JP6371969B2 - Equipment, processing method - Google Patents

Equipment, processing method Download PDF

Info

Publication number
JP6371969B2
JP6371969B2 JP2014086013A JP2014086013A JP6371969B2 JP 6371969 B2 JP6371969 B2 JP 6371969B2 JP 2014086013 A JP2014086013 A JP 2014086013A JP 2014086013 A JP2014086013 A JP 2014086013A JP 6371969 B2 JP6371969 B2 JP 6371969B2
Authority
JP
Japan
Prior art keywords
food
specifying
temperature
surface temperature
specified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014086013A
Other languages
Japanese (ja)
Other versions
JP2015206502A (en
Inventor
森 貴代志
貴代志 森
上迫 豊志
豊志 上迫
健一 柿田
健一 柿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014086013A priority Critical patent/JP6371969B2/en
Publication of JP2015206502A publication Critical patent/JP2015206502A/en
Application granted granted Critical
Publication of JP6371969B2 publication Critical patent/JP6371969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、内部に収納された収納物の熱伝導特性を推測する手段を備えた機器に関するものである。   The present invention relates to a device provided with a means for estimating the heat conduction characteristics of a stored item stored inside.

近年、家庭用冷蔵庫や電子レンジでは、非接触温度センサで食品温度を検知し、冷却強度、或いは加熱強度を変化させるものがある。例えば、可動式の赤外線温度センサを備え、食品投入による温度上昇を検知して積極的に冷気を供給する冷蔵庫がある(特許文献1参照)。   In recent years, some refrigerators and microwave ovens for home use detect non-contact temperature sensors to detect food temperature and change cooling strength or heating strength. For example, there is a refrigerator that includes a movable infrared temperature sensor and detects a temperature rise due to the addition of food and actively supplies cold air (see Patent Document 1).

図9は、特許文献1に記載された従来の冷蔵庫の冷蔵室の切換室を示す側面断面図である。図9に示すように、切換室101内に設けられた可動式のサーモパイル102(赤外線温度センサ)によって食品の投入を判別し、冷気を積極的に供給する。   FIG. 9 is a side cross-sectional view showing the switching room of the refrigerator compartment of the conventional refrigerator described in Patent Document 1. As shown in FIG. 9, the moving thermopile 102 (infrared temperature sensor) provided in the switching chamber 101 determines the input of food and actively supplies cold air.

特許第5147922号公報Japanese Patent No. 5147922

しかしながら、前記の特許文献1の構成は、赤外線センサの視野角に入る食品以外の壁面等の温度も含めて検知するため、高精度なセンシングが困難である。また、食品の表面温度しか検知できず、食品内部の温度推定はできない。このため、検知温度に基づいて冷却シーケンスを可変しても、多種有る食品毎に適した冷却シーケンスを選定できているとは言えない。   However, since the configuration of Patent Document 1 detects the temperature of a wall surface other than food that falls within the viewing angle of the infrared sensor, it is difficult to perform highly accurate sensing. Moreover, only the surface temperature of food can be detected, and the temperature inside the food cannot be estimated. For this reason, even if the cooling sequence is varied based on the detected temperature, it cannot be said that a cooling sequence suitable for each type of food can be selected.

本発明は、前記従来の課題を解決するもので、食品の熱伝導特性を正確に求めことを目的とする。
The present invention is the one that solves the conventional problem, and an object thereof asking you to heat transfer characteristics of the food accurately.

前記従来の課題を解決するために、本発明の機器は、食品の表面温度を特定する第1の特定手段と、前記食品の外形寸法を特定する第2の特定手段と、前記食品を所定時間加熱することで上昇する前記食品の表面温度の変化量に基づいて、前記食品の熱伝導特性を特定する第3の特定手段と、前記表面温度と前記外形寸法と前記熱伝導特性とに基づいて、前記食品の中心温度を特定する第4の特定手段とを備えるものである。 In order to solve the conventional problems, the device of the present invention includes a first specifying unit that specifies a surface temperature of food, a second specifying unit that specifies an outer dimension of the food, and the food for a predetermined time. Based on the amount of change in the surface temperature of the food that rises by heating, based on the third specifying means for specifying the heat conduction characteristics of the food, the surface temperature, the outer dimensions, and the heat conduction characteristics And a fourth specifying means for specifying the center temperature of the food.

本発明の機器は、食品の熱伝導特性を正確に求めることができる
Equipment of the present invention can be obtained heat transfer characteristics of the food accurately.

本発明の実施の形態1における収納庫の正面図The front view of the storage in Embodiment 1 of this invention 本発明の実施の形態1における収納庫の制御ブロック図Control block diagram of storage in Embodiment 1 of the present invention 本発明の実施の形態1における図1のA−A断面図1 is a cross-sectional view taken along line AA in FIG. 本発明の実施の形態1におけるセンシングの概略図Schematic diagram of sensing in Embodiment 1 of the present invention 本発明の実施の形態1におけるセンサ検知データの一例を示した図The figure which showed an example of the sensor detection data in Embodiment 1 of this invention 本発明の実施の形態1における食品の温度伝導特性判別の一例を示した図The figure which showed an example of the temperature conductivity characteristic discrimination | determination of the foodstuff in Embodiment 1 of this invention 本発明の実施の形態1における中心温度推定のフローチャート図The flowchart of center temperature estimation in Embodiment 1 of this invention 本発明の実施の形態1における解凍シーケンスのタイムチャート図The time chart figure of the decompression | decompression sequence in Embodiment 1 of this invention 従来の冷蔵庫の切換室の側面断面図Side cross-sectional view of a conventional refrigerator switching chamber

以下、本発明の実施の形態を、冷蔵庫を例とし、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings, taking a refrigerator as an example. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態における収納庫の正面図、図2は同実施の形態における収納庫の制御ブロック図である。
(Embodiment 1)
FIG. 1 is a front view of a storage case according to the embodiment of the present invention, and FIG. 2 is a control block diagram of the storage case according to the embodiment.

図1および図2において、冷蔵庫11を構成する断熱箱体は、主に鋼板を用いた外箱と、ABSなどの樹脂で成形された内箱と、外箱と内箱の間に注入した断熱材で構成されている。さらに、断熱箱体は複数の収納室に断熱区画されており、最上部に冷蔵室12、その冷蔵室12の下部に製氷室13もしくは切換室14が横並びに設けられ、その製氷室13と切換室14の下部に冷凍室15、そして最下部に野菜室16が配置され、各収納室の前面には外気と区画するための断熱扉が冷蔵庫本体の前面開口部にそれぞれ構成されている。冷蔵室12の断熱扉である冷蔵室扉12aの中央部付近には、各室の庫内温度設定や製氷および急速冷却などの設定を行うことができ、また収納状態の検知結果や冷蔵庫の運転状況などを表示できる表示部17が配置されている。   In FIG. 1 and FIG. 2, the heat insulating box constituting the refrigerator 11 includes an outer box mainly using a steel plate, an inner box formed of a resin such as ABS, and heat insulation injected between the outer box and the inner box. It is composed of materials. Further, the heat insulation box is partitioned into a plurality of storage chambers, and a refrigeration chamber 12 is provided at the top, and an ice making chamber 13 or a switching chamber 14 is provided side by side below the refrigeration chamber 12 and is switched to the ice making chamber 13. A freezer compartment 15 is disposed at the bottom of the chamber 14, and a vegetable compartment 16 is disposed at the bottom. A heat insulating door for partitioning with the outside air is formed at the front opening of the refrigerator main body at the front of each storage room. In the vicinity of the central portion of the refrigerator compartment door 12a, which is a heat insulating door of the refrigerator compartment 12, it is possible to make settings such as the temperature inside the compartment, ice making and quick cooling, and the detection result of the storage state and the operation of the refrigerator A display unit 17 capable of displaying the situation and the like is arranged.

冷蔵室12内の最上部の後方領域に形成された機械室内には、圧縮機30、水分除去を行うドライヤ等の冷凍サイクルの構成部品が収納されている。   The machine room formed in the uppermost rear region in the refrigerator compartment 12 houses components of the refrigeration cycle such as the compressor 30 and a dryer for removing moisture.

冷凍室15の背面には冷気を生成する冷却室が設けられ、冷却室内には、冷却器、および、冷却器で冷却した冷却手段である冷気を冷蔵室12、切換室14、製氷室13、野菜室16、冷凍室15に送風する冷却ファン31が配置される。さらに冷却ファン31からの風量を調節する風量調節ダンパー32が風路内に設置されている。また、冷却器やその周辺に付着する霜や氷を除霜するためにラジアントヒータ、ドレンパン、ドレンチューブ、蒸発皿等が構成されている(図示せず)。   A cooling chamber for generating cold air is provided on the back of the freezer compartment 15, and in the cooling chamber, the cooler and the cooling air cooled by the cooler are refrigerated chamber 12, switching chamber 14, ice making chamber 13, A cooling fan 31 for blowing air to the vegetable compartment 16 and the freezer compartment 15 is disposed. Further, an air volume adjusting damper 32 for adjusting the air volume from the cooling fan 31 is installed in the air path. In addition, a radiant heater, a drain pan, a drain tube, an evaporating dish and the like are configured to defrost frost and ice adhering to the cooler and its surroundings (not shown).

冷蔵室12は冷蔵保存のために凍らない温度を下限に通常1℃〜5℃とし、最下部の野菜室16は冷蔵室12と同等もしくは若干高い温度設定の2℃〜7℃としている。また、冷凍室15は冷凍温度帯に設定されており、冷凍保存のために通常−22℃〜−15℃で設定されているが、冷凍保存状態の向上のために、例えば−30℃や−25℃の低温で設定されることもある。   The refrigerator compartment 12 is normally set to 1 ° C. to 5 ° C. at the lower limit of the temperature at which it is not frozen for refrigerated storage. In addition, the freezer compartment 15 is set in a freezing temperature zone, and is usually set at −22 ° C. to −15 ° C. for frozen storage. For example, in order to improve the frozen storage state, −30 ° C. or − It may be set at a low temperature of 25 ° C.

製氷室13は冷蔵室12内の貯水タンクから送られた水で室内上部に設けられた自動製氷機で氷をつくり、室内下部に配置した貯氷容器に貯蔵する。   The ice making chamber 13 creates ice with water sent from a water storage tank in the refrigerator compartment 12 by an automatic ice maker provided at the upper part of the room and stores it in an ice storage container disposed at the lower part of the room.

切換室14は、1℃〜7℃程度で設定される冷蔵温度、−22℃〜−15℃程度で設定される冷凍温度とする冷却機能以外に、加熱機能も持つ。加熱手段としては、ヒータ加熱、電磁誘導加熱、或いはマイクロ波加熱等が考えられる。   The switching chamber 14 also has a heating function in addition to a cooling function that is a refrigeration temperature set at about 1 ° C. to 7 ° C. and a refrigeration temperature set at about −22 ° C. to −15 ° C. As the heating means, heater heating, electromagnetic induction heating, microwave heating or the like can be considered.

切換室14は製氷室13に並設された独立扉を備えた収納室であり、引き出し式の扉を備えることが多い。   The switching chamber 14 is a storage chamber provided with an independent door arranged in parallel with the ice making chamber 13, and is often provided with a drawer-type door.

なお、本実施の形態では、切換室14を、冷凍から加熱までを可能とした収納室としているが、冷蔵および冷凍のみ、または加熱温度帯に特化した収納室としても構わない。   In the present embodiment, the switching chamber 14 is a storage chamber that enables freezing to heating, but may be a storage chamber specialized for refrigeration and freezing or only in a heating temperature zone.

図3は同実施の形態における図1のA−A断面図である。同図のように、本実施の形態の切換室14には、収納された食品42の温度分布、および面積を検知する赤外線センサアレイ23が天面に設けられている。また食品42の高さを検知する測距センサ24が設けられている。また、底面41には、食品42を加熱するための熱源として加熱ヒータ25、食品42の温度伝導特性を求めるために使用する検知用ヒータ26、冷却ファン31により冷風を送り込む吐出口43が設けられている。   3 is a cross-sectional view taken along the line AA of FIG. 1 in the same embodiment. As shown in the figure, in the switching chamber 14 of the present embodiment, an infrared sensor array 23 for detecting the temperature distribution and area of the stored food 42 is provided on the top surface. Further, a distance measuring sensor 24 for detecting the height of the food 42 is provided. Further, the bottom surface 41 is provided with a heater 25 as a heat source for heating the food 42, a detection heater 26 used for obtaining the temperature conduction characteristics of the food 42, and a discharge port 43 through which cold air is sent by the cooling fan 31. ing.

図4は同実施の形態におけるセンシングの概略図、図5は同実施の形態におけるセンサ検知データの一例を示した図、図6は同実施の形態における食品の温度伝導特性判別の一例を示した図である。   FIG. 4 is a schematic diagram of sensing in the embodiment, FIG. 5 is a diagram showing an example of sensor detection data in the embodiment, and FIG. 6 is an example of determining temperature conduction characteristics of food in the embodiment. FIG.

この構成による食品42の熱伝導特性、および中心温度Tcの推定方法について、図7のフローチャート図を使用しながら説明する。   A method for estimating the heat conduction characteristics of the food 42 and the center temperature Tc according to this configuration will be described with reference to the flowchart of FIG.

図4のように、赤外線センサアレイ23は、仮に「8×8」の各格子の温度を検知するものとした。検知範囲51は「A×A」の面積であり、Aの値は図3の寸法H、および赤外線センサアレイの視野角αから求まる。格子52ひとつあたりの辺寸法は、Aを8分割したaとなる(ステップ101)。   As shown in FIG. 4, the infrared sensor array 23 temporarily detects the temperature of each “8 × 8” grid. The detection range 51 is an area of “A × A”, and the value of A is obtained from the dimension H in FIG. 3 and the viewing angle α of the infrared sensor array. The side dimension per grid 52 is a obtained by dividing A into 8 (step 101).

切換室扉14aの開閉を扉開閉検知センサで判別し、食品の投入を推定した後(ステッ
プ102)、天面の赤外線センサアレイ23が検知した食品42は、図5のように食品の表面温度Tfとして複数の格子で検知される。また、底面41は底面温度Tbとして検知される(ステップ103)。TfとTbに一定以上の差があるとき(ステップ104)、この境界面53により底面41と食品42とを区別する(ステップ105)。
After the opening and closing of the switching chamber door 14a is determined by the door opening / closing detection sensor and the food is estimated to be input (step 102), the food 42 detected by the top infrared sensor array 23 is the surface temperature of the food as shown in FIG. Tf is detected by a plurality of gratings. The bottom surface 41 is detected as the bottom surface temperature Tb (step 103). When there is a certain difference between Tf and Tb (step 104), the bottom surface 41 and the food 42 are distinguished from each other by the boundary surface 53 (step 105).

例えば食品42が切換室14内で冷却保存されていた場合、TfとTbの値がほぼ同値となり、境界面53が判別できない可能性が高い。このときは、底面41を熱伝導性の高いアルミ板等で形成し、加熱ヒータ25で短時間加熱する(ステップ106)。底面41は、比較的熱伝導性の低い食品42よりも早く高温となるため、TfとTbに差ができ、境界面53が判別できるようになる(ステップ107)。   For example, if the food 42 is stored in the switching chamber 14 in a cooled state, the values of Tf and Tb are almost the same, and there is a high possibility that the boundary surface 53 cannot be determined. At this time, the bottom surface 41 is formed of an aluminum plate or the like having high thermal conductivity, and heated by the heater 25 for a short time (step 106). Since the bottom surface 41 has a higher temperature than the food 42 having a relatively low thermal conductivity, there is a difference between Tf and Tb, and the boundary surface 53 can be discriminated (step 107).

境界面53を判別することで、食品の横幅Wは「3×a」、奥行きDは「4×a」と求まる(ステップ108)。さらに、測距センサ24により、天面から食品42までの距離Hsを測定する。切換室14の高さHは予め分かっているため、食品の高さhは「H−Hs」により求まる(ステップ109)。   By determining the boundary surface 53, the breadth W of the food is “3 × a” and the depth D is “4 × a” (step 108). Further, the distance sensor 24 measures the distance Hs from the top surface to the food 42. Since the height H of the switching chamber 14 is known in advance, the height h of the food is obtained from “H−Hs” (step 109).

このように、食品の表面温度Tfを検知するとともに、食品のサイズを推測することが可能となる(ステップ110)。   Thus, it is possible to detect the surface temperature Tf of the food and to estimate the size of the food (step 110).

なお、本実施の形態では食品の表面温度は部位にかかわらず全てTfと仮定しているが、現実的には多少の差異があり、その分布も検知している。   In this embodiment, it is assumed that the surface temperature of the food is all Tf regardless of the part, but in reality, there is some difference, and the distribution is also detected.

また、食品42を直方体に近い形状と仮定しているが、複雑な形状の食品でも寸法判別が可能である。より正確な検知のためには、格子数を増加させることが望ましい。   In addition, although the food 42 is assumed to have a shape close to a rectangular parallelepiped, it is possible to determine the size of a food having a complicated shape. For more accurate detection, it is desirable to increase the number of grids.

次に、食品42の熱伝導特性を推定する。まず、検知用ヒータ26により、食品42を加熱する(ステップ111)。検知用ヒータ26の熱量は、食品42に悪影響を及ぼさない範囲でQ1とする。   Next, the heat conduction characteristics of the food 42 are estimated. First, the food 42 is heated by the detection heater 26 (step 111). The amount of heat of the detection heater 26 is Q1 within a range that does not adversely affect the food 42.

一定時間tの経過後、赤外線センサアレイ23による検知結果は図6のようになり、例えば食品42の表面温度分布は、検知用ヒータ26に近い方からT1、T2、T3、T4、T5という分布になり、加熱時間に従い上昇していく。この温度上昇を、それぞれΔT1、ΔT2、ΔT3、ΔT4、ΔT5として、経時変化を確認する(ステップ112)。   After the elapse of a certain time t, the detection result by the infrared sensor array 23 is as shown in FIG. 6. For example, the surface temperature distribution of the food 42 is a distribution of T1, T2, T3, T4, T5 from the side closer to the detection heater 26. And rises according to the heating time. This temperature rise is regarded as ΔT1, ΔT2, ΔT3, ΔT4, and ΔT5, respectively, and the change with time is confirmed (step 112).

これらの検知温度に加え、事前に取得していた食品42の寸法と合わせ、例えばフーリエの法則等を利用して、食品の熱伝導に関する特性を算出する(ステップ113)。なお、食品の重量や密度を求め、より正確な計算を行うために重量を検知するセンサを設けても良い。   In addition to these detected temperatures, the characteristics relating to the heat conduction of the food are calculated by using, for example, Fourier's law or the like together with the dimensions of the food 42 acquired in advance (step 113). In addition, in order to obtain | require the weight and density of a foodstuff and to perform more exact calculation, you may provide the sensor which detects a weight.

以上のように、食品42の表面温度、外形寸法、および熱伝導特性が求まったため、加熱ヒータ25の加熱による熱量Q2、或いは吐出口43からの冷気の熱量Q3を予め明確にしておくことで、加熱または冷却による食品42の中心温度Tcの変化が推定可能となる。   As described above, since the surface temperature, the external dimensions, and the heat conduction characteristics of the food 42 are obtained, the amount of heat Q2 due to the heating of the heater 25 or the amount of heat Q3 of the cold air from the discharge port 43 is clarified in advance. A change in the center temperature Tc of the food 42 due to heating or cooling can be estimated.

この演算結果を利用した一例として、冷凍された食品42の解凍シーケンスについて、図8のタイムチャート図を使用して説明する。   As an example using this calculation result, the thawing sequence of the frozen food 42 will be described with reference to the time chart of FIG.

初期状態t0において、食品42は切換室14内で一定時間冷凍されていたとし、表面温度Tf、中心温度TcともにT0で安定している。   In the initial state t0, it is assumed that the food 42 has been frozen in the switching chamber 14 for a certain period of time, and both the surface temperature Tf and the center temperature Tc are stable at T0.

まず、加熱ヒータ25によって、加熱を開始する。加熱による温度変化は表面温度Tfの方が中心温度Tcよりも大きいため両者の乖離を防ぐためにΔt1の時間だけ加熱するものとする。このとき、TfとTcの温度上昇は、それぞれΔTt1、ΔTt1’となる。   First, heating is started by the heater 25. Since the surface temperature Tf is larger than the center temperature Tc, the temperature change due to heating is assumed to be heated for the time of Δt1 in order to prevent the difference between the two. At this time, the temperature rises of Tf and Tc are ΔTt1 and ΔTt1 ′, respectively.

次に、TfとTcの温度差を一定以上まで縮小するため、吐出口43からの冷気による冷却をΔt2の時間で行う。冷却によるTfとTcの温度変化を、それぞれΔTt2、ΔTt2’とすると、「ΔTt2>ΔTt2’」となるため、TfとTcとの温度差はある程度縮小される。   Next, in order to reduce the temperature difference between Tf and Tc to a certain level or more, cooling with cool air from the discharge port 43 is performed for a time of Δt2. If the temperature changes of Tf and Tc due to cooling are ΔTt2 and ΔTt2 ′, respectively, “ΔTt2> ΔTt2 ′” is satisfied, so that the temperature difference between Tf and Tc is reduced to some extent.

以降、このような加熱・冷却サイクルを、中心温度Tcが解凍達成温度Tmとなるまで繰り返し、解凍を完了する。   Thereafter, such a heating / cooling cycle is repeated until the center temperature Tc reaches the thawing achievement temperature Tm to complete the thawing.

この間、食品42の表面温度Tfは、食品42が変質する温度Tq未満となるように管理している。また、食品42の中心温度Tcおよび温度変化ΔTtnは、加熱ヒータ25による熱量Q2、冷気による熱量Q3、赤外線センサアレイ23の検知による表面温度Tfおよび外形寸法などのデータに基づき、随時算出している。   During this time, the surface temperature Tf of the food 42 is managed so as to be lower than the temperature Tq at which the food 42 is altered. The center temperature Tc and the temperature change ΔTtn of the food 42 are calculated as needed based on data such as the amount of heat Q2 by the heater 25, the amount of heat Q3 by the cold air, the surface temperature Tf detected by the infrared sensor array 23, and the external dimensions. .

このように、食品42の表面温度だけでなく、中心温度も管理しながら解凍するため、例えば食品の外側だけ解凍され、中心は凍結したままという様な、従来多くあった課題が解決できる。また、食品42の温度伝導特性を求めた上で加熱しているため、必要以上の熱量を与え、例えば解凍シーケンスで肉が焼けるような不具合も発生しない。   In this way, since the thawing is performed while managing not only the surface temperature of the food 42 but also the center temperature, for example, the conventional problems such as thawing only outside the food and the center being frozen can be solved. Moreover, since it heats after calculating | requiring the temperature conductivity characteristic of the foodstuff 42, the heat amount more than necessary is given, for example, the malfunction which a meat is burned by a thawing | decompression sequence does not occur.

なお、以上の説明において、加熱ヒータ25と検知用ヒータ26は別構成でなく、一部品で両方の役割を持たせてもよい。   In the above description, the heater 25 and the detection heater 26 are not separate components, and one part may serve both roles.

また、加熱ヒータ25、検知用ヒータ26による加熱は、吐出口43からの冷風、または別手段による冷却と置き換えても良い。   Further, the heating by the heater 25 and the detection heater 26 may be replaced with cold air from the discharge port 43 or cooling by another means.

また、精密なデータ算出するためには複雑な演算処理が必要となり、収納庫11に設置された演算制御部21には高速・高記憶領域の性能が求められる。しかしながら、ひとつひとつの収納庫に高性能な演算制御部21を搭載することは非現実的であるため、収納庫11内の演算制御部21はデータ取得のみとし、ネットワーク接続によるクラウドコンピューティングを利用し、シェアされた高性能な演算処理装置で計算することが望ましい。   Further, in order to calculate precise data, complicated arithmetic processing is required, and the arithmetic control unit 21 installed in the storage 11 is required to have high speed and high storage area performance. However, since it is unrealistic to install a high-performance calculation control unit 21 in each storage, the calculation control unit 21 in the storage 11 only acquires data and uses cloud computing by network connection. It is desirable to calculate with a shared high-performance processing unit.

以上のように、本発明にかかる収納庫は、食品の表面温度状態が正確に検知できるだけでなく、例えば食品中心の温度を推測し、最適な加熱または冷却シーケンスを選定することができるため、冷蔵庫、業務用解凍機、および電子レンジなど、食品の温度管理が必要な機器への適用が期待できる。   As described above, the storage according to the present invention can not only accurately detect the surface temperature state of food, but also can estimate the temperature at the center of food and select an optimal heating or cooling sequence. It can be expected to be applied to devices that require food temperature control, such as commercial thawing machines and microwave ovens.

11 冷蔵庫(収納庫)
12 冷蔵室
12a 冷蔵室扉
13 製氷室
14 切換室
14a 切換室扉
15 冷凍室
16 野菜室
17 表示部
21 演算制御部
22 扉開閉検知手段
23 赤外線センサアレイ
24 測距センサ
25 加熱ヒータ
26 検知用ヒータ
30 圧縮機
31 冷却ファン
32 風量調節ダンパー
41 底面
42 食品
43 吐出口
51 検知範囲
52 格子
53 境界面
11 Refrigerator (storage)
DESCRIPTION OF SYMBOLS 12 Refrigeration room 12a Refrigeration room door 13 Ice making room 14 Switching room 14a Switching room door 15 Freezing room 16 Vegetable room 17 Display part 21 Computation control part 22 Door open / close detection means 23 Infrared sensor array 24 Distance sensor 25 Heating heater 26 Detection heater 30 Compressor 31 Cooling Fan 32 Airflow Control Damper 41 Bottom 42 Food 43 Discharge Port 51 Detection Range 52 Grid 53 Boundary Surface

Claims (8)

食品の表面温度を特定する第1の特定手段と、前記食品の外形寸法を特定する第2の特定手段と、前記食品を所定時間加熱することで上昇する前記食品の表面温度の変化量に基づいて、前記食品の熱伝導特性を特定する第3の特定手段と、前記表面温度と前記外形寸法と前記熱伝導特性とに基づいて、前記食品の中心温度を特定する第4の特定手段とを備えることを特徴とする機器。 Based on the first specifying means for specifying the surface temperature of the food, the second specifying means for specifying the outer dimensions of the food, and the amount of change in the surface temperature of the food that rises by heating the food for a predetermined time. And third specifying means for specifying the heat conduction characteristics of the food, and fourth specifying means for specifying the center temperature of the food based on the surface temperature, the outer dimensions, and the heat conduction characteristics. Equipment characterized by comprising. 前記第1の特定手段は、複数の区画にわけて前記表面温度を特定し、前記表面温度の変化量は、前記複数の区画それぞれの変化量を示すことを特徴とする請求項1に記載の機器。 The said 1st specific means divides | segments into several divisions, specifies the said surface temperature, The variation | change_quantity of the said surface temperature shows the variation | change_quantity of each of these multiple divisions, The Claim 1 characterized by the above-mentioned. machine. 前記第1の特定手段は、前記食品が収納される収納室の底面の底面温度を更に特定し、前記第2の特定手段は、前記表面温度と前記底面温度とに基づいて前記食品と前記底面の境界面を特定し、更に前記第2の特定手段は、前記境界面と前記食品の高さとに基づいて、前記外形寸法を特定することを特徴とする請求項1又は2に記載の機器。 The first specifying means further specifies a bottom surface temperature of a bottom surface of the storage chamber in which the food is stored, and the second specifying means is configured to determine the food and the bottom surface based on the surface temperature and the bottom surface temperature. 3. The device according to claim 1, wherein the second specifying unit specifies the outer dimension based on the boundary surface and a height of the food. 4. 前記第2の特定手段は、前記収納室の天面から前記食品までの距離を特定可能であり、前記食品の高さは、前記収納室の高さから、前記天面から前記食品までの距離を減算することで特定されることを特徴とする請求項3に記載の機器。 The second specifying means can specify a distance from the top surface of the storage chamber to the food, and the height of the food is a distance from the top surface to the food from the height of the storage chamber. The device according to claim 3, wherein the device is specified by subtracting. 前記境界面を特定できるか否かを判定する判定手段を更に備え、前記境界面を特定できないと前記判定手段によって判定された場合に、前記第2の特定手段は、前記食品を加熱して前記表面温度と前記底面温度との差分を大きくすることで、前記境界面を特定することを特徴とする請求項3又は4に記載の機器。 It is further provided with a determination unit that determines whether the boundary surface can be specified, and when the determination unit determines that the boundary surface cannot be specified, the second specification unit heats the food to The device according to claim 3 or 4, wherein the boundary surface is specified by increasing a difference between a surface temperature and the bottom surface temperature. 前記判定手段は、前記収納室の扉の開閉を検知したときに前記境界面を特定できるか否かを判定することを特徴とする請求項5に記載の機器。 The apparatus according to claim 5, wherein the determination unit determines whether the boundary surface can be specified when opening / closing of the door of the storage chamber is detected. 前記機器は、電子レンジであることを特徴とする請求項1乃至6のいずれか1項に記載の機器。 The device according to any one of claims 1 to 6, wherein the device is a microwave oven. 食品を収納する機器が実行する、前記食品の中心温度を特定するための処理方法であって、前記食品の表面温度を特定するステップと、前記食品の外形寸法を特定するステップと、前記食品を所定時間加熱することで上昇する前記食品の表面温度の変化量に基づいて、前記食品の熱伝導特性を特定するステップと、前記表面温度と前記外形寸法と前記熱伝導特性とに基づいて、前記食品の中心温度を特定するステップとを有することを特徴とする処理方法。
A processing method for specifying a central temperature of the food, which is executed by a device that stores the food, the step of specifying the surface temperature of the food, the step of specifying the outer dimensions of the food, and the food Based on the amount of change in the surface temperature of the food that rises by heating for a predetermined time, identifying the heat conduction characteristics of the food, on the basis of the surface temperature, the outer dimensions, and the heat conduction characteristics, And a step of specifying a center temperature of the food.
JP2014086013A 2014-04-18 2014-04-18 Equipment, processing method Active JP6371969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014086013A JP6371969B2 (en) 2014-04-18 2014-04-18 Equipment, processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014086013A JP6371969B2 (en) 2014-04-18 2014-04-18 Equipment, processing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018115813A Division JP2018141625A (en) 2018-06-19 2018-06-19 refrigerator

Publications (2)

Publication Number Publication Date
JP2015206502A JP2015206502A (en) 2015-11-19
JP6371969B2 true JP6371969B2 (en) 2018-08-15

Family

ID=54603432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014086013A Active JP6371969B2 (en) 2014-04-18 2014-04-18 Equipment, processing method

Country Status (1)

Country Link
JP (1) JP6371969B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7281357B2 (en) * 2019-07-23 2023-05-25 東京瓦斯株式会社 Methods, systems, programs and equipment for temperature control
CN112923649A (en) * 2019-12-06 2021-06-08 合肥华凌股份有限公司 Refrigeration method, refrigeration equipment and readable storage medium
CN113932553A (en) * 2020-07-14 2022-01-14 青岛海尔电冰箱有限公司 Refrigerator and control method thereof
JPWO2022065074A1 (en) 2020-09-25 2022-03-31
CN114562845B (en) * 2020-11-27 2023-11-07 青岛海尔电冰箱有限公司 Control method of refrigeration and freezing equipment and refrigeration and freezing equipment
CN116576776B (en) * 2023-07-14 2023-11-03 天津艾尔特精密机械有限公司 Auxiliary device for three-dimensional precise detection of metal mold

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241463A (en) * 1993-02-22 1994-08-30 Matsushita Electric Ind Co Ltd Cooking appliance
JP3926571B2 (en) * 2000-08-17 2007-06-06 独立行政法人科学技術振興機構 Method and apparatus for measuring temperature conductivity etc. of solid
JP3900808B2 (en) * 2000-08-28 2007-04-04 三菱電機株式会社 refrigerator
ATE432446T1 (en) * 2006-11-02 2009-06-15 Electrolux Home Prod Corp DEVICE AND METHOD FOR DETERMINING THE TEMPERATURE INSIDE A COOKED FOOD

Also Published As

Publication number Publication date
JP2015206502A (en) 2015-11-19

Similar Documents

Publication Publication Date Title
JP6371969B2 (en) Equipment, processing method
JP2018141625A (en) refrigerator
Gupta et al. Modeling of a domestic frost-free refrigerator
WO2009113308A1 (en) Refrigerator
US20170071234A1 (en) Refrigerator defrost compartment
Söylemez et al. CFD analysis for predicting cooling time of a domestic refrigerator with thermoelectric cooling system
JP2010002071A (en) Refrigerator
JP4367570B1 (en) refrigerator
TW201812233A (en) Refrigerator
AU2016419453B2 (en) Refrigerator
EP3356752B1 (en) Temperature control of refrigeration cavities in low ambient temperature conditions
CN104364595A (en) Refrigeration appliance
US20140305612A1 (en) Refrigerator Having Frozen Food Thawing Function
WO2021213389A1 (en) Defrosting control method based on temperature, and defrosting apparatus and refrigerator
CN111609634A (en) Air-cooled refrigerator and defrosting control method thereof
JP2015038409A (en) Refrigerator
WO2019037982A1 (en) An oven comprising a cooling unit
Piucco et al. In-situ evaluation of a criterion to predict frost formation on liners of refrigerated cabinets
US10429863B2 (en) Systems and methods for refrigerator control
JP6236332B2 (en) Refrigeration equipment
WO2016125274A1 (en) Refrigerator
JP4367571B1 (en) refrigerator
JP6292174B2 (en) refrigerator
JP2009243872A (en) Refrigerator
JP6186187B2 (en) refrigerator

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180618

R151 Written notification of patent or utility model registration

Ref document number: 6371969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151