JP6368996B2 - Membrane electrode assembly - Google Patents

Membrane electrode assembly Download PDF

Info

Publication number
JP6368996B2
JP6368996B2 JP2013176395A JP2013176395A JP6368996B2 JP 6368996 B2 JP6368996 B2 JP 6368996B2 JP 2013176395 A JP2013176395 A JP 2013176395A JP 2013176395 A JP2013176395 A JP 2013176395A JP 6368996 B2 JP6368996 B2 JP 6368996B2
Authority
JP
Japan
Prior art keywords
catalyst layer
membrane
spacer
electrode catalyst
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013176395A
Other languages
Japanese (ja)
Other versions
JP2015046285A (en
Inventor
希実子 東
希実子 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2013176395A priority Critical patent/JP6368996B2/en
Publication of JP2015046285A publication Critical patent/JP2015046285A/en
Application granted granted Critical
Publication of JP6368996B2 publication Critical patent/JP6368996B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、高分子形燃料電池を構成する膜電極接合体であって、輸送を確保し、擦れによる欠損や、保護シートを除去する際の損傷がない膜電極接合体に関する。   TECHNICAL FIELD The present invention relates to a membrane electrode assembly constituting a polymer fuel cell, which ensures transportation and is free from defects due to rubbing or damage when removing a protective sheet.

近年、環境問題やエネルギー問題の一対策として、燃料電池が注目されている。燃料電池とは、水素やメタンなどの還元性ガスを、酸素や空気等の酸化性ガスにより酸化する反応において、これに伴う化学エネルギーを電気エネルギーに変換し、電気を得るものである。原料となりうる物質が豊富に存在することや、発電による排出物が水のみであることから、クリーンなエネルギーとされている。   In recent years, fuel cells have attracted attention as a countermeasure against environmental problems and energy problems. A fuel cell is one that obtains electricity by converting chemical energy associated therewith into electric energy in a reaction of oxidizing a reducing gas such as hydrogen or methane with an oxidizing gas such as oxygen or air. It is considered to be clean energy because there are abundant substances that can be used as raw materials and because the power generated is only water.

燃料電池は、電解質の種類によって、アルカリ形、リン酸形、高分子形、溶融炭酸塩形、固体酸化物形などに分類されるが、そのうち高分子形燃料電池(PEFC)は、低温作動、高出力密度であり、小型・軽量化が可能であることから、携帯用電源、家庭用電源、車載用動力源としての利用が期待されている。   Fuel cells are classified into alkaline type, phosphoric acid type, polymer type, molten carbonate type, solid oxide type, etc., depending on the type of electrolyte, of which polymer type fuel cell (PEFC) operates at low temperature, Since it has a high power density and can be reduced in size and weight, it is expected to be used as a portable power source, a household power source, and an in-vehicle power source.

高分子形燃料電池は、電解質膜の一方の面に燃料極(アノード)触媒層と、他方の面に空気極(カソード)触媒層とを、対向するように設けた構造を有するが、この三層構造体、またはこれにガス拡散性かつ導電性の拡散層を両面に付けた五層構造体を、膜電極接合体(MEA;membrane electrode assembly)と呼ぶ。   A polymer fuel cell has a structure in which a fuel electrode (anode) catalyst layer is provided on one surface of an electrolyte membrane and an air electrode (cathode) catalyst layer is provided on the other surface so as to face each other. A layer structure or a five-layer structure in which a gas diffusive and conductive diffusion layer is attached to both sides thereof is called a membrane electrode assembly (MEA).

膜電極接合体では、電解質膜において触媒層が形成された領域と、触媒層が形成されない領域の厚みの差によるガスの漏洩、および電解質における触媒層が形成されない領域の集中的な劣化を防ぐため、電解質膜上、触媒層の外側にガスケット部材を設けた構成が一般的である。   In a membrane electrode assembly, in order to prevent gas leakage due to a difference in thickness between a region where the catalyst layer is formed in the electrolyte membrane and a region where the catalyst layer is not formed, and intensive deterioration of the region where the catalyst layer is not formed in the electrolyte In general, the gasket member is provided outside the catalyst layer on the electrolyte membrane.

膜電極接合体は、セパレータという板状部材に挟持され、これを積層して燃料電池スタックが成る。   The membrane electrode assembly is sandwiched between plate-like members called separators, which are stacked to form a fuel cell stack.

膜電極接合体は、固体高分子形燃料電池の一部材として、上述の三層または五層の状態で供給されることがある。複数の膜電極接合体の輸送は、従来、膜電極接合体そのものを重ねた状態、または膜電極接合体を一つ一つ包装したものを重ねた状態で行われてきた。   The membrane electrode assembly may be supplied as a member of a polymer electrolyte fuel cell in the above-described three-layer or five-layer state. Conventionally, transportation of a plurality of membrane electrode assemblies has been carried out in a state in which the membrane electrode assemblies themselves are stacked or in a state in which the membrane electrode assemblies are packaged one by one.

その際、膜電極接合体どうしの接触や、膜電極接合体と包装材との接触により、膜電極接合体のガス拡散層や触媒層が損なわれることがある。この問題を回避するために、膜電極接合体に保護シートを付けたものが文献1に開示される。しかし文献1では、保護シートが膜電極接合体を覆う形で直に接着されており、ガス拡散層や触媒層における、保護シートとの擦れによる欠損や、保護シートを除去する際の損傷を回避できない。   In that case, the gas diffusion layer and catalyst layer of a membrane electrode assembly may be impaired by the contact between membrane electrode assemblies or the contact between a membrane electrode assembly and a packaging material. In order to avoid this problem, a membrane electrode assembly with a protective sheet is disclosed in Document 1. However, in Reference 1, the protective sheet is directly bonded so as to cover the membrane electrode assembly, so that the gas diffusion layer and the catalyst layer are prevented from being damaged due to rubbing with the protective sheet and damage when the protective sheet is removed. Can not.

特許第5152290号公報Japanese Patent No. 5152290

本発明は、高分子形燃料電池を構成する膜電極接合体において、問題となっているガス拡散層や燃料極触媒層、空気極触媒層の欠損や、損傷を回避しつつ、簡便で、かつ品質の
損なわれることのない輸送を可能にすることを目的とする。
The present invention provides a membrane electrode assembly that constitutes a polymer fuel cell, is simple while avoiding defects and damage of the gas diffusion layer, fuel electrode catalyst layer, and air electrode catalyst layer, which are problematic. The purpose is to enable transportation without loss of quality.

上記の課題を解決するための手段として、本発明の一態様は、電解質膜と、前記電解質膜の一方の面に形成された燃料極触媒層と、前記電解質膜の他方の面に前記燃料極触媒層と対向して形成された空気極触媒層とを備える膜電極接合体であって、前記電解質膜が、一定の幅を有する長尺形状であり、前記燃料極触媒層および前記空気極触媒層が、前記電解質膜の長尺方向に対して、間隔を空けて設けられ、前記燃料極触媒層および前記空気極触媒層が設けられていない前記電解質膜の表面に、スペーサを備えることを特徴とする。   As means for solving the above problems, one embodiment of the present invention includes an electrolyte membrane, a fuel electrode catalyst layer formed on one surface of the electrolyte membrane, and the fuel electrode on the other surface of the electrolyte membrane. A membrane electrode assembly including an air electrode catalyst layer formed to face the catalyst layer, wherein the electrolyte membrane has a long shape having a certain width, and the fuel electrode catalyst layer and the air electrode catalyst A layer is provided at a distance from the longitudinal direction of the electrolyte membrane, and a spacer is provided on the surface of the electrolyte membrane where the fuel electrode catalyst layer and the air electrode catalyst layer are not provided. And

また、前記燃料極触媒層および前記空気極触媒層が設けられていない前記電解質膜の表面の、前記電解質膜と前記スペーサとの間にガスケット部材を備えることを特徴とする。   Further, a gasket member is provided between the electrolyte membrane and the spacer on the surface of the electrolyte membrane where the fuel electrode catalyst layer and the air electrode catalyst layer are not provided.

また、前記燃料極触媒層および前記空気極触媒層の表面に、拡散層を備えることを特徴とする。   Further, a diffusion layer is provided on the surfaces of the fuel electrode catalyst layer and the air electrode catalyst layer.

また、前記ガスケット部材の表面と、前記拡散層の表面とが面一であることを特徴とする。   The surface of the gasket member and the surface of the diffusion layer are flush with each other.

また、前記スペーサが、前記電解質膜または前記ガスケット部材から剥離することが可能であることを特徴とする。   The spacer can be peeled off from the electrolyte membrane or the gasket member.

また、前記スペーサが部分的に設けられることを特徴とする。   The spacer may be partially provided.

また、前記スペーサの厚みが、200μm以上であることを特徴とする。   The spacer has a thickness of 200 μm or more.

また、前記スペーサが、前記燃料極触媒層または前記空気極触媒層から隙間を持って帯状に設けられ、前記隙間が、前記電解質膜の短尺方向に対して0.5mm以上10mm以下であることを特徴とする。   Further, the spacer is provided in a band shape with a gap from the fuel electrode catalyst layer or the air electrode catalyst layer, and the gap is 0.5 mm or more and 10 mm or less with respect to the short direction of the electrolyte membrane. Features.

また、前記スペーサの外表面に、粘着層を備えることを特徴とする。   In addition, an adhesive layer is provided on the outer surface of the spacer.

スペーサを設けることで、巻物状態、および広げた状態において、他の膜電極接合体の燃料極触媒層、空気極触媒層、拡散層や包装材への接触を避けることができる。燃料極触媒層、空気極触媒層や拡散層など、電池性能に大きく関わる部分の改造が不要であるため、性能に影響せず、また、スペーサ形成において高い精度を要さない。さらに、必要な材料の量が少ないため、コストが低減される。本発明では、容易かつ効率的に、品質を損ねない輸送が可能な膜電極接合体を得ることができる。   By providing the spacer, it is possible to avoid contact of the other membrane electrode assembly with the fuel electrode catalyst layer, the air electrode catalyst layer, the diffusion layer, and the packaging material in the wound state and the expanded state. Since it is not necessary to modify the fuel electrode catalyst layer, the air electrode catalyst layer, the diffusion layer, or the like, which greatly affects the battery performance, the performance is not affected, and high accuracy is not required in forming the spacer. Furthermore, the cost is reduced because the amount of material required is small. In the present invention, it is possible to obtain a membrane electrode assembly capable of being transported easily and efficiently without impairing quality.

本発明の膜電極接合体の一例を示した平面およびA−A’、B−B’断面の概念図である。It is the conceptual diagram of the plane which showed an example of the membrane electrode assembly of this invention, and A-A 'and B-B' cross section. 一般的な高分子形燃料電池の構成を示した分解斜視図である。1 is an exploded perspective view showing a configuration of a general polymer fuel cell. 実施例1、比較例2および3を説明する図である。It is a figure explaining Example 1 and Comparative Examples 2 and 3. FIG. 実施例2を説明する図である。FIG. 6 is a diagram illustrating Example 2. 実施例3を説明する図である。FIG. 6 is a diagram for explaining a third embodiment.

以下本発明を実施するための形態を、図面を用いて詳細に説明する。図1は、本発明の
膜電極接合体10の構成の一例を示しており、長尺状の電解質膜2の両面に、開口部を持つガスケット部材3が貼り合わせられており、一方の面の開口部には燃料極触媒層6が、他方の面には空気極触媒層7が設けられ、燃料極触媒層6および空気極触媒層7上には拡散層4が設けられている。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. FIG. 1 shows an example of the configuration of a membrane electrode assembly 10 according to the present invention, in which a gasket member 3 having an opening is bonded to both sides of a long electrolyte membrane 2. A fuel electrode catalyst layer 6 is provided in the opening, an air electrode catalyst layer 7 is provided on the other surface, and a diffusion layer 4 is provided on the fuel electrode catalyst layer 6 and the air electrode catalyst layer 7.

ガスケット部材3上には、帯状にスペーサ1が、燃料極触媒層或は空気極触媒層から間隙をあけて設けられている。このときスペーサ1の本数は、特に限定されない。膜電極接合体10がスペーサ1を備えることで、膜電極接合体10が巻物状態、および広げた状態であっても、他の膜電極接合体の燃料極触媒層、空気極触媒層、拡散層や包装材への接触を避けることができる。   On the gasket member 3, a spacer 1 is provided in a strip shape with a gap from the fuel electrode catalyst layer or the air electrode catalyst layer. At this time, the number of the spacers 1 is not particularly limited. Since the membrane electrode assembly 10 includes the spacer 1, the fuel electrode catalyst layer, the air electrode catalyst layer, and the diffusion layer of the other membrane electrode assembly can be obtained even when the membrane electrode assembly 10 is in a rolled state and in an expanded state. And contact with packaging materials can be avoided.

図2は、高分子形燃料電池の単セル1個の一般的な構成を示す分解斜視図である。単セルは、燃料極触媒層および空気極触媒層を両面に備える電解質膜2や、触媒層周囲に配されるガスケット部材3や、触媒層上に配される拡散層4や、ガス流路8を有するセパレータ5で構成される。本発明は、図2の単セルのうち、燃料極触媒層および空気極触媒層を両面に備える電解質膜2、触媒層周囲に配されるガスケット部材3、触媒層上に配される拡散層4を含む膜電極接合体に係るものである。   FIG. 2 is an exploded perspective view showing a general configuration of one single cell of the polymer fuel cell. The single cell includes an electrolyte membrane 2 having a fuel electrode catalyst layer and an air electrode catalyst layer on both sides, a gasket member 3 disposed around the catalyst layer, a diffusion layer 4 disposed on the catalyst layer, and a gas flow path 8. It is comprised with the separator 5 which has. The present invention includes an electrolyte membrane 2 having a fuel electrode catalyst layer and an air electrode catalyst layer on both sides of the single cell in FIG. 2, a gasket member 3 disposed around the catalyst layer, and a diffusion layer 4 disposed on the catalyst layer. The present invention relates to a membrane electrode assembly including

<電解質膜2>
電解質膜2は、イオン伝導性の高い材料であれば特に限定されないが、多くはパーフルオロスルホン酸系や炭化水素系の固体電解質膜が用いられる。具体的にはナフィオン(Nafion):デュポン社製、ゴアセレクト(Goreselect):ジャパンゴアテックス社製、フレミオン(Flemion):旭硝子社製等を挙げることができる。電解質膜2の厚みは、特に限定されないが、10μm〜200μmが好ましく、これより薄いと破損しやすく、また扱いにくくなり、反対に厚いと膜抵抗が大きく性能に問題を生じる。
<Electrolyte membrane 2>
The electrolyte membrane 2 is not particularly limited as long as it has a high ion conductivity, but in many cases, a perfluorosulfonic acid-based or hydrocarbon-based solid electrolyte membrane is used. Specific examples include Nafion: DuPont, Goreselect: Japan Gore-Tex, Flemion: Asahi Glass. The thickness of the electrolyte membrane 2 is not particularly limited, but is preferably 10 μm to 200 μm. If the thickness is smaller than this, the membrane is easily damaged and difficult to handle.

<燃料極触媒層6および空気極触媒層7>
燃料極触媒層6および空気極触媒層6は、触媒と電解質とから成る。触媒粒子には、白金やパラジウム、ルテニウム、イリジウム、ロジウム、オスミウムの白金族元素の他、鉄、鉛、銅、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウムなどの金属またはこれらの合金、酸化物や複酸化物等が使用できる。
<Fuel electrode catalyst layer 6 and air electrode catalyst layer 7>
The fuel electrode catalyst layer 6 and the air electrode catalyst layer 6 are composed of a catalyst and an electrolyte. Catalyst particles include platinum, palladium, ruthenium, iridium, rhodium, osmium, platinum group elements, metals such as iron, lead, copper, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, and aluminum Alloys, oxides and double oxides can be used.

触媒粒子は単体で用いてもよく、導電性担体に担持させて用いると尚よい。導電性担体には、一般的にカーボン粒子が用いられる。微粒子状で、導電性および化学的耐性を有するものであれば特に問われず、たとえばカーボンブラックやグラファイト、黒鉛、活性炭、カーボンファイバー、カーボンナノチューブ、フラーレン等が挙げられる。カーボン粒子の粒径は10〜1000nm程度が好ましく、これより小さいと電子伝導パスが形成されにくくなり、また大きいと電極触となる燃料極触媒層6、空気極触媒層7の厚みが増して抵抗が増加してしまう。   The catalyst particles may be used alone or more preferably supported on a conductive carrier. Carbon particles are generally used for the conductive carrier. It is not particularly limited as long as it is in the form of fine particles and has electrical conductivity and chemical resistance, and examples thereof include carbon black, graphite, graphite, activated carbon, carbon fiber, carbon nanotube, and fullerene. The particle size of the carbon particles is preferably about 10 to 1000 nm. If the particle size is smaller than this, it becomes difficult to form an electron conduction path, and if the particle size is larger, the thickness of the fuel electrode catalyst layer 6 and the air electrode catalyst layer 7 serving as electrode contacts increases. Will increase.

燃料極触媒層6および空気極触媒層7に用いる電解質は、イオン伝導性を有するものであればよい。電解質膜2と同質の材料を用いると、燃料極触媒層6および空気極触媒層7と電解質膜2との密着性が高められ、より好ましい。   The electrolyte used for the fuel electrode catalyst layer 6 and the air electrode catalyst layer 7 only needs to have ion conductivity. Use of the same material as that of the electrolyte membrane 2 is more preferable because adhesion between the fuel electrode catalyst layer 6 and the air electrode catalyst layer 7 and the electrolyte membrane 2 is improved.

燃料極触媒層6および空気極触媒層7の形成手段は特に問わず、たとえば上述の触媒粒子、担体および電解質の混合物を分散させたスラリーを電解質膜2に直接湿式塗布しても、転写基材または拡散層4に塗工して後転写により形成してもよい。燃料極触媒層6および空気極触媒層7の形成には、必要に応じて乾燥工程を設ける。その乾燥方法は特に限定されず、たとえば温風乾燥、赤外乾燥、減圧乾燥が挙げられる。   The means for forming the fuel electrode catalyst layer 6 and the air electrode catalyst layer 7 is not particularly limited. For example, even if a slurry in which the mixture of the catalyst particles, the carrier and the electrolyte described above is dispersed is directly wet-coated on the electrolyte membrane 2, the transfer substrate Alternatively, it may be applied to the diffusion layer 4 and formed by post-transfer. The formation of the fuel electrode catalyst layer 6 and the air electrode catalyst layer 7 is provided with a drying step as necessary. The drying method is not particularly limited, and examples include warm air drying, infrared drying, and reduced pressure drying.

<ガスケット部材3>
ガスケット部材3は、次に挙げる役割を担う。電解質膜2は原料や生成ガスに曝されると劣化が促進されることが知られており、電解質膜2の燃料極触媒層6および空気極触媒層7の形成されていない部分を覆うことにより、電解質膜2をガスから保護することが一つである。また一つは、燃料極触媒層6、空気極触媒層7および後述する拡散層4による膜電極接合体10の凹凸を解消し、燃料電池セルの組み立てをより容易に、より精度よくすることである。
<Gasket member 3>
The gasket member 3 plays the following role. It is known that when the electrolyte membrane 2 is exposed to the raw material or the generated gas, the deterioration is promoted, and by covering the portion of the electrolyte membrane 2 where the fuel electrode catalyst layer 6 and the air electrode catalyst layer 7 are not formed. One is to protect the electrolyte membrane 2 from gas. One is to eliminate the unevenness of the membrane electrode assembly 10 due to the fuel electrode catalyst layer 6, the air electrode catalyst layer 7, and the diffusion layer 4 described later, thereby making the assembly of the fuel cell easier and more accurate. is there.

ガスケット部材3には、温度変化や圧力負荷に耐えうる強度と、燃料ガスおよび酸化剤ガスを漏洩させないガスバリア性が求められ、フイルムから成るものが好適である。フイルムから成るガスケット部材3とは、フイルムの少なくとも一方面に粘着層または接着層を備えるものであり、他方面に離型層を備えていてもよい。粘着層又は接着層は、フイルムと電解質膜2の間に具備され、界面のガスシール性を向上させる。また、他の工法でも可能であり、例えば、材料を溶解させたインクの塗布によって作製する方法などが挙げられる。   The gasket member 3 is required to have a strength that can withstand temperature changes and pressure loads, and a gas barrier property that does not allow the fuel gas and oxidant gas to leak, and is preferably made of a film. The gasket member 3 made of a film includes an adhesive layer or an adhesive layer on at least one surface of the film, and may include a release layer on the other surface. The pressure-sensitive adhesive layer or the adhesive layer is provided between the film and the electrolyte membrane 2 and improves the gas sealability at the interface. Also, other methods can be used, for example, a method of producing by applying an ink in which a material is dissolved.

前記ガスケット部材3の材料としては、圧力を加えられても変形しにくいものがよく、たとえばポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリアミド等の高分子材料が挙げられる。これらを単独で用いてもよく、また組み合わせて用いてもよい。   The material of the gasket member 3 is preferably a material that does not easily deform even when pressure is applied, and examples thereof include polymer materials such as polyethylene terephthalate, polyethylene naphthalate, polycarbonate, and polyamide. These may be used alone or in combination.

ガスケット部材3の厚みは、燃料極触媒層6あるいは空気極触媒層7と後述する拡散層4とを合わせた厚みに等しいとよい。すなわち、図1に示すように、ガスケット部材3の表面と、拡散層4の表面とが面一であることが好ましい。これにより、ガスケット部材3の表面と拡散層4の表面との段差をなくし、セパレータとの密着性を向上することができる。   The thickness of the gasket member 3 is preferably equal to the combined thickness of the fuel electrode catalyst layer 6 or the air electrode catalyst layer 7 and the diffusion layer 4 described later. That is, as shown in FIG. 1, the surface of the gasket member 3 and the surface of the diffusion layer 4 are preferably flush with each other. Thereby, the level | step difference of the surface of the gasket member 3 and the surface of the diffusion layer 4 can be eliminated, and adhesiveness with a separator can be improved.

燃料極触媒層6あるいは空気極触媒層7が設けられていない電解質膜2の表面、すなわち電解質膜2上の燃料極触媒層6あるいは空気極触媒層7が形成されない領域、または、ガスケット部材3の表面には、後述するスペーサ1が接着して配される。スペーサ1をガスケット部材3の表面に付ける場合、ガスケット部材3の、電解質膜10との接着面と対向する面に備えられる。以下、スペーサ1の接着される、電解質膜2またはガスケット部材3を、被接着材と呼称する。   The surface of the electrolyte membrane 2 on which the fuel electrode catalyst layer 6 or the air electrode catalyst layer 7 is not provided, that is, the region on the electrolyte membrane 2 where the fuel electrode catalyst layer 6 or the air electrode catalyst layer 7 is not formed, or the gasket member 3 A spacer 1 to be described later is adhered and disposed on the surface. When the spacer 1 is attached to the surface of the gasket member 3, the spacer 1 is provided on the surface of the gasket member 3 that faces the adhesive surface with the electrolyte membrane 10. Hereinafter, the electrolyte membrane 2 or the gasket member 3 to which the spacer 1 is bonded is referred to as an adherend.

<スペーサ1>
スペーサ1は、燃料極側および空気極側のどちらか一方にのみ設けられても、両方に設けられてもよい。巻き取った際、外側になる面に形成されることがとくに好ましい。
<Spacer 1>
The spacer 1 may be provided only on either the fuel electrode side or the air electrode side, or may be provided on both. It is particularly preferable to form the outer surface when wound.

スペーサ1は、被接着材より剥離することが可能であり、該スペーサ1と被接着材との剥離接着の強さ(JIS K6854)は、2.0N/cm以下がよい。1.0N/cm以下であると、より剥離が容易であり、好ましい。スペーサ1と被接着材との剥離接着の強さは、スペーサ1の被接着材に付着する面に有する粘着層を構成する材料等により調整する。ここで、粘着層を構成する材料としては、アクリル系粘着剤が好適である。公知の(メタ)アクリル酸エステルを主成分とする共重合体の粘着剤に、架橋剤や可塑剤、界面活性剤等を配合したものから成る。また、必要に応じて、粘着付与剤樹脂、軟化剤、各種顔料、粘度調整剤などの助剤が添加されてもよい。これらの材料、配合比率により粘着力を調整する。   The spacer 1 can be peeled off from the material to be bonded, and the strength of peel adhesion between the spacer 1 and the material to be bonded (JIS K6854) is preferably 2.0 N / cm or less. When it is 1.0 N / cm or less, peeling is easier and it is preferable. The strength of peel adhesion between the spacer 1 and the adherend is adjusted by the material constituting the adhesive layer on the surface of the spacer 1 that adheres to the adherend. Here, an acrylic pressure-sensitive adhesive is suitable as a material constituting the pressure-sensitive adhesive layer. It is composed of a known adhesive (meth) acrylic acid ester as a main component and a cross-linking agent, a plasticizer, a surfactant and the like blended with a copolymer pressure-sensitive adhesive. Moreover, auxiliary agents, such as tackifier resin, a softening agent, various pigments, and a viscosity modifier, may be added as needed. The adhesive strength is adjusted by these materials and the blending ratio.

また、スペーサ1の被接着材と接する面のうち、接着される領域はその一部でもよい。   Further, a part of the surface of the spacer 1 that is in contact with the adherend may be a part of the region to be bonded.

積層した際の密着性を高めるため、スペーサ1は、被接着材に付着する面に加えて、被接着材と接する面の逆の面、すなわちスペーサ1の外表面にも粘着層を有する構成がよい。粘着層を介して他の膜電極接合体10と合わさることで、積層集合体がより安定する。この剥離接着の強さ(JIS K6854)は、2.0N/cm以下が好ましく、1.0N/cm以下であると、剥離が容易で、より好ましい。   In order to improve the adhesion when laminated, the spacer 1 has a structure having an adhesive layer on the surface opposite to the surface in contact with the adherend, that is, on the outer surface of the spacer 1, in addition to the surface adhering to the adherend. Good. The laminated assembly is further stabilized by being combined with another membrane electrode assembly 10 via the adhesive layer. The peel adhesion strength (JIS K6854) is preferably 2.0 N / cm or less, and more preferably 1.0 N / cm or less because peeling is easy.

スペーサ1の、膜電極接合体10の膜厚方向における高さは、0.2mm以上である。0.5mm以上あると、外部からの力により曲げや揺れが発生した際にも、電極部における他の膜電極接合体や包装材との接触を回避できる可能性が高く、より好ましい。   The height of the spacer 1 in the film thickness direction of the membrane electrode assembly 10 is 0.2 mm or more. When the thickness is 0.5 mm or more, there is a high possibility that contact with other membrane electrode assemblies and packaging materials in the electrode portion can be avoided even when bending or shaking occurs due to external force.

スペーサ1は、被接着材上に接着され、燃料極触媒層6あるいは空気極触媒層7が間隔を置いて形成される帯状領域α(図3を参照)を避けて設けられるが、その形状、大きさ、数は問わない。帯状領域αと平行して、連続または不連続の帯状に形成されるととくによい。その際、スペーサ1が電極部と接触してはならず、しかしごく近傍に設けられることにより、より確実に電極部近傍を支持し、電極部の空間を保持することが可能になる。スペーサ1と電極部の短手方向距離は、0.5mm以上10mm以下がよく、さらに1mm以上5mm以下が好適である。0.5mmより小さい場合、スペーサ1の貼り付けや剥離をする際に触媒層等と接触するおそれがあり、作業性の点から好ましくない。一方、10mmより大きい場合、電極部の空間を保持する効果が小さくなるため好ましくない。   The spacer 1 is provided on the material to be bonded, and is provided to avoid the belt-like region α (see FIG. 3) in which the fuel electrode catalyst layer 6 or the air electrode catalyst layer 7 is formed at intervals. The size and number are not limited. It is particularly preferable to form a continuous or discontinuous strip in parallel with the strip region α. At that time, the spacer 1 should not be in contact with the electrode part, but by being provided in the very vicinity, the vicinity of the electrode part can be more reliably supported and the space of the electrode part can be maintained. The distance in the short direction between the spacer 1 and the electrode part is preferably 0.5 mm or more and 10 mm or less, and more preferably 1 mm or more and 5 mm or less. When it is smaller than 0.5 mm, there is a possibility of contact with the catalyst layer or the like when the spacer 1 is stuck or peeled off, which is not preferable from the viewpoint of workability. On the other hand, when it is larger than 10 mm, the effect of maintaining the space of the electrode portion is reduced, which is not preferable.

スペーサ1は、燃料極触媒層あるいは燃料極触媒層から隙間を持って設けられており、電解質膜の短尺方向に対して0.5mm以上10mm以下が好ましく、燃料極触媒層あるいは燃料極触媒層の上下列に限定されず、平行して複数設けられてもよい。   The spacer 1 is provided with a gap from the fuel electrode catalyst layer or the fuel electrode catalyst layer, and is preferably 0.5 mm or more and 10 mm or less with respect to the short direction of the electrolyte membrane. It is not limited to the upper and lower rows, and a plurality may be provided in parallel.

スペーサ1の、形状および大きさ、本数は、とくに限定されず、被接着材である電解質膜2またはガスケット部材3を保護することが可能であるが、スペーサ1の形成される面積を小さくすると、材料コストを抑えることができる。   The shape, size, and number of the spacers 1 are not particularly limited, and it is possible to protect the electrolyte membrane 2 or the gasket member 3 that is an adherend, but if the area where the spacers 1 are formed is reduced, Material costs can be reduced.

<拡散層4>
拡散層4は、導電性が高く、原料ガスの拡散性が高い材料から成る。例えば、金属フイルム、導電性高分子、カーボン材料等が挙げられるが、なかでもカーボンペーパ等の多孔質導電体材料が好ましい。拡散層4の厚みは、50μm〜1000μm程度が好ましい。
<Diffusion layer 4>
The diffusion layer 4 is made of a material having high conductivity and high material gas diffusibility. For example, a metal film, a conductive polymer, a carbon material and the like can be mentioned, and among them, a porous conductor material such as carbon paper is preferable. The thickness of the diffusion layer 4 is preferably about 50 μm to 1000 μm.

拡散層4に挟持されて、膜電極接合体10がある。電解質膜2の両面に燃料極および空気極となる燃料極触媒層6、空気極触媒層7が形成され、その外側を囲むように燃料極触媒層6、空気極触媒層7と隙間を空けずにガスケット部材3が配される。   There is a membrane electrode assembly 10 sandwiched between the diffusion layers 4. A fuel electrode catalyst layer 6 and an air electrode catalyst layer 7 to be a fuel electrode and an air electrode are formed on both surfaces of the electrolyte membrane 2, and a gap is not formed between the fuel electrode catalyst layer 6 and the air electrode catalyst layer 7 so as to surround the outside thereof. The gasket member 3 is disposed on the surface.

<セパレータ5>
セパレータ5は、導電性を有し、かつガスを透過しない材料より成る。例えば、耐食処理が施された金属板または焼成カーボン等のカーボン系材料等である。前記セパレータ5は、空気極および燃料極の拡散層4と面して、それぞれの反応ガス流通用の流路8となる櫛型構造を備えて配置される。この面に対向する面に、冷却水流路を有することも多い。酸化剤ガスおよび燃料ガスはまずセパレータ5の反応ガス流路8を通る。流路8を通るうちに、反応ガスは拡散層4を介して、膜電極接合体10に供給される。
<Separator 5>
The separator 5 is made of a material that has conductivity and does not transmit gas. For example, a metal plate subjected to corrosion resistance treatment or a carbon-based material such as baked carbon. The separator 5 faces the air electrode and the fuel electrode diffusion layer 4 and is arranged to have a comb-shaped structure that becomes a flow path 8 for each reaction gas flow. In many cases, a cooling water flow path is provided on the surface facing this surface. The oxidant gas and the fuel gas first pass through the reaction gas flow path 8 of the separator 5. While passing through the flow path 8, the reaction gas is supplied to the membrane electrode assembly 10 through the diffusion layer 4.

以上、本発明の実施形態による膜電極接合体10及びこれを備えた燃料電池セルについて説明したが、膜電極接合体10は燃料電池セルのみに適用されるものではない。以下、本発明の実施例について詳細に説明するが、本発明は以下の実施例のみに限定されない。   As described above, the membrane electrode assembly 10 and the fuel cell including the membrane electrode assembly 10 according to the embodiment of the present invention have been described. However, the membrane electrode assembly 10 is not applied only to the fuel cell. Examples of the present invention will be described in detail below, but the present invention is not limited to the following examples.

触媒層用スラリーとして、白金担持カーボン(TEC10E50E、田中貴金属社製)と水とを混合した後、これに2‐プロパノールと電解質(Nafion分散液、和光純薬工業社製)を加えて撹拌して得たものを用いた。それぞれの混合質量比は1:3:15:2とした。電解質膜2として、Nafion211CS(デュポン社製)を用い、この一方の面に燃料極触媒層6を、他の方面のこれと対向する位置に空気極触媒層7を、前記スラリーを用いたスプレー法による塗工および摂氏80度の炉内乾燥により形成した。両触媒層6、7の大きさは50mm×50mmとし、100mmの間隔を空けて帯状に形成した。   As a catalyst layer slurry, platinum-supported carbon (TEC10E50E, manufactured by Tanaka Kikinzoku Co., Ltd.) and water are mixed, and then 2-propanol and an electrolyte (Nafion dispersion, manufactured by Wako Pure Chemical Industries, Ltd.) are added and stirred. What was obtained was used. Each mixing mass ratio was set to 1: 3: 15: 2. Spray method using Nafion 211CS (manufactured by DuPont) as the electrolyte membrane 2, the fuel electrode catalyst layer 6 on one side, the air electrode catalyst layer 7 on the other side facing this, and the slurry. And by drying in an oven at 80 degrees Celsius. Both the catalyst layers 6 and 7 were 50 mm × 50 mm in size and formed in a strip shape with an interval of 100 mm.

この長尺の電解質膜に、図3に示すように、燃料極触媒層6、空気極触媒層7が間隔を置いて形成されている帯状領域αから1mmの距離(g)をおいて平行して、粘着層付PETフイルム1(幅(w)5mm、厚み(h)0.2mm、剥離接着強度0.1N/cm)を、スペーサ1として、電解質膜2の両面に貼りあわせ、実施例1の膜電極接合体10を作製した。 As shown in FIG. 3, the long electrolyte membrane 2 is parallel to the belt-shaped region α where the fuel electrode catalyst layer 6 and the air electrode catalyst layer 7 are formed at a distance (g) from each other. Then, the PET film 1 with an adhesive layer 1 (width (w) 5 mm, thickness (h) 0.2 mm, peel adhesion strength 0.1 N / cm) was attached to both surfaces of the electrolyte membrane 2 as a spacer 1, 1 membrane electrode assembly 10 was produced.

実施例1におけるスペーサ1を、図4に示すように、帯状とせずに(幅(w)5mm、長さ(m)10mm)とし、燃料極触媒層6、空気極触媒層7から1mmの距離(g)をおいて、10mmの間隔(n)で電解質膜2の両面に貼りあわせ、実施例2の膜電極接合体10を作製した。   As shown in FIG. 4, the spacer 1 in Example 1 is not formed into a strip shape (width (w) 5 mm, length (m) 10 mm), and is 1 mm from the fuel electrode catalyst layer 6 and the air electrode catalyst layer 7. After placing (g), the membrane electrode assembly 10 of Example 2 was fabricated by pasting on both surfaces of the electrolyte membrane 2 at an interval (n) of 10 mm.

両面に燃料極触媒層6、空気極触媒層7を形成した長尺の電解質膜2(実施例1と同じ)に、図5に示すように、ガスケット部材3として、50mm×50mmの開口部を100mm間隔で持つ、外寸150mm幅の粘着層付きPETフイルム(厚み0.2mm、剥離接着強度10N/cm)を、その開口部と両極触媒層6、7との位置が合うように貼り付けた。   As shown in FIG. 5, an opening of 50 mm × 50 mm is formed in the long electrolyte membrane 2 (same as Example 1) having the fuel electrode catalyst layer 6 and the air electrode catalyst layer 7 formed on both sides, as shown in FIG. A PET film with an adhesive layer having an outer dimension of 150 mm width (at a thickness of 0.2 mm and a peel adhesion strength of 10 N / cm) having an interval of 100 mm was pasted so that the positions of the openings and the bipolar catalyst layers 6 and 7 were aligned. .

続いて、実施例1と同様に、粘着層付PETフイルム1を電解質膜2の両面に貼りあわせ、図5に示す実施例3の膜電極接合体10を作製した。尚、触媒層の作製は実施例1と同様に行った。   Subsequently, in the same manner as in Example 1, the adhesive film-attached PET film 1 was bonded to both surfaces of the electrolyte membrane 2 to produce a membrane electrode assembly 10 of Example 3 shown in FIG. The catalyst layer was produced in the same manner as in Example 1.

<比較例1>
実施例1に用いた電解質膜と同じNafion211CSに、実施例1と同様に、燃料極触媒層6を、他方の面に空気極触媒層7を50mm×50mmの大きさに、100mmの間隔に形成し、摂氏80度の炉内で乾燥することで、スペーサを設けない比較例1の膜電極接合体を作製した。
<Comparative Example 1>
In the same Nafion 211CS as the electrolyte membrane used in Example 1, as in Example 1, the fuel electrode catalyst layer 6 and the air electrode catalyst layer 7 on the other surface are formed in a size of 50 mm × 50 mm at intervals of 100 mm. And the membrane electrode assembly of the comparative example 1 which does not provide a spacer was produced by drying in a 80 degreeC furnace.

<比較例2>
ガスケット部材3を設けた、実施例3の膜電極接合体の構成から、スペーサ1を除いた構成の比較例2の膜電極接合体を形成した。
<Comparative example 2>
A membrane / electrode assembly of Comparative Example 2 having a configuration in which the spacer 1 was removed from the configuration of the membrane / electrode assembly of Example 3 provided with the gasket member 3 was formed.

<振動試験>
作製した膜電極接合体を10枚積層し、振動試験機(F−200BM/A−E04エミック社製)を用い、加速度5G、掃引周波数10〜55Hz、左右、奥行き方向、垂直方向それぞれ30分ずつ振動を加えた。
<Vibration test>
Ten membrane electrode assemblies thus prepared were stacked, and using a vibration tester (F-200BM / A-E04 manufactured by Emic Co., Ltd.), acceleration was 5G, sweep frequency was 10 to 55 Hz, left and right, depth direction, and vertical direction for 30 minutes each. Vibration was applied.

<観察>
振動試験後、触媒層表面の観察を実施した。振動試験前と比較して、
○:変化が見られなかったもの
×:実験前と比較して、実験後の触媒層に薄い箇所や剥離が観察されたもの
とした。
<Observation>
After the vibration test, the surface of the catalyst layer was observed. Compared to before vibration test,
○: No change was observed. ×: Thin portions and peeling were observed in the catalyst layer after the experiment as compared to before the experiment.

<高電位(OCV)保持耐久性試験>
振動試験後、スペーサを剥離した膜電極接合体の両面に、拡散層(SIGRACET 35BC,SGL)を配置し、日本自動車研究所(JARI)標準セルを用いて耐久性試験を実施した。セル温度は100℃とし、燃料極に加湿水素、空気極に加湿酸素を供給して行った。振動試験を施さず測定した結果Xに対して、
○:10枚の平均値がXと同等か上回る場合
×:10枚の平均値がXを下回る場合
とした。
<High potential (OCV) holding durability test>
After the vibration test, diffusion layers (SIGRACE 35BC, SGL) were arranged on both surfaces of the membrane electrode assembly from which the spacer was peeled off, and a durability test was performed using a Japan Automobile Research Institute (JARI) standard cell. The cell temperature was 100 ° C., and humidified hydrogen was supplied to the fuel electrode and humidified oxygen was supplied to the air electrode. For the result X measured without the vibration test,
○: When the average value of 10 sheets is equal to or higher than X ×: When the average value of 10 sheets is lower than X

実施例および比較例の膜電極接合体に対して、前述の振動試験を行った。その後、実施例1および比較例1の膜電極接合体に対して、観察および高電位(OCV)保持耐久性試験を行った。実施例2、3および比較例2の膜電極接合体に対して、観察のみを行った。   The aforementioned vibration test was performed on the membrane electrode assemblies of Examples and Comparative Examples. Thereafter, the membrane electrode assembly of Example 1 and Comparative Example 1 was subjected to observation and high potential (OCV) holding durability test. The membrane electrode assemblies of Examples 2 and 3 and Comparative Example 2 were only observed.

Figure 0006368996
スペーサ1を有する実施例1は触媒層の破損は見られなかったが、スペーサ1を有さない比較例1では触媒層の破損が見られた。実施例1は揺れ実験を施しても耐久性が維持されたが、比較例1は揺れ実験後の測定で耐久性が降下した。
Figure 0006368996
In Example 1 having the spacer 1, the catalyst layer was not damaged, but in Comparative Example 1 having no spacer 1, the catalyst layer was damaged. The durability of Example 1 was maintained even when the shaking experiment was performed, but the durability of Comparative Example 1 was lowered by the measurement after the shaking experiment.

スペーサ1の、膜平面における形状、数の異なる実施例2では、揺れ実験後も触媒層の状態は変わらなかった。   In Example 2 with different shapes and numbers of spacers 1 on the film plane, the state of the catalyst layer did not change even after the shaking experiment.

これらのことから、本発明による膜電極接合体10は、積層されて振動を加えられたときに触媒層が傷みにくいこと、スペーサの形状は問わないことが確認された。   From these facts, it was confirmed that the membrane electrode assembly 10 according to the present invention was not damaged by the catalyst layer and the shape of the spacer was not damaged when it was laminated and subjected to vibration.

また、ガスケットのみを付けた比較例4では、触媒層の破損が見られ、ガスケットおよびスペーサ1を付けた実施例3では、触媒層の破損が見られなかった。このことから、触媒層を取り囲むガスケットでは触媒層保護の機能を果たさず、しかしこのガスケットにスペーサ1を設けることは有効であることが明らかとなった。   Further, in Comparative Example 4 where only the gasket was attached, the catalyst layer was damaged, and in Example 3 where the gasket and the spacer 1 were attached, the catalyst layer was not damaged. From this, it became clear that the gasket surrounding the catalyst layer does not perform the function of protecting the catalyst layer, but it is effective to provide the spacer 1 on this gasket.

以上より、本発明による膜電極接合体10は、運搬や保管の際の燃料極および空気極の保護に効果的であることが示された。   From the above, it was shown that the membrane electrode assembly 10 according to the present invention is effective for protecting the fuel electrode and the air electrode during transportation and storage.

1・・・スペーサ
2・・・電解質膜
3・・・ガスケット部材
4・・・拡散層
5・・・セパレータ
6・・・燃料極触媒層
7・・・空気極触媒層
8・・・ガス流路
10・・・膜電極接合体
DESCRIPTION OF SYMBOLS 1 ... Spacer 2 ... Electrolyte membrane 3 ... Gasket member 4 ... Diffusion layer 5 ... Separator 6 ... Fuel electrode catalyst layer 7 ... Air electrode catalyst layer 8 ... Gas flow Path 10 ... Membrane electrode assembly

Claims (5)

電解質膜と、前記電解質膜の一方の面に形成された燃料極触媒層と、前記電解質膜の他方の面に前記燃料極触媒層と対向して形成された空気極触媒層とを備え、かつ、前記燃料極触媒層および前記空気極触媒層が設けられていない前記電解質膜の表面に、ガスケット部材を備える膜電極接合体であって、
前記電解質膜が、一定の幅を有する長尺形状であり、
前記燃料極触媒層および前記空気極触媒層が、前記電解質膜の長尺方向に対して、間隔を空けて設けられ、
前記ガスケット部材の前記電解質膜側の面とは反対側の面である第一面にスペーサが設けられており、
前記スペーサの前記ガスケット部材と対向する面に、粘着層を備えており、
前記燃料極触媒層および前記空気極触媒層の前記電解質膜とは反対側に拡散層を備え、
前記拡散層の前記電解質膜側の面とは反対側の面が第二面であり、
前記ガスケット部材の前記第一面と、前記拡散層の前記第二面とが面一であり、
前記スペーサが前記第二面から突出していることを特徴とする膜電極接合体。
An electrolyte membrane, a fuel electrode catalyst layer formed on one surface of the electrolyte membrane, and an air electrode catalyst layer formed on the other surface of the electrolyte membrane facing the fuel electrode catalyst layer , and , the surface of the anode catalyst layer and the cathode catalyst layer is provided with not the electrolyte membrane, a membrane electrode assembly Ru includes a gasket member,
The electrolyte membrane has an elongated shape having a certain width,
The fuel electrode catalyst layer and the air electrode catalyst layer are provided at an interval with respect to the longitudinal direction of the electrolyte membrane,
A spacer is provided on the first surface which is the surface opposite to the surface on the electrolyte membrane side of the gasket member ,
An adhesive layer is provided on the surface of the spacer facing the gasket member ;
A diffusion layer is provided on the opposite side of the fuel electrode catalyst layer and the air electrode catalyst layer from the electrolyte membrane,
The surface opposite to the surface on the electrolyte membrane side of the diffusion layer is the second surface,
The first surface of the gasket member and the second surface of the diffusion layer are flush with each other;
The membrane electrode assembly, wherein the spacer protrudes from the second surface .
前記スペーサが、剥離可能に設けられていることを特徴とする請求項1に記載の膜電極接合体。  The membrane electrode assembly according to claim 1, wherein the spacer is detachable. 前記スペーサが部分的に設けられることを特徴とする請求項1または2に記載の膜電極接合体。  The membrane electrode assembly according to claim 1 or 2, wherein the spacer is partially provided. 前記スペーサの厚みが、200μm以上であることを特徴とする請求項1乃至3のいずれか一項に記載の膜電極接合体。  The thickness of the said spacer is 200 micrometers or more, The membrane electrode assembly as described in any one of Claim 1 thru | or 3 characterized by the above-mentioned. 前記スペーサが、前記燃料極触媒層または前記空気極触媒層から隙間を持って帯状に設けられ、前記隙間が、前記電解質膜の短尺方向に対して0.5mm以上10mm以下であることを特徴とする請求項1乃至4のいずれか一項に記載の膜電極接合体。  The spacer is provided in a band shape with a gap from the fuel electrode catalyst layer or the air electrode catalyst layer, and the gap is 0.5 mm or more and 10 mm or less with respect to the short direction of the electrolyte membrane. The membrane electrode assembly according to any one of claims 1 to 4.
JP2013176395A 2013-08-28 2013-08-28 Membrane electrode assembly Active JP6368996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013176395A JP6368996B2 (en) 2013-08-28 2013-08-28 Membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013176395A JP6368996B2 (en) 2013-08-28 2013-08-28 Membrane electrode assembly

Publications (2)

Publication Number Publication Date
JP2015046285A JP2015046285A (en) 2015-03-12
JP6368996B2 true JP6368996B2 (en) 2018-08-08

Family

ID=52671636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013176395A Active JP6368996B2 (en) 2013-08-28 2013-08-28 Membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP6368996B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10193152B2 (en) 2015-09-09 2019-01-29 Samsung Electronics Co., Ltd. Cathode active material particles, lithium ion battery prepared by using the cathode active material particles, and method of preparing the cathode active material particles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4843985B2 (en) * 2005-04-01 2011-12-21 大日本印刷株式会社 ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY WITH GASKET FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP2010092731A (en) * 2008-10-08 2010-04-22 Toyota Motor Corp Method of manufacturing electrode for fuel cell
JP2013004390A (en) * 2011-06-20 2013-01-07 Panasonic Corp Method of manufacturing assembly of electrolytic membrane and catalyst layer for fuel cell

Also Published As

Publication number Publication date
JP2015046285A (en) 2015-03-12

Similar Documents

Publication Publication Date Title
JP5194346B2 (en) Electrolyte membrane-electrode assembly
JP5069927B2 (en) Membrane electrode assembly for fuel cell and method for producing the same
JP2007066769A (en) Electrolyte membrane-electrode assembly and its manufacturing method
JP2007095669A (en) Electrolyte film-electrode assembly
JP2007242609A (en) Controlled electrode overlap architecture for improved membrane-electrode assembly durability
JP2006339124A (en) Membrane-electrode assembly for fuel cell, and solid polymer fuel cell using this
JP2014053118A (en) Fuel cell and manufacturing method of the same
JP2006338943A (en) Electrolyte membrane-electrode assembly
SG181944A1 (en) Performance enhancing layers for fuel cells
JP4978752B2 (en) Fuel cell and manufacturing method thereof
JP2007287487A (en) Solid electrolyte fuel cell
JP5533134B2 (en) Catalyst layer-electrolyte membrane laminate, catalyst layer with edge seal-electrolyte membrane laminate, membrane-electrode assembly, membrane-electrode assembly with edge seal, and production method thereof
JP2007035459A (en) Fuel cell
JP2010073586A (en) Electrolyte membrane-electrode assembly
JP6368995B2 (en) Membrane electrode assembly and membrane electrode assembly laminate
JP6368996B2 (en) Membrane electrode assembly
JP7310800B2 (en) Membrane electrode assembly and polymer electrolyte fuel cell
JP5838570B2 (en) Membrane electrode assembly in polymer electrolyte fuel cell
JP5849418B2 (en) Manufacturing method of membrane electrode assembly
KR102163539B1 (en) Membrane-electrode assembly, method for manufacturing the same, and fuel cell stack comprising the same
JP2022118212A (en) Electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell
JP5615794B2 (en) Manufacturing method of electrolyte membrane / electrode structure for fuel cell
JP7119402B2 (en) MEMBRANE ELECTRODE ASSEMBLY AND POLYMER FUEL CELL INCLUDING THE SAME
JP2012069462A (en) Catalyst layer-electrolyte membrane laminate with protective sheet and membrane-electrode assembly with protective sheet
JP6136419B2 (en) Membrane electrode assembly and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180625

R150 Certificate of patent or registration of utility model

Ref document number: 6368996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250