JP6364396B2 - Power storage device, transport device and control method - Google Patents

Power storage device, transport device and control method Download PDF

Info

Publication number
JP6364396B2
JP6364396B2 JP2015211139A JP2015211139A JP6364396B2 JP 6364396 B2 JP6364396 B2 JP 6364396B2 JP 2015211139 A JP2015211139 A JP 2015211139A JP 2015211139 A JP2015211139 A JP 2015211139A JP 6364396 B2 JP6364396 B2 JP 6364396B2
Authority
JP
Japan
Prior art keywords
capacitor
constant current
battery
current control
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015211139A
Other languages
Japanese (ja)
Other versions
JP2017085755A (en
Inventor
宏和 小熊
宏和 小熊
滝沢 大二郎
大二郎 滝沢
良太 海野
良太 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2015211139A priority Critical patent/JP6364396B2/en
Publication of JP2017085755A publication Critical patent/JP2017085755A/en
Application granted granted Critical
Publication of JP6364396B2 publication Critical patent/JP6364396B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、複数の蓄電器を備えた蓄電装置、輸送機器及び制御方法に関する。   The present invention relates to a power storage device including a plurality of power storage devices, a transport device, and a control method.

特許文献1には、車両走行中であっても二次電池のSOC(State Of Charge、残容量)を推定可能な電源システムが記載されている。この電源システムは、2つの二次電池と、2つのコンバータと、コンバータECUと、電池ECUとを備える。コンバータECUは、2つのコンバータを制御することによって、2つの二次電池のいずれか一方を一定電流で充電又は放電させるとともに駆動力発生部の電力要求に応じて他方の二次電池を充放電させる。電池ECUは、一定電流で充電又は放電している二次電池の電圧に基づいてその二次電池のSOCを推定する。   Patent Document 1 describes a power supply system that can estimate the SOC (State Of Charge) of a secondary battery even when the vehicle is running. This power supply system includes two secondary batteries, two converters, a converter ECU, and a battery ECU. The converter ECU controls the two converters to charge or discharge one of the two secondary batteries at a constant current and charge / discharge the other secondary battery according to the power requirement of the driving force generation unit. . The battery ECU estimates the SOC of the secondary battery based on the voltage of the secondary battery that is charged or discharged with a constant current.

特開2008−276970号公報JP 2008-276970 A

特許文献1に記載の電源システムでは、一定電流で充電又は放電中の二次電池の電圧に基づいてその二次電池のSOCを推定するが、SOCの推定精度に影響する二次電池の温度については考慮されていない。しかし、二次電池のSOCを推定するためのパラメータとして有用な充放電容量や内部抵抗は温度によって変動するので、二次電池の状態を正確に判定するためには、推定時の二次電池は所定の温度であることが望ましい。   In the power supply system described in Patent Document 1, the SOC of the secondary battery is estimated based on the voltage of the secondary battery that is being charged or discharged at a constant current. However, the temperature of the secondary battery that affects the estimation accuracy of the SOC. Is not considered. However, since the charge / discharge capacity and internal resistance useful as parameters for estimating the SOC of the secondary battery vary depending on the temperature, the secondary battery at the time of estimation is used to accurately determine the state of the secondary battery. A predetermined temperature is desirable.

また、特許文献1に記載の電源システムでは、SOCを推定する二次電池は一方のコンバータを制御することで一定電流で充電又は放電される二次電池の電圧に基づいてその二次電池のSOCを推定し、他方の二次電池は他方のコンバータを制御することで駆動力発生部の電力要求に応じて充放電されるため、1つの二次電池のSOCを推定するために2つのコンバータを制御する必要がある。従って、SOCの推定にあたって必要な電力が増大する畏れがあり、結果として高頻度にSOCの推定が行えない。   Moreover, in the power supply system described in Patent Document 1, the secondary battery that estimates the SOC is controlled by one converter, and the SOC of the secondary battery is charged based on the voltage of the secondary battery that is charged or discharged at a constant current. Since the other secondary battery is charged / discharged according to the power requirement of the driving force generator by controlling the other converter, two converters are used to estimate the SOC of one secondary battery. Need to control. Therefore, there is a possibility that the electric power required for estimating the SOC may increase, and as a result, the SOC cannot be estimated frequently.

さらに上述したように、この電源システムでは2つのコンバータが必要となるため、一方の二次電池のみにコンバータを設けた電源システムではこの方法で一方の二次電池のSOCを推定できない。   Furthermore, as described above, since this power supply system requires two converters, the power supply system in which a converter is provided only in one secondary battery cannot estimate the SOC of one secondary battery by this method.

さらに他方の二次電池は他方のコンバータを制御することで駆動力発生部の電力要求に応じて充放電されるため、他方の二次電池のSOCを推定できない。   Furthermore, since the other secondary battery is charged and discharged according to the power requirement of the driving force generation unit by controlling the other converter, the SOC of the other secondary battery cannot be estimated.

さらにSOCなどの二次電池の状態を推定するための充電又は放電の一定電流には最適値が存在する。しかし、特許文献1に記載の電源システムでは、駆動力発生部の電力要求に応じて充放電される他方の二次電池が充放電可能な電流量にも、SOC・内部抵抗・劣化状態などによってその限りがあるため、間接的に一方の二次電池の一定電流の値に制約が加わってしまい、必ずしも最適値でSOCを推定できないため、その精度には向上の余地がある。   Further, there is an optimum value for the constant current of charging or discharging for estimating the state of the secondary battery such as SOC. However, in the power supply system described in Patent Document 1, the amount of current that can be charged / discharged by the other secondary battery that is charged / discharged according to the power requirement of the driving force generator depends on the SOC, internal resistance, deterioration state, and the like. Because of this limitation, there is an indirect restriction on the value of the constant current of one of the secondary batteries, and the SOC cannot always be estimated with the optimum value, so there is room for improvement in accuracy.

また、SOCだけでは二次電池の正確な状態を判定できない。このため、特許文献1に記載の電源システムでは、2つの二次電池の状態を正確に判定できない。   In addition, the accurate state of the secondary battery cannot be determined only by the SOC. For this reason, in the power supply system of patent document 1, the state of two secondary batteries cannot be determined correctly.

本発明の目的は、2つの蓄電器の状態を正確に判定可能な蓄電装置、輸送機器及び制御方法を提供することである。   The objective of this invention is providing the electrical storage apparatus which can determine the state of two electrical storage devices correctly, transport equipment, and a control method.

上記の目的を達成するために、請求項1に記載の発明は、
第1蓄電器(例えば、後述の実施形態での高容量型バッテリES−E又は高出力型バッテリES−P)と、
第2蓄電器(例えば、後述の実施形態での高出力型バッテリES−P又は高容量型バッテリES−E)と、
前記第1蓄電器の出力電圧又は前記第2蓄電器の出力電圧を昇圧又は降圧する変換部(例えば、後述の実施形態でのVCU101,201)と、
前記第1蓄電器の電圧と、前記第1蓄電器と前記第2蓄電器の間を流れる電流と、を検知する検知部(例えば、後述の実施形態での電圧センサ103p又は電圧センサ103eと電流センサ105p又は/及び電流センサ105e)と、
前記第1蓄電器及び前記第2蓄電器の各温度を取得する取得部(例えば、後述の実施形態での温度センサ107pと温度センサ107e)と、
前記変換部を制御する制御部(例えば、後述の実施形態でのECU109)と、を備えた蓄電装置であって、
前記制御部は、
走行するための電力供給用として前記蓄電装置を搭載した車両の走行速度に基づいて、前記車両が停車状態であるか否かを判別し、
前記車両が停車状態のとき、前記第1蓄電器又は前記第2蓄電器の温度がしきい値以下であれば、前記第1蓄電器及び前記第2蓄電器を前記しきい値より高い温度まで昇温し、前記第1蓄電器及び前記第2蓄電器の温度が前記しきい値より高い状態で、前記第1蓄電器及び前記第2蓄電器の一方から前記第1蓄電器及び前記第2蓄電器の他方へ一定電流が流れるよう前記変換部を制御する第1定電流制御を行い、前記第1定電流制御を行った際に得られた前記第1蓄電器の電圧及び一定電流に基づき、前記第1蓄電器の状態を容量又は内部抵抗を算出する、蓄電装置である。
In order to achieve the above object, the invention described in claim 1
A first battery (for example, a high-capacity battery ES-E or a high-power battery ES-P in an embodiment described later);
A second battery (for example, a high-power battery ES-P or a high-capacity battery ES-E in an embodiment described later);
A converter (for example, VCUs 101 and 201 in the embodiments described later) that boosts or steps down the output voltage of the first capacitor or the output voltage of the second capacitor;
A detection unit that detects a voltage of the first capacitor and a current flowing between the first capacitor and the second capacitor (for example, the voltage sensor 103p or the voltage sensor 103e and the current sensor 105p in the embodiment described later) / And current sensor 105e),
An acquisition unit (for example, a temperature sensor 107p and a temperature sensor 107e in an embodiment described later) for acquiring the temperatures of the first capacitor and the second capacitor;
A power storage device including a control unit (for example, ECU 109 in an embodiment described later) that controls the conversion unit,
The controller is
Based on the traveling speed of a vehicle equipped with the power storage device for power supply for traveling, it is determined whether or not the vehicle is stopped,
When the vehicle is in a stopped state, if the temperature of the first capacitor or the second capacitor is equal to or lower than a threshold value, the temperature of the first capacitor and the second capacitor is increased to a temperature higher than the threshold value, A constant current flows from one of the first capacitor and the second capacitor to the other of the first capacitor and the second capacitor in a state where the temperature of the first capacitor and the second capacitor is higher than the threshold value. The first constant current control for controlling the conversion unit is performed, and the state of the first capacitor is determined based on the voltage and the constant current of the first capacitor obtained when the first constant current control is performed. It is a power storage device that calculates resistance.

請求項2に記載の発明は、請求項1に記載の発明において、
前記制御部は、
前記第1定電流制御を行う前後でそれぞれ得られた前記第1蓄電器の開路電圧に応じた前記第1蓄電器の蓄電容量の変化量と、前記第1定電流制御を行った際に流れた前記一定電流の電流量と、に基づき、前記第1蓄電器の容量を算出する
The invention according to claim 2 is the invention according to claim 1,
The controller is
The amount of change in the storage capacity of the first capacitor according to the open circuit voltage of the first capacitor obtained before and after performing the first constant current control, and the flow that occurred when the first constant current control was performed The capacity of the first battery is calculated based on the amount of constant current.

請求項3に記載の発明では、請求項1又は2に記載の発明において、
前記制御部は、
前記第1定電流制御の前又は後に得られた前記第1蓄電器の開路電圧と、前記第1定電流制御の最中に得られた前記第1蓄電器の閉路電圧と、前記一定電流と、に基づき、前記第1蓄電器の内部抵抗を算出する
請求項4に記載の発明は、請求項1から3のいずれか1項に記載の蓄電装置において、
前記制御部は、
前記車両が停車状態のとき、前記第1定電流制御と、前記第1蓄電器及び前記第2蓄電器の他方から前記第1蓄電器及び前記第2蓄電器の一方へ一定電流が流れるよう前記変換部を制御する第2定電流制御と、を行い、
前記第1定電流制御及び前記第2定電流制御を行った際に得られた前記第1蓄電器の電圧及び前記一定電流に基づき、前記第1蓄電器の容量又は内部抵抗を算出する。
In the invention according to claim 3, in the invention according to claim 1 or 2,
The controller is
The open circuit voltage of the first capacitor obtained before or after the first constant current control, the closed circuit voltage of the first capacitor obtained during the first constant current control, and the constant current. Based on this, the internal resistance of the first capacitor is calculated .
The invention according to claim 4 is the power storage device according to any one of claims 1 to 3,
The controller is
When the vehicle is stopped, the first constant current control and the conversion unit are controlled so that a constant current flows from the other of the first capacitor and the second capacitor to one of the first capacitor and the second capacitor. Second constant current control to perform,
The capacity or internal resistance of the first capacitor is calculated based on the voltage of the first capacitor and the constant current obtained when the first constant current control and the second constant current control are performed.

請求項5に記載の発明では、請求項4に記載の発明において、
前記制御部は、
前記第2定電流制御を行う前後でそれぞれ得られた前記第1蓄電器の開路電圧に応じた前記第1蓄電器の蓄電容量の変化量と、前記第2定電流制御を行った際に流れた前記一定電流の電流量と、に基づき、前記第1蓄電器の容量を算出する
In the invention according to claim 5 , in the invention according to claim 4 ,
The controller is
The amount of change in the storage capacity of the first capacitor according to the open circuit voltage of the first capacitor obtained before and after performing the second constant current control, and the flow that occurred when the second constant current control was performed The capacity of the first battery is calculated based on the amount of constant current.

請求項6に記載の発明では、請求項4又は5に記載の発明において、
前記制御部は、
前記第2定電流制御の前又は後に得られた前記第1蓄電器の開路電圧と、前記第2定電流制御の最中に得られた前記第1蓄電器の閉路電圧と、前記一定電流と、に基づき、前記第1蓄電器の内部抵抗を算出する
In the invention according to claim 6 , in the invention according to claim 4 or 5 ,
The controller is
The open circuit voltage of the first battery obtained before or after the second constant current control, the closed circuit voltage of the first battery obtained during the second constant current control, and the constant current. Based on this, the internal resistance of the first capacitor is calculated .

請求項7に記載の発明は、
第1蓄電器(例えば、後述の実施形態での高容量型バッテリES−E又は高出力型バッテリES−P)と、
第2蓄電器(例えば、後述の実施形態での高出力型バッテリES−P又は高容量型バッテリES−E)と、
前記第1蓄電器の出力電圧又は前記第2蓄電器の出力電圧を昇圧又は降圧する変換部(例えば、後述の実施形態でのVCU101,201)と、
前記第1蓄電器及び前記第2蓄電器の各電圧と、前記第1蓄電器と前記第2蓄電器の間を流れる電流と、を検知する検知部(例えば、後述の実施形態での電圧センサ103pと電圧センサ103eと電流センサ105p又は/及び電流センサ105e)と、
前記第1蓄電器及び前記第2蓄電器の各温度を取得する取得部(例えば、後述の実施形態での温度センサ107pと温度センサ107e)と、
前記変換部を制御する制御部(例えば、後述の実施形態でのECU109)と、を備えた蓄電装置であって、
前記制御部は、
走行するための電力供給用として前記蓄電装置を搭載した車両の走行速度に基づいて、前記車両が停車状態であるか否かを判別し、
前記車両が停車状態のとき、前記第1蓄電器又は前記第2蓄電器の温度がしきい値以下であれば、前記第1蓄電器及び前記第2蓄電器を前記しきい値より高い温度まで昇温し、前記第1蓄電器及び前記第2蓄電器の温度が前記しきい値より高い状態で、前記第1蓄電器及び前記第2蓄電器の一方から前記第1蓄電器及び前記第2蓄電器の他方へ一定電流が流れるよう前記変換部を制御する第1定電流制御と、前記第1蓄電器及び前記第2蓄電器の他方から前記第1蓄電器及び前記第2蓄電器の一方へ一定電流が流れるよう前記変換部を制御する第2定電流制御と、を行い、前記第1定電流制御を行った際及び前記第2定電流制御を行った際に得られた前記第1蓄電器の各電圧並びに前記第1定電流制御を行った際及び前記第2定電流制御を行った際に流れる各一定電流に基づき、前記第1蓄電器の容量又は内部抵抗を算出し、前記第1定電流制御を行った際及び前記第2定電流制御を行った際に得られた前記第2蓄電器の各電圧並びに前記第1定電流制御を行った際及び前記第2定電流制御を行った際に流れる各一定電流に基づき、前記第2蓄電器の容量又は内部抵抗を算出する、蓄電装置である。
The invention described in claim 7
A first battery (for example, a high-capacity battery ES-E or a high-power battery ES-P in an embodiment described later);
A second battery (for example, a high-power battery ES-P or a high-capacity battery ES-E in an embodiment described later);
A converter (for example, VCUs 101 and 201 in the embodiments described later) that boosts or steps down the output voltage of the first capacitor or the output voltage of the second capacitor;
A detection unit that detects each voltage of the first capacitor and the second capacitor and a current flowing between the first capacitor and the second capacitor (for example, a voltage sensor 103p and a voltage sensor in an embodiment described later) 103e and current sensor 105p or / and current sensor 105e),
An acquisition unit (for example, a temperature sensor 107p and a temperature sensor 107e in an embodiment described later) for acquiring each temperature of the first capacitor and the second capacitor;
A power storage device including a control unit (for example, ECU 109 in an embodiment described later) that controls the conversion unit,
The controller is
Based on the traveling speed of a vehicle equipped with the power storage device for power supply for traveling, it is determined whether or not the vehicle is stopped,
When the vehicle is in a stopped state, if the temperature of the first capacitor or the second capacitor is equal to or lower than a threshold value, the temperature of the first capacitor and the second capacitor is increased to a temperature higher than the threshold value, A constant current flows from one of the first capacitor and the second capacitor to the other of the first capacitor and the second capacitor in a state where the temperature of the first capacitor and the second capacitor is higher than the threshold value. A first constant current control for controlling the conversion unit; and a second constant for controlling the conversion unit so that a constant current flows from the other of the first capacitor and the second capacitor to one of the first capacitor and the second capacitor. Constant current control, each voltage of the first battery and the first constant current control obtained when the first constant current control and the second constant current control are performed. And the second constant current control is performed. And calculating the capacity or internal resistance of the first capacitor based on each constant current flowing when the first constant current control is performed and when the second constant current control is performed. 2. A power storage device that calculates a capacity or an internal resistance of the second capacitor based on each voltage of the two capacitors and each constant current that flows when the first constant current control and the second constant current control are performed It is.

請求項8に記載の発明では、請求項1から6のいずれか1項に記載の発明において、
前記制御部は、前記変換部を制御して前記第1蓄電器と前記第2蓄電器の間で充放電を行うことによって、前記第1蓄電器及び前記第2蓄電器の各温度を前記しきい値より高い温度まで昇温する。
In the invention according to claim 8 , in the invention according to any one of claims 1 to 6,
The controller is configured to charge and discharge between the first capacitor and the second capacitor by controlling the conversion unit, so that each temperature of the first capacitor and the second capacitor is higher than the threshold value. Raise to temperature.

請求項9に記載の発明では、請求項8に記載の発明において、
前記第1蓄電器と前記第2蓄電器の間で行われる充放電は、前記第1蓄電器及び前記第2蓄電器の放電と充電の関係が交互に切り替わる交互充放電である。
In the invention according to claim 9 , in the invention according to claim 8 ,
The charge / discharge performed between the first capacitor and the second capacitor is an alternate charge / discharge in which the relationship between the discharge and charge of the first capacitor and the second capacitor is alternately switched.

請求項10に記載の発明は、請求項1から9のいずれか1項に記載の蓄電装置を有する、輸送機器である。 A tenth aspect of the present invention is a transportation device including the power storage device according to any one of the first to ninth aspects.

請求項11に記載の発明は、
第1蓄電器(例えば、後述の実施形態での高容量型バッテリES−E又は高出力型バッテリES−P)と、
第2蓄電器(例えば、後述の実施形態での高出力型バッテリES−P又は高容量型バッテリES−E)と、
前記第1蓄電器の出力電圧又は前記第2蓄電器の出力電圧を昇圧又は降圧する変換部(例えば、後述の実施形態でのVCU101,201)と、
前記第1蓄電器の電圧と、前記第1蓄電器と前記第2蓄電器の間を流れる電流と、を検知する検知部(例えば、後述の実施形態での電圧センサ103p又は電圧センサ103eと電流センサ105p又は/及び電流センサ105e)と、
前記第1蓄電器及び前記第2蓄電器の各温度を取得する取得部(例えば、後述の実施形態での温度センサ107pと温度センサ107e)と、
前記変換部を制御する制御部(例えば、後述の実施形態でのECU109)と、を備えた蓄電装置が行う制御方法であって、
前記制御部は、
走行するための電力供給用として前記蓄電装置を搭載した車両の走行速度に基づいて、前記車両が停車状態であるか否かを判別し、
前記車両が停車状態のとき、前記第1蓄電器又は前記第2蓄電器の温度がしきい値以下であれば、前記第1蓄電器及び前記第2蓄電器を前記しきい値より高い温度まで昇温し、前記第1蓄電器及び前記第2蓄電器の温度が前記しきい値より高い状態で、前記第1蓄電器及び前記第2蓄電器の一方から前記第1蓄電器及び前記第2蓄電器の他方へ一定電流が流れるよう前記変換部を制御する第1定電流制御を行い、前記第1定電流制御を行った際に得られた前記第1蓄電器の電圧及び一定電流に基づき、前記第1蓄電器の状態を容量又は内部抵抗を算出する、制御方法である。
The invention according to claim 11
A first battery (for example, a high-capacity battery ES-E or a high-power battery ES-P in an embodiment described later);
A second battery (for example, a high-power battery ES-P or a high-capacity battery ES-E in an embodiment described later);
A converter (for example, VCUs 101 and 201 in the embodiments described later) that boosts or steps down the output voltage of the first capacitor or the output voltage of the second capacitor;
A detection unit that detects a voltage of the first capacitor and a current flowing between the first capacitor and the second capacitor (for example, the voltage sensor 103p or the voltage sensor 103e and the current sensor 105p in the embodiment described later) / And current sensor 105e),
An acquisition unit (for example, a temperature sensor 107p and a temperature sensor 107e in an embodiment described later) for acquiring each temperature of the first capacitor and the second capacitor;
A control method performed by a power storage device including a control unit (for example, ECU 109 in an embodiment described later) that controls the conversion unit,
The controller is
Based on the traveling speed of a vehicle equipped with the power storage device for power supply for traveling, it is determined whether or not the vehicle is stopped,
When the vehicle is in a stopped state, if the temperature of the first capacitor or the second capacitor is equal to or lower than a threshold value, the temperature of the first capacitor and the second capacitor is increased to a temperature higher than the threshold value, A constant current flows from one of the first capacitor and the second capacitor to the other of the first capacitor and the second capacitor in a state where the temperature of the first capacitor and the second capacitor is higher than the threshold value. The first constant current control for controlling the conversion unit is performed, and the state of the first capacitor is determined based on the voltage and the constant current of the first capacitor obtained when the first constant current control is performed. This is a control method for calculating resistance.

請求項12に記載の発明は、
第1蓄電器(例えば、後述の実施形態での高容量型バッテリES−E又は高出力型バッテリES−P)と、
第2蓄電器(例えば、後述の実施形態での高出力型バッテリES−P又は高容量型バッテリES−E)と、
前記第1蓄電器の出力電圧又は前記第2蓄電器の出力電圧を昇圧又は降圧する変換部(例えば、後述の実施形態でのVCU101,201)と、
前記第1蓄電器及び前記第2蓄電器の各電圧と、前記第1蓄電器と前記第2蓄電器の間を流れる電流と、を検知する検知部(例えば、後述の実施形態での電圧センサ103pと電圧センサ103eと電流センサ105p又は/及び電流センサ105e)と、
前記第1蓄電器及び前記第2蓄電器の各温度を取得する取得部(例えば、後述の実施形態での温度センサ107pと温度センサ107e)と、
前記変換部を制御する制御部(例えば、後述の実施形態でのECU109)と、を備えた蓄電装置が行う制御方法であって、
前記制御部は、
走行するための電力供給用として前記蓄電装置を搭載した車両の走行速度に基づいて、前記車両が停車状態であるか否かを判別し、
前記車両が停車状態のとき、前記第1蓄電器又は前記第2蓄電器の温度がしきい値以下であれば、前記第1蓄電器及び前記第2蓄電器を前記しきい値より高い温度まで昇温し、前記第1蓄電器及び前記第2蓄電器の温度が前記しきい値より高い状態で、前記第1蓄電器及び前記第2蓄電器の一方から前記第1蓄電器及び前記第2蓄電器の他方へ一定電流が流れるよう前記変換部を制御する第1定電流制御と、前記第1蓄電器及び前記第2蓄電器の他方から前記第1蓄電器及び前記第2蓄電器の一方へ一定電流が流れるよう前記変換部を制御する第2定電流制御と、を行い、前記第1定電流制御を行った際及び前記第2定電流制御を行った際に得られた前記第1蓄電器の各電圧並びに前記第1定電流制御を行った際及び前記第2定電流制御を行った際に流れる各一定電流に基づき、前記第1蓄電器の容量又は内部抵抗を算出し、前記第1定電流制御を行った際及び前記第2定電流制御を行った際に得られた前記第2蓄電器の各電圧並びに前記第1定電流制御を行った際及び前記第2定電流制御を行った際に流れる各一定電流に基づき、前記第2蓄電器の容量又は内部抵抗を算出する、制御方法である。
The invention according to claim 12
A first battery (for example, a high-capacity battery ES-E or a high-power battery ES-P in an embodiment described later);
A second battery (for example, a high-power battery ES-P or a high-capacity battery ES-E in an embodiment described later);
A converter (for example, VCUs 101 and 201 in the embodiments described later) that boosts or steps down the output voltage of the first capacitor or the output voltage of the second capacitor;
A detection unit that detects each voltage of the first capacitor and the second capacitor and a current flowing between the first capacitor and the second capacitor (for example, a voltage sensor 103p and a voltage sensor in an embodiment described later) 103e and current sensor 105p or / and current sensor 105e),
An acquisition unit (for example, a temperature sensor 107p and a temperature sensor 107e in an embodiment described later) for acquiring the temperatures of the first capacitor and the second capacitor;
A control method performed by a power storage device including a control unit (for example, ECU 109 in an embodiment described later) that controls the conversion unit,
The controller is
Based on the traveling speed of a vehicle equipped with the power storage device for power supply for traveling, it is determined whether or not the vehicle is stopped,
When the vehicle is in a stopped state, if the temperature of the first capacitor or the second capacitor is equal to or lower than a threshold value, the temperature of the first capacitor and the second capacitor is increased to a temperature higher than the threshold value, A constant current flows from one of the first capacitor and the second capacitor to the other of the first capacitor and the second capacitor in a state where the temperature of the first capacitor and the second capacitor is higher than the threshold value. A first constant current control for controlling the conversion unit; and a second constant for controlling the conversion unit so that a constant current flows from the other of the first capacitor and the second capacitor to one of the first capacitor and the second capacitor. Constant current control, each voltage of the first battery and the first constant current control obtained when the first constant current control and the second constant current control are performed. And the second constant current control is performed. And calculating the capacity or internal resistance of the first capacitor based on each constant current flowing when the first constant current control is performed and when the second constant current control is performed. 2. A control method for calculating a capacity or an internal resistance of the second capacitor based on each voltage of the two capacitors and each constant current that flows when the first constant current control and the second constant current control are performed. It is.

請求項1の発明、請求項10の発明及び請求項11の発明によれば、第1定電流制御を行った際に得られたパラメータに基づき第1蓄電器の容量又は内部抵抗を算出する前の第1蓄電器又は第2蓄電器の温度がしきい値以下であれば、第1蓄電器及び第2蓄電器を昇温した後、第1蓄電器及び第2蓄電器の各温度がしきい値よりも高い状態で、第1定電流制御及び第1蓄電器の容量又は内部抵抗の算出が行われる。なお、第1蓄電器と第2蓄電器の間の電流の流れを逆にして同様の第1定電流制御を行えば、第2蓄電器の容量又は内部抵抗も算出できる。このように、第1定電流制御及び第1蓄電器又は第2蓄電器の容量又は内部抵抗の算出は所望の温度環境下で行われるため、第1定電流制御を行った際に得られる第1蓄電器又は第2蓄電器の電圧の検出精度は極めて高い。したがって、2つの蓄電器の容量又は内部抵抗を極めて正確に算出できるAccording to the invention of claim 1, the invention of claim 10 , and the invention of claim 11 , before calculating the capacity or internal resistance of the first capacitor based on the parameter obtained when the first constant current control is performed. If the temperature of the first capacitor or the second capacitor is equal to or lower than the threshold value, after the first capacitor and the second capacitor are heated, the temperatures of the first capacitor and the second capacitor are higher than the threshold value. The first constant current control and the capacity or internal resistance of the first battery are calculated . If the same first constant current control is performed with the current flow between the first capacitor and the second capacitor reversed, the capacity or internal resistance of the second capacitor can also be calculated . As described above, since the first constant current control and the calculation of the capacity or internal resistance of the first capacitor or the second capacitor are performed in a desired temperature environment, the first capacitor obtained when the first constant current control is performed. Or the detection accuracy of the voltage of the second capacitor is extremely high. Therefore, the capacity or internal resistance of the two capacitors can be calculated very accurately .

また、第1蓄電器及び第2蓄電器の一方から他方へ一定電流が流れるよう変換部を制御する第1定電流制御を行うことによって、この第1定電流制御を行った際に得られた第1蓄電器の電圧と一定電流に基づき、第1蓄電器の容量又は内部抵抗を算出するため、1つの変換部のみで第1蓄電器の容量又は内部抵抗を算出できる。さらに、一定電流の流れを逆にして同様の第1定電流制御を行えば、第2蓄電器の容量又は内部抵抗を算出できる。また、第1定電流制御は第1蓄電器と第2蓄電器の間の一定電流による充放電によって行われるため、前述した特許文献1のように要求駆動力に基づいて一定電流に間接的な制約が加わらず、第1定電流制御を行った際に得られる第1蓄電器の電圧の検出精度は極めて高い。したがって、2つの蓄電器の容量又は内部抵抗を極めて正確に算出できる。 In addition, the first constant current control obtained by performing the first constant current control by performing the first constant current control for controlling the conversion unit so that a constant current flows from one of the first capacitor and the second capacitor to the other is performed. Since the capacity or internal resistance of the first battery is calculated based on the voltage and constant current of the battery, the capacity or internal resistance of the first battery can be calculated with only one conversion unit. Furthermore, if the same first constant current control is performed with the constant current flow reversed, the capacity or internal resistance of the second capacitor can be calculated . In addition, since the first constant current control is performed by charging and discharging with a constant current between the first capacitor and the second capacitor, there is an indirect restriction on the constant current based on the required driving force as in Patent Document 1 described above. In addition, the voltage detection accuracy of the first battery obtained when the first constant current control is performed is extremely high. Therefore, the capacity or internal resistance of the two capacitors can be calculated very accurately.

請求項2の発明によれば、第1定電流制御を行った際に得られる第1蓄電器の検出精度の高い電圧に基づき第1蓄電器の容量が算出できるAccording to the invention of claim 2, the capacity of the first capacitor based on the detected accurate voltage of the first capacitor obtained when performing the first constant current control can be calculated.

請求項3の発明によれば、第1定電流制御を行った際に得られる第1蓄電器の検出精度の高い電圧に基づき第1蓄電器の内部抵抗が算出できる
請求項4の発明によれば、第1蓄電器に対して第1定電流制御と第2定電流制御の2つを行うことによって、各バッテリのSOCが第1定電流制御を行う前のSOCに近い値にとなるため各バッテリの劣化を抑制できると共に、充電時と放電時の双方を用いるため第1蓄電器の電圧はより一層精度の高い値が得られる。したがって、第1蓄電器の容量又は内部抵抗を一層正確に算出できる
According to the invention of claim 3, the internal resistance of the first capacitor can be calculated based on the voltage with high detection accuracy of the first capacitor obtained when the first constant current control is performed.
According to the invention of claim 4, by performing the first constant current control and the second constant current control for the first capacitor, the SOC of each battery is changed to the SOC before the first constant current control. Since the values are close to each other, deterioration of each battery can be suppressed, and since both charging and discharging are used, the voltage of the first capacitor can be obtained with higher accuracy. Therefore, the capacity or internal resistance of the first capacitor can be calculated more accurately .

請求項5の発明によれば、第1定電流制御だけでなく第2定電流制御を行った際に得られる第1蓄電器の電圧に基づいて、第1蓄電器の充電容量と放電容量の双方が算出されるため、第1蓄電器の容量又は内部抵抗を一層正確に算出できるAccording to the invention of claim 5 , both the charge capacity and the discharge capacity of the first capacitor are based on the voltage of the first capacitor obtained when performing the second constant current control as well as the first constant current control. Since it is calculated, the capacity or internal resistance of the first capacitor can be calculated more accurately .

請求項6の発明によれば、第1定電流制御だけでなく第2定電流制御を行った際に得られる第1蓄電器の電圧に基づいて、第1蓄電器の充電に対する内部抵抗と放電に対する内部抵抗が算出されるため、第1蓄電器の内部抵抗を一層正確に算出できる。 According to the invention of claim 6 , based on the voltage of the first capacitor obtained when performing not only the first constant current control but also the second constant current control, the internal resistance against the charge of the first capacitor and the internal to the discharge Since the resistance is calculated, the internal resistance of the first capacitor can be calculated more accurately.

請求項7の発明、請求項10の発明及び請求項12によれば、第1定電流制御及び第2定電流制御を行った際に得られたパラメータに基づき第1蓄電器及び第2蓄電器の容量又は内部抵抗を算出する前の第1蓄電器又は第2蓄電器の温度がしきい値以下であれば、第1蓄電器及び第2蓄電器を昇温した後、第1蓄電器及び第2蓄電器の各温度がしきい値よりも高い状態で、第1定電流制御及び第2定電流制御、並びに、第1蓄電器及び第2蓄電器の容量又は内部抵抗の算出が行われる。このように、第1定電流制御及び第2定電流制御、並びに、第1蓄電器及び第2蓄電器の容量又は内部抵抗の算出は所望の温度環境下で行われるため、第1定電流制御及び第2定電流制御を行った際に得られる第1蓄電器の電圧及び第2蓄電器の電圧の検出精度は極めて高い。したがって、2つの蓄電器の容量又は内部抵抗を極めて正確に算出できる。 According to the invention of claim 7, the invention of claim 10 , and claim 12 , the capacities of the first capacitor and the second capacitor based on parameters obtained when the first constant current control and the second constant current control are performed. Alternatively , if the temperature of the first capacitor or the second capacitor before calculating the internal resistance is equal to or lower than the threshold value, the temperature of the first capacitor and the second capacitor is increased after the first capacitor and the second capacitor are heated. In a state higher than the threshold value, the first constant current control and the second constant current control, and the capacity or internal resistance of the first capacitor and the second capacitor are calculated . As described above, the first constant current control and the second constant current control, and the calculation of the capacities or internal resistances of the first capacitor and the second capacitor are performed under a desired temperature environment. (2) The detection accuracy of the voltage of the first capacitor and the voltage of the second capacitor obtained when performing the constant current control is extremely high. Therefore, the capacity or internal resistance of the two capacitors can be calculated very accurately.

また、第1蓄電器及び第2蓄電器の一方から他方へ一定電流が流れるよう変換部を制御する定電流制御を行うことによって、この定電流制御を行った際に得られた第1蓄電器の電圧と一定電流に基づき、第1蓄電器の容量又は内部抵抗を算出し、かつ、同定電流制御を行った際に得られた第2蓄電器の電圧と一定電流に基づき、第2蓄電器の容量又は内部抵抗を算出するため、1つの変換部のみで第1蓄電器と第2蓄電器の容量又は内部抵抗を同時に算出できる。また、定電流制御は第1蓄電器と第2蓄電器の間の一定電流による充放電によって行われるため、前述した特許文献1のように要求駆動力に基づいて一定電流に間接的な制約が加わらず、定電流制御を行った際に得られる第1蓄電器の電圧及び第2蓄電器の電圧の検出精度は極めて高い。したがって、2つの蓄電器の容量又は内部抵抗を極めて正確に算出できる。
さらに、第1蓄電器に対して第1定電流制御と第2定電流制御の2つを行うことによって、充電時と放電時の双方を用いるため第1蓄電器の電圧はより一層精度の高い値が得られる。したがって、第1蓄電器の容量又は内部抵抗を一層正確に算出できる。
In addition, by performing constant current control for controlling the converter so that a constant current flows from one of the first capacitor and the second capacitor to the other, the voltage of the first capacitor obtained when this constant current control is performed based on constant current, and calculates the capacity or internal resistance of the first capacitor, and the voltage of the second capacitor obtained when performing the identified current control and on the basis of the constant current, the capacity or the internal resistance of the second capacitor In order to calculate , the capacity | capacitance or internal resistance of a 1st electrical storage device and a 2nd electrical storage device can be calculated simultaneously by only one conversion part. In addition, since constant current control is performed by charging and discharging with a constant current between the first capacitor and the second capacitor, an indirect restriction is not added to the constant current based on the required driving force as in Patent Document 1 described above. The detection accuracy of the voltage of the first capacitor and the voltage of the second capacitor obtained when the constant current control is performed is extremely high. Therefore, the capacity or internal resistance of the two capacitors can be calculated very accurately.
Further, by performing both the first constant current control and the second constant current control for the first capacitor, the voltage of the first capacitor has a more accurate value because both charging and discharging are used. can get. Therefore, the capacity or internal resistance of the first capacitor can be calculated more accurately.

請求項8の発明によれば、第1蓄電器及び第2蓄電器の昇温を、ヒーターなどの電装品を用いることなく行うことができる。その結果、当該電装品を利用することによる蓄電装置の電力消費率、コスト及び大きさの増大を抑制できる。 According to the invention of claim 8 , the temperature of the first capacitor and the second capacitor can be increased without using an electrical component such as a heater. As a result, an increase in power consumption rate, cost, and size of the power storage device due to the use of the electrical component can be suppressed.

請求項9の発明によれば、昇温のための第1蓄電器と第2蓄電器の間の充放電を行っても、放電と充電の関係が交互に切り替わるため、第1蓄電器と第2蓄電器の蓄電容量が大きく変化しない。

According to the ninth aspect of the present invention, even when charging / discharging between the first capacitor and the second capacitor for increasing the temperature, the relationship between the discharge and the charge is alternately switched, so that the first capacitor and the second capacitor are The storage capacity does not change significantly.

本発明に係る一実施形態の蓄電装置を搭載した電動車両の概略構成を示すブロック図である。1 is a block diagram showing a schematic configuration of an electric vehicle equipped with a power storage device according to an embodiment of the present invention. 高出力型バッテリのSOCに対する容量劣化係数を示す図である。It is a figure which shows the capacity degradation coefficient with respect to SOC of a high output type battery. 交互充放電を実行中の高容量型バッテリと高出力型バッテリの間の充放電電流の流れを示す図である。It is a figure which shows the flow of the charging / discharging electric current between the high capacity | capacitance type battery and high output type battery which are performing alternate charging / discharging. 高容量型バッテリ、高出力型バッテリ、VCU、PDU及びモータジェネレータの関係を示す電気回路図である。It is an electric circuit diagram which shows the relationship between a high capacity | capacitance type battery, a high output type battery, VCU, PDU, and a motor generator. ECUが定電流制御を行って高容量型バッテリ及び高出力型バッテリの各状態を判定する際の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process at the time of ECU performing constant current control and determining each state of a high capacity | capacitance type battery and a high output type battery. 図5に示すステップS107で行われるサブルーチン(定電流制御)の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the subroutine (constant current control) performed by step S107 shown in FIG. 図5に示すステップS105で行われるサブルーチン(バッテリの昇温制御)の処理の流れを示すフローチャートである。6 is a flowchart showing a flow of processing of a subroutine (battery temperature rise control) performed in step S105 shown in FIG. 5. 図5に示すステップS105で行われるサブルーチン(バッテリの昇温制御)の処理の流れを示すフローチャートである。6 is a flowchart showing a flow of processing of a subroutine (battery temperature rise control) performed in step S105 shown in FIG. 5. 高容量型バッテリ及び高出力型バッテリのOCVと蓄電容量の関係を示す図である。It is a figure which shows the relationship between OCV of a high capacity | capacitance type battery and a high output type battery, and electrical storage capacity. 定電流制御時における高容量型バッテリから高出力型バッテリへの一定電流の流れを示す図である。It is a figure which shows the flow of the constant electric current from the high capacity type battery at the time of constant current control to the high output type battery. 定電流制御時における高出力型バッテリから高容量型バッテリへの一定電流の流れを示す図である。It is a figure which shows the flow of the constant current from the high output type battery at the time of constant current control to the high capacity type battery. (a)は、定電流制御時に高容量型バッテリから高出力型バッテリへ一定電流が流れる場合の各バッテリのSOCの変化、並びに、充放電容量及び内部抵抗の算出を示す図であり、(b)は、定電流制御時に高出力型バッテリから高容量型バッテリへ一定電流が流れる場合の各バッテリのSOCの変化、並びに、充放電容量及び内部抵抗の算出を示す図である。(A) is a figure which shows the change of SOC of each battery in case constant current flows from a high capacity | capacitance type battery to a high output type battery at the time of constant current control, and calculation of charging / discharging capacity | capacitance and internal resistance, (b) ) Is a diagram showing a change in SOC of each battery and calculation of charge / discharge capacity and internal resistance when a constant current flows from the high-power battery to the high-capacity battery during constant current control. 電力供給を行うか交互充放電を行うかを判断する際にECUが参照するテーブルを示す図である。It is a figure which shows the table which ECU refers when determining whether electric power supply is performed or alternating charge / discharge is performed. 高出力型バッテリのSOCの好適範囲と交互充放電のパターンを示す図である。It is a figure which shows the suitable range of SOC of a high output type battery, and the pattern of alternating charging / discharging. 他の実施形態の蓄電装置を搭載した電動車両の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the electric vehicle carrying the electrical storage apparatus of other embodiment.

以下、本発明の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明に係る一実施形態の蓄電装置を搭載した電動車両の概略構成を示すブロック図である。図1中の太い実線は機械連結を示し、二重点線は電力配線を示し、細い実線は制御信号を示す。図1に示す1MOT型の電動車両は、モータジェネレータ(MG)11と、PDU(Power Drive Unit)13と、一実施形態の蓄電装置100とを備える。以下、電動車両が備える各構成要素について説明する。   FIG. 1 is a block diagram showing a schematic configuration of an electric vehicle equipped with a power storage device according to an embodiment of the present invention. A thick solid line in FIG. 1 indicates mechanical connection, a double dotted line indicates power wiring, and a thin solid line indicates a control signal. The 1MOT type electric vehicle shown in FIG. 1 includes a motor generator (MG) 11, a PDU (Power Drive Unit) 13, and a power storage device 100 according to an embodiment. Hereinafter, each component provided in the electric vehicle will be described.

モータジェネレータ11は、蓄電装置100から供給される電力によって駆動され、電動車両が走行するための動力を発生する。モータジェネレータ11で発生したトルクは、変速段又は固定段を含むギヤボックスGB及びデファレンシャル・ギアDを介して駆動輪Wに伝達される。また、モータジェネレータ11は、電動車両の減速時には発電機として動作して、電動車両の制動力を出力する。なお、モータジェネレータ11を発電機として動作させることで生じた回生電力は、蓄電装置100が有するバッテリに蓄えられる。   Motor generator 11 is driven by electric power supplied from power storage device 100 to generate power for running the electric vehicle. Torque generated by the motor generator 11 is transmitted to the drive wheels W via a gear box GB and a differential gear D including a shift stage or a fixed stage. The motor generator 11 operates as a generator when the electric vehicle is decelerated, and outputs the braking force of the electric vehicle. Note that regenerative electric power generated by operating motor generator 11 as a generator is stored in a battery included in power storage device 100.

PDU13は、直流電圧を交流電圧に変換して3相電流をモータジェネレータ11に供給する。また、PDU13は、モータジェネレータ11の回生動作時に入力される交流電圧を直流電圧に変換する。   The PDU 13 converts a DC voltage into an AC voltage and supplies a three-phase current to the motor generator 11. Further, the PDU 13 converts an AC voltage input during the regenerative operation of the motor generator 11 into a DC voltage.

蓄電装置100は、図1に示すように、高容量型バッテリES−Eと、高出力型バッテリES−Pと、VCU(Voltage Control Unit)101と、電圧センサ103p,103eと、電流センサ105p,105eと、温度センサ107p,107eと、車速センサ108と、スイッチ部111と、ECU(Electronic Control Unit)109とを備える。   As shown in FIG. 1, the power storage device 100 includes a high-capacity battery ES-E, a high-power battery ES-P, a VCU (Voltage Control Unit) 101, voltage sensors 103p and 103e, a current sensor 105p, 105e, temperature sensors 107p and 107e, a vehicle speed sensor 108, a switch unit 111, and an ECU (Electronic Control Unit) 109.

高容量型バッテリES−Eは、リチウムイオン電池やニッケル水素電池等といった複数の蓄電セルを有し、モータジェネレータ11に高電圧の電力を供給する。また、高出力型バッテリES−Pも、リチウムイオン電池やニッケル水素電池等といった複数の蓄電セルを有し、VCU101を介してモータジェネレータ11に高電圧の電力を供給する。高出力型バッテリES−Pは、VCU101を介して、PDU13に対して高容量型バッテリES−Eと並列に接続されている。また、一般的に、高出力型バッテリES−Pの電圧は、高容量型バッテリES−Eの電圧よりも低い。したがって、高出力型バッテリES−Pの電力は、VCU101によって高容量型バッテリES−Eの電圧と同レベルまで昇圧された後、PDU13を介してモータジェネレータ11に供給される。   The high-capacity battery ES-E has a plurality of storage cells such as a lithium ion battery and a nickel metal hydride battery, and supplies high voltage power to the motor generator 11. The high-power battery ES-P also has a plurality of power storage cells such as lithium ion batteries and nickel metal hydride batteries, and supplies high voltage power to the motor generator 11 via the VCU 101. The high output battery ES-P is connected to the PDU 13 in parallel with the high capacity battery ES-E via the VCU 101. In general, the voltage of the high-power battery ES-P is lower than the voltage of the high-capacity battery ES-E. Therefore, the power of the high-power battery ES-P is boosted to the same level as the voltage of the high-capacity battery ES-E by the VCU 101 and then supplied to the motor generator 11 via the PDU 13.

なお、高容量型バッテリES−Eや高出力型バッテリES−Pは、前述したニッケル水素電池やリチウムイオン電池といった二次電池に限定される訳ではない。例えば、蓄電可能容量は少ないものの、短時間に大量の電力を充放電可能なコンデンサやキャパシタを高出力型バッテリES−Pとして用いても構わない。   Note that the high-capacity battery ES-E and the high-power battery ES-P are not limited to the secondary batteries such as the nickel hydride battery and the lithium ion battery described above. For example, a capacitor or capacitor capable of charging and discharging a large amount of power in a short time, although having a small chargeable capacity, may be used as the high-power battery ES-P.

また、高容量型バッテリES−Eの特性と高出力型バッテリES−Pの特性は互いに異なる。高容量型バッテリES−Eは、高出力型バッテリES−Pよりも、出力重量密度は低いが、エネルギー重量密度は高い。一方、高出力型バッテリES−Pは、高容量型バッテリES−Eよりも、エネルギー重量密度は低いが、出力重量密度は高い。このように、高容量型バッテリES−Eは、エネルギー重量密度の点で相対的に優れ、高出力型バッテリES−Pは、出力重量密度の点で相対的に優れる。なお、エネルギー重量密度とは、単位重量あたりの電力量(Wh/kg)であり、出力重量密度とは、単位重量あたりの電力(W/kg)である。したがって、エネルギー重量密度が優れている高容量型バッテリES−Eは、高容量を主目的とした蓄電器であり、出力重量密度が優れている高出力型バッテリES−Pは、高出力を主目的とした蓄電器である。   Further, the characteristics of the high-capacity battery ES-E and the characteristics of the high-power battery ES-P are different from each other. The high-capacity battery ES-E has a lower output weight density but a higher energy weight density than the high-power battery ES-P. On the other hand, the high-power battery ES-P has a lower energy weight density but a higher output weight density than the high-capacity battery ES-E. Thus, the high-capacity battery ES-E is relatively excellent in terms of energy weight density, and the high-power battery ES-P is relatively excellent in terms of output weight density. The energy weight density is the amount of power per unit weight (Wh / kg), and the output weight density is the power per unit weight (W / kg). Therefore, the high-capacity battery ES-E having an excellent energy weight density is a capacitor mainly for high capacity, and the high-power battery ES-P having an excellent output weight density is mainly intended for high output. It is a capacitor.

このような高容量型バッテリES−Eと高出力型バッテリES−Pの特性の違いは、例えば電極や活物質、電解質/液といった電池の構成要素の構造や材質等により定まる種々のパラメータに起因するものである。例えば、充放電可能な電気の総量を示すパラメータである蓄電可能容量は、高出力型バッテリES−Pより高容量型バッテリES−Eの方が優れる、一方、充放電に対する蓄電可能容量の劣化耐性を示すパラメータであるCレート特性や充放電に対する電気抵抗値を示すパラメータである内部抵抗(インピーダンス)は、高容量型バッテリES−Eより高出力型バッテリES−Pの方が優れる。   The difference in characteristics between the high-capacity battery ES-E and the high-power battery ES-P is caused by various parameters determined by the structure and material of the battery components such as electrodes, active materials, and electrolytes / liquids. To do. For example, the chargeable capacity, which is a parameter indicating the total amount of electricity that can be charged / discharged, is superior to the high-capacity battery ES-E than the high-power battery ES-P, while the chargeable / dischargeable deterioration resistance of the chargeable capacity The high-power battery ES-P is superior to the high-capacity battery ES-E in terms of the internal resistance (impedance), which is a parameter indicating the C-rate characteristic, which is a parameter indicating the electric resistance, and the electric resistance value with respect to charging and discharging.

また、高容量型バッテリES−Eは、蓄電容量(SOC:State of Charge、「残容量」ともいう。)に対する容量劣化係数の変動が小さく、満充電電圧や放電終止電圧においても大幅に劣化することはない。一方、高出力型バッテリES−Pは、図2に示すように、SOCに対する容量劣化係数の変動が大きく、中間域のSOCにおける容量劣化係数は小さいが、中間域以外のSOCにおける容量劣化係数は大きい。また、高出力型バッテリES−Pの中間域よりもSOCが低い領域と高い領域とでは、SOCが中間域から離れる際の容量劣化係数の増加率は高い領域の方が高い。   Further, the high-capacity battery ES-E has a small variation in the capacity deterioration coefficient with respect to the storage capacity (SOC: State of Charge, also referred to as “remaining capacity”), and greatly deteriorates in the full charge voltage and the discharge end voltage. There is nothing. On the other hand, as shown in FIG. 2, the high-power battery ES-P has a large capacity deterioration coefficient with respect to the SOC and a small capacity deterioration coefficient in the intermediate SOC, but the capacity deterioration coefficient in the SOC other than the intermediate area is large. Further, in the region where the SOC is lower and the region where the SOC is higher than the intermediate region of the high-power battery ES-P, the region where the increase rate of the capacity deterioration coefficient when the SOC is away from the intermediate region is higher.

VCU101は、高出力型バッテリES−Pの出力電圧を直流のまま昇圧する。また、VCU101は、電動車両の減速時にモータジェネレータ11が発電して直流に変換された電力を降圧する。さらに、VCU101は、高容量型バッテリES−Eの出力電圧を直流のまま降圧する。VCU101によって降圧された電力は、高出力型バッテリES−Pに充電される。なお、VCU101が出力する直流電力の電圧レベル又は電流レベルは、ECU109によって制御される。   The VCU 101 boosts the output voltage of the high-power battery ES-P while maintaining a direct current. The VCU 101 steps down the electric power generated by the motor generator 11 and converted into direct current when the electric vehicle is decelerated. Further, the VCU 101 steps down the output voltage of the high capacity battery ES-E while maintaining a direct current. The power stepped down by the VCU 101 is charged into the high-power battery ES-P. Note that the ECU 109 controls the voltage level or current level of the DC power output from the VCU 101.

電圧センサ103pは、高出力型バッテリES−Pの電圧Vpを検出する。電圧センサ103pが検出した電圧Vpを示す信号はECU109に送られる。電圧センサ103eは、高容量型バッテリES−Eの電圧Veを検出する。なお、電圧センサ103eが検出した電圧Veは、高出力型バッテリES−Pの電圧VpをVCU101が昇圧した値に等しい。電圧センサ103eが検出した電圧Veを示す信号はECU109に送られる。   The voltage sensor 103p detects the voltage Vp of the high-power battery ES-P. A signal indicating the voltage Vp detected by the voltage sensor 103p is sent to the ECU 109. The voltage sensor 103e detects the voltage Ve of the high capacity battery ES-E. The voltage Ve detected by the voltage sensor 103e is equal to a value obtained by boosting the voltage Vp of the high-power battery ES-P by the VCU 101. A signal indicating the voltage Ve detected by the voltage sensor 103e is sent to the ECU 109.

電流センサ105pは、高出力型バッテリES−Pの入出力電流Ipを検出する。電流センサ105pが検出した入出力電流Ipを示す信号はECU109に送られる。電流センサ105eは、高容量型バッテリES−Eの入出力電流Ieを検出する。電流センサ105eが検出した入出力電流Ieを示す信号はECU109に送られる。   The current sensor 105p detects the input / output current Ip of the high-power battery ES-P. A signal indicating the input / output current Ip detected by the current sensor 105p is sent to the ECU 109. The current sensor 105e detects the input / output current Ie of the high-capacity battery ES-E. A signal indicating the input / output current Ie detected by the current sensor 105e is sent to the ECU 109.

温度センサ107pは、高出力型バッテリES−Pの温度Tpを検出する。温度センサ107pが検出した温度Tpを示す信号はECU109に送られる。温度センサ107eは、高容量型バッテリES−Eの温度Teを検出する。温度センサ107eが検出した温度Teを示す信号はECU109に送られる。   The temperature sensor 107p detects the temperature Tp of the high-power battery ES-P. A signal indicating the temperature Tp detected by the temperature sensor 107p is sent to the ECU 109. The temperature sensor 107e detects the temperature Te of the high capacity battery ES-E. A signal indicating the temperature Te detected by the temperature sensor 107e is sent to the ECU 109.

車速センサ108は、電動車両の走行速度(車速)VPを検出する。車速センサ108によって検出された車速VPを示す信号は、ECU109に送られる。   The vehicle speed sensor 108 detects a traveling speed (vehicle speed) VP of the electric vehicle. A signal indicating the vehicle speed VP detected by the vehicle speed sensor 108 is sent to the ECU 109.

スイッチ部111は、高容量型バッテリES−EからPDU13又はVCU101までの電流経路を断接するコンタクタMCeと、高出力型バッテリES−PからVCU101までの電流経路を断接するコンタクタMCpとを有する。各コンタクタMCe,MCpは、ECU109の制御によって開閉される。   The switch unit 111 includes a contactor MCe that connects and disconnects the current path from the high-capacity battery ES-E to the PDU 13 or the VCU 101, and a contactor MCp that connects and disconnects the current path from the high-power battery ES-P to the VCU 101. Each contactor MCe, MCp is opened and closed under the control of the ECU 109.

ECU109は、PDU13及びVCU101の制御、並びに、スイッチ部111の開閉制御を行う。また、ECU109は、車速センサ108から得られた信号が示す車速VPに基づいて、電動車両の走行状態を判別する。また、ECU109は、電圧センサ103p,103eが検出した各電圧及び電流センサ105p,105eが検出した各入出力電流に基づき、電流積算方式及び/又はOCV(開路電圧)推定方式によって、高容量型バッテリES−Eと高出力型バッテリES−Pの各SOCを導出する。   The ECU 109 controls the PDU 13 and the VCU 101 and controls the opening / closing of the switch unit 111. ECU 109 also determines the traveling state of the electric vehicle based on vehicle speed VP indicated by the signal obtained from vehicle speed sensor 108. The ECU 109 uses a current integration method and / or an OCV (open circuit voltage) estimation method based on the voltages detected by the voltage sensors 103p and 103e and the input / output currents detected by the current sensors 105p and 105e. Each SOC of the ES-E and the high-power battery ES-P is derived.

また、ECU109は、特性の異なる高容量型バッテリES−Eと高出力型バッテリES−Pの各々の特性を活かすよう、VCU101を用いた電力分配制御を行う。この電力分配制御を行えば、高容量型バッテリES−Eは、電動車両の走行時に一定の電力をモータジェネレータ11に電力を供給するよう用いられ、高出力型バッテリES−Pは、電動車両の走行のために大きな駆動力が必要なときに、モータジェネレータ11に電力を供給するよう用いられる。また、モータジェネレータ11が発電した回生電力は、高出力型バッテリES−Pに優先的に入力される。したがって、高容量型バッテリES−EのSOCは、0%〜100%までの略全域が使用範囲として設定され、走行に伴い継続的に低下する。一方、高出力型バッテリES−PのSOCは、例えば40%〜70%の略中間域が使用範囲として設定され、この中間域に属する所定の中間値を維持するようその近傍で変動する。   Further, the ECU 109 performs power distribution control using the VCU 101 so as to make use of the characteristics of the high-capacity battery ES-E and the high-power battery ES-P having different characteristics. If this power distribution control is performed, the high-capacity battery ES-E is used to supply constant power to the motor generator 11 when the electric vehicle is traveling, and the high-power battery ES-P is used for the electric vehicle. It is used to supply electric power to the motor generator 11 when a large driving force is required for traveling. The regenerative power generated by the motor generator 11 is preferentially input to the high-power battery ES-P. Accordingly, the SOC of the high-capacity battery ES-E is set as a use range over the entire range from 0% to 100%, and continuously decreases as the vehicle travels. On the other hand, the SOC of the high-power battery ES-P is set, for example, as a substantially intermediate range of 40% to 70% as a use range, and fluctuates in the vicinity so as to maintain a predetermined intermediate value belonging to this intermediate range.

また、ECU109は、電動車両が停車した状態のとき、高容量型バッテリES−Eの温度Te及び高出力型バッテリES−Pの温度Tpがしきい値より高い状態で、高容量型バッテリES−E及び高出力型バッテリES−Pの一方から他方へ一定電流が流れるようVCU101を制御する定電流制御を行い、この定電流制御を行った際に得られた高容量型バッテリES−Eの電圧Ve及び高出力型バッテリES−Pの電圧Vp、並びに、定電流制御を行った際に流れた一定電流に基づき、高容量型バッテリES−E及び高出力型バッテリES−Pの各状態を判定する。 Further, the ECU 109 is configured such that when the electric vehicle is stopped, the high-capacity battery ES- is in a state where the temperature Te of the high-capacity battery ES-E and the temperature Tp of the high-power battery ES-P are higher than the threshold values. The constant current control for controlling the VCU 101 is performed so that a constant current flows from one of the E and the high output type battery ES-P to the other, and the voltage of the high capacity battery ES-E obtained when the constant current control is performed. Each state of the high-capacity battery ES-E and the high-power battery ES-P is determined based on the voltage Vp of the Ve and the high-power battery ES-P and the constant current that flows when the constant current control is performed. To do.

さらに、ECU109は、上記説明した定電流制御及び各バッテリの状態判定を行う前の高容量型バッテリES−Eの温度Te又は高出力型バッテリES−Pの温度Tpがしきい値以下であれば、バッテリを昇温するために一方のバッテリから他方のバッテリへ電力を供給する「電力供給」を行うようVCU101を制御する。特に、ECU109は、高容量型バッテリES−Eの温度Te及び高出力型バッテリES−Pの温度Tpの双方がしきい値以下であれば、高容量型バッテリES−Eと高出力型バッテリES−Pの間で交互に充放電を行ってバッテリを昇温するための図3に示す「交互充放電」を行うようVCU101を制御する。以下、ECU109が行うバッテリを昇温するための制御を「バッテリの昇温制御」という。   Further, the ECU 109 determines that the temperature Te of the high-capacity battery ES-E or the temperature Tp of the high-power battery ES-P before performing the above-described constant current control and state determination of each battery is equal to or less than a threshold value. Then, the VCU 101 is controlled to perform “power supply” for supplying power from one battery to the other battery in order to raise the temperature of the battery. In particular, if the temperature Te of the high-capacity battery ES-E and the temperature Tp of the high-power battery ES-P are both equal to or less than the threshold values, the ECU 109 determines that the high-capacity battery ES-E and the high-power battery ES The VCU 101 is controlled so as to perform “alternate charge / discharge” shown in FIG. 3 for alternately charging / discharging between −P to raise the temperature of the battery. Hereinafter, the control performed by the ECU 109 for increasing the temperature of the battery is referred to as “battery temperature increase control”.

図4は、高容量型バッテリES−E、高出力型バッテリES−P、VCU101、PDU13及びモータジェネレータ11の関係を示す電気回路図である。図4に示すように、VCU101は、高出力型バッテリES−Pの出力電圧を入力電圧として2つのスイッチング素子をオンオフ切換動作することによって、高出力型バッテリES−Pの電圧を昇圧して出力する。これら2つのスイッチング素子をオンオフ切換動作せずに、上アームスイッチング素子をオン状態、下アームスイッチング素子をオフ状態とすれば、高出力型バッテリES−Pは、高容量型バッテリES−E及びPDU13と電気系統的に直結された状態になる。また、上述したように、一般的に、高出力型バッテリES−Pの電圧は、高容量型バッテリES−Eの電圧よりも低いため、VCU101の2つのスイッチング素子が共にオフ状態とすることによって、高出力型バッテリES−Pは開回路の状態となる。また、PDU13は、高容量型バッテリES−Eの出力電圧を入力電圧として6つのスイッチング素子をオンオフ切換動作することによって、直流電圧を交流電圧に変換してモータジェネレータ11に出力する。これら6つのスイッチング素子をオンオフ切換動作せずに、全てのスイッチング素子をオフ状態とすれば、高容量型バッテリES−E及び高出力型バッテリES−Pは、モータジェネレータ11から電気系統的に開放された状態になる。   FIG. 4 is an electric circuit diagram showing the relationship among the high-capacity battery ES-E, the high-power battery ES-P, the VCU 101, the PDU 13, and the motor generator 11. As shown in FIG. 4, the VCU 101 boosts and outputs the voltage of the high-power battery ES-P by switching on and off the two switching elements using the output voltage of the high-power battery ES-P as an input voltage. To do. If the upper arm switching element is turned on and the lower arm switching element is turned off without performing the on / off switching operation of these two switching elements, the high output type battery ES-P is replaced with the high capacity type batteries ES-E and PDU13. It is in a state directly connected to the electric system. As described above, since the voltage of the high-power battery ES-P is generally lower than the voltage of the high-capacity battery ES-E, the two switching elements of the VCU 101 are both turned off. The high-power battery ES-P is in an open circuit state. Further, the PDU 13 converts the DC voltage into an AC voltage and outputs it to the motor generator 11 by performing on / off switching operation of the six switching elements using the output voltage of the high-capacity battery ES-E as an input voltage. If all the switching elements are turned off without switching these six switching elements on and off, the high-capacity battery ES-E and the high-power battery ES-P are electrically disconnected from the motor generator 11. It will be in the state.

このように、例えば電動車両が停車してモータジェネレータ11が駆動する必要のないとき、ECU109が、PDU13の6つのスイッチング素子を全てオフ状態とするようPDU13を制御し、VCU101の2つのスイッチング素子を共にオフ状態とするようVCU101を制御する。このスイッチング操作によって、高容量型バッテリES−Eの電圧Veが高出力型バッテリES−Pの電圧Vpより高い状態であるならば、高容量型バッテリES−E及び高出力型バッテリES−Pは充放電しないため、それぞれ開回路の状態となる。この状態でECU109がVCU101の上アームスイッチング素子のみをオン状態とすれば、高容量型バッテリES−Eと高出力型バッテリES−Pとは電気系統的に直結した状態になる。   Thus, for example, when the electric vehicle stops and the motor generator 11 does not need to be driven, the ECU 109 controls the PDU 13 so that all the six switching elements of the PDU 13 are turned off, and the two switching elements of the VCU 101 are controlled. The VCU 101 is controlled so that both are turned off. If the voltage Ve of the high-capacity battery ES-E is higher than the voltage Vp of the high-power battery ES-P by this switching operation, the high-capacity battery ES-E and the high-power battery ES-P are Since it does not charge / discharge, it will be in the state of an open circuit, respectively. In this state, if the ECU 109 turns on only the upper arm switching element of the VCU 101, the high-capacity battery ES-E and the high-power battery ES-P are directly connected electrically.

以下、ECU109が定電流制御を行って高容量型バッテリES−E及び高出力型バッテリES−Pの各状態を判定する際の処理について、図5〜図8を参照して詳細に説明する。図5は、ECU109が定電流制御を行って高容量型バッテリES−E及び高出力型バッテリES−Pの各状態を判定するメインルーチンの処理の流れを示すフローチャートである。図6は、図5に示すステップS107で行われるサブルーチン(定電流制御)の処理の流れを示すフローチャートである。図7及び図8は、図5に示すステップS105で行われるサブルーチン(バッテリの昇温制御)の処理の流れを示すフローチャートである。   Hereinafter, processing when the ECU 109 performs constant current control to determine each state of the high-capacity battery ES-E and the high-power battery ES-P will be described in detail with reference to FIGS. FIG. 5 is a flowchart showing a flow of processing of a main routine in which the ECU 109 performs constant current control to determine each state of the high capacity battery ES-E and the high output battery ES-P. FIG. 6 is a flowchart showing the flow of the subroutine (constant current control) performed in step S107 shown in FIG. 7 and 8 are flowcharts showing the flow of processing of the subroutine (battery temperature rise control) performed in step S105 shown in FIG.

図5に示すように、ECU109は、車速センサ108から得られた信号が示す車速VPに基づいて、電動車両が停車状態か否かを判別し(ステップS101)、電動車両が停車状態であればステップS103に進み、走行状態であれば一連の処理を終了する。ステップS103では、ECU109は、温度センサ107eが検出した高容量型バッテリES−Eの温度Te又は温度センサ107pが検出した高出力型バッテリES−Pの温度Tpがしきい値以下か否かを判断し、温度Te又は温度Tpがしきい値以下であればステップS105に進み、温度Te及び温度Tpのどちらもしきい値を超えていればステップS107に進む。ステップS105の処理の詳細については後述する。ステップS107では、ECU109は、高容量型バッテリES−E及び高出力型バッテリES−Pの一方から他方へ比較的値の小さな一定電流を流す定電流制御を行う、図6に示すサブルーチンを実行する。   As shown in FIG. 5, the ECU 109 determines whether or not the electric vehicle is stopped based on the vehicle speed VP indicated by the signal obtained from the vehicle speed sensor 108 (step S101). Proceeding to step S103, if it is in the running state, a series of processing is terminated. In step S103, the ECU 109 determines whether the temperature Te of the high-capacity battery ES-E detected by the temperature sensor 107e or the temperature Tp of the high-power battery ES-P detected by the temperature sensor 107p is equal to or less than a threshold value. If the temperature Te or the temperature Tp is equal to or lower than the threshold value, the process proceeds to step S105, and if both the temperature Te and the temperature Tp exceed the threshold value, the process proceeds to step S107. Details of the processing in step S105 will be described later. In step S107, the ECU 109 executes a subroutine shown in FIG. 6 for performing constant current control for flowing a constant current having a relatively small value from one of the high-capacity battery ES-E and the high-power battery ES-P to the other. .

図6に示すサブルーチンでは、ECU109は、電圧センサ103eが検出した高容量型バッテリES−Eの電圧Ve及び電圧センサ103pが検出した高出力型バッテリES−Pの電圧Vpを取得する(ステップS201)。ステップS201の時点t0では高容量型バッテリES−E及び高出力型バッテリES−Pは共に開放状態であるため、電圧Ve,Vpは開路電圧(OCV:Open Circuit Voltage)である。高容量型バッテリES−E及び高出力型バッテリES−PのOCVと蓄電容量(SOC:State of Charge)との間には、図9に示すような関係があるため、ECU109は、ステップS201で取得した電圧Ve(OCVe1)に応じた高容量型バッテリES−Eの蓄電容量SOCe(t0)を導出し、かつ、ステップS201で取得した電圧Vp(OCVp1)に応じた高出力型バッテリES−Pの蓄電容量SOCp(t0)を導出する(ステップS203)。   In the subroutine shown in FIG. 6, the ECU 109 acquires the voltage Ve of the high-capacity battery ES-E detected by the voltage sensor 103e and the voltage Vp of the high-power battery ES-P detected by the voltage sensor 103p (step S201). . Since the high capacity battery ES-E and the high output battery ES-P are both open at time t0 in step S201, the voltages Ve and Vp are open circuit voltages (OCV). Since there is a relationship as shown in FIG. 9 between the OCV of the high-capacity battery ES-E and the high-power battery ES-P and the storage capacity (SOC), the ECU 109 executes step S201. The storage capacity SOCe (t0) of the high-capacity battery ES-E corresponding to the acquired voltage Ve (OCVe1) is derived, and the high-power battery ES-P corresponding to the voltage Vp (OCVp1) acquired in step S201 The storage capacity SOCp (t0) is derived (step S203).

次に、ECU109は、図10に示すように、高容量型バッテリES−Eから高出力型バッテリES−Pへ一定電流Icを流してバッテリを充放電する定電流制御を開始するようVCU101を制御する(ステップS205)。次に、ECU109は、各バッテリの充放電が行われている最中に電圧センサ103eが検出した高容量型バッテリES−Eの電圧Ve及び電圧センサ103pが検出した高出力型バッテリES−Pの電圧Vpを取得する(ステップS207)。ステップS207の時点では高容量型バッテリES−E及び高出力型バッテリES−Pは共に負荷状態であるため、電圧Ve,Vpは閉路電圧(CCV:Closed Circuit Voltage)である。   Next, as shown in FIG. 10, the ECU 109 controls the VCU 101 to start constant current control for charging and discharging the battery by flowing a constant current Ic from the high capacity battery ES-E to the high output battery ES-P. (Step S205). Next, the ECU 109 detects the voltage Ve of the high-capacity battery ES-E detected by the voltage sensor 103e and the high-power battery ES-P detected by the voltage sensor 103p while the batteries are being charged and discharged. The voltage Vp is acquired (step S207). Since both the high-capacity battery ES-E and the high-power battery ES-P are in the load state at the time of step S207, the voltages Ve and Vp are closed circuit voltages (CCV).

次に、ECU109は、ステップS205で開始した定電流制御を停止するようVCU101を制御する(ステップS209)。次に、ECU109は、電圧センサ103eが検出した高容量型バッテリES−Eの電圧Ve及び電圧センサ103pが検出した高出力型バッテリES−Pの電圧Vpを取得する(ステップS211)。ステップS211の時点t1(>t0)ではバッテリの充放電は停止されており、高容量型バッテリES−E及び高出力型バッテリES−Pは共に開放状態であるため、電圧Ve,Vpは開路電圧(OCV:Open Circuit Voltage)である。ECU109は、ステップS211で取得した電圧Ve(OCVe2)に応じた高容量型バッテリES−Eの蓄電容量SOCe(t1)を導出し、かつ、ステップS211で取得した電圧Vp(OCVp2)に応じた高出力型バッテリES−Pの蓄電容量SOCp(t1)を導出する(ステップS213)。   Next, the ECU 109 controls the VCU 101 to stop the constant current control started in step S205 (step S209). Next, the ECU 109 acquires the voltage Ve of the high-capacity battery ES-E detected by the voltage sensor 103e and the voltage Vp of the high-power battery ES-P detected by the voltage sensor 103p (step S211). At time t1 (> t0) in step S211, charging / discharging of the battery is stopped, and the high-capacity battery ES-E and the high-power battery ES-P are both open, so that the voltages Ve and Vp are open circuit voltages. (OCV: Open Circuit Voltage). The ECU 109 derives the storage capacity SOCe (t1) of the high-capacity battery ES-E corresponding to the voltage Ve (OCVe2) acquired in step S211 and the high level corresponding to the voltage Vp (OCVp2) acquired in step S211. The storage capacity SOCp (t1) of the output type battery ES-P is derived (step S213).

次に、ECU109は、図11に示すように、高出力型バッテリES−Pから高容量型バッテリES−Eへ一定電流Icを流してバッテリを充放電する定電流制御を開始するようVCU101を制御する(ステップS215)。なお、ステップS215で流す一定電流の電流値は、ステップS205で流す一定電流の電流値と同じであっても異なっても良い。また、ステップS215で流す一定電流の電流値は、高出力型バッテリES−PのSOCが40%〜70%といった中間域に収まるように設定されていても良い。高出力型バッテリES−PはSOCが中間域以外ではその劣化が促進されるおそれがあるため、上記一定電流の電流値は、高出力型バッテリES−Pの劣化を考慮して設定されることが好ましい。   Next, as shown in FIG. 11, the ECU 109 controls the VCU 101 to start constant current control for charging and discharging the battery by flowing a constant current Ic from the high-power battery ES-P to the high-capacity battery ES-E. (Step S215). Note that the current value of the constant current passed in step S215 may be the same as or different from the current value of the constant current passed in step S205. Further, the current value of the constant current that flows in step S215 may be set so that the SOC of the high-power battery ES-P falls within an intermediate range such as 40% to 70%. Since the high output battery ES-P may be deteriorated when the SOC is not in the intermediate range, the current value of the constant current is set in consideration of the deterioration of the high output battery ES-P. Is preferred.

次に、ECU109は、各バッテリの充放電が行われている最中に電圧センサ103eが検出した高容量型バッテリES−Eの電圧Ve及び電圧センサ103pが検出した高出力型バッテリES−Pの電圧Vpを取得する(ステップS217)。ステップS217の時点では高容量型バッテリES−E及び高出力型バッテリES−Pは共に負荷状態であるため、電圧Ve,Vpは閉路電圧(CCV:Closed Circuit Voltage)である。   Next, the ECU 109 detects the voltage Ve of the high-capacity battery ES-E detected by the voltage sensor 103e and the high-power battery ES-P detected by the voltage sensor 103p while the batteries are being charged and discharged. The voltage Vp is acquired (step S217). Since both the high-capacity battery ES-E and the high-power battery ES-P are in the load state at the time of step S217, the voltages Ve and Vp are closed circuit voltages (CCV).

次に、ECU109は、ステップS215で開始した定電流制御を停止するようVCU101を制御する(ステップS219)。次に、ECU109は、電圧センサ103eが検出した高容量型バッテリES−Eの電圧Ve及び電圧センサ103pが検出した高出力型バッテリES−Pの電圧Vpを取得する(ステップS221)。ステップS221の時点t2(>t1)ではバッテリの充放電は停止されており、高容量型バッテリES−E及び高出力型バッテリES−Pは共に開放状態であるため、電圧Ve,Vpは開路電圧(OCV:Open Circuit Voltage)である。ECU109は、ステップS221で取得した電圧Ve(OCVe3)に応じた高容量型バッテリES−Eの蓄電容量SOCe(t2)を導出し、かつ、ステップS221で取得した電圧Vp(OCVp2)に応じた高出力型バッテリES−Pの蓄電容量SOCp(t2)を導出する(ステップS223)。   Next, the ECU 109 controls the VCU 101 so as to stop the constant current control started in step S215 (step S219). Next, the ECU 109 acquires the voltage Ve of the high-capacity battery ES-E detected by the voltage sensor 103e and the voltage Vp of the high-power battery ES-P detected by the voltage sensor 103p (step S221). At time t2 (> t1) in step S221, charging / discharging of the battery is stopped, and the high-capacity battery ES-E and the high-power battery ES-P are both open, so that the voltages Ve and Vp are open circuit voltages. (OCV: Open Circuit Voltage). The ECU 109 derives the storage capacity SOCe (t2) of the high-capacity battery ES-E corresponding to the voltage Ve (OCVe3) acquired in step S221, and high according to the voltage Vp (OCVp2) acquired in step S221. The storage capacity SOCp (t2) of the output type battery ES-P is derived (step S223).

ECU109は、図6に示したサブルーチンを含むステップS107を行った後、ステップS107で得られたパラメータに基づき、高容量型バッテリES−E及び高出力型バッテリES−Pの充放電容量と内部抵抗を算出する(ステップS109)。各バッテリの充放電容量Cは、以下に示す式(1)を用いて算出される。また、各バッテリの内部抵抗は、以下に示す式(2)を用いて算出される。   After performing step S107 including the subroutine shown in FIG. 6, the ECU 109 performs charge / discharge capacities and internal resistances of the high-capacity battery ES-E and the high-power battery ES-P based on the parameters obtained in step S107. Is calculated (step S109). The charge / discharge capacity C of each battery is calculated using the following formula (1). Further, the internal resistance of each battery is calculated using the following equation (2).

Figure 0006364396

Δtは、定電流制御によるバッテリの充放電を行う時間の長さである。
SOC(t)は、定電流制御による充放電を行う直前のバッテリのSOCであり、SOC(t+Δt)は、定電流制御による充放電を行った直後のバッテリのSOCである。
Icは、定電流制御によるバッテリの充放電を行う際にバッテリ間を流れる一定電流値である。
Figure 0006364396

Δt is the length of time for charging and discharging the battery by constant current control.
SOC (t) is the SOC of the battery immediately before charging / discharging by constant current control, and SOC (t + Δt) is the SOC of the battery immediately after charging / discharging by constant current control.
Ic is a constant current value that flows between the batteries when charging and discharging the batteries by constant current control.

Figure 0006364396

OCVは、定電流制御による充放電の直前又は直後に検出されたバッテリの電圧であり、開路電圧である。
CCVは、定電流制御による充放電が行われている最中に検出されたバッテリの電圧であり、閉路電圧である。
Icは、定電流制御によるバッテリの充放電を行う際にバッテリ間を流れる一定電流値である。
Figure 0006364396

OCV is a battery voltage detected immediately before or after charging / discharging by constant current control, and is an open circuit voltage.
CCV is the voltage of the battery detected during charging / discharging by constant current control, and is a closed circuit voltage.
Ic is a constant current value that flows between the batteries when charging and discharging the batteries by constant current control.

ステップS109で式(1)及び式(2)を用いて算出される充放電容量及び内部抵抗は、各バッテリの放電時と充電時に分けて算出される。すなわち、図12(a)に示すように、高容量型バッテリES−Eから高出力型バッテリES−Pへ一定電流Icを流して各バッテリの充放電を行った際(図6に示したステップS201〜S213)に得られるパラメータから、ECU109は、高容量型バッテリES−Eの放電容量Ced、放電時の高容量型バッテリES−Eの内部抵抗Red、高出力型バッテリES−Pの充電容量Cpc、及び充電時の高出力型バッテリES−Pの内部抵抗Rpcを算出する。また、図12(b)に示すように、高出力型バッテリES−Pから高容量型バッテリES−Eへ一定電流Icを流して各バッテリの充放電を行った際(図6に示したステップS211〜S223)に得られるパラメータから、ECU109は、高出力型バッテリES−Pの放電容量Cpd、放電時の高出力型バッテリES−Pの内部抵抗Rpd、高容量型バッテリES−Eの充電容量Cec、及び充電時の高容量型バッテリES−Eの内部抵抗Recを算出する。   The charge / discharge capacity and the internal resistance calculated using the formulas (1) and (2) in step S109 are calculated separately when each battery is discharged and charged. That is, as shown in FIG. 12A, when a constant current Ic is supplied from the high-capacity battery ES-E to the high-power battery ES-P to charge / discharge each battery (steps shown in FIG. 6). From the parameters obtained in S201 to S213), the ECU 109 determines that the discharge capacity Ced of the high capacity battery ES-E, the internal resistance Red of the high capacity battery ES-E during discharge, and the charge capacity of the high output battery ES-P. Cpc and the internal resistance Rpc of the high-power battery ES-P during charging are calculated. Further, as shown in FIG. 12B, when a constant current Ic is supplied from the high-power battery ES-P to the high-capacity battery ES-E to charge / discharge each battery (steps shown in FIG. 6). From the parameters obtained in S211 to S223), the ECU 109 determines the discharge capacity Cpd of the high-power battery ES-P, the internal resistance Rpd of the high-power battery ES-P during discharge, and the charge capacity of the high-capacity battery ES-E. Cec and the internal resistance Rec of the high-capacity battery ES-E during charging are calculated.

次に、ECU109は、ステップS109で算出した高容量型バッテリES−E及び高出力型バッテリES−Pの充放電容量と内部抵抗に基づき、各バッテリの状態を判定する(ステップS111)。次に、ECU109は、ステップS111で判定した各バッテリの状態に基づき、故障状態のバッテリがあるか否かを判断する(ステップS113)。なお、バッテリの故障状態は、例えば、内部抵抗がしきい値以上の場合や充放電容量がしきい値以下の場合に判定される。ECU109は、ステップS113で故障状態のバッテリがあると判断するとステップS115に進み、故障状態のバッテリがないと判断すると一連の処理を終了する。ステップS115では、ECU109は、バッテリが故障したことを通知する。   Next, the ECU 109 determines the state of each battery based on the charge / discharge capacities and internal resistances of the high-capacity battery ES-E and high-power battery ES-P calculated in step S109 (step S111). Next, the ECU 109 determines whether there is a failed battery based on the state of each battery determined in step S111 (step S113). The failure state of the battery is determined, for example, when the internal resistance is greater than or equal to a threshold value or when the charge / discharge capacity is less than or equal to the threshold value. The ECU 109 proceeds to step S115 when determining that there is a battery in failure state in step S113, and ends the series of processes when determining that there is no battery in failure state. In step S115, the ECU 109 notifies that the battery has failed.

次に、図5のステップS105で行われるバッテリの昇温制御を行うサブルーチンについて、図7及び図8を参照して説明する。   Next, a subroutine for performing battery temperature rise control performed in step S105 of FIG. 5 will be described with reference to FIGS.

図7に示すように、ECU109は、上述した図6に示すステップS201,S203と同様に、OCV推定方式によって高容量型バッテリES−EのSOC及び高出力型バッテリES−PのSOCを導出する(ステップS301)。次に、ECU109は、図13に示すテーブルに従って、交互充放電によるバッテリの昇温制御を行うか否かを判断し(ステップS303)、交互充放電を行う場合は図8に示すステップS311に進み、行わない場合はステップS305に進む。   As shown in FIG. 7, the ECU 109 derives the SOC of the high-capacity battery ES-E and the SOC of the high-power battery ES-P by the OCV estimation method, similarly to the steps S201 and S203 shown in FIG. (Step S301). Next, the ECU 109 determines whether or not to perform battery temperature increase control by alternating charging / discharging according to the table shown in FIG. 13 (step S303), and when performing alternating charging / discharging, the process proceeds to step S311 shown in FIG. If not, the process proceeds to step S305.

なお、図13に示すテーブルによれば、高容量型バッテリES−E及び高出力型バッテリES−Pの双方のSOCが「高」の場合を除き、高容量型バッテリES−E及び高出力型バッテリES−Pの双方の温度が「低」の場合は交互充放電によるバッテリの昇温制御を行い、高容量型バッテリES−E及び高出力型バッテリES−Pのいずれか一方の温度が「低」の場合は電力供給によるバッテリの昇温制御を行うと判断される。また、図13のテーブルに示す高容量型バッテリES−E及び高出力型バッテリES−Pの温度は、しきい値を超える温度を「高」、しきい値以下の温度を「低」と示す。また、図13のテーブルに示す高出力型バッテリES−PのSOCは、後述する好適範囲の最大値から第1マージンを引いた値以上のSOCを「高」、好適範囲の最小値から第2マージンを足した値以下のSOCを「低」と示す。一方、図13のテーブルに示す高容量型バッテリES−EのSOCは、例えばSOCが80%を越えれば「高」、SOCが20%を下回れば「低」と示す。   Note that, according to the table shown in FIG. 13, the high-capacity battery ES-E and the high-power type are used except when the SOCs of both the high-capacity battery ES-E and the high-power battery ES-P are “high”. When both the temperatures of the battery ES-P are “low”, the temperature rise control of the battery is performed by alternately charging and discharging, and the temperature of one of the high capacity type battery ES-E and the high output type battery ES-P is “ In the case of “low”, it is determined that the temperature rise control of the battery by power supply is performed. The temperatures of the high-capacity battery ES-E and the high-power battery ES-P shown in the table of FIG. 13 indicate the temperature exceeding the threshold as “high” and the temperature below the threshold as “low”. . Further, the SOC of the high-power battery ES-P shown in the table of FIG. 13 is an SOC that is equal to or higher than a value obtained by subtracting the first margin from a maximum value in a preferable range, which will be described later. An SOC that is equal to or smaller than a value obtained by adding a margin is indicated as “low”. On the other hand, the SOC of the high-capacity battery ES-E shown in the table of FIG. 13 indicates “high” when the SOC exceeds 80%, for example, and “low” when the SOC falls below 20%.

ステップS305では、ECU109は、バッテリを昇温するために高容量型バッテリES−E及び高出力型バッテリES−Pの一方から他方へ電力を供給するようVCU101を制御する。次に、ECU109は、温度センサ107eが検出した高容量型バッテリES−Eの温度Te及び温度センサ107pが検出した高出力型バッテリES−Pの温度Tpを取得する(ステップS307)。次に、ECU109は、ステップS307で得られた情報に基づき、ステップS107の時点で温度が「低」であったバッテリの温度がしきい値を超えて「高」になったかを判断し(ステップS309)、バッテリの温度が「高」であれば一連の処理を終了し、しきい値以下の「低」であればステップS305に戻る。   In step S305, the ECU 109 controls the VCU 101 to supply power from one of the high-capacity battery ES-E and the high-power battery ES-P to raise the temperature of the battery. Next, the ECU 109 acquires the temperature Te of the high-capacity battery ES-E detected by the temperature sensor 107e and the temperature Tp of the high-power battery ES-P detected by the temperature sensor 107p (step S307). Next, based on the information obtained in step S307, the ECU 109 determines whether the temperature of the battery whose temperature is “low” at the time of step S107 exceeds the threshold value and becomes “high” (step S107). S309) If the temperature of the battery is “high”, the series of processing ends, and if it is “low” below the threshold, the process returns to step S305.

ステップS303で交互充放電を行うと判断した際に進むステップS311以降の処理は図8に示される。ステップS311では、ECU109は、高出力型バッテリES−PのSOC(SOCp)が、好適範囲の最大値Thmaxから第1マージンΔ1を引いた値を超える(SOCp>Thmax−Δ1)か否かを判断する。好適範囲とは、高出力型バッテリES−PのSOCに対する容量劣化係数がしきい値以下となるSOCの範囲であり、図14に示すように、高出力型バッテリES−PのSOCの好適範囲は略中間域である。ステップS311において、SOCp>Thmax−Δ1と判断された場合はステップS315に進み、SOCp≦Thmax−Δ1と判断された場合はステップS313に進む。ステップS313では、ECU109は、高出力型バッテリES−PのSOC(SOCp)が、好適範囲の最小値Thminから第2マージンΔ2を足した値未満(SOCp<Thmin+Δ2)であるか否かを判断し、SOCp<Thmin+Δ2と判断した場合はステップS317に進み、SOCp≧Thmin+Δ2と判断した場合はステップS319に進む。なお、高出力型バッテリES−PのSOCは中間域から離れる際の容量劣化係数の増加率は、好適範囲の最大値Thmax側よりも最小値Thmin側の方が小さいため、第2マージンΔ2は、第1マージンΔ1よりも小さい。但し、高出力型バッテリES−Pの代わりに、好適範囲の最大値Thmax側よりも最小値Thmin側の方が容量劣化係数の増加率が大きな特性のバッテリが用いられる場合、第2マージンΔ2は、第1マージンΔ1よりも大きいことが望ましい。   The process after step S311 that is performed when it is determined in step S303 that alternate charge / discharge is performed is shown in FIG. In step S311, the ECU 109 determines whether or not the SOC (SOCp) of the high-power battery ES-P exceeds a value obtained by subtracting the first margin Δ1 from the maximum value Thmax in the preferred range (SOCp> Thmax−Δ1). To do. The preferred range is a range of SOC in which the capacity deterioration coefficient with respect to the SOC of the high-power battery ES-P is equal to or less than a threshold value. As shown in FIG. 14, the preferred range of the SOC of the high-power battery ES-P. Is a substantially intermediate region. In step S311, when it is determined that SOCp> Thmax−Δ1, the process proceeds to step S315, and when it is determined that SOCp ≦ Thmax−Δ1, the process proceeds to step S313. In step S313, the ECU 109 determines whether or not the SOC (SOCp) of the high-power battery ES-P is less than a value obtained by adding the second margin Δ2 to the minimum value Thmin in the preferable range (SOCp <Thmin + Δ2). If it is determined that SOCp <Thmin + Δ2, the process proceeds to step S317. If it is determined that SOCp ≧ Thmin + Δ2, the process proceeds to step S319. Note that the increase rate of the capacity deterioration coefficient when the SOC of the high-power battery ES-P leaves the intermediate region is smaller on the minimum value Thmin side than on the maximum value Thmax side of the preferred range, so the second margin Δ2 is , Smaller than the first margin Δ1. However, when a battery having a characteristic that the increase rate of the capacity deterioration coefficient is larger on the minimum value Thmin side than on the maximum value Thmax side of the preferred range is used instead of the high-power battery ES-P, the second margin Δ2 is It is desirable that it be larger than the first margin Δ1.

ステップS315では、ECU109は、交互充放電を開始する際に、高出力型バッテリES−Pが放電して高容量型バッテリES−Eが充電する充放電を先に行うと決定する。すなわち、図14に示すパターン1の交互充放電を行うと決定する。また、ステップS317では、ECU109は、交互充放電を開始する際に、高容量型バッテリES−Eが放電して高出力型バッテリES−Pが充電する充放電を先に行うと決定する。すなわち、図14に示すパターン2の交互充放電を行うと決定する。また、ステップS319では、ECU109は、交互充放電を開始する際に、高容量型バッテリES−Eと高出力型バッテリES−Pのどちらが先に放電するかをランダムに決める。すなわち、交互充放電をパターン1で行うかパターン2で行うかをランダムに決定する。   In step S315, the ECU 109 determines that charging / discharging of the high-power battery ES-E and charging of the high-capacity battery ES-E is performed first when alternating charging / discharging is started. That is, it is determined that the alternating charge / discharge of the pattern 1 shown in FIG. 14 is performed. In step S317, the ECU 109 determines that the high capacity battery ES-E is discharged and the high power battery ES-P is charged first when charging and discharging are started. That is, it is determined that the alternating charge / discharge of the pattern 2 shown in FIG. 14 is performed. In step S319, the ECU 109 randomly determines which of the high-capacity battery ES-E and the high-power battery ES-P is discharged first when starting alternate charging / discharging. That is, it is determined at random whether alternating charge / discharge is performed in pattern 1 or pattern 2.

ステップS315,S317又はS319を行った後、ECU109は、VCU101を制御して、決定したパターンの交互充放電を開始する(ステップS321)。次に、ECU109は、温度センサ107eが検出した高容量型バッテリES−Eの温度Te及び温度センサ107pが検出した高出力型バッテリES−Pの温度Tpを取得する(ステップS323)。次に、ECU109は、ステップS323で得られた情報に基づき、高容量型バッテリES−E及び高出力型バッテリES−Pの両温度がしきい値を超えて「高」になったかを判断し(ステップS325)、2つのバッテリの両温度が「高」であれば一連の処理を終了し、いずれかのバッテリの温度がしきい値以下の「低」であればステップS303に戻る。ステップS303に戻った場合、いずれかのバッテリの温度がしきい値以下の「低」であるため、図13のテーブルに従ってステップS305に進み、ECU109は、高容量型バッテリES−E及び高出力型バッテリES−Pの一方から他方へ電力を供給するようVCU101を制御する。   After performing Steps S315, S317, or S319, the ECU 109 controls the VCU 101 to start alternate charge / discharge of the determined pattern (Step S321). Next, the ECU 109 acquires the temperature Te of the high capacity battery ES-E detected by the temperature sensor 107e and the temperature Tp of the high output battery ES-P detected by the temperature sensor 107p (step S323). Next, the ECU 109 determines whether or not the temperatures of both the high-capacity battery ES-E and the high-power battery ES-P have exceeded the threshold values and become “high” based on the information obtained in step S323. (Step S325) If both the temperatures of the two batteries are “high”, the series of processing ends, and if the temperature of any one of the batteries is “low” below the threshold, the process returns to step S303. When the process returns to step S303, the temperature of any battery is “low” that is equal to or lower than the threshold value. Therefore, the process proceeds to step S305 according to the table of FIG. The VCU 101 is controlled so as to supply power from one side of the battery ES-P to the other side.

なお、ECU109は、上記説明したバッテリの昇圧制御を行うとき、図13に示すようにVCU101の変換効率を低くしたVCU高損失制御を行っても良い。VCU101の変換効率を低くすることによってVCU101で発生する熱量は増加するため、交互充放電によるバッテリの昇温だけでなく、VCU101で発生した熱によってもバッテリの温度を上げることができる。これによって、昇温効率が上がるため、交互充放電の回数を減らすことができるため、高出力型バッテリES−Pのみならず高容量型バッテリES−Eの劣化を最小限にできる。   Note that the ECU 109 may perform VCU high loss control in which the conversion efficiency of the VCU 101 is lowered as shown in FIG. By reducing the conversion efficiency of the VCU 101, the amount of heat generated in the VCU 101 increases. Therefore, the temperature of the battery can be raised not only by the temperature rise of the battery due to alternate charging / discharging but also by the heat generated by the VCU 101. As a result, the temperature elevating efficiency is increased, and the number of alternating charging / discharging operations can be reduced, so that deterioration of not only the high-power battery ES-P but also the high-capacity battery ES-E can be minimized.

以上説明したように、本実施形態によれば、高容量型バッテリES−E及び高出力型バッテリES−Pの一方から他方へ一定電流が流れるようVCU101を制御する定電流制御を行った際に得られたパラメータに基づき高容量型バッテリES−E及び高出力型バッテリES−Pの各状態を判定する前の高容量型バッテリES−Eの温度Te又は高出力型バッテリES−Pの温度Tpがしきい値以下であれば、高容量型バッテリES−E及び高出力型バッテリES−Pを昇温した後、温度Te及び温度Tpがしきい値よりも高い状態で、定電流制御、並びに、高容量型バッテリES−E及び高出力型バッテリES−Pの状態判定が行われる。このように、定電流制御、並びに、高容量型バッテリES−E及び高出力型バッテリES−Pの状態判定は所望の温度環境下で行われるため、定電流制御を行った際に得られる高容量型バッテリES−Eの電圧Ve及び高出力型バッテリES−Pの電圧Vpの検出精度は極めて高い。したがって、高容量型バッテリES−E及び高出力型バッテリES−Pの各状態を極めて正確に判定できる。   As described above, according to the present embodiment, when constant current control is performed to control the VCU 101 so that a constant current flows from one of the high-capacity battery ES-E and the high-power battery ES-P to the other. The temperature Te of the high-capacity battery ES-E or the temperature Tp of the high-power battery ES-P before determining the states of the high-capacity battery ES-E and the high-power battery ES-P based on the obtained parameters Is equal to or lower than the threshold value, the temperature Te and the temperature Tp are higher than the threshold value after the high-capacity battery ES-E and the high-power battery ES-P are heated, The state determination of the high-capacity battery ES-E and the high-power battery ES-P is performed. As described above, constant current control and state determination of the high-capacity battery ES-E and the high-power battery ES-P are performed in a desired temperature environment, and thus the high current obtained when the constant current control is performed. The detection accuracy of the voltage Ve of the capacity type battery ES-E and the voltage Vp of the high output type battery ES-P is extremely high. Therefore, each state of the high capacity battery ES-E and the high output battery ES-P can be determined very accurately.

また、高容量型バッテリES−E及び高出力型バッテリES−Pの一方から他方へ一定電流が流れるようVCU101を制御する定電流制御を行うことによって、この定電流制御を行った際に得られた各バッテリの電圧と一定電流に基づき、高容量型バッテリES−E及び高出力型バッテリES−Pの各状態を判定するため、1つのVCU101のみで各バッテリの状態を判定できる。また、定電流制御は高容量型バッテリES−Eと高出力型バッテリES−Pの間の一定電流による充放電によって行われるため、前述した特許文献1のように要求駆動力に基づいて一定電流に間接的な制約が加わらず、定電流制御を行った際に得られる高容量型バッテリES−Eの電圧Ve及び高出力型バッテリES−Pの電圧Vpの検出精度は極めて高い。したがって、高容量型バッテリES−E及び高出力型バッテリES−Pの各状態を極めて正確に判定できる。   Further, the constant current control is performed by controlling the VCU 101 so that a constant current flows from one of the high capacity type battery ES-E and the high output type battery ES-P to the other. Since each state of the high-capacity battery ES-E and the high-power battery ES-P is determined based on the voltage and constant current of each battery, the state of each battery can be determined with only one VCU 101. Further, since the constant current control is performed by charging and discharging with a constant current between the high-capacity battery ES-E and the high-power battery ES-P, the constant current is controlled based on the required driving force as described in Patent Document 1 described above. Therefore, the detection accuracy of the voltage Ve of the high-capacity battery ES-E and the voltage Vp of the high-power battery ES-P obtained when the constant current control is performed is extremely high. Therefore, each state of the high capacity battery ES-E and the high output battery ES-P can be determined very accurately.

また、定電流制御を行った際に得られる高容量型バッテリES−Eと高出力型バッテリES−Pの検出精度の高い電圧に基づき各バッテリの容量と内部抵抗が算出されるため、この容量と内部抵抗に基づき高容量型バッテリES−Eと高出力型バッテリES−Pの各状態を正確に判定できる。   Further, since the capacity and internal resistance of each battery are calculated based on the voltage with high detection accuracy of the high-capacity battery ES-E and the high-power battery ES-P obtained when the constant current control is performed, this capacity Each state of the high-capacity battery ES-E and the high-power battery ES-P can be accurately determined based on the internal resistance.

また、高容量型バッテリES−Eと高出力型バッテリES−Pの間を一定電流が流れるようVCU101を制御する定電流制御は、一定電流が高容量型バッテリES−Eから高出力型バッテリES−Pへ流れる形態だけでなく、高出力型バッテリES−Pから高容量型バッテリES−Eへ流れる形態でも行われるため、各バッテリのSOC定電流制御を行う前のSOCに近い値となるため各バッテリの劣化を抑制できると共に、充電時と放電時の双方を用いるため高容量型バッテリES−Eの電圧Veと高出力型バッテリES−Pの電圧Vpはより一層精度の高い値が得られる。したがって、高容量型バッテリES−E及び高出力型バッテリES−Pの各状態を一層正確に判定できる。   In addition, the constant current control for controlling the VCU 101 so that a constant current flows between the high-capacity battery ES-E and the high-power battery ES-P is performed by changing the constant current from the high-capacity battery ES-E to the high-power battery ES. Since it is performed not only in the form of flowing to -P but also in the form of flowing from the high-power battery ES-P to the high-capacity battery ES-E, it becomes a value close to the SOC before performing the SOC constant current control of each battery. The deterioration of each battery can be suppressed, and since both charging and discharging are used, the voltage Ve of the high-capacity battery ES-E and the voltage Vp of the high-power battery ES-P can be obtained with higher accuracy. . Therefore, each state of the high-capacity battery ES-E and the high-power battery ES-P can be determined more accurately.

また、高容量型バッテリES−Eの電圧Veと高出力型バッテリES−Pの電圧Vpは、定電流制御を行う際に一定電流を放電する側であっても充電する側であっても検出され、各バッテリの充電容量及び放電容量の双方、並びに、各バッテリの充電に対する内部抵抗及び放電に対する内部抵抗の双方が算出されるため、高容量型バッテリES−E及び高出力型バッテリES−Pの各状態を一層正確に判定できる。   The voltage Ve of the high-capacity battery ES-E and the voltage Vp of the high-power battery ES-P are detected regardless of whether a constant current is discharged or a charge current is discharged. Since both the charging capacity and discharging capacity of each battery and the internal resistance for charging and discharging of each battery are calculated, the high-capacity battery ES-E and the high-power battery ES-P are calculated. It is possible to more accurately determine each state.

さらに、高容量型バッテリES−Eと高出力型バッテリES−Pの昇温制御は、ヒーターなどの電装品を用いることなく、高容量型バッテリES−Eと高出力型バッテリES−Pの一方から他方への電力供給又は交互充放電によって行われる。その結果、当該電装品を利用することによる蓄電装置の電力消費率、コスト及び大きさの増大を抑制できる。また、交互充放電を行った際には放電と充電の関係が交互に切り替わるため、高容量型バッテリES−Eと高出力型バッテリES−PのSOCが大きく変化しない。   Furthermore, the temperature increase control of the high-capacity battery ES-E and the high-power battery ES-P is performed using either the high-capacity battery ES-E or the high-power battery ES-P without using electrical components such as a heater. Is performed by supplying power from one to the other or by alternately charging and discharging. As a result, an increase in power consumption rate, cost, and size of the power storage device due to the use of the electrical component can be suppressed. Further, since the relationship between discharge and charge is alternately switched when performing alternate charge / discharge, the SOCs of the high-capacity battery ES-E and the high-power battery ES-P do not change greatly.

なお、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。例えば、上記説明した電動車両は、1MOT型のEV(Electrical Vehicle)であるが、複数のモータジェネレータを搭載したEVであっても、少なくとも1つのモータジェネレータと共に内燃機関を搭載したHEV(Hybrid Electrical Vehicle)やPHEV(Plug-in Hybrid Electrical Vehicle)であっても、FCV(Fuel Cell Vehicle)であっても良い。   Note that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like can be made as appropriate. For example, although the electric vehicle described above is a 1MOT type EV (Electrical Vehicle), even an EV equipped with a plurality of motor generators is an HEV (Hybrid Electrical Vehicle) equipped with an internal combustion engine together with at least one motor generator. ), PHEV (Plug-in Hybrid Electrical Vehicle), or FCV (Fuel Cell Vehicle).

本実施形態のVCU101は、高出力型バッテリES−Pの電圧Vpを昇圧するが、高容量型バッテリES−Eの電圧Veが高出力型バッテリES−Pの電圧Vpよりも低い場合、高出力型バッテリES−Pの電圧Vpを降圧するVCUが用いられる。また、双方向に昇降圧が可能なVCUを用いても良い。また、図15に示すように、高容量型バッテリES−E側にもVCU201を設けても良い。2つのVCUを設けることで、モータジェネレータ11及びPDU13に印加される電圧が高容量型バッテリES−Eに束縛されないため、効率が向上する。   The VCU 101 of the present embodiment boosts the voltage Vp of the high-power battery ES-P. If the voltage Ve of the high-capacity battery ES-E is lower than the voltage Vp of the high-power battery ES-P, the VCU 101 A VCU that steps down the voltage Vp of the type battery ES-P is used. Further, a VCU capable of increasing / decreasing pressure in both directions may be used. Further, as shown in FIG. 15, the VCU 201 may be provided also on the high capacity battery ES-E side. By providing two VCUs, the voltage applied to the motor generator 11 and the PDU 13 is not restricted by the high-capacity battery ES-E, so that the efficiency is improved.

上述した図15のような2つのVCU101,201を有する構成であったとしても、いずれか一方のみのVCUで定電流制御は実行可能である。   Even if the configuration includes the two VCUs 101 and 201 as shown in FIG. 15 described above, the constant current control can be executed with only one of the VCUs.

また、他の実施形態としては、図5のステップS115においてバッテリの故障診断を行う際に、算出した内部抵抗や充放電容量の比較対象として予めECU109に記憶させたしきい値ではなく、他のパラメータを用いても良い。例えば、充電容量と放電容量は一般的に等しい値であるためこの両者を比較し、その差分がしきい値以上であればそのバッテリは故障していると判断しても良い。若しくは前回値との比較によっても故障診断を行っても良い。更にはこれらの組合せに基づいて故障診断を行ってもよく、診断の精度を極限まで高めることができる。   Further, as another embodiment, when performing a battery failure diagnosis in step S115 of FIG. 5, the threshold value stored in the ECU 109 in advance as a comparison target of the calculated internal resistance and charge / discharge capacity is different from the threshold value. A parameter may be used. For example, since the charge capacity and the discharge capacity are generally equal values, the two may be compared, and if the difference is equal to or greater than a threshold value, it may be determined that the battery has failed. Alternatively, failure diagnosis may be performed by comparison with the previous value. Furthermore, failure diagnosis may be performed based on these combinations, and the accuracy of diagnosis can be increased to the limit.

また、上記説明では、例えば電動車両が停車してモータジェネレータ11が駆動する必要のないとき、ECU109が、PDU13の6つのスイッチング素子を全てオフ状態とするようPDU13を制御し、VCU101の2つのスイッチング素子を共にオフ状態とするようVCU101を制御することによって、高容量型バッテリES−E及び高出力型バッテリES−Pがそれぞれ開回路の状態としているが、ECU109がスイッチ部111のコンタクタMCe,MCpを開制御することによって、各バッテリを開回路の状態としても良い。   In the above description, for example, when the electric vehicle stops and the motor generator 11 does not need to be driven, the ECU 109 controls the PDU 13 so that all the six switching elements of the PDU 13 are turned off, and the two switching operations of the VCU 101 are performed. The high capacity battery ES-E and the high output battery ES-P are in an open circuit state by controlling the VCU 101 so that both elements are turned off, but the ECU 109 has contactors MCe, MCp of the switch unit 111. Each battery may be in an open circuit state by controlling the opening of.

11 モータジェネレータ
13 PDU
100 蓄電装置
101,201 VCU
103p,103e 電圧センサ
105p,105e 電流センサ
107p,107e 温度センサ
108 車速センサ
109 ECU
111 スイッチ部
ES−E 高容量型バッテリ
ES−P 高出力型バッテリ
MCe,MCp コンタクタ
11 Motor generator 13 PDU
100 Power storage device 101, 201 VCU
103p, 103e Voltage sensor 105p, 105e Current sensor 107p, 107e Temperature sensor 108 Vehicle speed sensor 109 ECU
111 Switch unit ES-E High-capacity battery ES-P High-power battery MCe, MCp Contactor

Claims (12)

第1蓄電器と、
第2蓄電器と、
前記第1蓄電器の出力電圧又は前記第2蓄電器の出力電圧を昇圧又は降圧する変換部と、
前記第1蓄電器の電圧と、前記第1蓄電器と前記第2蓄電器の間を流れる電流と、を検知する検知部と、
前記第1蓄電器及び前記第2蓄電器の各温度を取得する取得部と、
前記変換部を制御する制御部と、を備えた蓄電装置であって、
前記制御部は、
走行するための電力供給用として前記蓄電装置を搭載した車両の走行速度に基づいて、前記車両が停車状態であるか否かを判別し、
前記車両が停車状態のとき、前記第1蓄電器又は前記第2蓄電器の温度がしきい値以下であれば、前記第1蓄電器及び前記第2蓄電器を前記しきい値より高い温度まで昇温し、前記第1蓄電器及び前記第2蓄電器の温度が前記しきい値より高い状態で、前記第1蓄電器及び前記第2蓄電器の一方から前記第1蓄電器及び前記第2蓄電器の他方へ一定電流が流れるよう前記変換部を制御する第1定電流制御を行い、前記第1定電流制御を行った際に得られた前記第1蓄電器の電圧及び前記一定電流に基づき、前記第1蓄電器の容量又は内部抵抗を算出する、蓄電装置。
A first capacitor;
A second battery,
A converter for stepping up or down the output voltage of the first capacitor or the output voltage of the second capacitor;
A detection unit for detecting a voltage of the first capacitor and a current flowing between the first capacitor and the second capacitor;
An acquisition unit for acquiring the temperatures of the first capacitor and the second capacitor;
A power storage device comprising: a control unit that controls the conversion unit;
The controller is
Based on the traveling speed of a vehicle equipped with the power storage device for power supply for traveling, it is determined whether or not the vehicle is stopped,
When the vehicle is in a stopped state, if the temperature of the first capacitor or the second capacitor is equal to or lower than a threshold value, the temperature of the first capacitor and the second capacitor is increased to a temperature higher than the threshold value, A constant current flows from one of the first capacitor and the second capacitor to the other of the first capacitor and the second capacitor in a state where the temperature of the first capacitor and the second capacitor is higher than the threshold value. Based on the voltage and the constant current of the first capacitor obtained when the first constant current control for controlling the conversion unit is performed and the first constant current control is performed, the capacity or internal resistance of the first capacitor A power storage device for calculating
請求項1に記載の蓄電装置であって、
前記制御部は、
前記第1定電流制御を行う前後でそれぞれ得られた前記第1蓄電器の開路電圧に応じた前記第1蓄電器の蓄電容量の変化量と、前記第1定電流制御を行った際に流れた前記一定電流の電流量と、に基づき、前記第1蓄電器の容量を算出する、蓄電装置。
The power storage device according to claim 1,
The controller is
The amount of change in the storage capacity of the first capacitor according to the open circuit voltage of the first capacitor obtained before and after performing the first constant current control, and the flow that occurred when the first constant current control was performed A power storage device that calculates a capacity of the first battery based on a current amount of a constant current.
請求項1又は2に記載の蓄電装置であって、
前記制御部は、
前記第1定電流制御の前又は後に得られた前記第1蓄電器の開路電圧と、前記第1定電流制御の最中に得られた前記第1蓄電器の閉路電圧と、前記一定電流と、に基づき、前記第1蓄電器の内部抵抗を算出する、蓄電装置。
The power storage device according to claim 1 or 2,
The controller is
The open circuit voltage of the first capacitor obtained before or after the first constant current control, the closed circuit voltage of the first capacitor obtained during the first constant current control, and the constant current. A power storage device that calculates an internal resistance of the first capacitor based on the first capacitor.
請求項1から3のいずれか1項に記載の蓄電装置であって、
前記制御部は、
前記車両が停車状態のとき、前記第1定電流制御と、前記第1蓄電器及び前記第2蓄電器の他方から前記第1蓄電器及び前記第2蓄電器の一方へ一定電流が流れるよう前記変換部を制御する第2定電流制御と、を行い、
前記第1定電流制御及び前記第2定電流制御を行った際に得られた前記第1蓄電器の電圧及び前記一定電流に基づき、前記第1蓄電器の容量又は内部抵抗を算出する、蓄電装置。
The power storage device according to any one of claims 1 to 3,
The controller is
When the vehicle is stopped, the first constant current control and the conversion unit are controlled so that a constant current flows from the other of the first capacitor and the second capacitor to one of the first capacitor and the second capacitor. Second constant current control to perform,
A power storage device that calculates a capacity or internal resistance of the first capacitor based on the voltage of the first capacitor and the constant current obtained when the first constant current control and the second constant current control are performed.
請求項4に記載の蓄電装置であって、
前記制御部は、
前記第2定電流制御を行う前後でそれぞれ得られた前記第1蓄電器の開路電圧に応じた前記第1蓄電器の蓄電容量の変化量と、前記第2定電流制御を行った際に流れた前記一定電流の電流量と、に基づき、前記第1蓄電器の容量を算出する、蓄電装置。
The power storage device according to claim 4,
The controller is
The amount of change in the storage capacity of the first capacitor according to the open circuit voltage of the first capacitor obtained before and after performing the second constant current control, and the flow that occurred when the second constant current control was performed A power storage device that calculates a capacity of the first battery based on a current amount of a constant current.
請求項4又は5に記載の蓄電装置であって、
前記制御部は、
前記第2定電流制御の前又は後に得られた前記第1蓄電器の開路電圧と、前記第2定電流制御の最中に得られた前記第1蓄電器の閉路電圧と、前記一定電流と、に基づき、前記第1蓄電器の内部抵抗を算出する、蓄電装置。
The power storage device according to claim 4 or 5,
The controller is
The open circuit voltage of the first battery obtained before or after the second constant current control, the closed circuit voltage of the first battery obtained during the second constant current control, and the constant current. A power storage device that calculates an internal resistance of the first capacitor based on the first capacitor.
第1蓄電器と、
第2蓄電器と、
前記第1蓄電器の出力電圧又は前記第2蓄電器の出力電圧を昇圧又は降圧する変換部と、
前記第1蓄電器及び前記第2蓄電器の各電圧と、前記第1蓄電器と前記第2蓄電器の間を流れる電流と、を検知する検知部と、
前記第1蓄電器及び前記第2蓄電器の各温度を取得する取得部と、
前記変換部を制御する制御部と、を備えた蓄電装置であって、
前記制御部は、
走行するための電力供給用として前記蓄電装置を搭載した車両の走行速度に基づいて、前記車両が停車状態であるか否かを判別し、
前記車両が停車状態のとき、前記第1蓄電器又は前記第2蓄電器の温度がしきい値以下であれば、前記第1蓄電器及び前記第2蓄電器を前記しきい値より高い温度まで昇温し、前記第1蓄電器及び前記第2蓄電器の温度が前記しきい値より高い状態で、前記第1蓄電器及び前記第2蓄電器の一方から前記第1蓄電器及び前記第2蓄電器の他方へ一定電流が流れるよう前記変換部を制御する第1定電流制御と、前記第1蓄電器及び前記第2蓄電器の他方から前記第1蓄電器及び前記第2蓄電器の一方へ一定電流が流れるよう前記変換部を制御する第2定電流制御と、を行い、前記第1定電流制御を行った際及び前記第2定電流制御を行った際に得られた前記第1蓄電器の各電圧並びに前記第1定電流制御を行った際及び前記第2定電流制御を行った際に流れる各一定電流に基づき、前記第1蓄電器の容量又は内部抵抗を算出し、前記第1定電流制御を行った際及び前記第2定電流制御を行った際に得られた前記第2蓄電器の各電圧並びに前記第1定電流制御を行った際及び前記第2定電流制御を行った際に流れる各一定電流に基づき、前記第2蓄電器の容量又は内部抵抗を算出する、蓄電装置。
A first capacitor;
A second battery,
A converter for stepping up or down the output voltage of the first capacitor or the output voltage of the second capacitor;
A detection unit for detecting each voltage of the first capacitor and the second capacitor, and a current flowing between the first capacitor and the second capacitor;
An acquisition unit for acquiring the temperatures of the first capacitor and the second capacitor;
A power storage device comprising: a control unit that controls the conversion unit;
The controller is
Based on the traveling speed of a vehicle equipped with the power storage device for power supply for traveling, it is determined whether or not the vehicle is stopped,
When the vehicle is in a stopped state, if the temperature of the first capacitor or the second capacitor is equal to or lower than a threshold value, the temperature of the first capacitor and the second capacitor is increased to a temperature higher than the threshold value, A constant current flows from one of the first capacitor and the second capacitor to the other of the first capacitor and the second capacitor in a state where the temperature of the first capacitor and the second capacitor is higher than the threshold value. A first constant current control for controlling the conversion unit; and a second constant for controlling the conversion unit so that a constant current flows from the other of the first capacitor and the second capacitor to one of the first capacitor and the second capacitor. Constant current control, each voltage of the first battery and the first constant current control obtained when the first constant current control and the second constant current control are performed. And the second constant current control is performed. And calculating the capacity or internal resistance of the first capacitor based on each constant current flowing when the first constant current control is performed and when the second constant current control is performed. 2. A power storage device that calculates a capacity or an internal resistance of the second capacitor based on each voltage of the two capacitors and each constant current that flows when the first constant current control and the second constant current control are performed .
請求項1から7のいずれか1項に記載の蓄電装置であって、
前記制御部は、前記変換部を制御して前記第1蓄電器と前記第2蓄電器の間で充放電を行うことによって、前記第1蓄電器及び前記第2蓄電器の各温度を前記しきい値より高い温度まで昇温する、蓄電装置。
The power storage device according to any one of claims 1 to 7,
The controller is configured to charge and discharge between the first capacitor and the second capacitor by controlling the conversion unit, so that each temperature of the first capacitor and the second capacitor is higher than the threshold value. A power storage device that rises to a temperature.
請求項8に記載の蓄電装置であって、
前記第1蓄電器と前記第2蓄電器の間で行われる充放電は、前記第1蓄電器及び前記第2蓄電器の放電と充電の関係が交互に切り替わる交互充放電である、蓄電装置。
The power storage device according to claim 8,
The charge / discharge performed between the first capacitor and the second capacitor is an alternating charge / discharge device in which a relationship between discharge and charge of the first capacitor and the second capacitor is alternately switched.
請求項1から9のいずれか1項に記載の蓄電装置を有する、輸送機器。   A transport device comprising the power storage device according to claim 1. 第1蓄電器と、
第2蓄電器と、
前記第1蓄電器の出力電圧又は前記第2蓄電器の出力電圧を昇圧又は降圧する変換部と、
前記第1蓄電器の電圧と、前記第1蓄電器と前記第2蓄電器の間を流れる電流と、を検知する検知部と、
前記第1蓄電器及び前記第2蓄電器の各温度を取得する取得部と、
前記変換部を制御する制御部と、を備えた蓄電装置が行う制御方法であって、
前記制御部は、
走行するための電力供給用として前記蓄電装置を搭載した車両の走行速度に基づいて、前記車両が停車状態であるか否かを判別し、
前記車両が停車状態のとき、前記第1蓄電器又は前記第2蓄電器の温度がしきい値以下であれば、前記第1蓄電器及び前記第2蓄電器を前記しきい値より高い温度まで昇温し、前記第1蓄電器及び前記第2蓄電器の温度が前記しきい値より高い状態で、前記第1蓄電器及び前記第2蓄電器の一方から前記第1蓄電器及び前記第2蓄電器の他方へ一定電流が流れるよう前記変換部を制御する第1定電流制御を行い、前記第1定電流制御を行った際に得られた前記第1蓄電器の電圧及び前記一定電流に基づき、前記第1蓄電器の容量又は内部抵抗を算出する、制御方法。
A first capacitor;
A second battery,
A converter for stepping up or down the output voltage of the first capacitor or the output voltage of the second capacitor;
A detection unit for detecting a voltage of the first capacitor and a current flowing between the first capacitor and the second capacitor;
An acquisition unit for acquiring the temperatures of the first capacitor and the second capacitor;
A control method performed by a power storage device including a control unit that controls the conversion unit,
The controller is
Based on the traveling speed of a vehicle equipped with the power storage device for power supply for traveling, it is determined whether or not the vehicle is stopped,
When the vehicle is in a stopped state, if the temperature of the first capacitor or the second capacitor is equal to or lower than a threshold value, the temperature of the first capacitor and the second capacitor is increased to a temperature higher than the threshold value, A constant current flows from one of the first capacitor and the second capacitor to the other of the first capacitor and the second capacitor in a state where the temperature of the first capacitor and the second capacitor is higher than the threshold value. Based on the voltage and the constant current of the first capacitor obtained when the first constant current control for controlling the conversion unit is performed and the first constant current control is performed, the capacity or internal resistance of the first capacitor A control method for calculating
第1蓄電器と、
第2蓄電器と、
前記第1蓄電器の出力電圧又は前記第2蓄電器の出力電圧を昇圧又は降圧する変換部と、
前記第1蓄電器及び前記第2蓄電器の各電圧と、前記第1蓄電器と前記第2蓄電器の間を流れる電流と、を検知する検知部と、
前記第1蓄電器及び前記第2蓄電器の各温度を取得する取得部と、
前記変換部を制御する制御部と、を備えた蓄電装置が行う制御方法であって、
前記制御部は、
走行するための電力供給用として前記蓄電装置を搭載した車両の走行速度に基づいて、前記車両が停車状態であるか否かを判別し、
前記車両が停車状態のとき、前記第1蓄電器又は前記第2蓄電器の温度がしきい値以下であれば、前記第1蓄電器及び前記第2蓄電器を前記しきい値より高い温度まで昇温し、前記第1蓄電器及び前記第2蓄電器の温度が前記しきい値より高い状態で、前記第1蓄電器及び前記第2蓄電器の一方から前記第1蓄電器及び前記第2蓄電器の他方へ一定電流が流れるよう前記変換部を制御する第1定電流制御と、前記第1蓄電器及び前記第2蓄電器の他方から前記第1蓄電器及び前記第2蓄電器の一方へ一定電流が流れるよう前記変換部を制御する第2定電流制御と、を行い、前記第1定電流制御を行った際及び前記第2定電流制御を行った際に得られた前記第1蓄電器の各電圧並びに前記第1定電流制御を行った際及び前記第2定電流制御を行った際に流れる各一定電流に基づき、前記第1蓄電器の容量又は内部抵抗を算出し、前記第1定電流制御を行った際及び前記第2定電流制御を行った際に得られた前記第2蓄電器の各電圧並びに前記第1定電流制御を行った際及び前記第2定電流制御を行った際に流れる各一定電流に基づき、前記第2蓄電器の容量又は内部抵抗を算出する、制御方法。
A first capacitor;
A second battery,
A converter for stepping up or down the output voltage of the first capacitor or the output voltage of the second capacitor;
A detection unit for detecting each voltage of the first capacitor and the second capacitor, and a current flowing between the first capacitor and the second capacitor;
An acquisition unit for acquiring the temperatures of the first capacitor and the second capacitor;
A control method performed by a power storage device including a control unit that controls the conversion unit,
The controller is
Based on the traveling speed of a vehicle equipped with the power storage device for power supply for traveling, it is determined whether or not the vehicle is stopped,
When the vehicle is in a stopped state, if the temperature of the first capacitor or the second capacitor is equal to or lower than a threshold value, the temperature of the first capacitor and the second capacitor is increased to a temperature higher than the threshold value, A constant current flows from one of the first capacitor and the second capacitor to the other of the first capacitor and the second capacitor in a state where the temperature of the first capacitor and the second capacitor is higher than the threshold value. A first constant current control for controlling the conversion unit; and a second constant for controlling the conversion unit so that a constant current flows from the other of the first capacitor and the second capacitor to one of the first capacitor and the second capacitor. Constant current control, each voltage of the first battery and the first constant current control obtained when the first constant current control and the second constant current control are performed. And the second constant current control is performed. And calculating the capacity or internal resistance of the first capacitor based on each constant current flowing when the first constant current control is performed and when the second constant current control is performed. 2. A control method for calculating a capacity or an internal resistance of the second capacitor based on each voltage of the two capacitors and each constant current that flows when the first constant current control and the second constant current control are performed. .
JP2015211139A 2015-10-27 2015-10-27 Power storage device, transport device and control method Active JP6364396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015211139A JP6364396B2 (en) 2015-10-27 2015-10-27 Power storage device, transport device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015211139A JP6364396B2 (en) 2015-10-27 2015-10-27 Power storage device, transport device and control method

Publications (2)

Publication Number Publication Date
JP2017085755A JP2017085755A (en) 2017-05-18
JP6364396B2 true JP6364396B2 (en) 2018-07-25

Family

ID=58711501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015211139A Active JP6364396B2 (en) 2015-10-27 2015-10-27 Power storage device, transport device and control method

Country Status (1)

Country Link
JP (1) JP6364396B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7039520B2 (en) * 2019-05-28 2022-03-22 本田技研工業株式会社 Power system
CN115066623A (en) * 2020-02-21 2022-09-16 松下知识产权经营株式会社 Computing system, battery characteristic estimation method, and battery characteristic estimation program

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5087812B2 (en) * 2001-05-14 2012-12-05 ソニー株式会社 Power supply device, abnormality notification device, rescue wireless device, security device, anti-theft alarm device, emergency wireless device, and control method for power supply device
JP2003143769A (en) * 2002-10-24 2003-05-16 Nec Tokin Tochigi Ltd Battery pack power supply apparatus
JP4400414B2 (en) * 2004-10-25 2010-01-20 日産自動車株式会社 Power supply device and vehicle equipped with the same
JP4706648B2 (en) * 2007-03-06 2011-06-22 トヨタ自動車株式会社 Electric vehicle, charging state estimation method, and computer-readable recording medium recording a program for causing a computer to execute the charging state estimation method
JP2008289270A (en) * 2007-05-17 2008-11-27 Panasonic Corp Power storage device
JP5343465B2 (en) * 2008-09-11 2013-11-13 マツダ株式会社 Power storage device
JP5487861B2 (en) * 2009-09-30 2014-05-14 マツダ株式会社 Battery warm-up control device
JP5803518B2 (en) * 2011-09-29 2015-11-04 トヨタ自動車株式会社 Vehicle and vehicle control method
JP2014066556A (en) * 2012-09-25 2014-04-17 Toyota Industries Corp Battery
JP6012447B2 (en) * 2012-12-13 2016-10-25 ルネサスエレクトロニクス株式会社 Semiconductor device, battery pack, and electronic device
JP5791643B2 (en) * 2013-01-29 2015-10-07 京セラドキュメントソリューションズ株式会社 Image processing apparatus and image forming apparatus
JP5970437B2 (en) * 2013-09-12 2016-08-17 日立オートモティブシステムズ株式会社 Rotating electric machine drive system for electric vehicle, battery system, and rotating electric machine control device
JP6379552B2 (en) * 2014-03-20 2018-08-29 三洋電機株式会社 Power storage system with anomaly detector

Also Published As

Publication number Publication date
JP2017085755A (en) 2017-05-18

Similar Documents

Publication Publication Date Title
JP6412847B2 (en) Power storage device and control method
JP6445190B2 (en) Battery control device
JP5862631B2 (en) Power storage system
JP5453232B2 (en) Electric vehicle
JP6600586B2 (en) DRIVE DEVICE, TRANSPORTATION DEVICE, AND CONTROL METHOD
JP5255086B2 (en) Power supply device and control method thereof
JP6214609B2 (en) Drive device
JP5376045B2 (en) Battery pack
JP2009011138A (en) Power supply system and vehicle with the same, method of controlling power supply system, and computer readable recording medium recorded with program for making computer perform the control method
US10439405B2 (en) Power storage apparatus, transport device, and control method
JP6451582B2 (en) Charge / discharge control device for power storage device
US10576835B2 (en) Energy storage device, transport apparatus, and control method
US10158246B2 (en) Energy storage device, transport apparatus, and control method
JP6364396B2 (en) Power storage device, transport device and control method
JP6713283B2 (en) Power storage device, transportation device, and control method
JP2020174458A (en) Battery pack
CN113016099B (en) Battery control device
JP6170984B2 (en) Power storage device, transport device and control method
JP6492001B2 (en) DRIVE DEVICE, TRANSPORTATION DEVICE, AND CONTROL METHOD
JP2016119167A (en) Power source system
JP5846170B2 (en) Electric storage system and electric vehicle using the same
JP6600587B2 (en) DRIVE DEVICE, TRANSPORTATION DEVICE, AND CONTROL METHOD
JP6011431B2 (en) Vehicle power supply system
JP2019213261A (en) Battery system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170815

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180702

R150 Certificate of patent or registration of utility model

Ref document number: 6364396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150