JP6364490B2 - High heat resistant ABS resin composition suitable for blow molding and method for preparing the same - Google Patents

High heat resistant ABS resin composition suitable for blow molding and method for preparing the same Download PDF

Info

Publication number
JP6364490B2
JP6364490B2 JP2016533619A JP2016533619A JP6364490B2 JP 6364490 B2 JP6364490 B2 JP 6364490B2 JP 2016533619 A JP2016533619 A JP 2016533619A JP 2016533619 A JP2016533619 A JP 2016533619A JP 6364490 B2 JP6364490 B2 JP 6364490B2
Authority
JP
Japan
Prior art keywords
weight
parts
graft copolymer
resin composition
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016533619A
Other languages
Japanese (ja)
Other versions
JP2017502106A (en
Inventor
シャン,グイフアン
シン,ミンチ
ルオ,ミンファ
シュウ,ティン
チゥ,ウェイメイ
Original Assignee
シャンハイ クムホサニー プラスチックス カンパニー リミテッド
シャンハイ クムホサニー プラスチックス カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201310590377.2 priority Critical
Priority to CN201310590377.2A priority patent/CN103613877B/en
Application filed by シャンハイ クムホサニー プラスチックス カンパニー リミテッド, シャンハイ クムホサニー プラスチックス カンパニー リミテッド filed Critical シャンハイ クムホサニー プラスチックス カンパニー リミテッド
Priority to PCT/CN2013/088527 priority patent/WO2015074297A1/en
Publication of JP2017502106A publication Critical patent/JP2017502106A/en
Application granted granted Critical
Publication of JP6364490B2 publication Critical patent/JP6364490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/16Homopolymers or copolymers of alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles

Description

本発明は高分子技術領域に属し、具体的は一種のブロー成形に適する高耐熱ABS樹脂組成物及びその調製方法に関する。   The present invention belongs to the polymer technical field, and specifically relates to a high heat-resistant ABS resin composition suitable for a kind of blow molding and a method for preparing the same.

ABS樹脂は良好な総合性能を備え、射出成形、押出、真空、ブロー成形及びロールイン等複数種類の成形方法に応用できる。ブロー成形プロセスの中において、重合体を狭い口型に通す時に、高いせん断力作用を受けるため、押出されるパリソンは自重作用に溶融垂れ現象が発生する。過度の垂れ縮小は部品壁の厚さの不均等を起すことがあり、厳しい場合には成形できない可能性もある。この為、ブロー成形に適する重合体を選択する際に、まず、そのせん断の粘弾性を明確にしなければならない。ブロー成形に適するABS樹脂は、高い溶融強度を備える以外、その溶融粘度がせん断速度に対する敏感度が低いこと、即ち溶融粘度がせん断速度に応じて変化が少ないことが要求される。   ABS resin has good overall performance and can be applied to multiple types of molding methods such as injection molding, extrusion, vacuum, blow molding and roll-in. In the blow molding process, when the polymer is passed through a narrow mouth mold, it is subjected to a high shearing force action, so that the extruded parison undergoes a melt dripping phenomenon due to its own weight. Excessive sag reduction may cause uneven thickness of the part wall and may not be moldable in severe cases. For this reason, when selecting a polymer suitable for blow molding, the shear viscoelasticity must first be clarified. An ABS resin suitable for blow molding is required to have a low melt viscosity sensitivity to the shear rate, that is, a small change in the melt viscosity according to the shear rate, in addition to having a high melt strength.

ブロー成形のABS樹脂は自動車用の大型部品に幅広く応用され、例えば拡散器、シートバック、バンパー等の製品に応用される。自動車部品の製造に使用されるABS樹脂は、良好な物理的機械的性質(特に衝撃性能)を備える以外、高耐熱性能も備える必要があり、これにより塗装後等の加工工程の要求及び厳しい使用環境に満足させる。例えば、フォードWSK−M4D906−A1/A2基準を満たす高耐熱押出級ABS製品は、ビカット軟化温度が105℃以上であることが要求される。この為、自動車部品のブロー成形用のABS樹脂は良好なブロー成形性を備えることを要求される以外、同時に樹脂の耐熱性及び衝撃性能を向上しなければならない。しかし、耐熱性能および耐衝撃性能と製品の表面品質とは矛盾している。現有技術で、ビカット軟化温度を105℃以上にすることは可能であるが、製品の表面品質と耐衝撃性能は非常に悪化してしまう。   Blow-molded ABS resin is widely applied to large parts for automobiles, for example, products such as diffusers, seat backs, and bumpers. ABS resin used in the manufacture of automotive parts must have high heat resistance as well as good physical and mechanical properties (especially impact performance). Satisfy the environment. For example, a high heat-resistant extrusion grade ABS product that satisfies the Ford WSK-M4D906-A1 / A2 standard is required to have a Vicat softening temperature of 105 ° C. or higher. For this reason, ABS resin for blow molding of automobile parts is required to have good blow moldability, and at the same time, the heat resistance and impact performance of the resin must be improved. However, there is a contradiction between heat and shock resistance and product surface quality. With the existing technology, it is possible to increase the Vicat softening temperature to 105 ° C. or higher, but the surface quality and impact resistance of the product will be greatly deteriorated.

当面、ABS樹脂に使用される耐熱性添加剤は、主にマレイミドをベースとした共重合体及びα−アルキルスチレンをベースとした共重合体がある。合成法が限られるため、この二種類の耐熱材をそれぞれ単独に使用してブロー成形ABS樹脂を調製する場合は多少不足している。   For the time being, heat-resistant additives used in ABS resins are mainly maleimide-based copolymers and α-alkylstyrene-based copolymers. Since the synthesis method is limited, there is a shortage in the case of preparing a blow-molded ABS resin using these two kinds of heat-resistant materials independently.

(1)中国特許第101250314号及び中国特許出願公開第103013025A号にN−フェニルマレイミド(PMI)と無水マレイン酸(MAH)、スチレン(St)との三元共重合体を耐熱剤として使用し、ブロー成形に適する耐熱ABS樹脂組成物を調製することが開示されている。注意すべきこととして、樹脂の耐熱性を向上させるために、マレイミドをベースとした共重合体の耐熱剤は、大量のマレイミド成分(一般的に、>40重量部)を含む。耐熱剤のガラス転移温度はかなり高くて、CN101250314で用いられたPMI−St−MAH共重合体のガラス転移温度は160−210℃にも達する。それに対して、ABSブロー成形時の加工温度は180−210℃が一般的である。この為、樹脂の塑性化不良、製品表面の光沢度が悪い等の欠陥を起こしやすく、後続する研磨のコストを増加させてしまう。第二、耐熱剤の中に熱や水に接触すると分解しやすい無水マレイン酸成分を同時に含んでいるため、樹脂の熱安定性はMAH含有量の増加に伴い不安定になる。第三に、大量のNPMI成分を導入したため、ABS樹脂の耐衝撃性能を大いに弱めて、CN103013025A特許はゴム粉を同時に配合し、靭性の増強に使用されたが、更に材料のコストを増やしてしまう。第四に、マレイミドをベースとした共重合体はマレイミド含有量を多く含有する場合、かなり高い溶融粘度になるため、通常溶液重合法を通して調製を行い、製造コストがかなり高くなる。この為、マレイミドをベースとした共重合体の耐熱剤の価格も高くなっている。(2)α−アルキルスチレンをベースとした共重合体耐熱剤の耐熱性への改善幅が限られている。同時に、α−アルキルスチレンの共重合体を調製する際に通常ラジカル乳化重合を用いるため、合成の過程に低分子量乳化剤、凝集剤等の他の添加剤による製品へ与えた不純物を完全に除去することが難しい。製品のVOC含有量が高く、ブロー成形の過程に樹脂は分解気体が発生しやすくて製品表面の外観及び後続の塗装良品率に影響を与える。この他、ABSとPC等の耐熱級エンジニアリング・プラスチックを混合して性質を変更することもあり、ABSの耐熱性と耐衝撃性能を同時に向上できるが、デメリットとしてABS樹脂のブロー成形性を低減し、且つPCは加水分解が発生しやすいため、製品は安定していない。   (1) A terpolymer of N-phenylmaleimide (PMI), maleic anhydride (MAH), and styrene (St) is used as a heat-resistant agent in Chinese Patent No. 101250314 and Chinese Patent Application Publication No. 103013025A, It is disclosed to prepare a heat-resistant ABS resin composition suitable for blow molding. It should be noted that in order to improve the heat resistance of the resin, the maleimide-based copolymer refractory contains a large amount of maleimide component (generally> 40 parts by weight). The glass transition temperature of the heat-resistant agent is quite high, and the glass transition temperature of the PMI-St-MAH copolymer used in CN101250314 reaches 160-210 ° C. On the other hand, the processing temperature at the time of ABS blow molding is generally 180 to 210 ° C. For this reason, defects such as poor plasticization of the resin and poor gloss on the product surface are likely to occur, increasing the cost of subsequent polishing. Second, the heat resistance of the resin becomes unstable as the MAH content increases because it contains a maleic anhydride component that easily decomposes when exposed to heat or water. Third, since a large amount of NPMI component was introduced, the impact resistance performance of the ABS resin was greatly weakened, and the CN103013025A patent was used to increase the toughness at the same time by compounding rubber powder, but it further increased the cost of the material. . Fourthly, a copolymer based on maleimide has a considerably high melt viscosity when it contains a large amount of maleimide, so that it is usually prepared through a solution polymerization method, and the production cost is considerably increased. For this reason, the price of the heat-resistant agent of the copolymer based on maleimide is also increased. (2) The range of improvement in heat resistance of the copolymer heat-resistant agent based on α-alkylstyrene is limited. At the same time, since radical emulsion polymerization is usually used when preparing an α-alkylstyrene copolymer, impurities added to the product by other additives such as low molecular weight emulsifiers and flocculants are completely removed during the synthesis process. It is difficult. The VOC content of the product is high, and the resin tends to generate decomposition gas during the blow molding process, which affects the appearance of the product surface and the rate of subsequent good products. In addition, ABS and PC and other heat-resistant engineering plastics may be mixed to change the properties, improving the heat resistance and impact resistance of ABS at the same time, but as a disadvantage, it reduces the blow moldability of ABS resin. In addition, since PC is prone to hydrolysis, the product is not stable.

本発明の目的としては現有技術の不足を克服し、一種のブロー成形に適する高耐熱ABS樹脂組成物及びその調製方法を提供することにある。本発明に係る方法は、特定の比率で耐熱剤とABSの配合を使用することにより、ブロー成形に適する高耐熱ABS樹脂を調製し、現有技術でブロー成形用耐熱級ABS樹脂を調製する時にコスト、成形、表面品質、耐熱性能/衝撃性能及び製品後加工等面における不足を解決する。   An object of the present invention is to overcome a shortage of existing technologies and provide a high heat-resistant ABS resin composition suitable for blow molding and a method for preparing the same. The method according to the present invention prepares a high heat-resistant ABS resin suitable for blow molding by using a combination of a heat-resistant agent and ABS at a specific ratio, and costs when preparing a heat-resistant ABS resin for blow molding with existing technology. Resolving deficiencies in molding, surface quality, heat resistance / impact performance and post-product processing.

本発明は以下の技術方案によって実現でき、本発明は一種のブロー成形に適する高耐熱ABS樹脂組成物及びその調製方法に関する。   The present invention can be realized by the following technical scheme, and the present invention relates to a high heat-resistant ABS resin composition suitable for a kind of blow molding and a method for preparing the same.

一態様では、本発明は一種のブロー成形に適する高耐熱ABS樹脂組成物に関し、前記組成物は100重量部のスチレン類樹脂組成物A及び20〜40重量部の耐熱剤Bを含み、
(a)前記スチレン類樹脂組成物Aの成分及び重量部数は以下の通りであり、100重量部あたり、
グラフト共重合体A−1 10〜40重量部;
グラフト共重合体A−2 0〜30重量部;
共重合体A−3 55〜80重量部;
(b)前記グラフト共重合体A−1の調製方法は以下のステップを含む:100重量部あたり、10〜70重量部のゴム型重合体の存在下に、90〜30重量部の単量体単量体混合物を重合させることによってグラフト共重合体を製造し、
この中、前記単量体単量体混合物の成分及び重量部数は以下の通りであり、100重量部あたり、35〜75重量部のα−メチルスチレン、5〜45重量部のスチレン、10〜25重量部のアクリロニトリル成分;
(c)前記グラフト共重合体A−2の調製方法は以下のステップを含む:100重量部あたり、10〜70重量部のゴム型重合体の存在下に、90〜30重量部の単量体単量体混合物を重合させることによってグラフト共重合体を製造し、
この中、前記単量体単量体混合物の成分及び重量部数は以下の通りであり、100重量部あたり、10〜30重量部のアクリロニトリル及び70〜90重量部のスチレン成分;
(d)前記共重合体A−3の調製方法は以下のステップを含む:単量体単量体混合物を重合させることによって共重合体を製造し、この中、前記単量体混合物の成分及び重量部数は以下の通りであり、100重量部あたり、18〜48重量部のアクリロニトリル単量体及び52〜82重量部のスチレン単量体である。
In one aspect, the present invention relates to a high heat-resistant ABS resin composition suitable for a kind of blow molding, the composition comprising 100 parts by weight of a styrene resin composition A and 20 to 40 parts by weight of a heat-resistant agent B,
(A) The components and parts by weight of the styrene resin composition A are as follows, and per 100 parts by weight:
Graft copolymer A-1 10 to 40 parts by weight;
Graft copolymer A-2 0 to 30 parts by weight;
Copolymer A-3 55-80 parts by weight;
(B) The method for preparing the graft copolymer A-1 includes the following steps: 90 to 30 parts by weight of monomer in the presence of 10 to 70 parts by weight of rubber-type polymer per 100 parts by weight. Producing a graft copolymer by polymerizing the monomer mixture;
Among them, the components and parts by weight of the monomer-monomer mixture are as follows: 35 to 75 parts by weight of α-methylstyrene, 5 to 45 parts by weight of styrene, and 10 to 25 parts per 100 parts by weight. Parts by weight of acrylonitrile component;
(C) The method for preparing the graft copolymer A-2 includes the following steps: 90 to 30 parts by weight of monomer in the presence of 10 to 70 parts by weight of rubber-type polymer per 100 parts by weight. Producing a graft copolymer by polymerizing the monomer mixture;
Among these, the components and parts by weight of the monomer-monomer mixture are as follows: 10 to 30 parts by weight of acrylonitrile and 70 to 90 parts by weight of styrene component per 100 parts by weight;
(D) The method for preparing the copolymer A-3 includes the following steps: producing a copolymer by polymerizing the monomer-monomer mixture, wherein the components of the monomer mixture and The number of parts by weight is as follows: 18 to 48 parts by weight of acrylonitrile monomer and 52 to 82 parts by weight of styrene monomer per 100 parts by weight.

好ましくは、耐熱剤B及びグラフト共重合体A−1の配合比率、並びにグラフト共重合体A−1中の耐熱成分α−メチルスチレンの重量部は、製品の具体的な耐熱要求に応じて調整可能である。好ましくは、グラフト共重合体A−1中の耐熱成分α−メチルスチレン成分は50〜75重量部を採用し、この場合、高耐熱ABS樹脂組成物は前記グラフト共重合体A−1を20〜40重量部で、耐熱剤Bを20〜35重量部で含む。これにより、製品が優れた耐熱性を備えると同時に製品の表面品質及び衝撃性能を両立することができる。   Preferably, the blending ratio of the heat-resistant agent B and the graft copolymer A-1 and the parts by weight of the heat-resistant component α-methylstyrene in the graft copolymer A-1 are adjusted according to the specific heat-resistance requirements of the product. Is possible. Preferably, the heat-resistant component α-methylstyrene component in the graft copolymer A-1 is 50 to 75 parts by weight. In this case, the high heat-resistant ABS resin composition contains 20 to 20 parts of the graft copolymer A-1. 40 parts by weight and 20 to 35 parts by weight of heat-resistant agent B are included. As a result, the product has excellent heat resistance, and at the same time, the product can have both surface quality and impact performance.

好ましくは、前記グラフト共重合体A−1及びグラフト共重合体A−2を調製する際に用いられるゴム型重合体は、ポリブタジエンゴム、スチレン−ブタジエンゴム、アクリルゴム、ニトリルゴム中の一種または数種の混合物である。   Preferably, the rubber-type polymer used in preparing the graft copolymer A-1 and the graft copolymer A-2 is one or more of polybutadiene rubber, styrene-butadiene rubber, acrylic rubber, and nitrile rubber. A mixture of seeds.

好ましくは、前記グラフト共重合体A−1及びグラフト共重合体A−2のゲル含有量はいずれも85%またはそれ以上である。   Preferably, the graft copolymer A-1 and the graft copolymer A-2 both have a gel content of 85% or more.

好ましくは、前記グラフト共重合体A−1及びグラフト共重合体A−2のゲル含有量はいずれも90%またはそれ以上である。   Preferably, the gel contents of the graft copolymer A-1 and the graft copolymer A-2 are both 90% or more.

好ましくは、前記グラフト共重合体A−1及びグラフト共重合体A−2のゴム粒径はいずれも400nmまたはそれ以下である。   Preferably, the graft copolymer A-1 and the graft copolymer A-2 each have a rubber particle size of 400 nm or less.

好ましくは、前記グラフト共重合体A−1及びグラフト共重合体A−2のゴム粒径はいずれも300nmまたはそれ以下である。   Preferably, the graft copolymer A-1 and the graft copolymer A-2 each have a rubber particle size of 300 nm or less.

好ましくは、前記共重合体A−3の分子量は100,000〜300,000である。   Preferably, the copolymer A-3 has a molecular weight of 100,000 to 300,000.

好ましくは、前記共重合体A−3の分子量は180,000〜300,000である。   Preferably, the copolymer A-3 has a molecular weight of 180,000 to 300,000.

好ましくは、前記耐熱剤BはN−フェニルマレイミドα−メチルスチレン−アクリロニトリル−スチレン四元共重合体であり、連続塊状重合法を用いて合成される。   Preferably, the heat-resistant agent B is an N-phenylmaleimide α-methylstyrene-acrylonitrile-styrene quaternary copolymer and is synthesized using a continuous bulk polymerization method.

好ましくは、前記耐熱剤Bの成分及び重量部数は以下の通りであり、100重量部あたり、この中、N−フェニルマレイミド成分20〜30重量部、α−メチルスチレン成分30〜50重量部、スチレン成分10〜40重量部、アクリロニトリル成分20〜40重量部である。   Preferably, the components and parts by weight of the heat-resistant agent B are as follows. Among these, per 100 parts by weight, 20 to 30 parts by weight of N-phenylmaleimide component, 30 to 50 parts by weight of α-methylstyrene component, styrene 10 to 40 parts by weight of the component and 20 to 40 parts by weight of the acrylonitrile component.

好ましくは、前記耐熱剤Bのガラス転移温度は140〜160℃である。   Preferably, the glass transition temperature of the heat-resistant agent B is 140 to 160 ° C.

更に好ましくは、前記耐熱剤Bの中に、各単量体の含有量は具体的な耐熱要求により調整が可能で、好ましくは、N−フェニルマレイミド成分が20〜30重量部、α−メチルスチレン成分が35〜45重量部、スチレン成分が10〜40重量部、アクリロニトリル成分が20〜40重量部である。更に、前記耐熱剤のガラス転移温度は145〜155℃であることが好ましい。   More preferably, the content of each monomer in the heat-resistant agent B can be adjusted according to specific heat-resistance requirements. Preferably, the N-phenylmaleimide component is 20 to 30 parts by weight, α-methylstyrene. The component is 35 to 45 parts by weight, the styrene component is 10 to 40 parts by weight, and the acrylonitrile component is 20 to 40 parts by weight. Furthermore, the glass transition temperature of the heat-resistant agent is preferably 145 to 155 ° C.

必要に応じて、本発明の組成物は通常のフィラー又は加工助剤をさらに添加することができる。好ましい例として、前記ABS樹脂組成物は以下の重量部数で各成分:0.1〜5重量部のタルク、0.1〜5重量部のポリオレフィン類ワックス、0.1〜1重量部の抗酸化剤をさらに含む。   If necessary, the composition of the present invention may further contain a usual filler or processing aid. As a preferred example, the ABS resin composition has the following parts by weight: 0.1 to 5 parts by weight of talc, 0.1 to 5 parts by weight of polyolefin wax, 0.1 to 1 part by weight of antioxidant. An agent is further included.

第二の態様では、本発明は前記ブロー成形に適する高耐熱ABS樹脂組成物の調製方法に関し、以下のステップを含む:
ステップ1:重量部数通りに各成分をはかり取り、
ステップ2:各成分を高速混合機で充分に混合し、混合物を得、
ステップ3:混合物を二軸押出機のフィーダから投入し、溶融押出、冷却、乾燥、切粒を経て、前記ABS樹脂組成物を得る。
In a second aspect, the present invention relates to a method for preparing a high heat-resistant ABS resin composition suitable for the blow molding, and includes the following steps:
Step 1: Weigh each component according to the number of parts by weight,
Step 2: Mix each component thoroughly with a high speed mixer to obtain a mixture.
Step 3: The mixture is fed from a feeder of a twin-screw extruder, and the ABS resin composition is obtained through melt extrusion, cooling, drying, and cutting.

好ましくは、前記二軸押出機のスクリュー長径比は30〜70で、シリンダーに必ず少なくても二箇所の真空吸排装置を設置し、スクリュー材料シリンダー投入部の温度は180〜210℃、塑性化部温度は230〜250℃、均等化部温度は220〜240℃、スクリュー回転速度は200〜500rpmである。   Preferably, the screw major axis ratio of the twin-screw extruder is 30 to 70, and at least two vacuum suction / discharge devices are installed in the cylinder, the temperature of the screw material cylinder charging part is 180 to 210 ° C., and the plasticizing part The temperature is 230 to 250 ° C., the equalizing section temperature is 220 to 240 ° C., and the screw rotation speed is 200 to 500 rpm.

本発明は現有技術と比べて、以下の利点と有益効果を有する。   The present invention has the following advantages and beneficial effects compared to the existing technology.

(1)本発明は特定成分及び特定量のスチレン類樹脂組成物の中に、特定方法で合成された特定成分及び特定量の耐熱剤を添加し、樹脂組成物の中の成分と共同作用させることによって、現有技術のブロー成形用耐熱級ABS樹脂がコスト、成形、表面品質、耐熱性能/衝撃性能等の面における問題を解決できた。   (1) In the present invention, a specific component and a specific amount of heat-resistant agent synthesized by a specific method are added to a specific component and a specific amount of a styrene resin composition so as to cooperate with the components in the resin composition. As a result, the heat-resistant ABS resin for blow molding of the existing technology has solved the problems in terms of cost, molding, surface quality, heat resistance / impact performance and the like.

(2)本発明はブロー成形性及び耐熱性に優れたブロー成形用の高耐熱ABS樹脂組成物を調製し、そのブロー製品は良好な表面品質及び耐衝撃性能を備えている。   (2) The present invention prepares a high heat-resistant ABS resin composition for blow molding excellent in blow moldability and heat resistance, and the blown product has good surface quality and impact resistance performance.

(3)本発明の樹脂組成物は溶融強度が高くて、且つ溶融強度がせん断速度に対する敏感度が低く、ブロー成形パリソンの溶融垂れ現象を減少させることが可能で、且つブロー製品の表面品質が優れている。   (3) The resin composition of the present invention has a high melt strength, and the melt strength is low in sensitivity to the shear rate, can reduce the melt dripping phenomenon of the blow molded parison, and the surface quality of the blown product. Are better.

(4)本発明の樹脂組成物は高耐熱であり、ビカット軟化温度が110℃以上に達し、自動車部品塗装後の加工工程の耐熱要求及び厳しい使用環境に満足でき、且つブロー製品の耐衝撃性能が優れている。   (4) The resin composition of the present invention has high heat resistance, the Vicat softening temperature reaches 110 ° C. or more, can satisfy the heat resistance requirements and severe usage environment of the processing process after painting automotive parts, and the impact resistance performance of blown products. Is excellent.

本発明に関するメカニズムについて以下のように推測できる。耐熱剤Bとして、N−フェニルマレイミドα−メチルスチレン−アクリロニトリル−スチレン四元共重合体を使用し、連続塊状重合法を用いることで合成される。連続塊状重合法を用いることにより、重合生成物の高生成率及び低コスト製造に有利である。現有技術では当該種類の耐熱剤をブロー成形用耐熱級ABS樹脂組成物の調製に使用することに関する記載がない。   The mechanism relating to the present invention can be estimated as follows. It is synthesized by using a continuous bulk polymerization method using N-phenylmaleimide α-methylstyrene-acrylonitrile-styrene quaternary copolymer as the heat-resistant agent B. Use of the continuous bulk polymerization method is advantageous for high production rate and low cost production of the polymerization product. In the existing technology, there is no description regarding the use of this type of heat-resistant agent in the preparation of a heat-resistant ABS resin composition for blow molding.

本体重合過程において、溶融粘度が高くなりすぎることによる熱暴走を回避し、同時に四元共重合体の高温熱安定性及び耐熱性、加工性及びアロイ化性能を実現するため、重合過程において四種類の成分の比率を合理的に制御する必要がある。このため、本発明の耐熱剤Bの各単量体の成分は特別に選別したものであり、具体的に、N−マレイミド成分が20〜30重量部、α−メチルスチレン成分が30〜50重量部、スチレン成分が10〜40重量部、アクリロニトリル成分が20〜40重量部であることによって、四元共重合体のガラス転移温度を140〜160℃になるように制御する。   In order to avoid thermal runaway due to the melt viscosity becoming too high in the main body polymerization process and at the same time realize the high temperature thermal stability and heat resistance, workability and alloying performance of the quaternary copolymer, It is necessary to rationally control the ratio of the components. For this reason, the component of each monomer of the heat-resistant agent B of the present invention is specially selected. Specifically, the N-maleimide component is 20 to 30 parts by weight, and the α-methylstyrene component is 30 to 50 parts by weight. Part, the styrene component is 10 to 40 parts by weight, and the acrylonitrile component is 20 to 40 parts by weight, so that the glass transition temperature of the quaternary copolymer is controlled to be 140 to 160 ° C.

本発明に係る耐熱剤Bは、ガラス転移温度が低いため、加工温度が相対的に低い(具体的は190〜210℃)ブロー成形用ABS樹脂に用いることに適する。一方、この故にABS樹脂の耐熱性への改善幅が限られている。したがって、本発明の発明効果を実現するには、前記耐熱剤Bとグラフト共重合体A−1とを配合して使用し、その共同作用を発揮しなければならない。   Since the heat-resistant agent B according to the present invention has a low glass transition temperature, it is suitable for use in an ABS resin for blow molding having a relatively low processing temperature (specifically 190 to 210 ° C.). On the other hand, the range of improvement in heat resistance of the ABS resin is limited. Therefore, in order to realize the inventive effect of the present invention, the heat-resistant agent B and the graft copolymer A-1 must be blended and used to exert their joint action.

本発明に使用されるグラフト共重合体A−1におけるグラフトα−メチルスチレン成分は、グラフト共重合体の耐熱性を顕著に向上させる。こうすると、連続塊状重合法で調製される耐熱剤Bにおいて、マレイミドの低含有量に伴う耐熱性下降の問題を解決するために、四元共重合体に適量のα−メチルスチレン成分を同時に導入することによって補充する以外、また、ABS樹脂の調製過程において、耐熱性を向上させられるグラフト共重合体A−1と耐熱剤Bとを配合して使用することによって、更にABS樹脂の耐熱性を向上させる。しかしながら、グラフト共重合体A−1中のα−メチルスチレンの含有量は、適量である必要があり、本発明のABS樹脂組成物のビカット軟化温度を110℃に達させるために、前記グラフト共重合体A−1中のα−メチルスチレン成分は、35〜75重量部の範囲内に制御される必要がある。。   The graft α-methylstyrene component in the graft copolymer A-1 used in the present invention significantly improves the heat resistance of the graft copolymer. In this way, in the heat-resistant agent B prepared by the continuous bulk polymerization method, an appropriate amount of α-methylstyrene component is simultaneously introduced into the quaternary copolymer in order to solve the problem of a decrease in heat resistance due to the low content of maleimide. In addition, in the process of preparing the ABS resin, the heat resistance of the ABS resin can be further improved by blending and using the graft copolymer A-1 and the heat resistance agent B, which can improve the heat resistance. Improve. However, the content of α-methylstyrene in the graft copolymer A-1 needs to be an appropriate amount, and in order to reach the Vicat softening temperature of the ABS resin composition of the present invention to 110 ° C., The α-methylstyrene component in the polymer A-1 needs to be controlled within a range of 35 to 75 parts by weight. .

ABS樹脂の溶融強度及びブロー成形性を向上するために、本発明のグラフト共重合体A−1及びグラフト共重合体A−2のゲル含有量は85%以上である必要があり、好ましくは90%以上である。同時に、ゴム粒径の寸法は400nm以下、好ましくは300nm以下である。ゴムゲル含有量が低すぎる場合、またはゴム粒径が大きすぎる場合、ABS樹脂の溶融強度の向上に不利である。それに、ブロー成形ABSにおける高溶融強度はブロー成形パリソンの垂れを防止する必須条件である。   In order to improve the melt strength and blow moldability of the ABS resin, the gel content of the graft copolymer A-1 and the graft copolymer A-2 of the present invention needs to be 85% or more, preferably 90%. % Or more. At the same time, the size of the rubber particle size is 400 nm or less, preferably 300 nm or less. If the rubber gel content is too low, or if the rubber particle size is too large, it is disadvantageous for improving the melt strength of the ABS resin. Moreover, high melt strength in blow molded ABS is an essential condition for preventing dripping of blow molded parison.

共重合体A−3は高分子量を持つスチレン−アクリロニトリル共重合体であり、分子量が100,000〜300,000、好ましくは180,000〜300,000になるように制御されている。高分子量のSANを配合して使用することも、ABS樹脂溶融強度を向上するための重要な手段である。しかし、SANは分子量が高すぎると、ABS樹脂の塑性化不良、及びそれとゴム型グラフト重合体との親和性問題を起しやすい。   Copolymer A-3 is a styrene-acrylonitrile copolymer having a high molecular weight, and the molecular weight is controlled to be 100,000 to 300,000, preferably 180,000 to 300,000. Mixing and using a high molecular weight SAN is also an important means for improving the ABS resin melt strength. However, if the molecular weight of SAN is too high, it tends to cause poor plasticization of the ABS resin and an affinity problem between it and the rubber-type graft polymer.

以下、具体的な実施例を挙げて本発明をさらに詳細に説明する。以下の実施例は、当業者が本発明をより良く理解できるためのものであり、本発明はこれら実施例に何ら限定されるものではない。また、当業者にとって本発明の構想に基づき、適宜に変更及び改善を行うことができる。これらは本発明の保護範囲に属する。   Hereinafter, the present invention will be described in more detail with reference to specific examples. The following examples are provided so that those skilled in the art can better understand the present invention, and the present invention is not limited to these examples. Further, those skilled in the art can make changes and improvements as appropriate based on the concept of the present invention. These belong to the protection scope of the present invention.

実施例1、3〜
(1)全ての実施例と比較例において用いられた原料は以下の通りである:
グラフト共重合体A−1aは、ポリブタジエンゴムグラフトスチレン−アクリロニトリル−α−メチルスチレン共重合体であり、ゲル含有量が85%、ゴム粒径が約150nmである。
Examples 1, 3-5
(1) The raw materials used in all examples and comparative examples are as follows:
Graft copolymer A-1a is a polybutadiene rubber graft styrene-acrylonitrile-α-methylstyrene copolymer, having a gel content of 85% and a rubber particle size of about 150 nm.

前記グラフト共重合体A−1aの調製方法は以下のステップを含む:45重量部のポリブタジエンゴムの存在下で、55重量部の単量体混合物を重合させることによってグラフト共重合体を製造した。   The method for preparing the graft copolymer A-1a includes the following steps: A graft copolymer was prepared by polymerizing 55 parts by weight of the monomer mixture in the presence of 45 parts by weight of polybutadiene rubber.

この中、前記単量体混合物に含まれる成分及び重量部数は以下の通りであり、100重量部あたり、60重量部のα−メチルスチレン、16重量部のスチレン、24重量部のアクリロニトリル成分である。   Among these, the components and parts by weight included in the monomer mixture are as follows, and per 100 parts by weight are 60 parts by weight α-methylstyrene, 16 parts by weight styrene, and 24 parts by weight acrylonitrile component. .

グラフト共重合体A−1bは、ポリブタジエンゴムグラフトスチレン−アクリロニトリル−α−メチルスチレン共重合体であり、ゲル含有量が90%、ゴム粒径が約200nmである。   Graft copolymer A-1b is a polybutadiene rubber graft styrene-acrylonitrile-α-methylstyrene copolymer, having a gel content of 90% and a rubber particle size of about 200 nm.

前記グラフト共重合体A−1bの調製方法は以下のステップを含む:50重量部のポリブタジエンゴムの存在下で、50重量部の単量体混合物を重合させることによってグラフト共重合体を製造した。   The method for preparing the graft copolymer A-1b includes the following steps: A graft copolymer was prepared by polymerizing 50 parts by weight of the monomer mixture in the presence of 50 parts by weight of polybutadiene rubber.

この中、前記単量体混合物に含まれる成分及び重量部数は以下の通りであり、100重量部あたり、70重量部のα−メチルスチレン、20重量部のスチレン、10重量部のアクリロニトリル成分である。   Among these, the components and parts by weight contained in the monomer mixture are as follows, and per 100 parts by weight are 70 parts by weight α-methylstyrene, 20 parts by weight styrene, and 10 parts by weight acrylonitrile component. .

グラフト共重合体A−1cは、ポリブタジエンゴムグラフトスチレン−アクリロニトリル−α−メチルスチレン共重合体であり、ゲル含有量が93%、ゴム粒径が約250nmである。   Graft copolymer A-1c is a polybutadiene rubber-grafted styrene-acrylonitrile-α-methylstyrene copolymer, having a gel content of 93% and a rubber particle size of about 250 nm.

前記グラフト共重合体A−1cの調製方法は以下のステップを含む:50重量部のポリブタジエンゴムの存在下で、50重量部の単量体混合物を重合させることによってグラフト共重合体を製造した。   The method for preparing the graft copolymer A-1c includes the following steps: A graft copolymer was prepared by polymerizing 50 parts by weight of the monomer mixture in the presence of 50 parts by weight of polybutadiene rubber.

この中、前記単量体混合物に含まれる成分及び重量部数は以下の通りであり、100重量部あたり、50重量部のα−メチルスチレン、35重量部のスチレン、15重量部のアクリロニトリル成分である。   Among these, the components and parts by weight contained in the monomer mixture are as follows, and per 100 parts by weight are 50 parts by weight α-methylstyrene, 35 parts by weight styrene, and 15 parts by weight acrylonitrile component. .

グラフト共重合体A−2aは、ポリブタジエンゴムグラフトスチレン−アクリロニトリル共重合体であり、ゲル含有量が85%、ゴム粒径が約300nmである。   Graft copolymer A-2a is a polybutadiene rubber graft styrene-acrylonitrile copolymer, having a gel content of 85% and a rubber particle size of about 300 nm.

前記グラフト共重合体A−2aの調製方法は以下のステップを含む:50重量部のポリブタジエンゴムの存在下で、50重量部の単量体混合物を重合させることによってグラフト共重合体を製造した。   The method for preparing the graft copolymer A-2a includes the following steps: A graft copolymer was prepared by polymerizing 50 parts by weight of the monomer mixture in the presence of 50 parts by weight of polybutadiene rubber.

この中、前記単量体混合物の成分及び重量部数は以下の通りである:100重量部あたり、76重量部のスチレン成分及び24重量部のアクリロニトリル成分である。   Among them, the components and parts by weight of the monomer mixture are as follows: 76 parts by weight of styrene component and 24 parts by weight of acrylonitrile component per 100 parts by weight.

グラフト共重合体A−2bは、ポリブタジエンゴムグラフトスチレン−アクリロニトリル共重合体であり、ゲル含有量が92%、ゴム粒径が約300nmである。   Graft copolymer A-2b is a polybutadiene rubber graft styrene-acrylonitrile copolymer, having a gel content of 92% and a rubber particle size of about 300 nm.

前記グラフト共重合体A−2bの調製方法は以下のステップを含む:60重量部のポリブタジエンゴムの存在下で、40重量部の単量体混合物を重合させることによってグラフト共重合体を製造した。   The method for preparing the graft copolymer A-2b includes the following steps: A graft copolymer was prepared by polymerizing 40 parts by weight of the monomer mixture in the presence of 60 parts by weight of polybutadiene rubber.

この中、前記単量体混合物の成分及び重量部数は以下の通りである:100重量部あたり、70重量部のスチレン成分及び30重量部のアクリロニトリル成分である。   Among them, the components and parts by weight of the monomer mixture are as follows: 70 parts by weight of styrene component and 30 parts by weight of acrylonitrile component per 100 parts by weight.

共重合体A−3aは、スチレン−アクリロニトリル共重合体であり、AN成分が26重量%、分子量が210,000である。   Copolymer A-3a is a styrene-acrylonitrile copolymer having an AN component of 26% by weight and a molecular weight of 210,000.

共重合体A−3bは、スチレン−アクリロニトリル共重合体であり、AN成分が32重量%,分子量が250,000である。   Copolymer A-3b is a styrene-acrylonitrile copolymer having an AN component of 32% by weight and a molecular weight of 250,000.

耐熱剤B−1aは連続塊状法で合成されたN−フェニルマレイミドα−メチルスチレン−アクリロニトリル−スチレン四元共重合体である。100重量部で計算すると、この中にN−フェニルマレイミド成分重量部は20重量部、α−メチルスチレン成分重量部は40重量部、スチレン成分は18重量部、アクリロニトリル成分は22重量部であり、ガラス転移温度は145℃である。   The heat-resistant agent B-1a is an N-phenylmaleimide α-methylstyrene-acrylonitrile-styrene quaternary copolymer synthesized by a continuous block method. When calculated based on 100 parts by weight, the N-phenylmaleimide component is 20 parts by weight, the α-methylstyrene component is 40 parts by weight, the styrene component is 18 parts by weight, and the acrylonitrile component is 22 parts by weight. The glass transition temperature is 145 ° C.

耐熱剤B−1bは連続塊状法で合成されたN−フェニルマレイミドα−メチルスチレン−アクリロニトリル−スチレン四元共重合体である。100重量部で計算すると、この中にN−フェニルマレイミド成分重量部は30重量部、α−メチルスチレン成分重量部は30重量部、スチレン成分は25重量部、アクリロニトリル成分は15重量部であり、ガラス転移温度は155℃である。   Heat-resistant agent B-1b is an N-phenylmaleimide α-methylstyrene-acrylonitrile-styrene quaternary copolymer synthesized by a continuous block method. When calculated with 100 parts by weight, the N-phenylmaleimide component is 30 parts by weight, the α-methylstyrene component is 30 parts by weight, the styrene component is 25 parts by weight, and the acrylonitrile component is 15 parts by weight. The glass transition temperature is 155 ° C.

タルク粉Cのサイズは2500〜5000メッシュである。   The size of the talc powder C is 2500 to 5000 mesh.

ポリオレフィン類ワックスDは市販のポリエチレンワックスである。   Polyolefin wax D is a commercially available polyethylene wax.

抗酸化剤Eは市販のヒンダードモノフェノール、ビスフェノール又はポリフェノール化合物と亜リン酸エステル類化合物の混合物である。   Antioxidant E is a mixture of a commercially available hindered monophenol, bisphenol or polyphenol compound and a phosphite compound.

表1に示した重量部数通りに各成分を測り取って、その後、以下の方法に従って前記ABS樹脂組成物を調製した。   Each component was measured according to the number of parts by weight shown in Table 1, and then the ABS resin composition was prepared according to the following method.

ステップ1:重量部数通りに各成分をはかり取り、
ステップ2:各成分を高速混合機で20分かけて充分に混合し、混合物を得、
ステップ3:混合物を二軸押出機のフィーダから投入し、溶融押出、冷却、乾燥、切粒を経て、前記ABS樹脂組成物を得た。二軸押出機のスクリュー直径は35mm、長径比は44であった。押出機は材料充填口から押出ダイにかけて10箇所の温度制御区があり、この中に、第1〜3区(材料充填部)の温度制御は180〜210℃、第4〜7区(塑性化部)の温度制御は230〜250℃、第8〜10区(均等化部)の温度制御は220〜240℃であった。押出機にある二つの真空引きはそれぞれ第四と第九区に位置し、真空度は0.06〜0.094MPa、スクリュー回転速度を300〜500rpmに設定した。
Step 1: Weigh each component according to the number of parts by weight,
Step 2: Mix each component well in a high speed mixer over 20 minutes to obtain a mixture,
Step 3: The mixture was introduced from a feeder of a twin screw extruder, and the ABS resin composition was obtained through melt extrusion, cooling, drying, and cutting. The screw diameter of the twin screw extruder was 35 mm, and the major axis ratio was 44. The extruder has 10 temperature control zones from the material filling port to the extrusion die. Among them, the temperature control of the first to third zones (material filling section) is 180 to 210 ° C., and the fourth to seventh zones (plasticization). Part) temperature control was 230 to 250 ° C., and temperature control of the 8th to 10th sections (equalization part) was 220 to 240 ° C. The two vacuums in the extruder were located in the fourth and ninth sections, respectively, the degree of vacuum was set to 0.06 to 0.094 MPa, and the screw rotation speed was set to 300 to 500 rpm.

(2)比較例1
上述のブロー成形に使用される耐熱ABS樹脂組成物の特徴をより詳しく説明するため、ここで比較例1を使用する。当該比較例では、耐熱剤(B)成分を溶液法で合成されたN−フェニルマレイミドスチレン−無水マレイン酸三元共重合体(B1)に置き換えて、N−フェニルマレイミド成分の重量比含有量は55%、共重合体のガラス転移温度は196℃であった。原料重量比は表1に示し調製方法は実施例1と同様であった。
(2) Comparative Example 1
In order to explain the characteristics of the heat-resistant ABS resin composition used in the above blow molding in more detail, Comparative Example 1 is used here. In the comparative example, the weight ratio content of the N-phenylmaleimide component is changed by replacing the heat-resistant agent (B) component with the N-phenylmaleimide styrene-maleic anhydride terpolymer (B1) synthesized by the solution method. The glass transition temperature of the copolymer was 55% and 196 ° C. The raw material weight ratio is shown in Table 1, and the preparation method was the same as in Example 1.

(3)比較例2
上述のブロー成形に使用される耐熱ABS樹脂組成物の特徴をより詳しく説明するため、ここで比較例2を使用する。当該比較例では、耐熱剤(B)成分をスチレン−無水マレイン酸二元共重合体(B2)に置き換えて、無水マレイン酸成分の重量比含有量は23%、共重合体のガラス転移温度は150℃であった。原料重量比は表1に示し、調製方法は実施例1と同様であった。
(3) Comparative Example 2
Comparative Example 2 is used here in order to explain the characteristics of the heat-resistant ABS resin composition used in the above blow molding in more detail. In this comparative example, the heat-resistant agent (B) component is replaced with a styrene-maleic anhydride binary copolymer (B2), the maleic anhydride component has a weight ratio content of 23%, and the glass transition temperature of the copolymer is It was 150 ° C. The raw material weight ratio is shown in Table 1, and the preparation method was the same as in Example 1.

(4)比較例3
上述のブロー成形に使用される耐熱ABS樹脂組成物の特徴をより詳しく説明するため、ここで比較例2を使用する。当該比較例の中に、耐熱剤(B−1c)N−フェニルマレイミドα−メチルスチレン−アクリロニトリル−スチレン四元共重合体;100重量部あたり、この中に、N−フェニルマレイミド成分重量部は40重量部、α−メチルスチレン成分重量部は20重量部、スチレン成分は30重量部、アクリロニトリル成分は10重量部であった。ガラス転移温度は165℃であった。原料重量比は表1に示し、調製方法は実施例1と同様であった。
(4) Comparative Example 3
Comparative Example 2 is used here in order to explain the characteristics of the heat-resistant ABS resin composition used in the above blow molding in more detail. In the comparative example, the heat-resistant agent (B-1c) N-phenylmaleimide α-methylstyrene-acrylonitrile-styrene quaternary copolymer; per 100 parts by weight, the N-phenylmaleimide component is 40 parts by weight. Parts by weight, 20 parts by weight of α-methylstyrene component, 30 parts by weight of styrene component, and 10 parts by weight of acrylonitrile component. The glass transition temperature was 165 ° C. The raw material weight ratio is shown in Table 1, and the preparation method was the same as in Example 1.

(5)比較例4
上述のブロー成形に使用される耐熱ABS樹脂組成物の特徴をより詳しく説明するため、ここで比較例2を使用する。当該比較例では、耐熱剤(B)成分をα−メチルスチレン−アクリロニトリル共重合体(B3)に置き換えて、成分重量部は、α−メチルスチレンは70重量部、アクリロニトリル成分は30重量部であった。ガラス転移温度は135℃であった。原料重量比率は表1に示し、調製方法は実施例1と同様であった。
(5) Comparative Example 4
Comparative Example 2 is used here in order to explain the characteristics of the heat-resistant ABS resin composition used in the above blow molding in more detail. In the comparative example, the heat-resistant agent (B) component was replaced with α-methylstyrene-acrylonitrile copolymer (B3), and the component parts by weight were 70 parts by weight of α-methylstyrene and 30 parts by weight of acrylonitrile component. It was. The glass transition temperature was 135 ° C. The raw material weight ratios are shown in Table 1, and the preparation method was the same as in Example 1.

(6)比較例5
上述のブロー成形に使用される耐熱ABS樹脂組成物の特徴をより詳しく説明するため、ここで比較例2を使用する。当該比較例では、グラフト共重合体A−1はポリブタジエンゴムグラフトスチレン−アクリロニトリル−α−メチルスチレン共重合体(A−1d)であり、ゲル含有量が80%、ゴム粒径が約350nmであった。
(6) Comparative Example 5
Comparative Example 2 is used here in order to explain the characteristics of the heat-resistant ABS resin composition used in the above blow molding in more detail. In this comparative example, the graft copolymer A-1 is a polybutadiene rubber graft styrene-acrylonitrile-α-methylstyrene copolymer (A-1d), the gel content is 80%, and the rubber particle size is about 350 nm. It was.

前記グラフト共重合体A−1dの調製方法は以下のステップを含む:45重量部のポリブタジエンゴムの存在下、55重量部の単量体混合物を重合させてグラフト共重合体を得た。   The method for preparing the graft copolymer A-1d includes the following steps: 55 parts by weight of a monomer mixture was polymerized in the presence of 45 parts by weight of polybutadiene rubber to obtain a graft copolymer.

この中、前記単量体混合物に含まれる成分及び重量部数は以下の通りであり、100重量部あたり、60重量部のα−メチルスチレン、16重量部のスチレン、24重量部のアクリロニトリル成分であった。原料重量比は表1に示し、調製方法は実施例1と同様であった。   Among them, the components and parts by weight contained in the monomer mixture are as follows, and per 100 parts by weight: 60 parts by weight of α-methylstyrene, 16 parts by weight of styrene, and 24 parts by weight of acrylonitrile component. It was. The raw material weight ratio is shown in Table 1, and the preparation method was the same as in Example 1.

(7)比較例6
上述のブロー成形に使用される耐熱ABS樹脂組成物の特徴をより詳しく説明するため、ここで比較例2を使用する。当該比較例では、グラフト共重合体A−2はポリブタジエンゴムグラフトスチレン−アクリロニトリル共重合体(A−2c)であり、ゲル含有量は75%,ゴム粒径は約250nmであった。
(7) Comparative Example 6
Comparative Example 2 is used here in order to explain the characteristics of the heat-resistant ABS resin composition used in the above blow molding in more detail. In the comparative example, the graft copolymer A-2 was a polybutadiene rubber graft styrene-acrylonitrile copolymer (A-2c), the gel content was 75%, and the rubber particle size was about 250 nm.

前記グラフト共重合体A−2cの調製方法は以下のステップを含む:50重量部のポリブタジエンゴムの存在下で、50重量部の単量体混合物を重合させてグラフト共重合体を得た。   The method for preparing the graft copolymer A-2c includes the following steps: In the presence of 50 parts by weight of polybutadiene rubber, 50 parts by weight of the monomer mixture was polymerized to obtain a graft copolymer.

この中、前記単量体混合物の成分及び重量部数は以下の通りである。100重量部あたり、76重量部のスチレン成分及び24重量部のアクリロニトリル成分であった。原料重量比は表1に示し、調製方法は実施例1と同様であった。   Among them, the components and parts by weight of the monomer mixture are as follows. There were 76 parts by weight of styrene component and 24 parts by weight of acrylonitrile component per 100 parts by weight. The raw material weight ratio is shown in Table 1, and the preparation method was the same as in Example 1.

下表1に示すように、合計で六通りの配合方法を用いて上述調製方法に従って、溶融押出、延伸顆粒冷却、造粒を行い、ABS樹脂組成物を調製した。試料を80℃で12時間乾燥し、射出成形前の樹脂の吸水率が<0.05%であるようにさせて、その後ISO標準に従い、同一射出成形条件下でサンプルを射出成形し、各樹脂組成物の物理性能を測定した。この中に、ISO 179標準に基づき、サンプルのシャルピー衝撃強度を測定し、ISO 306標準に基づき、サンプルのビカット軟化温度(VST)を測定し、負荷は5kgとし、温度上昇速度は50℃/hであった。   As shown in Table 1 below, melt extrusion, cooling of stretched granules, and granulation were performed according to the above-described preparation method using a total of six blending methods to prepare an ABS resin composition. The sample is dried at 80 ° C. for 12 hours, the water absorption of the resin before injection molding is <0.05%, and then the samples are injection molded under the same injection molding conditions according to ISO standards. The physical performance of the composition was measured. In this, the Charpy impact strength of the sample was measured based on the ISO 179 standard, the Vicat softening temperature (VST) of the sample was measured based on the ISO 306 standard, the load was 5 kg, and the rate of temperature increase was 50 ° C./h. Met.

レオロジー特性測定:マルヴァーン単筒キャピラリーレオメーターを使用し、長径比が16/1、直径が0.5mm、入口角が180°である押出ダイを選択した。試験温度を240℃、せん断速度範囲を200−50000s−1に設定し、原料塑性化段階に1MPaまで加圧した後に6min保温し、再び1MPaに加圧した後に再び4min予熱するように設定した。設定温度が安定した後、充分に乾燥された試料を約35g量り、数回に分けて試料タンクの中に加え、押しつけて密着させた。それから測定を開始し、各せん断速度下でのせん断粘度を記録した。その中、表1のせん断粘度1は200s−1せん断速度時の粘度であり、せん断粘度2は50000s−1せん断速度時の粘度であった。 Rheological property measurement: An extrusion die having a major axis ratio of 16/1, a diameter of 0.5 mm and an inlet angle of 180 ° was selected using a Malvern single cylinder capillary rheometer. The test temperature was set to 240 ° C., the shear rate range was set to 200-50000 s −1 , the pressure was increased to 1 MPa in the raw material plasticization stage, the temperature was kept for 6 minutes, the pressure was again increased to 1 MPa, and then the preheating was again set for 4 minutes. After the set temperature was stabilized, about 35 g of a sufficiently dried sample was weighed and added to the sample tank in several times, and pressed to adhere. Measurements were then started and the shear viscosity at each shear rate was recorded. Among them, the shear viscosity 1 in Table 1 was a viscosity at 200 s −1 shear rate, and the shear viscosity 2 was a viscosity at 50000 s −1 shear rate.

ブロー製品表面品質:ブロー成形機を使用して、直径100mm、長さ500mm且つ厚さ5mmの円柱形ブロー製品を調製した。ブロー成形条件として、パリソン温度は240℃、スクリュー回転速度は50rpm、金型温度は70℃であった。目視で前記円柱形ブロー製品の全体の表面状況を観察し、表面の平らではない位置、即ちハードスポット(ハードスポットのサイズは0.02mmか又はそれ以上)の数量を記録した。以下の標準に従い評価を行った。   Blow product surface quality: Using a blow molding machine, a cylindrical blow product having a diameter of 100 mm, a length of 500 mm and a thickness of 5 mm was prepared. As blow molding conditions, the parison temperature was 240 ° C., the screw rotation speed was 50 rpm, and the mold temperature was 70 ° C. The overall surface condition of the cylindrical blow product was visually observed, and the number of positions where the surface was not flat, i.e., a hard spot (the size of the hard spot was 0.02 mm or more) was recorded. Evaluation was performed according to the following standards.

○:ハードスポットの数は10未満
△:ハードスポットの数は10以上20未満
◇:ハードスポットの数量は20以上。
○: The number of hard spots is less than 10. Δ: The number of hard spots is 10 or more and less than 20. ◇: The number of hard spots is 20 or more.

評価結果として、ハードスポットの数量は少なく、製品表面性能が優れていることが分かった。   As an evaluation result, it was found that the number of hard spots was small and the product surface performance was excellent.

実施例1、3〜4の実験結果から分かるように、本発明で調製されたブロー成形用ABS樹脂組成物は、優れたブロー成形性及び高耐熱性を備えて、且つブロー製品は良好な表面品質及び耐衝撃性能を備えている。グラフト共重合体(A−1)及び耐熱剤(B)を配合して使用することによって、調製されたABS樹脂組成物のビカット軟化温度を110℃以上に達して、自動車部品の塗装後の加工工程における耐熱要求及び厳しい使用環境に完全に満たすことができた。また、本発明で調製された樹脂組成物の初期溶融粘度は低く、溶融粘度はせん断速度に対する敏感性は小さため、ブロー成形パリソンが狭い押出ダイを通る時の高せん断力による溶融粘度下降に伴う溶融垂れ現象が低減できる。 As can be seen from the experimental results of Examples 1 and 3 to 4, the ABS resin composition for blow molding prepared in the present invention has excellent blow moldability and high heat resistance, and the blow product has a good surface. It has quality and impact resistance. By blending and using the graft copolymer (A-1) and the heat-resistant agent (B), the Vicat softening temperature of the prepared ABS resin composition reaches 110 ° C. or higher, and the processing after painting of the automobile parts The heat resistance requirements in the process and the harsh usage environment were fully met. In addition, since the initial melt viscosity of the resin composition prepared in the present invention is low and the melt viscosity is less sensitive to the shear rate, the melt viscosity is lowered due to the high shear force when the blow molded parison passes through a narrow extrusion die. Melt dripping phenomenon can be reduced.

比較例1は、溶液法で調製された高含有量のN−フェニルマレイミド成分をベースにした耐熱剤B1を用いて調製された樹脂組成物であって、耐熱効果の向上は非常に顕著となっていたが、耐熱剤のガラス転移温度がかなり高く、組成物の初期溶融粘度が大きいため、塑性化の不良を起こしやすく、製品の表面品質に大きな影響を与えた。溶融体のせん断粘度はせん断速度に伴う変化が大きく、ブロー成形パリソンの垂れを起こしやすかった。また、シャルピー衝撃強度が明らかに減少した。   Comparative Example 1 is a resin composition prepared using a heat-resistant agent B1 based on a high-content N-phenylmaleimide component prepared by a solution method, and the improvement of the heat-resistant effect is very remarkable. However, since the glass transition temperature of the heat-resistant agent was considerably high and the initial melt viscosity of the composition was large, poor plasticization was liable to occur, greatly affecting the surface quality of the product. The melt viscosity of the melt varied greatly with the shear rate, and it was easy for the blow molded parison to sag. In addition, Charpy impact strength was clearly reduced.

同様に、比較例3は、耐熱剤であるN−フェニルマレイミドα−メチルスチレン−アクリロニトリル−スチレン四元共重合体中のN−フェニルマレイミドの含有量が40重量部に達する場合、ブロー製品の表面品質が大いな影響を受けた。   Similarly, in Comparative Example 3, when the content of N-phenylmaleimide in the N-phenylmaleimide α-methylstyrene-acrylonitrile-styrene quaternary copolymer as a heat-resistant agent reaches 40 parts by weight, the surface of the blown product The quality was greatly affected.

比較例2では、スチレン−無水マレイン酸共重合体(B2)を耐熱剤として用いて樹脂組成物を調製し、耐熱の向上が非常に限られ、ビカットの軟化温度が低かった。また、無水マレイン酸成分の熱安定性が悪く、それにブロー製品の成型周期が長いため、SMAの悪い熱安定性が製品表面品質の不良を起こしやすかった。   In Comparative Example 2, a resin composition was prepared using the styrene-maleic anhydride copolymer (B2) as a heat-resistant agent, the improvement in heat resistance was very limited, and the Vicat softening temperature was low. In addition, since the maleic anhydride component has poor thermal stability and the blow product has a long molding cycle, the poor thermal stability of SMA tends to cause poor product surface quality.

比較例4では、α−メチルスチレン−アクリロニトリル共重合体(B3)を耐熱剤として用いて樹脂組成物を調製した場合、耐熱の向上幅が非常に限られ、また、ビカット軟化温度が低いため、使用条件を満たすことができない。   In Comparative Example 4, when the resin composition was prepared using the α-methylstyrene-acrylonitrile copolymer (B3) as a heat resistance agent, the range of improvement in heat resistance was very limited, and the Vicat softening temperature was low. The usage conditions cannot be met.

比較例5、6において、ゲル含有量がそれぞれ80%、75%であるA−1及びA−2グラフト共重合体を使用する場合に、樹脂の物理性能及び表面ハードスポットの品質が許容できる。しかし、注意すべきこととして、調製された樹脂組成物は、ブロー成形時において部品の厚さの分布が均等ではない。   In Comparative Examples 5 and 6, when using A-1 and A-2 graft copolymers having a gel content of 80% and 75%, respectively, the physical performance of the resin and the surface hard spot quality are acceptable. However, it should be noted that the thickness distribution of the parts of the prepared resin composition is not uniform during blow molding.

実施例6〜9
(1)実施例6〜9において用いられた原料は:100重量部のスチレン類樹脂組成物Aと20重量部の耐熱剤Bである。
Examples 6-9
(1) The raw materials used in Examples 6 to 9 are: 100 parts by weight of styrene resin composition A and 20 parts by weight of heat-resistant agent B.

前記スチレン類樹脂組成物Aの成分及び重量部数は以下の通りであり、100重量部あたり、
グラフト共重合体A−1c 30重量部;
グラフト共重合体A−2b 10重量部;
共重合体A−3a 60重量部;
この中、グラフト共重合体A−1cはポリブタジエンゴムグラフトスチレン−アクリロニトリル−α−メチルスチレン共重合体であり、各単量体の配合比率(重量部)は表2に示している;
グラフト共重合体A−2bはポリブタジエンゴムグラフトスチレン−アクリロニトリル共重合体であり、各単量体の配合比率(重量部)は表2に示している;
共重合体A−3aはスチレン−アクリロニトリル共重合体であり、各単量体の配合比率(重量部)は表2に示している;
耐熱剤はB−1aは連続塊状法で合成されたN−フェニルマレイミドα−メチルスチレン−アクリロニトリル−スチレン四元共重合体であり、各単量体の配合比率(重量部)は表2に示している;
タルク粉(C)のサイズは2500〜5000メッシュであり、1重量部;
ポリオレフィン類ワックス(D)は市販のポリエチレンワックスであり、1重量部;
抗酸化剤(E)は市販のヒンダードモノフェノール、ビスフェノール又はポリフェノール化合物と亜リン酸エステル化合物の混合物であり、1重量部。
The components and parts by weight of the styrene resin composition A are as follows, and per 100 parts by weight:
Graft copolymer A-1c 30 parts by weight;
Graft copolymer A-2b 10 parts by weight;
60 parts by weight of copolymer A-3a;
Among them, the graft copolymer A-1c is a polybutadiene rubber graft styrene-acrylonitrile-α-methylstyrene copolymer, and the blending ratio (parts by weight) of each monomer is shown in Table 2;
Graft copolymer A-2b is a polybutadiene rubber graft styrene-acrylonitrile copolymer, and the blending ratio (parts by weight) of each monomer is shown in Table 2;
Copolymer A-3a is a styrene-acrylonitrile copolymer, and the blending ratio (parts by weight) of each monomer is shown in Table 2;
B-1a is an N-phenylmaleimide α-methylstyrene-acrylonitrile-styrene quaternary copolymer synthesized by a continuous block method, and the blending ratio (parts by weight) of each monomer is shown in Table 2. ing;
The size of the talc powder (C) is 2500 to 5000 mesh, 1 part by weight;
The polyolefin wax (D) is a commercially available polyethylene wax, 1 part by weight;
Antioxidant (E) is a mixture of a commercially available hindered monophenol, bisphenol or polyphenol compound and a phosphite compound, and is 1 part by weight.

対応する樹脂組成物の調製方法及び性能測定方法は実施例1と同様である。   The corresponding resin composition preparation method and performance measurement method are the same as in Example 1.

連続塊状重合方法で調製された耐熱剤Bの中に、低マレイミド含有量による耐熱性低下の問題を解決するために、四元共重合体の中に同時に適量のα−メチルスチレン成分を同時に導入することによって補充する以外、また、ABS樹脂の調製過程において、耐熱性が向上させられるグラフト共重合体A−1と、耐熱剤Bとを配合して使用することにより、更にABS樹脂の耐熱性を向上させる。   In order to solve the problem of reduced heat resistance due to the low maleimide content in the heat-resistant agent B prepared by the continuous bulk polymerization method, an appropriate amount of α-methylstyrene component is simultaneously introduced into the quaternary copolymer. In addition, the heat resistance of the ABS resin can be further increased by blending and using the graft copolymer A-1 whose heat resistance is improved and the heat resistance agent B in the process of preparing the ABS resin. To improve.

その他、グラフト共重合体A−1の中のα−メチルスチレンの含有量は適量であることが必須である。本発明のABS樹脂組成物のビカット軟化温度を110℃に達させて、且つブロー製品が優れた表面品質を備えさせるために、前記グラフト共重合体A−1において、α−メチルスチレン成分は35〜75重量部の間に制御される必要がある。更に実施例6を基準とし、他の条件を変えずに、グラフト共重合体A−1の単量体混合物の各成分の配合比だけを調整し、α−メチルスチレンの重量部数をそれぞれ25と80重量部に調整し、その結果は表3に示している。これで分かるように、グラフト共重合体A−1のα−メチルスチレンが<35重量部である場合、ABS樹脂組成物のビカット軟化温度は110℃に達することが難しくなっている。α−メチルスチレンが>75重量部である場合、対応するABS樹脂組成物の耐熱は良かったが、対応するブロー製品の表面品質は悪くなっている。   In addition, it is essential that the content of α-methylstyrene in the graft copolymer A-1 is an appropriate amount. In order to make the Vicat softening temperature of the ABS resin composition of the present invention reach 110 ° C. and to provide the blow product with excellent surface quality, in the graft copolymer A-1, the α-methylstyrene component is 35 It needs to be controlled between ˜75 parts by weight. Furthermore, based on Example 6, without changing other conditions, only the blending ratio of each component of the monomer mixture of the graft copolymer A-1 was adjusted, and the weight parts of α-methylstyrene were 25 and 25 respectively. The result was adjusted to 80 parts by weight, and the results are shown in Table 3. As can be seen, when the α-methylstyrene of the graft copolymer A-1 is <35 parts by weight, the Vicat softening temperature of the ABS resin composition is difficult to reach 110 ° C. When α-methylstyrene is> 75 parts by weight, the heat resistance of the corresponding ABS resin composition is good, but the surface quality of the corresponding blow product is poor.

以上の実施例に対する説明において、ゴム型グラフト共重合体A−1及びA−2中のゴムとしてポリブタジエンゴムのみを列挙しているが、他の複数種類のゴム:スチレン−ブタジエンゴム、アクリルゴム、ニトリルゴム等も本発明に適用し、異なるゴムは他の異なる効果をもたらすことができる。スチレン−ブタジエンゴムは樹脂組成物の流動性を向上させられ、アクリルゴムは樹脂組成物の耐候性を向上させられ、ニトリルゴムは樹脂組成物の耐油性を向上させられる。   In the description of the above examples, only polybutadiene rubber is listed as the rubber in the rubber-type graft copolymers A-1 and A-2, but other types of rubbers: styrene-butadiene rubber, acrylic rubber, Nitrile rubber or the like is also applicable to the present invention, and different rubbers can provide other different effects. Styrene-butadiene rubber can improve the fluidity of the resin composition, acrylic rubber can improve the weather resistance of the resin composition, and nitrile rubber can improve the oil resistance of the resin composition.

要すると、本発明は、特定成分と特定量のスチレン類樹脂組成物の中に、特定方法で合成された特定成分と特定量の耐熱剤を添加し、樹脂組成物の中の成分と共同作用させることによって、現有技術のブロー成形用耐熱級ABS樹脂がコスト、成形、表面品質、厚さ分布、耐熱性能/衝撃性能等の面における問題を解決する。本発明はブロー成形性及び耐熱性に優れたブロー成形用の高耐熱ABS樹脂組成物を調製し、そのブロー製品は良好な表面品質及び耐衝撃性能を備えている。本発明の樹脂組成物は溶融強度が高くて且つ溶融粘度がせん断速度に対して敏感度が低く、ブロー成形のパリソンの溶融垂れ現象を減少させることが可能で、且つブロー製品の表面品質が優れている。本発明の樹脂組成物は耐熱性が高く、ビカット軟化温度が110℃以上に達し、自動車部品塗装後の加工工程の耐熱要求及び厳しい使用環境に満足でき、且つブロー製品の耐衝撃性能が優れている。   In short, the present invention adds a specific component and a specific amount of heat-resistant agent synthesized by a specific method to a specific component and a specific amount of styrene resin composition, and cooperates with the components in the resin composition. Thus, the heat-resistant ABS resin for blow molding of the existing technology solves problems in terms of cost, molding, surface quality, thickness distribution, heat resistance performance / impact performance, and the like. The present invention prepares a high heat-resistant ABS resin composition for blow molding excellent in blow moldability and heat resistance, and the blown product has good surface quality and impact resistance performance. The resin composition of the present invention has high melt strength and low melt viscosity sensitivity to the shear rate, can reduce the melt dripping phenomenon of blow molded parison, and has excellent surface quality of blown products ing. The resin composition of the present invention has high heat resistance, the Vicat softening temperature reaches 110 ° C. or more, can satisfy the heat resistance requirement and severe use environment of the processing process after painting automobile parts, and has excellent impact resistance performance of blown products. Yes.

以上は、本発明の良好な実施例と比較例に対して詳細に説明したに過ぎず、本発明は以上の実施例と比較例に限られることはない。本発明の特許請求項の精神及び範囲から離れない場合、本領域の技術者が行った各種の修正は、本発明の範囲に属する。   The above is only a detailed description of the preferred examples and comparative examples of the present invention, and the present invention is not limited to the above examples and comparative examples. Various modifications made by technicians in this field are within the scope of the present invention without departing from the spirit and scope of the claims of the present invention.

Claims (11)

ブロー成形に適する高耐熱ABS樹脂組成物であり、前記組成物は100重量部のスチレン類樹脂組成物A及び20〜40重量部の耐熱剤Bを含み、
(a)前記スチレン類樹脂組成物Aの成分及び重量部数が以下の通りであり、100重量部あたり
グラフト共重合体A−1 10〜40重量部
グラフト共重合体A−2 0〜30重量部
共重合体A−3 55〜80重量部
(b)前記グラフト共重合体A−1の調製方法が以下のステップを含み、100重量部あたり、10〜70重量部のゴム型重合体の存在下で、90〜30重量部の単量体混合物を重合させることによってグラフト共重合体を製造し、この中、前記単量体混合物の成分及び重量部数が以下の通りであり、100重量部あたり、35〜75重量部のα−メチルスチレン、5〜45重量部のスチレン、10〜25重量部のアクリロニトリル成分であり、
(c)前記グラフト共重合体A−2の調製方法が以下のステップを含み、100重量部あたり、10〜70重量部のゴム型重合体の存在下で、90〜30重量部の単量体混合物を重合させることによってグラフト共重合体を製造し、この中、前記単量体混合物の成分及び重量部数が以下の通りであり、100重量部あたり、10〜40重量部のアクリロニトリル及び60〜90重量部のスチレン成分であり、
(d)前記共重合体A−3の調製方法が以下のステップを含み、単量体混合物を重合させることによって共重合体を製造し、この中、前記単量体混合物の成分及び重量部数が以下の通りであり、100重量部あたり、18〜48重量部のアクリロニトリル単量体及び52〜82重量部のスチレン単量体であり、
前記グラフト共重合体A−1及びグラフト共重合体A−2のゲル含有量がいずれも85%以上であり、
前記耐熱剤BがN−フェニルマレイミド−α−メチルスチレン−アクリロニトリル−スチレン四元共重合体であり、連続塊状重合法を用いて合成され、前記耐熱剤B100重量部に対し、N−フェニルマレイミド成分が10〜30重量部、α−メチルスチレン成分が30〜50重量部、スチレン成分が10〜40重量部、アクリロニトリル成分が15〜40重量部である、高耐熱ABS樹脂組成物。
A high heat-resistant ABS resin composition suitable for blow molding, the composition comprising 100 parts by weight of a styrene resin composition A and 20 to 40 parts by weight of a heat-resistant agent B,
(A) The components and parts by weight of the styrene resin composition A are as follows, and per 100 parts by weight: Graft copolymer A-1: 10 to 40 parts by weight Graft copolymer: A-2: 0 to 30 parts by weight Copolymer A-3 55 to 80 parts by weight (b) The method for preparing the graft copolymer A-1 includes the following steps, and in the presence of 10 to 70 parts by weight of a rubber-type polymer per 100 parts by weight: Then, a graft copolymer is produced by polymerizing 90 to 30 parts by weight of the monomer mixture, in which the components and parts by weight of the monomer mixture are as follows, per 100 parts by weight: 35-75 parts by weight α-methylstyrene, 5-45 parts by weight styrene, 10-25 parts by weight acrylonitrile component,
(C) The method for preparing the graft copolymer A-2 includes the following steps, and 90 to 30 parts by weight of monomer in the presence of 10 to 70 parts by weight of rubber-type polymer per 100 parts by weight A graft copolymer is produced by polymerizing the mixture, wherein the components and parts by weight of the monomer mixture are as follows, and 10 to 40 parts by weight of acrylonitrile and 60 to 90 parts by weight per 100 parts by weight. Part by weight of styrene component,
(D) The preparation method of the copolymer A-3 includes the following steps, and a copolymer is produced by polymerizing the monomer mixture, in which the components and parts by weight of the monomer mixture are As shown below, per 100 parts by weight, 18 to 48 parts by weight of acrylonitrile monomer and 52 to 82 parts by weight of styrene monomer,
The gel contents of the graft copolymer A-1 and the graft copolymer A-2 are both 85% or more,
The heat-resistant agent B is an N-phenylmaleimide-α-methylstyrene-acrylonitrile-styrene quaternary copolymer, synthesized using a continuous bulk polymerization method, and an N-phenylmaleimide component with respect to 100 parts by weight of the heat-resistant agent B Is a high heat-resistant ABS resin composition in which 10 to 30 parts by weight, α-methylstyrene component is 30 to 50 parts by weight, styrene component is 10 to 40 parts by weight, and acrylonitrile component is 15 to 40 parts by weight .
前記グラフト共重合体A−1及びグラフト共重合体A−2を調製する際に用いられるゴム型重合体が、ポリブタジエンゴム、スチレン−ブタジエンゴム、アクリルゴム、ニトリルゴムのうちの一種又は数種の混合物であることを特徴とする、請求項1に記載のブロー成形に適する高耐熱ABS樹脂組成物。   The rubber-type polymer used in preparing the graft copolymer A-1 and the graft copolymer A-2 is one or several of polybutadiene rubber, styrene-butadiene rubber, acrylic rubber, and nitrile rubber. The high heat-resistant ABS resin composition suitable for blow molding according to claim 1, which is a mixture. 前記グラフト共重合体A−1及びグラフト共重合体A−2のゲル含有量がいずれも90%又はそれ以上であることを特徴とする、請求項1に記載のブロー成形に適する高耐熱ABS樹脂組成物。   The heat-resistant ABS resin suitable for blow molding according to claim 1, wherein the gel contents of the graft copolymer A-1 and the graft copolymer A-2 are both 90% or more. Composition. 前記グラフト共重合体A−1及びグラフト共重合体A−2のゴム粒径がいずれも400nm又はそれ以下であることを特徴とする、請求項1に記載のブロー成形に適する高耐熱ABS樹脂組成物。   The high heat-resistant ABS resin composition suitable for blow molding according to claim 1, wherein the rubber particle diameters of the graft copolymer A-1 and the graft copolymer A-2 are both 400 nm or less. object. 前記グラフト共重合体A−1及びグラフト共重合体A−2のゴム粒径がいずれも300nm又はそれ以下であることを特徴とする、請求項1に記載のブロー成形に適する高耐熱ABS樹脂組成物。   The high heat-resistant ABS resin composition suitable for blow molding according to claim 1, wherein the rubber particle diameters of the graft copolymer A-1 and the graft copolymer A-2 are both 300 nm or less. object. 前記共重合体A−3の分子量が100,000〜300,000であることを特徴とする、請求項1に記載のブロー成形に適する高耐熱ABS樹脂組成物。   The high heat-resistant ABS resin composition suitable for blow molding according to claim 1, wherein the copolymer A-3 has a molecular weight of 100,000 to 300,000. 前記共重合体A−3の分子量が180,000〜300,000であることを特徴とする、請求項1に記載のブロー成形に適する高耐熱ABS樹脂組成物。   The high heat-resistant ABS resin composition suitable for blow molding according to claim 1, wherein the copolymer A-3 has a molecular weight of 180,000 to 300,000. 前記耐熱剤Bの成分及び重量部数が以下の通りであり、100重量部あたり、この中、N−フェニルマレイミド成分20〜30重量部、α−メチルスチレン成分30〜50重量部、スチレン成分10〜40重量部、アクリロニトリル成分20〜40重量部を含むことを特徴とする、請求項1に記載のブロー成形に適する高耐熱ABS樹脂組成物。   The components and parts by weight of the heat-resistant agent B are as follows, and per 100 parts by weight, among them, N-phenylmaleimide component 20 to 30 parts by weight, α-methylstyrene component 30 to 50 parts by weight, styrene component 10 to 10 parts by weight. The high heat-resistant ABS resin composition suitable for blow molding according to claim 1, comprising 40 parts by weight and 20 to 40 parts by weight of an acrylonitrile component. 前記耐熱剤Bのガラス転移温度が140〜160℃であることを特徴とする、請求項1に記載のブロー成形に適する高耐熱ABS樹脂組成物。   The high heat-resistant ABS resin composition suitable for blow molding according to claim 1, wherein the heat-resistant agent B has a glass transition temperature of 140 to 160 ° C. 以下のステップを含むことを特徴とする、請求項1に記載のブロー成形に適する高耐熱ABS樹脂組成物の調製方法、
ステップ1:重量部数通りに各成分をはかり取り、
ステップ2:各成分を高速混合機で充分に混合し、混合物を得、
ステップ3:混合物を二軸押出機のフィーダから投入し、溶融押出、冷却、乾燥、切粒を経て、前記ABS樹脂組成物を得る。
The method for preparing a high heat-resistant ABS resin composition suitable for blow molding according to claim 1, characterized by comprising the following steps:
Step 1: Weigh each component according to the number of parts by weight,
Step 2: Mix each component thoroughly with a high speed mixer to obtain a mixture.
Step 3: The mixture is fed from a feeder of a twin-screw extruder, and the ABS resin composition is obtained through melt extrusion, cooling, drying, and cutting.
ステップ3において、前記二軸押出機のスクリュー長径比が30〜70で、シリンダーに必ず少なくとも二箇所の真空吸排装置を設置し、スクリュー材料シリンダー投入部の温度が180〜210℃、塑性化部温度が230〜250℃、均等化部温度が220〜240℃、スクリュー回転速度が200〜500rpmであることを特徴とする、請求項10に記載の調製方法。   In step 3, the screw major axis ratio of the twin-screw extruder is 30 to 70, and at least two vacuum suction / exhaust devices are always installed in the cylinder, the temperature of the screw material cylinder charging part is 180 to 210 ° C., and the plasticizing part temperature The preparation method according to claim 10, wherein the temperature is 230 to 250 ° C., the equalizing part temperature is 220 to 240 ° C., and the screw rotation speed is 200 to 500 rpm.
JP2016533619A 2013-11-20 2013-12-04 High heat resistant ABS resin composition suitable for blow molding and method for preparing the same Active JP6364490B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201310590377.2 2013-11-20
CN201310590377.2A CN103613877B (en) 2013-11-20 2013-11-20 High heat-proof ABS resin composition suitable for blow molding and preparation method thereof
PCT/CN2013/088527 WO2015074297A1 (en) 2013-11-20 2013-12-04 Heat-resistant abs resin composition formed by blow molding and preparation method therefor

Publications (2)

Publication Number Publication Date
JP2017502106A JP2017502106A (en) 2017-01-19
JP6364490B2 true JP6364490B2 (en) 2018-07-25

Family

ID=50164599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016533619A Active JP6364490B2 (en) 2013-11-20 2013-12-04 High heat resistant ABS resin composition suitable for blow molding and method for preparing the same

Country Status (3)

Country Link
JP (1) JP6364490B2 (en)
CN (1) CN103613877B (en)
WO (1) WO2015074297A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018145204A (en) * 2013-06-17 2018-09-20 大鵬薬品工業株式会社 Stable form crystal of tipiracil hydrochloride and crystallization method therefor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101811485B1 (en) 2014-11-28 2017-12-21 주식회사 엘지화학 Thermoplastic Resin Composition and Molded Article Thereof
TWI573710B (en) * 2016-05-18 2017-03-11 Vehicle rear fender guardrail
JP6218347B1 (en) * 2017-07-21 2017-10-25 ユーエムジー・エービーエス株式会社 Thermoplastic resin composition for plating, resin molded product and plated product
KR102210030B1 (en) 2017-12-11 2021-02-01 주식회사 엘지화학 Heat-resistant resin composition
KR20200091440A (en) 2017-12-19 2020-07-30 이네오스 스티롤루션 그룹 게엠베하 ABS thermoplastic molding composition for blow molding
CN108285609B (en) * 2018-01-09 2020-10-02 佳易容聚合物(上海)有限公司 High melt strength styrene resin composition and preparation method thereof
CN110498890A (en) * 2019-08-26 2019-11-26 江苏宝源高新电工有限公司 One kind having Weatherproof ageing-resistant nitrile rubber graft polymers and preparation method thereof

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3111501A (en) * 1958-12-19 1963-11-19 Us Rubber Co Gum plastic material comprising alpha-methyl styrene: acrylonitrile resin and graft copolymer of styrene and acrylonitrile on polybutadiene
US3367995A (en) * 1965-02-26 1968-02-06 Kanegafuchi Chemical Ind Method for preparing graft copolymers of diene rubber, styrene, acrylonitrile and alpha-methyl styrene
CN1005633B (en) * 1984-06-19 1989-11-01 电气化学工业株式会社 Thermoplastic resin composition
JPH0725964B2 (en) * 1986-04-07 1995-03-22 東レ株式会社 Thermoplastic resin composition
NL8603246A (en) * 1986-12-20 1988-07-18 Stamicarbon THERMOPLASTIC POLYMER MIXTURES.
JPH0794591B2 (en) * 1987-10-02 1995-10-11 日本合成ゴム株式会社 Thermoplastic resin composition
JPH06344430A (en) * 1993-06-03 1994-12-20 Kanegafuchi Chem Ind Co Ltd Blow molding method
JPH07137117A (en) * 1993-11-12 1995-05-30 Kanegafuchi Chem Ind Co Ltd Blow molding method
JPH07286085A (en) * 1994-04-20 1995-10-31 Japan Synthetic Rubber Co Ltd Thermoplastic resin composition
JPH0847963A (en) * 1994-08-04 1996-02-20 Kanegafuchi Chem Ind Co Ltd Blow molding machine and method
JPH1025394A (en) * 1996-07-11 1998-01-27 Japan Synthetic Rubber Co Ltd Rubber-reinforced styrene resin composition
JPH1036619A (en) * 1996-07-17 1998-02-10 Japan Synthetic Rubber Co Ltd Blow-moldable rubber-reinforced styrenic resin composition
KR100375814B1 (en) * 1996-11-04 2003-07-22 주식회사 엘지씨아이 Method for preparing thermoplastic resin composition having excellent impact resistance
JPH10265642A (en) * 1997-03-25 1998-10-06 Kanegafuchi Chem Ind Co Ltd Abs resin composition for blow molding and blow molded item produced therefrom
JPH11116827A (en) * 1997-10-16 1999-04-27 Techno Polymer Kk Flame resistant thermoplastic resin composition for blow molding
JPH11181224A (en) * 1997-12-22 1999-07-06 Kanegafuchi Chem Ind Co Ltd Resin composition and blow molded product using the same
JP2001279049A (en) * 2000-03-28 2001-10-10 Kanegafuchi Chem Ind Co Ltd Abs-based resin composition for blow molding use and the resultant blow molded product
KR100409071B1 (en) * 2000-07-03 2003-12-11 주식회사 엘지화학 Process for preparing thermoplastic resin having superior heat-stability
KR100417066B1 (en) * 2001-01-08 2004-02-05 주식회사 엘지화학 Method for preparing thermoplastic resin having superior heat resistance
JP2003080596A (en) * 2001-06-26 2003-03-19 Matsushita Electric Works Ltd Resin molded article and manufacturing method thereof
KR100591041B1 (en) * 2004-12-01 2006-06-22 제일모직주식회사 Thermoplastic ABS resin composition with excellent blowability, impact resistance and dimensional stability
KR100702437B1 (en) * 2004-12-31 2007-04-03 주식회사 엘지화학 Plastic resin composition having improved heat resistance, weld strength, chemical resistance, impact strength, elongation, and wettablility
US8147977B2 (en) * 2006-05-19 2012-04-03 Umg Abs, Ltd. Thermoplastic resin composition and composite molded product
WO2008038857A1 (en) * 2006-09-28 2008-04-03 Korea Kumho Petrochemical Co., Ltd Maleimide-alpha-alkylstyrene-based tetrapolymer with low molten viscosity and continuous bulk process for producing it
CN101250314A (en) * 2007-11-30 2008-08-27 上海锦湖日丽塑料有限公司 Heat-proof ABS resin composition for blow-molding and preparation method thereof
CN101921439B (en) * 2010-06-29 2012-05-30 上海达凯塑胶有限公司 ABS (Acrylonitrile Butadiene Styrene) calendered substrate and preparation method thereof
JP5752505B2 (en) * 2011-07-05 2015-07-22 リケンテクノス株式会社 Thermoplastic resin composition
CN103183762B (en) * 2011-12-29 2015-08-05 奇美实业股份有限公司 Styrene-α-methylstyrene-acrylic copolymer and rubber modified styrene series resin
CN103342874B (en) * 2013-07-19 2016-07-20 上海锦湖日丽塑料有限公司 A kind of heat-resisting ABS resin being suitable to plating and preparation method thereof
CN103333456B (en) * 2013-07-19 2016-08-24 上海锦湖日丽塑料有限公司 A kind of heat-resisting ABS resin with excellent blowing surface and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018145204A (en) * 2013-06-17 2018-09-20 大鵬薬品工業株式会社 Stable form crystal of tipiracil hydrochloride and crystallization method therefor

Also Published As

Publication number Publication date
JP2017502106A (en) 2017-01-19
CN103613877B (en) 2017-09-19
CN103613877A (en) 2014-03-05
WO2015074297A1 (en) 2015-05-28

Similar Documents

Publication Publication Date Title
JP6364490B2 (en) High heat resistant ABS resin composition suitable for blow molding and method for preparing the same
CN101117433B (en) Elastomer-containing polycarbonate-based blending material and method for making same
CN108250586B (en) PP/PMMA alloy material and preparation method and application thereof
CN104629184A (en) Composite material containing polybutylene alloy and preparation method thereof
KR20130076616A (en) Thermoplastic resin composition and article fabricated using the same
CN107523001A (en) A kind of ABS/PC 3D consumptive material PP Pipe Compounds and preparation method thereof
EP3580276B1 (en) Acrylonitrile-butadiene-styrene copolymer composition with high surface energy
KR102165697B1 (en) Graft copolymer, thermoplastic resin composition containing the same and method for preparing the thermoplastic resin
JP2008521997A (en) Thermoplastic ABS resin composition with excellent hollow moldability, impact resistance and dimensional stability
CN102108176B (en) ABS material with low gloss, high shock resistance, and high fluidity
CN103923432A (en) High impact extinctive ABS (Acrylonitrile Butadiene Styrene) modified plastic and preparation method thereof
KR20150001991A (en) Thermoplastic resin composition and molded article using the same
CN112480646B (en) Kaolin reinforced polyphenyl ether composition and preparation method and application thereof
KR20090084574A (en) Transparent thermoplastic resin with high gloss and hardness
KR101492032B1 (en) Heat-Resistant ABS Resin Composition With Excellent Processability and Resistance for Discoloration at High Temperature and Method for Preparing the Same
EP3533830B1 (en) Thermoplastic resin composition, method for producing same, and molded product formed therefrom
KR102173469B1 (en) Thermoplastic resin composition and molded article prepared therefrom
CN110157102A (en) A kind of polypropene composition and preparation method thereof of high glaze rigidity-toughness balanced
JPH07314486A (en) Manufacture of heat resistive resin molding
CN107686598A (en) A kind of low-shrinkage low-gravity modified polypropylene material and preparation method thereof
KR101322028B1 (en) Styrene-based blend resin composition
KR102270115B1 (en) Method for preparing thermoplastic resin composition
de Almeida et al. Reusing Ionomer Scraps as Impact Modifier in Polyamide 6
JP5534289B2 (en) Melting tension improver for engineering plastics, thermoplastic resin composition and molded article
KR102407372B1 (en) High flow thermoplastic resin composition, method for preparing thereof and molding products comprising thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180702

R150 Certificate of patent or registration of utility model

Ref document number: 6364490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250