap region.
前記定着領域は、前記第1構造体の鉄筋に引張力が作用した場合、引張力と反対方向の反力が作用して定着力を発揮する、請求項1に記載の接合構造。   2. The joining structure according to claim 1, wherein when the tensile force is applied to the reinforcing bar of the first structure, the fixing region exerts a fixing force by a reaction force in a direction opposite to the tensile force. 前記定着領域は、前記直線状のラップ領域の外径よりも突出した領域を有する、請求項1又は2に記載の接合構造。   The joining structure according to claim 1, wherein the fixing region has a region protruding from an outer diameter of the linear wrap region. 前記貫通孔は、前記直線状の鉄筋と前記定着鉄筋とがそれぞれ1本通るように設計された場合を基準径とすると、前記直線状の鉄筋と、前記定着鉄筋とのうち、少なくとも何れか一方を複数本とし、前記基準径よりも小さくなるように設計され、
前記直線状の鉄筋と、前記定着鉄筋とのうち、少なくとも何れか一方は、前記貫通孔に複数本通されている、請求項1から3の何れか1項に記載の接合構造。
The through-hole is at least one of the linear reinforcing bar and the fixing reinforcing bar when the reference diameter is a case where the linear reinforcing bar and the fixing reinforcing bar are designed to pass through one each. Is designed to be smaller than the reference diameter,
The joining structure according to any one of claims 1 to 3, wherein at least one of the linear reinforcing bars and the fixing reinforcing bars is passed through the through hole.
直線状の第1構造体と当該第1構造体が接続される直線状の第2構造体が接合する、鉄骨鉄筋コンクリート構造物の接合構造の接合方法であって、
前記接合構造は、
前記第2構造体の鉄骨であって、当該鉄骨のウェブに、前記第1構造体の鉄筋が通る貫通孔を有する鉄骨と、
前記第1構造体の鉄筋と、を備え、
前記第1構造体の鉄筋は、端部が前記貫通孔を通る直線状の鉄筋と、前記ウェブを基準として前記直線状の鉄筋の反対側に位置し、前記貫通孔を通り前記直線状の鉄筋の端部と接続される直線状のラップ領域と、当該ラップ領域に連なる変形された定着領域とを含む定着鉄筋と、を有し、
前記定着鉄筋を前記直線状の鉄筋の反対側から前記貫通孔に通し、前記直線状の鉄筋の端部と前記定着鉄筋の直線状のラップ領域とを接続する、接合方法。
A joining method of a joining structure of a steel reinforced concrete structure in which a linear first structure and a linear second structure to which the first structure is connected are joined.
The joint structure is
A steel frame of the second structure, wherein the steel web has a through hole through which the reinforcing bar of the first structure passes,
A reinforcing bar of the first structure,
The rebar of the first structure is located on the opposite side of the linear rebar with the end portion passing through the through hole and the straight rebar with the web as a reference, and passes through the through hole. A fixed reinforcing bar including a linear wrap region connected to the end of the wrap region and a deformed fixing region connected to the wrap region,
A joining method in which the fixing reinforcing bar is passed through the through-hole from the opposite side of the linear reinforcing bar, and an end of the linear reinforcing bar is connected to a linear wrap region of the fixing reinforcing bar.
JP2014141360A 2014-07-09 2014-07-09 Joining structure and joining method Active JP6373665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014141360A JP6373665B2 (en) 2014-07-09 2014-07-09 Joining structure and joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014141360A JP6373665B2 (en) 2014-07-09 2014-07-09 Joining structure and joining method

Publications (2)

Publication Number Publication Date
JP2016017335A true JP2016017335A (en) 2016-02-01
JP6373665B2 JP6373665B2 (en) 2018-08-15

Family

ID=55232765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014141360A Active JP6373665B2 (en) 2014-07-09 2014-07-09 Joining structure and joining method

Country Status (1)

Country Link
JP (1) JP6373665B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179829A (en) * 2016-03-30 2017-10-05 大和ハウス工業株式会社 Composite beam
KR102481696B1 (en) * 2022-09-23 2022-12-26 배재환 a reinforced concrete structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971179A (en) * 1969-08-13 1976-07-27 Andrew Bodocsi Non-bonded framing system
JPS58171405U (en) * 1982-05-10 1983-11-16 株式会社長谷工コーポレーション Connection structure between 1-span beam and column
JPS61109843A (en) * 1984-11-05 1986-05-28 株式会社フジタ Connection of pillar and beam
JP2000073496A (en) * 1998-09-01 2000-03-07 Maeda Corp Method for anchoring and jointing reinforcing bar

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971179A (en) * 1969-08-13 1976-07-27 Andrew Bodocsi Non-bonded framing system
JPS58171405U (en) * 1982-05-10 1983-11-16 株式会社長谷工コーポレーション Connection structure between 1-span beam and column
JPS61109843A (en) * 1984-11-05 1986-05-28 株式会社フジタ Connection of pillar and beam
JP2000073496A (en) * 1998-09-01 2000-03-07 Maeda Corp Method for anchoring and jointing reinforcing bar

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179829A (en) * 2016-03-30 2017-10-05 大和ハウス工業株式会社 Composite beam
KR102481696B1 (en) * 2022-09-23 2022-12-26 배재환 a reinforced concrete structure

Also Published As

Publication number Publication date
JP6373665B2 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
JP6132132B2 (en) High performance perforated steel plate gibber
JP6373665B2 (en) Joining structure and joining method
JP2010236217A (en) Structure and construction method for reinforcing column-beam joint portion of reinforced concrete construction
KR100716453B1 (en) Reinforcement structure of CFT column and beam connection
JP2009197559A (en) Connection structure
JP2006316611A (en) Column and beam joint structure
JP2010084503A (en) Structure and method for joining concrete column and steel-frame beam
JP6428027B2 (en) Column rebar connection panel and rebar structure
JP4649283B2 (en) Columnar structure, pier or foundation pile using shape steel, and manufacturing method thereof
JP2008291567A (en) Connection structure between reinforced concrete column and steel beams
JP2019189998A (en) Concrete floor structure and structure
JP4654138B2 (en) Joint structure of steel main girder and substructure
JP6353647B2 (en) Seismic isolation device joint structure
JP6314415B2 (en) Synthetic segment and method for producing synthetic segment
JP6373667B2 (en) Joining structure and joining method
JP2007211450A (en) Structure for joining precast column and steel-frame beam together
JP7427507B2 (en) Bonding structure and bonding method
JP6497482B2 (en) Beam-column joint structure
JP2015078533A (en) Composite segment and producing method of composite segment
JP6357303B2 (en) Reinforced concrete wall
JP6050094B2 (en) Column / beam joint reinforcement method
JP5784569B2 (en) Reinforced concrete beam opening reinforcement structure and beam reinforcement unit
JP2016018429A (en) Design method of steel-frame through hole, and steel-frame with through hole
JP2005256399A (en) Reinforcement arranging method in penetration-joining part between reinforced concrete beam and steel frame stud
JP4750155B2 (en) Column and beam joint structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180718

R150 Certificate of patent or registration of utility model

Ref document number: 6373665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150