JP6361340B2 - Method for producing sintered ore using fine particle mixture - Google Patents

Method for producing sintered ore using fine particle mixture Download PDF

Info

Publication number
JP6361340B2
JP6361340B2 JP2014143864A JP2014143864A JP6361340B2 JP 6361340 B2 JP6361340 B2 JP 6361340B2 JP 2014143864 A JP2014143864 A JP 2014143864A JP 2014143864 A JP2014143864 A JP 2014143864A JP 6361340 B2 JP6361340 B2 JP 6361340B2
Authority
JP
Japan
Prior art keywords
fine particle
ore
mass
granulation
particle mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014143864A
Other languages
Japanese (ja)
Other versions
JP2016020521A (en
Inventor
松村 勝
勝 松村
泰英 山口
泰英 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2014143864A priority Critical patent/JP6361340B2/en
Publication of JP2016020521A publication Critical patent/JP2016020521A/en
Application granted granted Critical
Publication of JP6361340B2 publication Critical patent/JP6361340B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、微粒子混合物を用いた焼結鉱の製造方法に関する。特に、鉄鉱石の一部を生石灰または消石灰と共に乾式破砕した微粒子混合物を用いた焼結鉱製造方法に関する。   The present invention relates to a method for producing sintered ore using a fine particle mixture. In particular, the present invention relates to a method for producing sintered ore using a fine particle mixture obtained by dry crushing a part of iron ore together with quick lime or slaked lime.

焼結鉱製造プロセスは、主な原料である鉄鉱石に、焼結工場系内及び焼結工場系外で発生する篩下粉、ダスト、ミルスケール等の鉄分を含む原料(雑鉄源)、粉コークスなどの燃料(凝結材)並びに石灰石などの造滓材(副原料)を加えて焼結用の配合原料とし、造粒し、焼成して焼結鉱を製造する。   The sinter production process consists of iron ore, which is the main raw material, and raw materials (iron miscellaneous iron sources) containing iron such as sieving powder, dust, and mill scale generated inside and outside the sintering plant system. A fuel (condensation material) such as coke breeze and a kneading material (auxiliary material) such as limestone are added to form a compounding raw material for sintering, granulated and fired to produce a sintered ore.

粉鉄鉱石としては、主に、輸入鉱石を用いているが、近年、微粉で造粒性の悪い、例えばペレットフィード(以下、「PF」と記述する。)等の使用量が増加している。一方、ピソライト鉱石、マラマンバ鉱石等の豪州産ゲーサイト鉱石の使用量も多く、ゲーサイト鉱石は、結晶水(ゲーサイト鉱物由来)を含有しているため、ヘマタイト鉱石よりも濡れ性が高く、かつ気孔率が高いため、良好な造粒が難しい。   Imported ore is mainly used as fine iron ore, but in recent years, the amount of fine powder and poor granulation properties such as pellet feed (hereinafter referred to as “PF”) has been increasing. . On the other hand, Australian goethite ores such as psolite ore and maramamba ore are also used in large quantities, and goethite ore contains crystal water (derived from goethite mineral), so it has higher wettability than hematite ore, and Good granulation is difficult due to high porosity.

粉鉄鉱石の造粒性を高めるためにバインダーの研究がなされてきた。
生石灰は製造から使用までに、2〜3日経過すると風化して活性度が低下する。そこで、生石灰を使用する直前に破砕して製造時に近い活性度に向上させる方法の発明の記載がある(特許文献1)。
生石灰を125μ以下30%以上とし、その活性度を320cc以上とする方法の記載がある(特許文献2)。
原料の造粒時に生石灰を添加したのでは、生石灰が水と反応する時間が不足し、バインダーとしての効果が発揮できないとし、生石灰を事前に消化する方法が開示されている(特許文献3)。
造粒性の悪いブラジル産PFの粒の隙間を、微粉砕した豪州産ヘマタイト鉱石又は豪州産ゲーサイト鉱石で埋め、ブラジル産PFの造粒性を向上させる方法の発明の記載がある(特許文献4)。そして、実機の試験で、その効果が確認された(非特許文献1)。
焼結製造時の低NOx化を狙いとして、コークスと生石灰とを混合破砕する方法が開示されている(技術文献5)。
Binders have been studied to increase the granulation properties of fine iron ore.
Quick lime is weathered and decreases in activity after 2 to 3 days from manufacture to use. Therefore, there is a description of the invention of a method for crushing immediately before using quicklime to improve the activity close to that at the time of production (Patent Document 1).
There is a description of a method in which quicklime is 125 μ or less and 30% or more, and its activity is 320 cc or more (Patent Document 2).
When quick lime is added at the time of granulation of raw materials, the time for quick lime to react with water is insufficient, and the effect as a binder cannot be exhibited, and a method of digesting quick lime in advance is disclosed (Patent Document 3).
There is a description of an invention of a method for improving the granulation properties of Brazilian PF by filling the gaps between Brazilian PF particles having poor granulation properties with finely ground Australian hematite ore or Australian goethite ore (Patent Literature). 4). And the effect was confirmed by the test of the real machine (nonpatent literature 1).
A method of mixing and crushing coke and quicklime has been disclosed for the purpose of reducing NOx during sintering production (Technical Reference 5).

特開昭59−053636号公報JP 59-053636 A 特開平4−000328号公報JP-A-4-000328 特開平3−020421号公報JP-A-3-020421 特開2013−32568号公報JP 2013-32568 A 特開昭53−130206号公報JP-A-53-130206

山口ら:CAMP−ISIJ25(2012)P.859Yamaguchi et al .: CAMP-ISIJ25 (2012) P.M. 859

生石灰または消石灰(以下、生石灰等と記す。)又は微粉砕した破砕鉄鉱石(以下、破砕鉄鉱石と記す。)は、粒度が小さい方が鉄鉱石の造粒性を高めるためのバインダーとしての効果がある。しかし、生石灰等又は破砕鉄鉱石は、造粒時の水分添加により凝集しやすく、バインダーとしての効果を損ねるという問題がある。
特許文献1、2に記載の発明は、生石灰の活性度は向上するが、造粒時の凝集による活性度低下の問題を解決するものではない。
特許文献3に記載の発明は、生石灰を事前に消石灰にして活性度を向上させるものであり、造粒時の凝集による活性度低下の問題を解決するものではない。
特許文献4に記載の発明は、鉱石を微粉砕し、PF粒子の隙間に埋め、微粉砕鉱石をバインダーとして利用するものである。しかし、この発明は、微分鉱石を生石灰との組み合わせで、バインダーとしての効果向上を図るものではない。
特許文献5に記載の発明は、焼結の低NOxのための生石灰の効果であり、生石灰の造粒能が向上する示唆はない。
Quick lime or slaked lime (hereinafter referred to as quick lime) or finely crushed crushed iron ore (hereinafter referred to as crushed iron ore) has a smaller particle size as a binder to enhance the granulation properties of iron ore. There is. However, quick lime or the like or crushed iron ore is liable to agglomerate due to the addition of moisture at the time of granulation, and there is a problem that the effect as a binder is impaired.
The inventions described in Patent Documents 1 and 2 improve the activity of quicklime, but do not solve the problem of activity decrease due to aggregation during granulation.
The invention described in Patent Document 3 improves the activity by converting quicklime into slaked lime in advance, and does not solve the problem of a decrease in activity due to aggregation during granulation.
In the invention described in Patent Document 4, the ore is finely pulverized, filled in the gaps of the PF particles, and the finely pulverized ore is used as a binder. However, this invention is not intended to improve the effect as a binder by combining differential ore with quicklime.
The invention described in Patent Document 5 is an effect of quicklime for low NOx in sintering, and there is no suggestion that the granulation ability of quicklime is improved.

本発明者は、生石灰等及び破砕鉄鉱石は、粒度が小さい方が鉄鉱石の造粒性を高めるためのバインダーとしての効果があるが、造粒時の水分添加により凝集しやすく、バインダーとしての効果を損ねていることに着目し、その対応策を研究した。
本発明の目的は、生石灰、消石灰及び破砕鉄鉱石のバインダーとしての効果を高める微粒子混合物を用いた焼結鉱の製造方法を提供することである。
The present inventor said that quick lime, etc. and crushed iron ore are effective as a binder for enhancing the granulation property of iron ore when the particle size is smaller, but are easy to aggregate due to the addition of moisture during granulation, Focusing on the loss of effectiveness, I studied the countermeasures.
The objective of this invention is providing the manufacturing method of the sintered ore using the fine particle mixture which improves the effect as a binder of quicklime, slaked lime, and crushed iron ore.

本発明者は、生石灰等を鉄鉱石と合わせて破砕することにより製造した混合物(以下、微粒子混合物と記す。)が、焼結原料の造粒の際に、バインダーとしての効果が大きいという知見を得た。これは、生石灰等と破砕鉱石とを混合状態のバインダーとすることで、生石灰同士の凝集や破砕鉱石同士の凝集を防止できることによる。そして、鉄鉱石を破砕する工程において生石灰をも配合することで、破砕鉱石を得ることと生石灰等と破砕鉱石との混合を同時に達成できる利点を有する。本発明は、かかる知見に基づくものである。   The present inventor has found that a mixture produced by crushing quick lime or the like together with iron ore (hereinafter referred to as a fine particle mixture) has a great effect as a binder when granulating a sintered raw material. Obtained. This is because quick lime or the like and crushed ore are used as a mixed binder to prevent quick lime from agglomerating and crushed ore from being aggregated. And it has the advantage which can achieve mixing of quick lime etc. and crushed ore at the same time by blending quick lime in the process of crushing iron ore. The present invention is based on such knowledge.

(1)焼結原料を下方吸引型焼結機で焼成して焼結鉱を製造する方法であって、
鉄鉱石の一部を生石灰または消石灰と共に乾式破砕し、微粒子混合物を製造する混合破砕工程と、
残りの料と、前記微粒子混合物を混合し、一括して造粒する一括造粒工程と、
前記一括造粒工程で製造した造粒物を焼成する焼成工程とを有し、
前記微粒子混合物は、生石灰を15質量%以上50質量%以下、または消石灰を20質量%以上65質量%以下を含み、残りが鉄鉱石であることを特徴とする微粒子混合物を用いた焼結鉱製造方法。
(2)前記一括造粒工程に替えて、焼結原料を主焼結原料群と前記微粒子混合物を含む副焼結原料群に分け、それぞれを混合・造粒する、主造粒工程と副造粒工程とを並列で有し、
さらに、前記主造粒工程と副造粒工程で製造したそれぞれの造粒物を前記焼成工程までに合わせる工程を有することを特徴とする(1)に記載の微粒子混合物を用いた焼結鉱製造方法。
(3)記微粒子混合物は、10μm以下が60質量%以上であることを特徴とする(1)又は(2)に記載の微粒子混合物を用いた焼結鉱製造方法。
)焼結原料に対し、生石灰が0質量%を超え4質量%以下、または消石灰が0質量%を超え5.2質量%以下であることを特徴とする(1)乃至()のいずれかに記載の微粒子混合物を用いた焼結鉱製造方法。
)焼結原料に対し、0質量%を超え10質量%以下の鉄鉱石を生石灰または消石灰と共に乾式破砕することを特徴とする(1)乃至()のいずれかに記載の微粒子混合物を用いた焼結鉱製造方法。
(1) A method for producing a sintered ore by firing a sintered raw material with a downward suction type sintering machine,
A mixed crushing step of dry crushing part of iron ore together with quicklime or slaked lime to produce a fine particle mixture;
And the remaining raw material, mixing said particulate mixture, and the batch granulation process for granulating together,
Have a firing step of firing the granulated product prepared in the batch granulation process,
The fine particle mixture contains 15% by mass or more and 50% by mass or less of quick lime, or 20% by mass or more and 65% by mass or less of slaked lime, and the remainder is iron ore. Method.
(2) Instead of the batch granulation step, the sintering raw material is divided into a main sintering raw material group and a sub-sintering raw material group including the fine particle mixture, and each is mixed and granulated. With the grain process in parallel,
Furthermore, it has the process to match | combine each granule manufactured by the said main granulation process and the subgranulation process by the said baking process, The sintered ore manufacture using the fine particle mixture as described in (1) characterized by the above-mentioned. Method.
(3) before Symbol particulate mixture, 10 [mu] m or less and wherein the at least 60 wt% (1) or sinter manufacturing method using the particulate mixture according to (2).
(4) with respect to the sintering material, quicklime or less 4% by weight more than 0 mass%, or slaked lime is equal to or less than 5.2 wt% more than 0 mass% of (1) to (3) A method for producing a sintered ore using the fine particle mixture according to any one of the above.
( 5 ) The fine particle mixture according to any one of (1) to ( 4 ), wherein the iron ore of more than 0% by mass and 10% by mass or less is dry-crushed with quick lime or slaked lime with respect to the sintered raw material. The sintered ore manufacturing method used.

本発明は、鉄鉱石の一部を生石灰または消石灰と共に乾式破砕した微粒子混合物を用いることにより、バインダーとしての効果を高め、焼結原料の造粒性を向上させ、焼結鉱の生産性を向上させることができる。   The present invention uses a fine particle mixture obtained by dry crushing a part of iron ore together with quick lime or slaked lime, thereby improving the effect as a binder, improving the granulation property of the sintered raw material, and improving the productivity of the sintered ore. Can be made.

生石灰または微粉砕された鉄鉱石が生産率に及ぼす効果を示す図。The figure which shows the effect which quick lime or finely pulverized iron ore has on a production rate. 一括造粒(従来法)を示す図。The figure which shows collective granulation (conventional method). 一括造粒(本願発明)を示す図。The figure which shows collective granulation (this invention). 分割造粒(従来法)を示す図。The figure which shows division granulation (conventional method). 分割造粒(本発明)を示す図。The figure which shows division | segmentation granulation (this invention).

生石灰等及び破砕鉄鉱石は、焼結原料の造粒時にバインダーとしての機能を有する。また、微粉砕された鉄鉱石もバインダーとしての効果を有する(技術文献4)。
図1は、生石灰または微粉砕された鉄鉱石が生産率に及ぼす効果の一例を示す。生石灰4質量%の使用又は、−10μm以下に微粉砕された鉄鉱石の10質量%の使用により焼結鉱の生産率が向上していることを示す。
しかし、生石灰等は、造粒時に直接添加すると、造粒時の水分により凝集しやすく、バインダーとしての効果が損なわれる。そこで、事前に生石灰等を鉄鉱石と乾式で混合、破砕することにより、造粒時の水分により凝集を防止し、バインダーとしての効果を高めるものである。そして、生石灰等と鉄鉱石の乾式混合破砕により、バインダーとしての両者の相乗効果を高めることができる。
本発明は、生石灰等を鉄鉱石と乾式で混合、破砕した微粒子混合物を焼結原料の造粒のバインダーとして用いることに特徴がある。
Quick lime and the like and crushed iron ore have a function as a binder when the sintered raw material is granulated. Further, finely pulverized iron ore also has an effect as a binder (Technical Document 4).
FIG. 1 shows an example of the effect of quicklime or finely pulverized iron ore on the production rate. It shows that the production rate of sintered ore is improved by using 4% by mass of quicklime or 10% by mass of iron ore finely pulverized to -10 μm or less.
However, when quicklime is added directly at the time of granulation, it tends to aggregate due to moisture at the time of granulation, and the effect as a binder is impaired. Therefore, quick lime and the like are mixed with iron ore in a dry manner and crushed in advance, thereby preventing aggregation due to moisture during granulation and enhancing the effect as a binder. And the synergistic effect of both as a binder can be heightened by dry mixed crushing of quicklime etc. and iron ore.
The present invention is characterized in that a fine particle mixture obtained by mixing and crushing quick lime or the like with iron ore in a dry manner is used as a granulating binder of a sintered raw material.

本発明は、一括造粒法および分割造粒法の双方で活用できる。
(一括造粒法)
図2は、従来法である一括造粒法のフローを示す。鉄鉱石の一部は、バインダーとしての機能を発揮させるため、混合前に単独で破砕される。鉄鉱石その他の焼結原料をドラムミキサーで混合・造粒する際に、生石灰等と破砕鉱石をバインダーとして添加する。
図3は、本願発明を用いた一括造粒法のフローを示す。生石灰等は、鉄鉱石と共に乾式破砕機により破砕される。生石灰等は破砕鉄鉱石と混合しているので、ドラムミキサーに添加した際に、生石灰等が凝集することがない。生石灰等と、微粉砕鉄鉱石は、それぞれ、バインダーとしての効果が発揮される、
The present invention can be utilized in both the batch granulation method and the split granulation method.
(Batch granulation method)
FIG. 2 shows a flow of a batch granulation method which is a conventional method. Part of the iron ore is crushed independently before mixing in order to exhibit the function as a binder. When mixing or granulating iron ore and other sintering raw materials with a drum mixer, quick lime and crushed ore are added as binders.
FIG. 3 shows the flow of the batch granulation method using the present invention. Quicklime and the like are crushed together with iron ore by a dry crusher. Since quicklime etc. are mixed with the crushed iron ore, quicklime etc. will not aggregate when it is added to the drum mixer. Quick lime, etc., and finely pulverized iron ore are each effective as a binder.

破砕される鉄鉱石は、ゲーサイトを多く含む高結晶水鉱石が好ましい。これはヘマタイトやイタビライトと比較してゲーサイトの硬度が小さいので破砕が容易であること、および造粒時にバインダーとしての水中分散性が高いことによる。水中分散性は、ゲーサイト(FeOOH)の等電点はpH3-4であるので、造粒水PH7との差が大きいことによる。なお、ゲーサイト鉱石は一般的に粘土質脈石(Al2OやSiO2)量が高く、付着力も高くなる銘柄が多い。 The iron ore to be crushed is preferably a high crystal water ore containing a lot of goethite. This is because the hardness of goethite is smaller than that of hematite and itabilite, so that crushing is easy, and the dispersibility in water as a binder during granulation is high. Dispersibility in water is due to the fact that the isoelectric point of goethite (FeOOH) has a pH of 3-4, so the difference from granulated water PH7 is large. Note that goethite ore generally has a large amount of clayey gangue (Al 2 O 3 or SiO 2 ) and many brands with high adhesion.

ここに、生石灰と破砕鉄鉱石の使用比率は、特に制約がない。前記の図1に示すごとく生石灰4質量%まで、微粒鉄鉱石10質量%までの両者の効果は、確認されており、混合破砕することで、相乗効果が発揮される。特に、生石灰:破砕鉄鉱石=15:85〜50:50が混合破砕効果が大きく発揮される。生石灰が15質量%以上かつ破砕鉄鉱石が50質量%以上で、前記水和生石灰の凝集が効率的に回避されるためである。消石灰の場合は、生石灰とCa分が同等に成る量に相当する。即ち、例えば、生石灰が15質量%に相当する消石灰は、1.32倍(74/54)の20質量%になる。
また、破砕鉱石粒度については、−10μm比率60%以上が好ましい。60%未満ではバインダー能が低下するからである。
Here, the use ratio of quicklime and crushed iron ore is not particularly limited. As shown in FIG. 1, the effects of both quick lime up to 4% by mass and fine iron ore up to 10% by mass have been confirmed, and a synergistic effect is exhibited by mixing and crushing. In particular, quick lime: crushed iron ore = 15: 85 to 50:50 exhibits a great effect of mixing and crushing. This is because quick lime is 15% by mass or more and crushed iron ore is 50% by mass or more, and aggregation of the hydrated quick lime is efficiently avoided. In the case of slaked lime, it corresponds to the amount of quick lime and Ca equivalent. That is, for example, slaked lime corresponding to 15% by mass of quick lime is 1.32 times (74/54), which is 20% by mass.
Moreover, about a crushed ore particle size, -10 micrometer ratio 60% or more is preferable. This is because if it is less than 60%, the binder ability decreases.

ここに、破砕機は、連続処理ができる型式であれば、いずれでもよいが、横型ボールミルがよい。ボールミルでは、破砕後の粒度を、操業状況を確認しながら、ボールの投入量を調節して操作できることが可能であるからである。その他、ロッドミルやフレットミルが破砕機として挙げられる。 Here, the crusher may be any model as long as it can perform continuous processing, but a horizontal ball mill is preferable. This is because in the ball mill, the particle size after crushing can be controlled by adjusting the amount of balls thrown in while checking the operation status. In addition, a rod mill and a fret mill are mentioned as a crusher.

(分割造粒法)
分割造粒法とは、造粒が困難な微粉原料を造粒する分割造粒(副)ライン(副造粒工程)と、残りの焼結用原料(通常の鉄鉱石(SF;シンターフィード)、副原料、凝結材など)を造粒する主ライン(主造粒工程)とを並列で有し、それぞれをあわせて焼結機に充填・焼成する方式である。通常、分割造粒ラインは全体の焼結原料の1〜2割を造粒処理し、そこでは、造粒機能を高めるために特殊な造粒設備や特殊なバインダーが使用される。
図4は、従来法の分割造粒法のフローを示す。鉄鉱石の一部は、バインダーとしての機能を発揮させるため、単独で破砕される。鉄鉱石その他の焼結原料をドラムミキサーで混合・造粒する際に、生石灰等と破砕鉱石をバインダーとして添加する。
図5は、本願発明における分割造粒を示す。生石灰等と破砕される鉱石を同時破砕し、得られた微粒子混合物を分割造粒系の原料と共に高速撹拌混練機で混練する。
分割造粒系の原料は、微粉原料(カナダ産の精鉱やブラジル産のPF(ペレットフィード)等)を高配合しておくことが望ましい。これらの原料は、通常、大量処理する本造粒系のドラムミキサーでは、造粒に不向きであるためである。通常の鉄鉱石(SF):微粉原料は3:1〜1:1が望ましい。
(Split granulation method)
The split granulation method is a split granulation (sub) line (sub-granulation process) for granulating fine powder raw materials that are difficult to granulate, and the remaining raw materials for sintering (ordinary iron ore (SF; sinter feed)) , Secondary raw materials, coagulants, etc.) are paralleled with a main line (main granulation step), and each is combined and fired in a sintering machine. Usually, the split granulation line granulates 10 to 20% of the entire sintered raw material, and special granulation equipment and a special binder are used in order to enhance the granulation function.
FIG. 4 shows the flow of the conventional divided granulation method. Part of the iron ore is crushed independently in order to exhibit the function as a binder. When mixing or granulating iron ore and other sintering raw materials with a drum mixer, quick lime and crushed ore are added as binders.
FIG. 5 shows divided granulation in the present invention. The ore to be crushed with quicklime and the like is crushed simultaneously, and the resulting fine particle mixture is kneaded with the raw material of the split granulation system with a high-speed stirring kneader.
It is desirable that the raw material of the split granulation system is a high blend of a fine powder raw material (such as Canadian concentrate or Brazilian PF (pellet feed)). This is because these raw materials are generally unsuitable for granulation in the present granulation drum mixer that performs mass processing. Ordinary iron ore (SF): The fine raw material is preferably 3: 1 to 1: 1.

分割造粒系では、高速撹拌混練機で強撹拌された原料はさらにパンペレタイザーで造粒される。ここで、高速撹拌混練機として、アイリッヒミキサー型、レディゲミキサー型、ダウミキサー型などを用いることができる。また、パンペレタイザーの代わりにドラムミキサーを用いても構わない。   In the split granulation system, the raw material that has been vigorously stirred by a high-speed stirring kneader is further granulated by a pan pelletizer. Here, an Eirich mixer type, a Redige mixer type, a Dow mixer type, etc. can be used as a high-speed stirring kneader. A drum mixer may be used instead of the pan pelletizer.

一括造粒および分割造粒における本発明の効果を、焼結鍋試験により確認した。
(破砕鉱石の製造)
破砕される鉱石の銘柄として、豪州産ピソライト鉱石のHIヤンディ鉱を選択し、実験室スケールのボールミルで破砕して準備した。従来法では、鉄鉱石のみを破砕し、発明法では、生石灰と共に鉄鉱石を破砕した。一括造粒および分割造粒ともに破砕される鉄鉱石と生石灰の質量比率は5:2となるように配分した。この混合物を「微粒子混合物」とした。
破砕は、試験室仕様の横型ボールミルを使用した。円筒(直径320mm、機長290mm)内に直径20mmの鉄球および破砕対象の原料を装入した後に、円筒を転動して破砕する。破砕時間は、破砕後粒度が−10μm比率60%となるように調整した。
The effect of the present invention in batch granulation and split granulation was confirmed by a sintering pot test.
(Manufacture of crushed ore)
As the name of the ore to be crushed, HI Yandi ore of Australian pisolite ore was selected and prepared by crushing with a laboratory scale ball mill. In the conventional method, only iron ore was crushed, and in the invention method, iron ore was crushed together with quick lime. The mass ratio of iron ore and quick lime to be crushed in both batch granulation and split granulation was distributed so as to be 5: 2. This mixture was referred to as “fine particle mixture”.
For the crushing, a horizontal ball mill of a test room specification was used. After charging a 20 mm diameter iron ball and a material to be crushed into a cylinder (diameter 320 mm, machine length 290 mm), the cylinder is rolled and crushed. The crushing time was adjusted so that the particle size after crushing was -10 μm ratio 60%.

(焼結鍋試験の配合)
表1に焼結試験の配合を示す。粉鉱石(SF)として豪州産ピソライト鉱石であるHIヤンディ鉱石鉱、微粉鉱石(PF)として、ブラジル産PFであるPFFT鉱を使用した。
(Composition of sintering pot test)
Table 1 shows the composition of the sintering test. HI Yandi ore, which is Australian pisolite ore, was used as the fine ore (SF), and PFFT ore, which was Brazilian PF, was used as the fine ore (PF).

(造粒方法)
造粒フローを図2〜図5に示す。図2、3が一括造粒、図4、5が分割造粒である。
造粒方法については、以下のとおりである。
一括造粒および分割造粒におけるドラムミキサーは、混合4分、水分添加(7.5%目標)後、さらに4分間混合した。
分割造粒における高速撹拌ミキサーおよびパンペレタイザーについては、水分添加(11.0%)後、高速撹拌ミキサーで1分間混合処理したのちに、パンペレタイザーで4分間処理した。
発明例で混合破砕した微粒子混合物は、一括造粒で7%(SFHIヤンディ破砕粉5%+生石灰2%)であり、分割造粒で1.75%(SFHIヤンディ破砕粉1.25%+生石灰0.5%)である。
(Granulation method)
The granulation flow is shown in FIGS. 2 and 3 are batch granulation, and FIGS. 4 and 5 are divided granulation.
The granulation method is as follows.
The drum mixer in batch granulation and split granulation was mixed for 4 minutes, and after adding water (7.5% target), it was further mixed for 4 minutes.
About the high-speed stirring mixer and pan pelletizer in divided granulation, after water addition (11.0%), after mixing for 1 minute with a high-speed stirring mixer, it processed with the pan pelletizer for 4 minutes.
The fine particle mixture mixed and crushed in the inventive example is 7% by batch granulation (SFHI Yandy crushed powder 5% + quick lime 2%) and 1.75% by divided granulation (SFHI Yandi crushed powder 1.25% + quick lime) 0.5%).

Figure 0006361340
Figure 0006361340

(焼成)
直径300mm、高さ600mmの焼結用試験鍋に前記造粒後の原料を装入し、鍋下負圧1000mmAqに調整して、充填層上部に着火させた。なお、点火時間は1分とした。点火終了後、鍋下負圧10kPa一定で、充填層上部より大気吸引して、焼結反応を進行させた。鍋下WB内へセットした熱電対により排ガス温度を計測した。この排ガス温度が最大となった時刻を焼結完了時刻とした。すなわち、焼結時間を点火開始から排ガス温度到達までとした。
(Baking)
The raw material after granulation was charged into a test pot for sintering having a diameter of 300 mm and a height of 600 mm, adjusted to a negative pressure of 1000 mmAq under the pot, and ignited the upper part of the packed bed. The ignition time was 1 minute. After the completion of ignition, the negative pressure under the pan was kept at 10 kPa, and the atmosphere was sucked from the upper part of the packed bed to advance the sintering reaction. The exhaust gas temperature was measured with a thermocouple set in the WB under the pan. The time when the exhaust gas temperature reached the maximum was set as the sintering completion time. That is, the sintering time was from the start of ignition until the exhaust gas temperature was reached.

(ケーキ処理)
焼結完了後のケーキを2mの高さから4回落下させたのちの+5mm産物を成品と定義して、歩留および生産率を評価した。
(Cake processing)
After the completion of sintering, the cake was dropped four times from a height of 2 m, and the +5 mm product was defined as a product, and the yield and production rate were evaluated.

(試験結果)
表2に試験結果を示す。
豪州ピソライト鉱石と生石灰との混合破砕品は豪州ピソライト鉱石単独破砕と比べて、生産率の面でも優れていた。
その要因は、未造粒粉率低下に伴うFFS(燃焼前線降下速度)向上効果に依るところが大きかった。
(Test results)
Table 2 shows the test results.
The mixed crushed product of Australian pisolite ore and quick lime was superior in terms of production rate compared to single pulverization of Australian pisolite ore.
The factor was largely due to the FFS (combustion front descending speed) improvement effect accompanying the decrease in the ungranulated powder rate.

Figure 0006361340
Figure 0006361340

鉄鉱石の一部を生石灰または消石灰と共に乾式破砕した微粒子混合物を用いることにより、バインダーとしての効果を高め、焼結原料の造粒性を向上させた微粒子混合物を用いた焼結鉱製造に利用することができる。   By using a fine particle mixture obtained by dry crushing a part of iron ore together with quick lime or slaked lime, the effect as a binder is enhanced, and it is used for the production of sintered ore using a fine particle mixture with improved granulation properties of the sintering raw material. be able to.

Claims (5)

焼結原料を下方吸引型焼結機で焼成して焼結鉱を製造する方法であって、
鉄鉱石の一部を生石灰または消石灰と共に乾式破砕し、微粒子混合物を製造する混合破砕工程と、
残りの料と、前記微粒子混合物を混合し、一括して造粒する一括造粒工程と、
前記一括造粒工程で製造した造粒物を焼成する焼成工程とを有し、
前記微粒子混合物は、生石灰を15質量%以上50質量%以下、または消石灰を20質量%以上65質量%以下を含み、残りが鉄鉱石であることを特徴とする微粒子混合物を用いた焼結鉱の製造方法。
A method for producing a sintered ore by firing a sintering raw material with a lower suction type sintering machine,
A mixed crushing step of dry crushing part of iron ore together with quicklime or slaked lime to produce a fine particle mixture;
And the remaining raw material, mixing said particulate mixture, and the batch granulation process for granulating together,
Have a firing step of firing the granulated product prepared in the batch granulation process,
The fine particle mixture contains 15% by mass to 50% by mass of quick lime, or 20% by mass to 65% by mass of slaked lime, and the rest is iron ore. Production method.
前記一括造粒工程に替えて、焼結原料を主焼結原料群と前記微粒子混合物を含む副焼結原料群に分け、それぞれを混合・造粒する、主造粒工程と副造粒工程とを並列で有し、
さらに、前記主造粒工程と副造粒工程で製造したそれぞれの造粒物を前記焼成工程までに合わせる工程を有することを特徴とする請求項1に記載の微粒子混合物を用いた焼結鉱の製造方法。
In place of the batch granulation step, the sintering raw material is divided into a main sintering raw material group and a sub-sintering raw material group including the fine particle mixture, and each of them is mixed and granulated. In parallel,
The sintered ore using the fine particle mixture according to claim 1, further comprising a step of combining each granulated product produced in the main granulation step and the sub-granulation step until the firing step. Production method.
前記微粒子混合物は、10μm以下が60質量%以上であることを特徴とする請求項1又は請求項2に記載の微粒子混合物を用いた焼結鉱の製造方法。 3. The method for producing a sintered ore using the fine particle mixture according to claim 1, wherein the fine particle mixture has a particle size of 10 μm or less of 60% by mass or more. 前記焼結原料に対し、生石灰が0質量%を超え4質量%以下、または消石灰が0質量%を超え5.2質量%以下であることを特徴とする請求項1乃至請求項のいずれか一項に記載の微粒子混合物を用いた焼結鉱の製造方法。 Relative to the sintered material, quicklime or less 4% by weight more than 0 mass%, or any one of claims 1 to 3, characterized in that slaked lime is less than 5.2 wt% more than 0 wt% A method for producing a sintered ore using the fine particle mixture according to one item. 前記焼結原料に対し、0質量%を超え10質量%以下の鉄鉱石を生石灰または消石灰と共に乾式破砕することを特徴とする請求項1乃至請求項のいずれか一項に記載の微粒子混合物を用いた焼結鉱の製造方法。 The fine particle mixture according to any one of claims 1 to 4 , wherein the iron ore exceeding 0 mass% and 10 mass% or less is dry-crushed together with quick lime or slaked lime with respect to the sintered raw material. The manufacturing method of the used sintered ore.
JP2014143864A 2014-07-14 2014-07-14 Method for producing sintered ore using fine particle mixture Active JP6361340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014143864A JP6361340B2 (en) 2014-07-14 2014-07-14 Method for producing sintered ore using fine particle mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014143864A JP6361340B2 (en) 2014-07-14 2014-07-14 Method for producing sintered ore using fine particle mixture

Publications (2)

Publication Number Publication Date
JP2016020521A JP2016020521A (en) 2016-02-04
JP6361340B2 true JP6361340B2 (en) 2018-07-25

Family

ID=55265530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014143864A Active JP6361340B2 (en) 2014-07-14 2014-07-14 Method for producing sintered ore using fine particle mixture

Country Status (1)

Country Link
JP (1) JP6361340B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018194014A1 (en) * 2017-04-17 2018-10-25 Jfeスチール株式会社 Method for producing sintered ore

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3902629B2 (en) * 2004-05-13 2007-04-11 新日本製鐵株式会社 Pretreatment method of sintering raw materials
JP5020501B2 (en) * 2005-11-17 2012-09-05 新日本製鐵株式会社 Pretreatment method of sintered raw material and method of manufacturing sintered ore
JP5119462B2 (en) * 2005-11-17 2013-01-16 新日鐵住金株式会社 Pretreatment method of sintered raw material and method of manufacturing sintered ore
JP5630399B2 (en) * 2011-08-02 2014-11-26 新日鐵住金株式会社 Method for producing sintered ore using fine powder raw material
JP6036295B2 (en) * 2012-12-28 2016-11-30 新日鐵住金株式会社 Pretreatment method of sintering raw materials

Also Published As

Publication number Publication date
JP2016020521A (en) 2016-02-04

Similar Documents

Publication Publication Date Title
JP5315659B2 (en) Method for producing sintered ore
KR20150071388A (en) Method for manufacturing sintered iron ore
JP6421666B2 (en) Method for producing sintered ore
KR101525068B1 (en) Method for adjusting precursor powder for sintered ore, and precursor powder for sintered ore
JP6056492B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP6102463B2 (en) Method for producing sintered ore
JP6519005B2 (en) Method of producing sintered ore
JP2007177214A (en) Method for producing ferrocoke
JP6361340B2 (en) Method for producing sintered ore using fine particle mixture
JP6369113B2 (en) Method for producing sintered ore
JP6337737B2 (en) Method for producing sintered ore
JP6459724B2 (en) Method for producing sintered ore
JP6326074B2 (en) Carbon material interior ore and method for producing the same
JP4268419B2 (en) Method for producing low slag sintered ore
JP6361335B2 (en) Method for producing sintered ore
CN104498707B (en) A kind of manufacture method of green pellets
RU2494156C1 (en) Method of iron ore sintering
JP2020117771A (en) Method for producing carbon-containing non-fired pellet for blast furnace
JP6887717B2 (en) Charcoal interior granulated particles for sinter production and sinter production method using them
JP2019173059A (en) Manufacturing method of nonfired agglomerated ore for blast furnace, and manufacturing method of pozzolanic reactive iron-containing raw material
JP6331639B2 (en) Sintering raw material blending method
JP7047645B2 (en) Sintered ore manufacturing method
JP3709001B2 (en) Non-fired agglomerated ore for iron making and method of using the same
JP2018135560A (en) Production method of briquettes
JPH0742519B2 (en) Pretreatment method for raw material for blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180611

R151 Written notification of patent or utility model registration

Ref document number: 6361340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350