JP6360816B2 - 撮像装置及び撮像方法 - Google Patents

撮像装置及び撮像方法 Download PDF

Info

Publication number
JP6360816B2
JP6360816B2 JP2015165753A JP2015165753A JP6360816B2 JP 6360816 B2 JP6360816 B2 JP 6360816B2 JP 2015165753 A JP2015165753 A JP 2015165753A JP 2015165753 A JP2015165753 A JP 2015165753A JP 6360816 B2 JP6360816 B2 JP 6360816B2
Authority
JP
Japan
Prior art keywords
signal
unit
light
ratio
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015165753A
Other languages
English (en)
Other versions
JP2017046100A (ja
Inventor
大谷 正紀
正紀 大谷
啓助 河本
啓助 河本
誠 飛鳥
誠 飛鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industry and Control Solutions Co Ltd
Original Assignee
Hitachi Industry and Control Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industry and Control Solutions Co Ltd filed Critical Hitachi Industry and Control Solutions Co Ltd
Priority to JP2015165753A priority Critical patent/JP6360816B2/ja
Publication of JP2017046100A publication Critical patent/JP2017046100A/ja
Application granted granted Critical
Publication of JP6360816B2 publication Critical patent/JP6360816B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Blocking Light For Cameras (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Studio Devices (AREA)
  • Exposure Control For Cameras (AREA)

Description

本発明は、撮像装置及び撮像方法に関する。
従来、例えば監視カメラ等の技術分野では、高照度から低照度までのあらゆる環境下において良好な映像を提供することが望まれている。そこで、本技術分野の背景技術としては、例えば、特開2011−233983公報(特許文献1)がある。
特許文献1には、夜間のような低照度下でも良好なカラー画像を得ることができ、かつ、赤外線照明装置を用いた場合のようなコントラストが鮮明な映像を同時に得ることができる撮像装置が記載されている。具体的には、特許文献1には、固体撮像素子と、赤外LEDと、発光制御部と、赤外LEDの非発光期間および発光期間に同期して、可視光によるカラー画像信号と赤外光による画像信号とをそれぞれ抽出する信号処理部とを備える撮像装置が記載されている。また、特許文献1には、固体撮像素子が、緑色の可視光と赤外光とを受光する画素と、赤色の可視光と赤外光とを受光する画素と、青色の可視光と赤外光とを受光する画素と、赤外光を受光する画素とを備えた単位配列を有することが記載されている。さらに、特許文献1には、固体撮像素子が、該単位配列が2次元配列された撮像領域を有することが記載されている。この特許文献1に記載の技術を用いれば、可視光と赤外光とを同時に受光可能な撮像素子を用いて、夜間においても良好なカラー画像を得ることができる。
特開2011−233983公報
上記特許文献1では、夜間のような低照度環境下における撮影については十分に考慮されている。しかしながら、特許文献1では、例えば、太陽光、ハロゲン光、ナトリウムランプ等の光源が使用される環境下、すなわち、赤外線が多く含まれる光源が使用される環境下における撮影については、十分に考慮がなされていない。そこで、従来、本技術分野では、可視光と赤外光とを同時に受光可能な撮像装置において、被写体の光学的な撮像環境(以下、被写体環境という)に応じて、撮影時の光学条件(撮像条件)を最適な条件に自動遷移させることが可能な技術の開発が求められている。
本発明は、上記要望に応えるためになされたものであり、本発明の目的は、可視光と赤外光とを同時に受光可能な撮像装置において、被写体環境に応じて、撮影時の光学条件を最適な条件に自動的に遷移させることが可能な技術を提供することである。
上記従来技術の課題を解決するために、本発明では、可視光及び赤外光を同時に受光可能な撮像部と、第1光学フィルタと、可視光信号生成部と、赤外光信号生成部と、制御部と、光学フィルタ制御部と、を備える撮像装置及びその撮像方法を提供する。そして、本発明では、光学フィルタ制御部は、制御部から出力された所定の制御信号に基づいて、可視光のみを透過する第1光学フィルタを入射光の光路上の第1の位置又は光路上の位置以外の第2の位置に配置する。
上記構成の本発明によれば、可視光と赤外光とを同時に受光可能な撮像装置において、被写体環境に応じて、撮影時の光学条件を最適な条件に自動的に遷移させることができる。
本発明の第1の実施形態に係る撮像装置の構成を示すブロック図である。 第1の実施形態に係る撮像装置における単位画素の配列を示す図である。 第1の実施形態に係る撮像装置における各単位画素の感度特性を示す図である。 第1の実施形態に係る撮像装置の可視光信号生成部及び赤外光信号生成部から出力される各信号に対応する感度特性を示す図である。 第1の実施形態に係る撮像装置における制御部の機能ブロック図である。 第1の実施形態に係る撮像装置において実行される光源判定処理の内容を説明するための図である。 第1の実施形態に係る撮像装置における光学フィルタの移動制御処理(光学条件の切り替え処理)の手順を示すフローチャートである。 第1の実施形態に係る撮像装置の効果を説明するための図である。 本発明の第2の実施形態に係る撮像装置の構成を示すブロック図である。 汎用の撮像素子における各単位画素の感度特性を示す図である。 変形例1に係る撮像装置における制御部の機能ブロック図である。
以下に、本発明の各種実施形態に係る撮像装置及びその撮像装置を用いた撮像手法の内容について、図面を参照しながら具体的に説明する。なお、本発明の撮像装置は、様々な用途に適用可能であり、例えば、後述の撮像装置をシャーシ部材に取り付けて構成されたシャーシカメラなどにも適用可能である。
<第1の実施形態>
[撮像装置の構成]
図1は、本発明の第1の実施形態に係る撮像装置の構成を示すブロック図である。撮像装置1は、図1に示すように、撮像部10と、光学フィルタ2と、可視光信号生成部3と、赤外光信号生成部4と、光学フィルタ制御部5と、赤外線照射部6と、可視光信号処理部7と、赤外光信号処理部8と、信号合成部9と、制御部20と、を備える。
[撮像部]
撮像部10は、レンズ11と、撮像素子12と、を有する。また、図示しないが、撮像部10は、撮像素子12に入射される光の光量を調整するための絞り機構及びシャッタ機構を有する。レンズ11は、被写体から入射される光信号(以下、被写体信号という)を撮像素子12の受光面上に結像して光学像を生成する。
撮像素子12は、可視光及び赤外光の両方に対して光学的感度を有する撮像素子(可視光及び赤外光を同時に受光可能な撮像素子)で構成される。撮像素子12は、例えば、CMOS(Complementary Metal-Oxide Semiconductor)型やCCD(Charge-Coupled Device)型などの固体撮像素子で構成することができる。そして、撮像素子12は、レンズ11によって結像された光学像(被写体信号)を電気信号に変換し、該変換した電気信号を可視光信号生成部3及び赤外光信号生成部4に出力する。
図2は、撮像素子12の概略構成図である。撮像素子12の撮像領域12a(受光面)には、複数の単位画素が2次元状に配列される。
複数の単位画素には、可視光に含まれる赤色成分光と、赤外光とを受光可能な第1単位画素31、及び、可視光に含まれる緑色成分光と、赤外光とを受光可能な第2単位画素32が含まれる。また、複数の単位画素には、可視光に含まれる青色成分光と、赤外光とを受光可能な第3単位画素33、及び、赤外光のみを受光可能な第4単位画素34が含まれる。なお、図示しないが、第1単位画素31には、可視光中の赤色成分光と、赤外光とを透過させるフィルタが設けられ、第2単位画素32には、可視光中の緑色成分光と、赤外光とを透過させるフィルタが設けられる。また、第3単位画素33には、可視光中の青色成分光と、赤外光とを透過させるフィルタが設けられ、第4単位画素34には、赤外光のみを透過させるフィルタが設けられる。
そして、撮像領域12aでは、第1単位画素31〜第4単位画素34が2行×2列の態様で互いに隣接して配置された画素群30a(以下、基本画素群30aという)が、2次元状に配列される。
また、基本画素群の別の構成としては、図2に示す基本画素群30bの構成を用いてもよい。基本画素群30bは、可視光中の赤色成分光と、赤外光とを受光可能な第1単位画素35、及び、可視光中の緑色成分光と、赤外光とを受光可能な第2単位画素36を含む。また、基本画素群30bは、可視光信号中の青色成分光と、赤外光とを受光可能な第3単位画素37、及び、可視光帯域全ての光と、赤外光とを受光可能な第4単位画素38を含む。そして、第1単位画素35〜第4単位画素38は、2行×2列の態様で互いに隣接して配置される。また、図示しないが、第4単位画素38には、可視光(可視光帯域全ての光)と赤外光とを透過させるフィルタが設けられる。
なお、基本画素群内における第1単位画素〜第4単位画素の位置関係及び/又は配列態様は、図2に示す例に限定されず、例えば撮像素子の種別等に応じて適宜設定することができる。
図3A、図3B、図3C及び図3Dはそれぞれ、基本画素群30a(図2参照)を構成する第3単位画素33、第2単位画素32、第1単位画素31及び第4単位画素34の感度(感光)特性を示す図である。また、図3Eは、基本画素群30b(図2参照)を構成する第4単位画素38の感度特性を示す図である。なお、各図に示す感度特性は、入射光の波長の変化に対する、各単位画素の感度の変化を表す特性である。また、各図中の「R」、「G」、「B」、「W」及び「IR」で示す波長帯域は、それぞれ、赤色成分光、緑色成分光、青色成分光、可視光及び赤外光の波長帯域を示す。
基本画素群30aを構成する、第3単位画素33の感度特性は、青色成分光及び赤外光の両方の波長帯域で感度を有する特性となり、第2単位画素32の感度特性は、緑色成分光及び赤外光の両方の波長帯域で感度を有する特性となる。基本画素群30aを構成する、第1単位画素31の感度特性は、赤色成分光及び赤外光の両方の波長帯域で感度を有する特性となり、第4単位画素34の感度特性は、赤外光の波長帯域でのみ感度を有する特性となる。また、基本画素群30bを構成する第4単位画素38の感度特性は、可視光及び赤外光の両方の波長帯域で感度を有する特性となる。なお、基本画素群30bを構成する第1単位画素35〜第3単位画素37の感度特性は、それぞれ図3C〜図3Aで表された感度特性と同様の特性となる。
[可視光信号生成部及び赤外光信号生成部]
可視光信号生成部3は、撮像部10から入力された電気信号に含まれる可視光成分の信号(以下、可視光信号という)のみを抽出する。なお、基本画素群の構成が上述した基本画素群30aである場合(図2参照)、可視光信号生成部3は、可視光信号に含まれる、赤色成分信号、緑色成分信号及び青色成分信号をそれぞれ別個に抽出する。また、基本画素群の構成が上述した基本画素群30bである場合(図2参照)、可視光信号生成部3は、可視光信号に含まれる、赤色成分信号、緑色成分信号、青色成分信号及び可視光帯域全体の信号をそれぞれ別個に抽出する。そして、可視光信号生成部3は、抽出した各種色成分信号を可視光信号処理部7及び制御部20に出力する。
赤外光信号生成部4は、撮像部10から入力された電気信号に含まれる赤外光成分の信号(以下、赤外光信号という)のみを抽出する。そして、赤外光信号生成部4は、抽出した赤外光信号を赤外光信号処理部8及び制御部20に出力する。
なお、基本画素群の構成が基本画素群30aである場合(図2参照)、可視光信号生成部3では、下記式により、赤色成分信号(R信号)、緑色成分信号(G信号)及び青色成分信号(B信号)がそれぞれ抽出される。また、赤外光信号生成部4では、第4単位画素34で得られた信号が赤外光信号(IR信号)として抽出される。なお、下記式中の「R+IR」、「G+IR」、「B+IR」及び「IR」は、それぞれ第1単位画素31、第2単位画素32、第3単位画素33及び第4単位画素34から得られる信号を表す。
R信号=(R+IR)−IR
G信号=(G+IR)−IR
B信号=(B+IR)−IR
IR信号=第4単位画素34で得られた信号
一方、基本画素群の構成が上述した基本画素群30bである場合(図2参照)、可視光信号生成部3では、下記式により、R信号、G信号、B信号及び可視光帯域全体の信号量(W信号)がそれぞれ抽出される。また、赤外光信号生成部4では、下記式により、IR信号が抽出される。なお、下記式中の「R+IR」、「G+IR」、「B+IR」及び「W+IR」は、それぞれ第1単位画素35、第2単位画素36、第3単位画素37及び第4単位画素38から得られる信号を表す。また、下記式中の係数α1〜α4は、不要な信号(抽出すべき色成分信号以外の信号)を適切にキャンセルするための係数である。例えば、α1は、R信号以外の信号を適切にキャンセルするための係数である。
R信号=α1×(W+IR)−{(G+IR)+(B+IR)}
G信号=α2×(W+IR)−{(R+IR)+(B+IR)}
B信号=α3×(W+IR)−{(R+IR)+(G+IR)}
W信号=(W+IR)−IR
IR信号={(R+IR)+(G+IR)+(B+IR)}−α4×(W+IR)
図4A〜図4Eはそれぞれ、上記抽出処理により求められたB信号、G信号、R信号、IR信号及びW信号に対応する感度特性を示す図である。可視光信号生成部3の抽出処理により得られた、B信号に対応する感度特性は、青色光の波長帯域でのみ感度を有する特性となり、G信号に対応する感度特性は、緑色光の波長帯域でのみ感度を有する特性となる。また、可視光信号生成部3の抽出処理により得られたR信号に対応する感度特性は、赤色光の波長帯域でのみ感度を有する特性となる。赤外光信号生成部4の抽出処理により得られたIR信号に対応する感度特性は、赤外光の波長帯域でのみ感度を有する特性となる。また、可視光信号生成部3の抽出処理により得られたW信号に対応する感度特性は、可視光の波長帯域全般に渡って所定の感度が得られるような特性となる。
なお、上述した各種色成分信号及び赤外光信号の抽出処理は、1フレームの画像処理毎に実行される。また、この抽出された各種色成分信号及び赤外光信号に基づいて行われる、後述の信号比率の算出処理、光源の判定処理、光学フィルタ2の挿入要否の判定処理、信号処理で用いられる各種パラメータの設定処理等も、1フレームの画像処理毎に実行される。
[可視光信号処理部、赤外光信号処理部及び信号合成部]
可視光信号処理部7は、可視光信号生成部3から入力される各種色成分信号に対して、例えば、ホワイトバランス処理、ノイズ低減処理、ゲイン補正処理などの各種信号処理を行う。なお、この信号処理は、制御部20から入力される信号(各種信号処理パラメータ)に基づいて行われる。そして、可視光信号処理部7は、これらの各種信号処理が施された信号を信号合成部9に出力する。
赤外光信号処理部8は、制御部20から入力される信号(各種信号処理パラメータ)に基づいて、赤外光信号生成部4から入力される赤外光信号に対して、例えば、ノイズ低減処理、ゲイン補正処理などの各種信号処理を施す。そして、赤外光信号処理部8は、これらの各種信号処理が施された信号を信号合成部9に出力する。
信号合成部9は、制御部20から入力される信号(各種信号処理パラメータ)に基づいて、可視光信号処理部7から入力された信号と、赤外光信号処理部8から入力された信号とを合成する。そして、信号合成部9は、合成された信号を映像信号として、例えば、外部のモニター等の表示装置に出力する。
[光学フィルタ]
光学フィルタ2(第1光学フィルタ)は、撮像部10に入射される被写体信号に含まれる可視光成分の光信号のみを透過させるフィルタ(バンドパスフィルタ)で構成される。
なお、図示しないが、本実施形態では、光学フィルタ2の位置を移動させることが可能な移動機構部も設けられる。移動機構部は、光学フィルタ制御部5から入力された駆動制御信号に基づいて、光学フィルタ2をレンズ11及び撮像素子12間の光路上の位置に移動させる、又は、該光路上に配置された光学フィルタ2を光路上以外の位置に移動させる。また、移動機構部は、光学フィルタ2と一体的に設けられていてもよいし、光学フィルタ2とは別体で設けられていてもよい。
[光学フィルタ制御部]
光学フィルタ制御部5は、制御部20(後述の信号比率算出部22)から入力される制御信号に基づいて、光学フィルタ2を駆動(移動)制御する。
例えば、光学フィルタ2を入射光の光路上に挿入するための制御信号(以下、挿入制御信号という)が制御部20から入力されると、光学フィルタ制御部5は、光学フィルタ2を光路上の所定位置に配置するための駆動制御信号を光学フィルタ2に出力する。この処理により、光学フィルタ2の挿入機能の作動が開始される。なお、この処理時に光学フィルタ2がすでに該光路上の所定位置(挿入位置)に配置されている場合、光学フィルタ制御部5は、挿入制御信号に基づいて、光学フィルタ2が挿入位置に維持されるように光学フィルタ2を駆動制御する。
一方、光学フィルタ2を入射光の光路上から取り外すための制御信号(以下、取り外し制御信号という)が制御部20から入力されると、光学フィルタ制御部5は、光学フィルタ2を光路上以外の特定位置に配置するための駆動制御信号を光学フィルタ2に出力する。この処理により、光学フィルタ2の取り外し機能の作動が開始される。なお、この処理時に光学フィルタ2がすでに該光路上以外の特定位置(取り外し位置)に配置されている場合、光学フィルタ制御部5は、取り外し制御信号に基づいて、光学フィルタ2が取り外し位置に維持されるように光学フィルタ2を駆動制御する。
なお、本実施形態では、被写体環境が著しく高照度(以下、超高照度という)の環境である場合、後述する光源の判定結果(光学フィルタ2の挿入要否の判定結果)に関係なく、光学フィルタ2をレンズ11及び撮像素子12間の光路上の挿入位置に配置する。
[赤外線照射部]
赤外線照射部6は、赤外線LED(Light Emitting Diode:不図示)を有し、制御部20から入力された制御信号に基づいて、赤外線LEDを点灯し、被写体に赤外光を照射する。
なお、本実施形態では、被写体環境が著しく低照度(以下、超低照度という)の環境である場合、後述する光源の判定結果(光学フィルタ2の挿入要否の判定結果)に関係なく、赤外線照射部6は、赤外線LEDを点灯し、被写体に赤外光を照射する。なお、この赤外光照射処理は、後述の赤外線照射量制御部23により算出された赤外線照射量に基づいて行われる。また、赤外線照射部6による赤外光の照射動作が行われるときには、制御部20の判定処理により光学フィルタ2の挿入機能の作動が決定されていても、その判定結果は無視される。
[制御部]
図5は、制御部20の内部構成を示す機能ブロック図である。制御部20は、図5に示すように、露光制御部21と、信号比率算出部22と、赤外線照射量制御部23と、光源判定部24と、信号処理設定値算出部25と、を有する。
露光制御部21は、可視光信号生成部3から入力される、可視光信号に含まれる各色成分信号の信号量、及び、赤外光信号生成部4から入力される赤外光信号の信号量に基づいて、露光制御信号を生成し、該露光制御信号を撮像部10に出力する。本実施形態では、この露光制御信号に基づいて、撮像部10内の絞り機構及びシャッタ機構(不図示)が制御され、撮像素子12に入射される光の光量(露光条件)が適宜調整される。
信号比率算出部22は、可視光信号生成部3から入力される、可視光信号に含まれる各色成分信号の信号量、及び、赤外光信号生成部4から入力される赤外光信号の信号量に基づいて、各光成分の信号比率を算出する。具体的には、信号比率算出部22は、可視光帯域全体の信号量(可視光の信号量)に対する、赤色成分光の信号量の割合(R_Ratio)、緑色成分光の信号量の割合(G_Ratio)及び青色成分光の信号量の割合(B_Ratio)を算出する。また、信号比率算出部22は、全信号量(可視光及び赤外光の総信号量)に対する赤外光の信号量の割合(IR_Ratio)を算出する。なお、この各種信号比率の算出手法については、後で詳述する。そして、信号比率算出部22は、算出した各種信号比率を、赤外線照射量制御部23、光源判定部24及び信号処理設定値算出部25に出力する。
また、信号比率算出部22には、光源判定部24から光源の判定結果(光源情報)が入力されるとともに、赤外線照射量制御部23から赤外線照射量の算出結果が入力される。信号比率算出部22は、これらの情報に基づいて、光学フィルタ2の挿入機能の作動の要否(光学フィルタ2の取り外し機能の作動の要否)を判定する。そして、信号比率算出部22は、この判定結果に対応する所定の制御信号(挿入制御信号又は取り外し制御信号)を光学フィルタ制御部5に出力する。
赤外線照射量制御部23は、信号比率算出部22から入力される各種信号比率に基づいて、被写体に照射する赤外線の照射量を算出する。そして、赤外線照射量制御部23は、算出結果(赤外線照射量)を赤外線照射部6及び信号比率算出部22に出力する。
光源判定部24は、信号比率算出部22から入力される各種信号比率に基づいて、被写体環境で現在使用されている光源の種別を判定する。なお、本実施形態では、光源判定部24は、現在の光源が判定対象の光源(例えば、太陽光、ハロゲン光、ナトリウムランプ等の赤外線が多く含まれる光源)であるか否かを判定する。具体的には、光源判定部24は、信号比率算出部22から入力される各種信号比率の値が、判定対象の光源が使用された被写体環境下において取り得る値であるか否かを判定する。なお、この光源の判定手法については、後で詳述する。
そして、光源判定部24は、判定結果に基づいて光源情報を更新するとともに、光源情報を信号比率算出部22及び信号処理設定値算出部25に出力する。なお、判定処理後の光源情報が判定処理前のそれと同じである場合には、光源判定部24は、光源情報の更新処理を行わない。
信号処理設定値算出部25は、可視光信号処理部7及び赤外光信号処理部8で行われる各種信号処理で用いられる各種信号処理パラメータ(設定パラメータ)の最適値を算出する。なお、この算出処理は、信号比率算出部22から入力される、各種信号比率、赤外線照射量及び光学フィルタ2の位置情報、並びに、光源判定部24から入力される光源情報に基づいて行われる。そして、信号処理設定値算出部25は、算出された各種信号処理パラメータを可視光信号処理部7及び赤外光信号処理部8に出力する。
また、信号処理設定値算出部25は、信号合成部9で行われる合成処理で用いられる、例えば、各信号のゲイン値、輝度信号、色信号を生成するためのマトリクス設定値などの信号処理パラメータ(設定パラメータ)を算出する。そして、信号処理設定値算出部25は、算出されたこれらの信号処理パラメータを信号合成部9に出力する。
なお、制御部20内には、図1に示すように、各種処理で必要となる各種プログラムや各種データが格納されたメモリ部20aが内蔵されている。このメモリ部20aは、例えば、ROM(Read Only Memory)等で構成することができる。なお、メモリ部20aは、制御部20の外部に設けられていてもよい。また、図示しないが、制御部20内には、各種処理の実行時に各種処理データ等を一時的に保持するための作業用メモリも内蔵されている。この作業用メモリは、例えば、RAM(Random Access Memory)等で構成することができる。
メモリ部20a(記憶部)に記憶される各種データとしては、例えば、光源の判定処理で用いる後述の信号比率の閾値や光源のスペクトル特性などの判定データが挙げられる。さらに、メモリ部20aに記憶される各種データとしては、例えば、可視光信号処理部7、赤外光信号処理部8及び信号合成部9の各種信号処理で用いられる各種信号処理パラメータなどが挙げられる。なお、これらのデータは、例えば、撮像装置1の製造段階等において予めメモリ部20aに格納されていてもよいし、撮像装置1の使用者(操作者)等の所定操作により各種データを後からメモリ部20aに追加可能な構成にしてもよい。後者の構成を設けた場合、被写体環境に応じて、使用者(操作者)等が最適な各種データ(判定データ、信号処理パラメータ等)をメモリ部20aに追加することができる。この場合、例えば、光源の判定精度やカラー映像の再現性などをさらに向上させることができる。
[信号比率の算出手法]
次に、各種信号比率(R_Ratio(第1信号比率)、G_Ratio(第2信号比率)、B_Ratio(第3信号比率)及びIR_Ratio(第4信号比率))の算出手法について説明する。最初に、光学フィルタ2がレンズ11及び撮像素子12間の光路上に配置されていない場合における、各種信号比率の算出手法を説明する。
この場合、まず、信号比率算出部22は、基本画素群毎に、可視光帯域全体の信号量に対する、赤色成分光の信号量の割合(r_ratio)、緑色成分光の信号量の割合(g_ratio)及び青色成分光の信号量の割合(b_ratio)を算出する。また、信号比率算出部22は、基本画素群毎に、全信号量に対する赤外光の信号量の割合(ir_ratio)を算出する。この算出処理において、基本画素群の構成が基本画素群30aである場合(図2参照)には、可視光帯域全体の信号量は、基本画素群における、R信号の信号量、G信号の信号量及びB信号の信号量の総和とする。また、この場合、全信号量は、基本画素群における、R信号の信号量、G信号の信号量、B信号の信号量及びIR信号の信号量の総和とする。一方、基本画素群の構成が基本画素群30bである場合(図2参照)には、可視光帯域全体の信号量は、基本画素群におけるW信号の信号量とし、全信号量は、基本画素群における、W信号の信号量及びIR信号の信号量の総和とする。
次いで、信号比率算出部22は、基本画素群毎に算出されたr_ratio、g_ratio、b_ratio及びir_ratioの撮像領域12a全体に渡っての平均値をそれぞれ求める。そして、信号比率算出部22は、算出されたr_ratio、g_ratio、b_ratio及びir_ratioの平均値を、それぞれR_Ratio、G_Ratio、B_Ratio及びIR_Ratioとする。なお、信号比率の算出手法はこれに限定されず、例えば、撮像領域12a全体に渡って各色成分信号及び赤外光信号の信号量の平均値をそれぞれ求め、各信号量の平均値を用いて信号比率を算出してもよい。
次に、光学フィルタ2がレンズ11及び撮像素子12間の光路上に配置されている場合における、各種信号比率の算出手法を説明する。
この場合、信号比率算出部22は、光学フィルタ2がレンズ11及び撮像素子12間の光路上に配置されていない場合と同様にして、各色成分光の信号比率(R_Ratio、G_Ratio、B_Ratio)を算出する。しかしながら、この場合、赤外光信号の実測値が得られないので、赤外光の信号比率(IR_Ratio)は、次のようにして算出される。
まず、信号比率算出部22は、算出された各色成分光の信号比率と、制御部20内のメモリ部20aに格納された各種光源のスペクトル特性とを比較する。次いで、信号比率算出部22は、両者の比較結果に基づいて、光源の種別を推定する。この際、信号比率算出部22は、各種光源のスペクトル特性の中から、例えば、R_Ratio、G_Ratio及びB_Ratio間の大小関係や比率などが最も類似したスペクトル特性を選び出して光源の種別を推定する。次いで、信号比率算出部22は、推定された光源のスペクトル特性と、算出された各色成分光の信号比率とに基づいて、赤外光の信号比率(IR_Ratio)を推定する。
例えば、光源にハロゲンランプが使用されている場合には、R_Ratioと、G_Ratioと、B_Ratioとの間には、「B_Ratio<G_Ratio≦R_Ratio」という関係が成立する。それゆえ、信号比率算出部22は、可視光信号の実測値に基づいて算出されたR_Ratioと、G_Ratioと、B_Ratioとの間にこの関係が成立するか否かを判別して、光源がハロゲンランプであるか否かを判別する。そして、光源がハロゲンランプであると判定された場合には、信号比率算出部22は、ハロゲンランプが有するスペクトル特性に基づいて、IR_Ratioを推定する。
また、光源のスペクトル特性における、R_Ratio、G_Ratio及びB_Ratio間の関係性は、使用する撮像素子12の感度特性によって若干変化する場合もある。例えば、光源がハロゲンランプである場合、印加電圧が小さくなると、R_Ratioが大きくなり、G_Ratio及びB_Ratioが小さくなる傾向がある。それゆえ、IR_Ratioを推定する際に、このようなR_Ratio、G_Ratio及びB_Ratio間の関係性を考慮し、R_RatioとG_Ratio及びB_Ratioとの差に応じて、IR_Ratioを補正してもよい。例えば、R_Ratioと、G_Ratio及びB_Ratioとの差が大きくなると、IR_Ratioの推定値も大きくなるような補正を行う構成にしてもよい。
[光源の判定手法]
次に、光源判定部24により実行される光源の判定手法について説明する。本実施形態では、光源判定部24は、各信号比率と、対応する閾値との大小関係を比較する。具体的には、光源判定部24は、R_Ratioと対応する閾値(R_Ratio_th)とを比較し、G_Ratioと対応する閾値(G_Ratio_th)とを比較する。また、光源判定部24は、B_Ratioと対応する閾値(B_Ratio_th)とを比較し、IR_Ratioと対応する閾値(IR_Ratio_th)とを比較する。
この比較処理では、光源判定部24は、算出された各信号比率の値が、対応する閾値を境にして、判定対象の光源が使用された被写体環境下において取り得る範囲内(閾値より大きい範囲又は小さい範囲)の値であるか否かを判別する。次いで、光源判定部24は、この判別(比較)結果に基づいて、被写体環境で使用されている光源が判定対象の光源であるか否かを判定する。そして、光源判定部24は、この判定結果に基づいて、光源の種別情報(光源情報)を更新又は維持する。
なお、本実施形態では、各信号比率の判別(比較)結果をフラグ情報(「High」又は「Low」)で表す。具体的には、R_RatioとR_Ratio_thとの比較結果を「Flag_R」で表し、G_RatioとG_Ratio_thとの比較結果を「Flag_G」で表す。また、B_RatioとB_Ratio_thとの比較結果を「Flag_B」で表し、IR_RatioとIR_Ratio_thとの比較結果を「Flag_IR」で表す。
そして、信号比率の値が、対応する閾値を境にして、判定対象の光源が使用された被写体環境下において取り得る範囲内の値である場合には、対応するフラグ情報は「High」となるものとする。それゆえ、現在の被写体環境において判定対象の光源が使用されている場合には、Flag_R、Flag_G、Flag_B及びFlag_IRは全て、「High」となる。一方、現在の被写体環境において判定対象の光源が使用されていない場合には、Flag_R、Flag_G、Flag_B及びFlag_IRの少なくとも一つは、「Low」になる。
また、本実施形態では、判定処理時の光学情報(前フレームの処理終了時点における光学情報)に基づいて、信号比率の比較処理で用いる閾値を異ならせる。すなわち、現在の光学情報(更新前の光学情報)が判定対象の光源に対応する光源情報である場合の閾値を、現在の光学情報が判定対象以外の光源に対応する光源情報である場合の閾値と異なる値に設定する。なお、本発明はこれに限定されず、信号比率の閾値は、現在の光学情報に関係なく同じであってもよい。
図6A〜図6Dは、ハロゲンランプを判定対象の光源とした場合における、各信号比率の値と、対応する閾値と、対応するフラグ情報との関係を示す図であり、光源判定処理(光学フィルタ2の挿入機能の作動の要否の判定処理)の制御イメージを示す図である。図6A〜図6Dの各図中の太実線は、現在の光源情報がハロゲンランプ以外の光源情報である場合における、各信号比率の値の変化に対するフラグ情報の遷移態様を示す。一方、図6A〜図6Dの各図中の太破線は、現在の光源情報がハロゲンランプの光源情報である場合における、各信号比率の値の変化に対するフラグ情報の遷移態様を示す。
すなわち、例えば、前フレームの判定処理で光源がハロゲンランプであった場合や、現在、光学フィルタ2の挿入機能が作動している場合には、図6A〜図6Dの各図中の太破線で示すフラグ情報の遷移態様を参照して判定処理が行われる。その他の場合には、図6A〜図6Dの各図中の太破線で示すフラグ情報の遷移態様を参照して判定処理が行われる。このように、現在の光源情報に応じて各信号比率の閾値を変化させて、フラグ情報の遷移態様にヒステリシスを設けることにより、光源情報がノイズなどの影響によって誤って更新されないようにすることができる。
そして、光源判定部24は、各信号比率と対応する閾値との比較処理により、全てのフラグ情報が、「High」となった場合には、光源がハロゲンランプであると判定する。図6A〜図6Dに示す例では、以下に示す(1)又は(2)の関係が成立する場合に、光源判定部24は、光源がハロゲンランプであると判定する。
(1)R_Ratio>R_Ratio_th1、G_Ratio<G_Ratio_th1、B_Ratio<B_Ratio_th1、且つ、IR_Ratio>IR_Ratio_th1
(2)R_Ratio>R_Ratio_th2、G_Ratio<G_Ratio_th2、B_Ratio<B_Ratio_th2、且つ、IR_Ratio>IR_Ratio_th2
一方、光源判定部24は、比較処理により、少なくとも一つのフラグ情報が「Low」になった場合には、光源がハロゲンランプでないと判定する。なお、この場合であっても、フラグ情報が「Low」になった全ての信号比率が、対応する閾値に対して非常に近似した値(閾値±δの範囲内の値)となるときには、光源判定部24は、光源がハロゲンランプであると判定する。
なお、本実施形態では、判定対象の光源、すなわち、考慮する被写体環境を複数種設定することもできる。その場合には、上述した、信号比率の閾値、光源のスペクトル特性、各種信号処理で用いられる各種信号処理パラメータなども、判定対象の光源毎(被写体環境毎)に別個に設定され、メモリ部20aに格納される。
[光学フィルタの挿入/取り外し機能の切り替え制御]
図7は、本実施形態の撮像装置1における光学フィルタ2の挿入/取り外し機能の切り替え制御処理(光学フィルタ2の移動制御処理)の手順を示すフローチャートである。
まず、可視光信号生成部3は、基本単位群毎に、入力された電気信号から可視光信号に含まれる各色成分信号(R信号、G信号、B信号、W信号)を抽出(算出)する(S1)。また、S1の処理では、赤外光信号生成部4は、基本単位群毎に、入力された電気信号から赤外光信号(IR信号)を抽出(算出)する。次いで、信号比率算出部22は、可視光信号生成部3及び赤外光信号生成部4により基本単位群毎に抽出された各色成分信号及び赤外光信号の信号量を取得する(S2)。
次いで、信号比率算出部22は、光学フィルタ2がレンズ11及び撮像素子12間の光路上の所定位置(挿入位置)に挿入されているか否かを判別する(S3)。この処理では、信号比率算出部22は、現在、光学フィルタ制御部5から光学フィルタ2に出力されている駆動制御信号の種別(光学フィルタ2の位置情報)に基づいて、光学フィルタ2が挿入されているか否かを判別する。
S3の処理において、信号比率算出部22が、光学フィルタ2が挿入されていないと判別した場合(S3がNO判定の場合)、信号比率算出部22は、各色成分光及び赤外光の信号比率を算出する(S4)。具体的には、信号比率算出部22は、S2で取得した各種信号量に基づいて、R_Ratio、G_Ratio、B_Ratio及びIR_Ratioを算出する。
一方、S3の処理において、信号比率算出部22が、光学フィルタ2が挿入されていると判別した場合(S3がYES判定の場合)、信号比率算出部22は、各色成分光の各信号比率を算出する(S5)。具体的には、信号比率算出部22は、S2で取得した各種信号量に基づいて、R_Ratio、G_Ratio及びB_Ratioを算出する。
次いで、信号比率算出部22は、S5で算出された各色成分光の信号比率と、各種光源のスペクトル特性とに基づいて、光源の種別を推定し、赤外光の信号比率(IR_Ratio)の推定値を算出する(S6)。
S4又はS6の処理後、光源判定部24は、現在の光源情報に基づいて、算出された各信号比率と、対応する閾値との比較を行う(S7)。次いで、光源判定部24は、信号比率毎に、S7の比較結果に対応するフラグ情報をセットする(S8)。
次いで、光源判定部24は、セットされた各信号比率のフラグ情報に基づいて、光源判別を行う(S9)。この処理において、全てのフラグ情報が「High」である場合には、光源判定部24は、光源が判定対象の光源(赤外線が多く含まれる光源)であると判定し、それ以外の場合には、光源判定部24は、光源が判定対象以外の光源であると判定する。なお、少なくとも一つのフラグ情報が「Low」になった場合であっても、フラグ情報が「Low」になった全ての信号比率が、対応する閾値に対して非常に近似した値となるときには、光源判定部24は、光源が判定対象の光源であると判定する。
次いで、光源判定部24は、S9の判定結果に基づいて、光源情報の更新処理(又は維持処理)を行う(S10)。この処理において、S9の判定処理前の光源情報が、判定処理後の光源情報と異なる場合には、光源判定部24は、光源情報の更新処理を行う。
次いで、赤外線照射量制御部23は、信号比率算出部22から入力された各種信号比率に基づいて、被写体に照射する赤外線の照射量を算出する(S11)。なお、S11の処理は、S4又はS6の処理後であり且つ後述のS12の処理前であれば、任意のタイミングで実行することができる。また、S11の処理は、光源判定部24が実行するS7〜S10の処理と平行して行われてもよい。
次いで、信号比率算出部22は、被写体環境が超高照度の環境であるか否かを判別する(S12)。この処理では、信号比率算出部22は、例えば、露光制御部21から撮像部10に出力される露光制御信号の内容など参照して、被写体環境が超高照度の環境であるか否かを判別してもよい。また、この処理では、信号比率算出部22は、例えば、入射光の光量が所定の閾値を超えているか否かを判定することにより、被写体環境が超高照度の環境であるか否かを判別してもよい。
S12の処理において、信号比率算出部22が、被写体環境が超高照度の環境であると判別した場合(S12がYES判定の場合)、信号比率算出部22は、後述のS15の処理を行う。
一方、S12の処理において、信号比率算出部22が、被写体環境が超高照度の環境でないと判別した場合(S12がNO判定の場合)、信号比率算出部22は、被写体環境が超低照度の環境であるか否かを判別する(S13)。この処理では、信号比率算出部22は、例えば、露光制御部21から撮像部10に出力される露光制御信号の内容など参照して、被写体環境が超低照度の環境であるか否かを判別してもよい。また、この処理では、信号比率算出部22は、例えば、入射光の光量が特定の閾値未満であるか否かを判定することにより、被写体環境が超低照度の環境であるか否かを判別してもよい。
S13の処理において、信号比率算出部22が、被写体環境が超低照度の環境であると判別した場合(S13がYES判定の場合)、撮像装置1は、後述のS17の処理を行う。
一方、S13の処理において、信号比率算出部22が、被写体環境が超低照度の環境でないと判別した場合(S13がNO判定の場合)、信号比率算出部22は、赤外線照射量が零であり且つ赤外光成分が大きいか否かを判別する(S14)。この処理において、信号比率算出部22は、S10の処理で決定された光源情報が判定対象の光源(赤外線が多く含まれる光源)に対応する光源情報である場合には、入射光に含まれる赤外光成分が大きいと判定する。なお、本発明はこれに限定されず、信号比率算出部22は、入射された赤外光の光量を示す情報に基づいて、入射光に含まれる赤外光成分が大きいか否かを判別してもよい。
S14の処理において、信号比率算出部22が、S14の判定条件を満たさないと判別した場合(S14がNO判定の場合)、撮像装置1は、後述のS17の処理を行う。一方、S14の処理において、信号比率算出部22が、S14の判定条件を満たすと判別した場合(S14がYES判定の場合)、又は、S12がYES判定の場合、信号比率算出部22は、挿入制御信号を光学フィルタ制御部5に出力する(S15)。
次いで、光学フィルタ制御部5は、入力された挿入制御信号に基づいて、光学フィルタ2を駆動制御し、光学フィルタ2をレンズ11及び撮像素子12間の光路上の所定位置(挿入位置:第1の位置)に配置する(S16)。なお、前フレームの処理終了時点で光学フィルタ2が挿入位置に配置されていない場合、この処理において、光学フィルタ制御部5は、光学フィルタ2を挿入位置に移動させる処理を行う。一方、前フレームの処理終了時点で光学フィルタ2が挿入位置に配置されている場合、この処理において、光学フィルタ制御部5は、光学フィルタ2が挿入位置に配置された状態を維持する処理を行う。そして、S16の処理後、撮像装置1は、光学フィルタ2の挿入/取り外し機能の切り替え制御処理(撮影時の光学条件の切り替え処理)を終了する。
ここで、再度、S13及びS14の処理に戻って、S13がYES判定の場合、又は、S14がNO判定の場合、赤外線照射部6は、S11で算出された赤外線照射量で被写体に赤外線を照射する(S17)。なお、S11で算出された赤外線照射量が零である場合には、S17の処理において、赤外線は被写体に照射されない。
次いで、信号比率算出部22は、取り外し制御信号を光学フィルタ制御部5に出力する(S18)。
次いで、光学フィルタ制御部5は、入力された取り外し制御信号に基づいて、光学フィルタ2を駆動制御し、光学フィルタ2をレンズ11及び撮像素子12間の光路上の位置以外の特定位置(取り外し位置:第2の位置)に配置する(S19)。なお、前フレームの処理終了時点で光学フィルタ2が挿入位置に配置されている場合、この処理において、光学フィルタ制御部5は、光学フィルタ2を取り外し位置に移動させる処理を行う。一方、前フレームの処理終了時点で光学フィルタ2が取り外し位置に配置されている場合、この処理において、光学フィルタ制御部5は、光学フィルタ2が取り外し位置に配置された状態を維持する処理を行う。そして、S19の処理後、撮像装置1は、光学フィルタ2の挿入/取り外し機能の切り替え制御処理(撮影時の光学条件の切り替え処理)を終了する。
[効果]
本実施形態の撮像装置1では、上述した光学フィルタ2の挿入/取り外し機能が設けられ、この両機能が、被写体環境に応じて適宜切り替えられる。それゆえ、本実施形態の撮像装置1によれば、被写体環境に応じて、撮影時の光学条件(撮像条件)を最適な条件に自動的に遷移させることができる。より具体的には、次のような効果が得られる。
図8A及び図8Bは、被写体から入射される光の光量(被写体の光量)と、撮像素子12から出力される信号(出力信号)の値との関係を示す図である。いま、例えば、被写体環境が、高照度の環境であり、被写体の光量に対して撮像素子12の出力信号が飽和するような環境である場合を考える。この環境において、例えば、被写体の光量に含まれる赤外光の光量が可視光の光量の2倍以上になった場合、図8Aに示すように、実際に信号処理の対象となる被写体の光量(飽和量を除いた光量)に含まれる赤外光の光量もまた、可視光の光量の2倍以上となる。この場合、実際に信号処理の対象となる可視光の光量は、小さくなる(撮像素子12から出力される可視光成分の出力信号が小さくなる)。
通常、輝度信号は、可視光信号及び赤外光信号の両方の信号に基づいて生成されるが、色情報を持つ信号(色信号)は、可視光信号のみに基づいて生成される。それゆえ、例えば、被写体の光量に含まれる赤外光の光量が多い場合には、輝度信号に対して色信号が小さくなるので、色の薄い映像が生成される。
この場合、通常、色信号(可視光信号)に対して、例えば、足りない信号量を補うために、ゲイン補正処理などを行って色信号を増幅することにより、映像の色を濃くする。しかしながら、この場合、このゲイン補正処理の過程でノイズも増幅される。すなわち、必要以上の赤外線量を含む光が入射されると、映像信号に不要なノイズが発生する。このような状況は、例えば、太陽光、ハロゲン光、ナトリウムランプ等の光源自体に赤外線が多く含まれる光源が使用された場合(低照度の環境下を除く)において発生し易い。
それに対して、本実施形態では、赤外線を多く含む光源が使用され、被写体環境が高照度である場合には、光学フィルタ2の挿入機能を作動させて(レンズ11及び撮像素子12間の光路上に光学フィルタ2を配置して)、入射光に含まれる赤外光成分を遮断する。この場合、撮像素子12には可視光成分の光のみが入射される。それゆえ、被写体の光量に対する撮像素子12の出力信号の変化特性は、図8Bに示すような特性となり、実際に信号処理の対象となる被写体の光量に対応する信号は、可視光成分の光量に対応する可視光信号のみとなる。この場合、撮像素子12から出力される可視光信号が大きくなるので、ゲイン補正処理を施すことなく輝度信号及び色信号の両方を生成することができる。
なお、上述した問題は、例えば、基本画素群を構成する、第1単位画素が赤色光のみを受光可能な単位画素であり、第2単位画素が緑色光のみを受光可能な単位画素であり、第3単位画素が青色光のみを受光可能な単位画素である場合にも発生する可能性がある。それゆえ、このような構成の基本画素群を有する撮像装置に対しても、本実施形態の光学フィルタ2の挿入/取り外し機能は、同様に適用可能である。
<第2の実施形態>
[撮像装置の構成]
図9は、第2の実施形態に係る撮像装置の構成を示すブロック図である。なお、図9に示す本実施形態の撮像装置40において、上記第1の実施形態の撮像装置1(図1参照)の構成と同様の構成には、同じ符号を付して示し、それらの構成の説明は省略する。
本実施形態の撮像装置40は、図9と図1との比較から明らかなように、上記第1の実施形態の撮像装置1の構成において、さらに、光学フィルタを一つ追加した構成を有する。すなわち、本実施形態の撮像装置40は、2つの光学フィルタ41,42(第1光学フィルタ41及び第2光学フィルタ42)を備える。
第1光学フィルタ41は、上記第1の実施形態の光学フィルタ2と同様に可視光帯域の光信号のみを透過させるフィルタである。第2光学フィルタ42は、可視光帯域の光信号及び赤外光帯域の光信号を透過させるフィルタである。また、第2光学フィルタ42は、赤外光帯域の可視光帯域側に存在する近赤外光帯域の光信号を遮断する周波数特性を有する。なお、図示しないが、撮像装置40は、光学フィルタ制御部5から出力される駆動制御信号に基づいて、第1光学フィルタ41及び第2光学フィルタ42の配置位置を切り替える移動機構部も有する。
[光学フィルタの切り替え制御]
撮像装置40の光学フィルタの切り替え制御では、赤外線照射量が零であり且つ被写体環境において赤外線を多く含む光源が使用されている場合、第1光学フィルタ41は、入射光の光路上の所定位置(挿入位置)に配置されるように駆動(移動)制御される。また、この際、第2光学フィルタ42は、該光路上の位置以外の特定位置(取り外し位置)に配置されるように駆動(移動)制御される。一方、その他の場合には、第2光学フィルタ42は、挿入位置に配置されるように駆動制御され、第1光学フィルタ41は、取り外し位置に配置されるように駆動制御される。
また、被写体環境が超高照度の環境である場合には、光源の判定結果に関係なく、第1光学フィルタ41が挿入位置に配置され且つ第2光学フィルタ42が取り外し位置に配置されるように、第1光学フィルタ41及び第2光学フィルタ42が駆動制御される。一方、被写体環境が超低照度の環境である場合には、光源の判定結果に関係なく、第2光学フィルタ42が挿入位置に配置され且つ第1光学フィルタ41が取り外し位置に配置されるように、第1光学フィルタ41及び第2光学フィルタ42が駆動制御される。
なお、上述した第1光学フィルタ41及び第2光学フィルタ42の駆動(移動)動作は、光学フィルタ制御部5により制御される。また、本実施形態の光学フィルタの切り替え制御における光源の判定処理は、上記第1の実施形態と同様にして行われる。
また、本実施形態の光学フィルタの切り替え制御(移動制御)フローは、図7に示す上記第1の実施形態のそれと同様の制御フローとなる。なお、本実施形態で信号比率算出部22から光学フィルタ制御部5に挿入制御信号が出力された場合には、S16の処理において、第1光学フィルタ41を挿入位置に配置し、第2光学フィルタ42を取り外し位置に配置するような駆動制御処理が行われる。一方、本実施形態で信号比率算出部22から光学フィルタ制御部5に取り外し制御信号が出力された場合には、S19の処理において、第1光学フィルタ41を取り外し位置に配置し、第2光学フィルタ42を挿入位置に配置するような駆動制御処理が行われる。
[効果]
上述した本実施形態の撮像装置40及び光学フィルタの切り替え制御(移動制御)手法においても、上記第1の実施形態と同様に、被写体環境に応じて、撮影時の光学条件を最適な条件に自動的に遷移させることができる。また、本実施形態では、次のような効果も得られる。
可視光及び赤外光の両方を受光可能な汎用(低価格)の各種撮像素子の中には、単位画素において赤外光帯域の可視光帯域側に存在する近赤外光帯域の光に対しても、ある程度感光する撮像素子が存在する。図10Aは、そのような汎用の撮像素子において基本画素群を構成する、青色成分光及び赤外光を受光可能な第3単位画素の感度特性であり、図10Bは、緑色成分光及び赤外光を受光可能な第2単位画素の感度特性である。また、図10Cは、汎用の撮像素子において基本画素群を構成する、赤色成分光及び赤外光を受光可能な第1単位画素の感度特性であり、図10Dは、赤外光のみを受光可能な第4単位画素の感度特性である。
このような汎用の撮像素子では、第1〜第4単位画素は、近赤外光帯域(図10A〜図10D中の「NIR」の帯域)に対して、ある程度の感度を有する。また、第1〜第3単位画素における近赤外光帯域の感度特性は、互いに異なる。このような感度特性を有する汎用の撮像素子を例えば上記第1の実施形態の撮像装置1に採用した場合、光学フィルタ2の挿入機能の非作動時に得られる映像は、近赤外光帯域の光の影響を受けて赤っぽい映像となり、色再現性が低下する可能性がある。
それに対して、本実施形態の撮像装置40では、第2光学フィルタ42の挿入機能の非作動時には、近赤外帯域の光を遮断する第2光学フィルタ42がレンズ11及び撮像素子12間の光路上の挿入位置に配置される。それゆえ、本実施形態の撮像装置40では、図10A〜図10Dに示すような感度特性を有する汎用の撮像素子を採用しても、近赤外光帯域の光の影響を受けないので、被写体の正確なカラー映像を得ることができ、色再現性を向上させることができる。また、本実施形態では、低価格の汎用の撮像素子を採用することもできるので、撮像装置40のコストを低減することも可能になる。
<各種変形例>
以上、本発明の各種実施形態に係る撮像装置及び撮像手法について説明したが、本発明は、これらに限定されるものではなく、特許請求の範囲に記載した本発明の要旨を逸脱しない限り、その他種々の変形例、応用例の態様を取ることができる。
[変形例1]
上記各種実施形態では、レンズ11及び撮像素子12間の光路上に光学フィルタ2が配置されている場合、赤外光の信号比率(IR_Ratio)を、可視光の各信号比率(R,G,B_Ratio)に基づいて推定する例を説明した。しかしながら、本発明はこれに限定されない。例えば、レンズ11及び撮像素子12間の光路上に光学フィルタ2が配置されている場合、被写体からの入射光に含まれる赤外光の光量(赤外線量)を別途測定する構成部を設けてもよい。
図11は、変形例1に係る撮像装置の制御部50の内部構成を示す機能ブロック図である。なお、図11に示すこの例の制御部50において、図5に示す上記第1の実施形態の制御部20の構成と同様の構成には、同じ符号を付して示し、それらの構成の説明は省略する。
この例の制御部50は、図11と図5との比較から明らかなように、上記第1の実施形態の制御部20の構成において、さらに、赤外線受光部51を設けた構成を有する。赤外線受光部51は、例えば赤外線受光用のフォトダイオード等の受光素子で構成することができる。なお、赤外線受光部51は、制御部50の外部に設けられていてもよい。
この例の撮像装置では、レンズ11及び撮像素子12間の光路上に光学フィルタ2が配置されている場合であっても、被写体からの入射光に含まれる赤外光の光量を直接取得することができるので、光源の判定処理の精度を向上させることができる。
[変形例2]
上記各種実施形態及び上記変形例1では、光学フィルタ2の挿入/取り外し機能の切替制御の判定処理及び光源の判定処理において、共通の信号比率の閾値(判定パラメータ)を用いる例を説明したが、本発明はこれに限定されない。例えば、光学フィルタ2の挿入/取り外し機能の切替制御の判定に用いる信号比率の閾値を、光源判定に用いる信号比率の閾値とは別個に設けて、各判定処理を別個に行ってもよい。また、この場合、例えば判定対象の光源の種別(被写体環境)等に応じて、前者の閾値が、後者の閾値と異なっていてもよいし、同じであってもよい。
また、上記各種実施形態及び上記変形例1では、光源の判定処理において、光源が赤外光を多く含む光源(判定対象の光源)であるか否かを判別する例を説明したが、本発明はこれに限定されない。例えば、各種光源の信号比率の閾値やスペクトル特性を用いて、光源の種別そのものを判別する構成にしてもよい。この場合、必要となる各種光源の信号比率の閾値やスペクトル特性のデータは、制御部内のメモリ部に予め格納されている、又は、使用者により別途、メモリ部に追記される。
[変形例3]
上記各種実施形態及び各種変形例では、撮像領域12a全体における各光成分の信号比率を算出し、該信号比率を用いて各種判定処理を行う例を説明したが、本発明はこれに限定されない。例えば、撮像領域12aを複数の領域(分割領域)に分割し、分割領域毎に、信号比率を算出するとともに、該信号比率を用いて各種判定処理を行う構成にしてもよい。この場合には、分割領域毎に得られた判定結果を統計的に処理し、複数の分割領域において支配的な判定結果を、撮像領域12a全体(被写体全体)の判定結果としてもよい。
また、この例では、複数の分割領域のうち、一部の分割領域で得られた判定結果だけを統計的に処理して、撮像領域12a全体(被写体全体)の判定結果を求めてもよい。この手法を採用すると、例えば、被写体環境が、被写体の一部に特定の光源から常時、光が照射されているような特殊な環境である場合、この被写体の一部が含まれる分割領域を判定処理の対象から選択的に除外することができる。この結果、光源の判定処理において、特定の光源の影響を抑制すことができる。それゆえ、この例の撮像手法を採用すれば、例えば、多種多様な被写体環境(撮像装置の使用環境)やユーザの多様なニーズなどに対して、より適切に対応することができる。
[変形例4]
上記各種実施形態及び上記各種変形例では、赤色成分光、緑色成分光及び青色成分光の全ての信号比率を光源の判定処理で用いる例を説明したが、本発明はこれに限定されない。撮像素子12として、例えば、CMOS型やCCD型などの固体撮像素子を用いた場合、緑色成分光に対する感度は、光源の変化(光源の種別)に対して影響されに難い。それゆえ、緑色成分光の信号比率は、光源の判定処理で用いなくてもよい。
[変形例5]
上記各種実施形態及び上記各種変形例では、光学フィルタの挿入機能の作動中には、光源のスペクトル特性を用いて赤外光の信号比率(IR_Ratio)を推定する例を説明したが、本発明はこれに限定されない。例えば、光学フィルタの挿入機能の作動中には、IR_Ratioを推定式(経験式)により算出する機能を制御部に設けてもよい。また、この場合、この推定式に用いられる各種パラメータの係数を、例えば、撮像装置の使用環境や被写体環境に応じて自動的に最適化する機能(学習機能)を制御部にさらに追加してもよい。これらの機能を設けることにより、多種多様な被写体環境(撮像装置の使用環境)に対して、より適切に対応することができる。
なお、この推定式(経験式)に規定されるパラメータとしては、例えば、光学フィルタの光路上への挿入直前及び挿入直後の各信号比率等を用いることができる。また、この推定式は、例えば、発生頻度の高い被写体環境毎に別個に設けられていてもよい。さらに、学習機能で用いられる学習アルゴリズムとしては、従来周知の学習アルゴリズムを適用することができる。
[変形例6]
上記各種実施形態及び上記各種変形例では、光源の判定処理(光学フィルタの挿入/取り外し機能の切替制御処理)を1フレーム毎に実行する例を説明したが、本発明はこれに限定されない。例えば、所定の複数フレーム期間毎に、光源の判定処理を実行してもよい。この場合、制御部の処理負荷を軽減することができる。
[変形例7]
上記各種実施形態及び上記各種変形例では、赤外光を遮断するための光学フィルタの挿入位置をレンズ11及び撮像素子12間の光路上の位置に設定する例を説明したが、本発明はこれに限定されない。光学フィルタの挿入位置は、撮像素子12に入射される赤外光を遮断できる位置であれば任意の位置に設定することができる。例えば、光学フィルタの挿入位置を、レンズ11の光入射面の直前の位置に設定してもよい。
[その他の変形例]
上記各種実施形態及び上記各種変形例では、本発明を分かりやすく説明するために撮像装置の構成を詳細且つ具体的に説明したが、本発明は、必ずしも説明した全ての構成を備えるものに限定されるものではない。例えば、本発明の撮像装置は、少なくとも、上述した撮像部10、光学フィルタ2、可視光信号生成部3、赤外光信号生成部4、光学フィルタ制御部5及び制御部20を備えるカメラモジュールで構成することができる。この場合、その他の信号処理部は、該カメラモジュールとは別個のモジュールで構成してもよい。
また、上記信号制御(電気信号の処理制御)に係る各構成、機能、処理部等では、それらの一部又は全部を、例えば集積回路で設計する等により、ハードウェアで実現してもよい。この際、上記信号制御に係る各構成、機能、処理部等の一部又は全部を、適宜一体化して構成してもよい。
さらに、上記信号制御に係る各構成、機能、処理部等は、プロセッサがそれぞれの機能を実現するプログラムを解釈して実行することにより実現されてもよい。すなわち、上記信号制御に係る各構成、機能、処理部等をソフトウェアで実現してもよい。なお、各機能を実現するプログラム、テーブル、ファイル等の情報(データ)は、上述した内蔵のメモリ部だけでなく、例えば、ハードディスク、SSD(Solid State Drive)等の記録装置に格納することもできる。また、各機能を実現するプログラム、テーブル、ファイル等の情報(データ)は、IC(Integrated Circuit)カード、SD(Secure Digital)カード、DVD(Digital Versatile Disc)等の記録媒体に格納することもできる。
1,40…撮像装置、2…光学フィルタ、3…可視光信号生成部、4…赤外光信号生成部、5…光学フィルタ制御部、6…赤外線照射部、7…可視光信号処理部、8…赤外光信号処理部、9…信号合成部、10…撮像部、11…レンズ、12…撮像素子、20,50…制御部、20a…メモリ部、21…露光制御部、22…信号比率算出部、23…赤外線照射量制御部、24…光源判定部、25…信号処理設定値算出部、30a,30b…基本画素群、31,35…第1単位画素、32,36…第2単位画素、33,37…第3単位画素、34,38…第4単位画素、41…第1光学フィルタ、42…第2光学フィルタ

Claims (11)

  1. 被写体からの入射光を結像して光学像を生成するレンズ、並びに、可視光及び赤外光を同時に受光可能であり、前記レンズを介して入射された光信号を電気信号に変換する撮像素子を有する撮像部と、
    可視光のみを透過し、前記入射光の光路上の第1の位置と前記光路上の位置以外の第2の位置との間で移動可能な第1光学フィルタと、
    前記電気信号に含まれる可視光成分の信号のみを算出する可視光信号生成部と、
    前記電気信号に含まれる赤外光成分の信号のみを算出する赤外光信号生成部と、
    前記可視光信号生成部及び前記赤外光信号生成部で算出された信号に基づいて、所定の制御信号を出力する制御部と、
    前記所定の制御信号に基づいて、前記第1光学フィルタを前記第1の位置又は前記第2の位置に配置する光学フィルタ制御部と、
    を備える撮像装置。
  2. 前記撮像素子は、前記入射光に含まれる、赤色成分光と赤外光とを受光可能な第1単位画素と、緑色成分光と前記赤外光とを受光可能な第2単位画素と、青色成分光と前記赤外光とを受光可能な第3単位画素と、前記赤外光のみを受光可能な又は可視光帯域全ての光と前記赤外光とを受光可能な第4単位画素と、を有し、
    前記撮像素子の撮像領域では、前記第1単位画素、前記第2単位画素、前記第3単位画素及び前記第4単位画素が所定の態様で配列された基本画素群が、2次元状に配列されている
    請求項1に記載の撮像装置。
  3. 前記可視光信号生成部は、前記第1単位画素、前記第2単位画素、前記第3単位画素及び前記第4単位画素のそれぞれで得られた信号に基づいて、前記赤色成分光、前記緑色成分光及び前記青色成分光のそれぞれに対応する色成分信号を生成し、
    前記赤外光信号生成部は、前記第4単位画素で得られた信号又は前記第1単位画素、前記第2単位画素、前記第3単位画素及び前記第4単位画素で得られた信号に基づいて、前記赤外光に対応する赤外光信号を生成する
    請求項2に記載の撮像装置。
  4. さらに、
    前記被写体に対して赤外線を照射する赤外線照射部と、
    前記可視光信号生成部で生成された各色成分信号に対して所定の信号処理を施す可視光信号処理部と、
    前記赤外光信号生成部で生成された前記赤外光信号に対して特定の信号処理を施す赤外光信号処理部と、
    前記可視光信号処理部で前記所定の信号処理が施された信号と、前記赤外光信号処理部で前記特定の信号処理が施された信号とを合成し、該合成された信号を映像信号として出力する信号合成部と、を備え、
    前記制御部は、
    前記可視光信号生成部で生成された各色成分信号及び前記赤外光信号生成部で生成された前記赤外光信号に基づいて、前記撮像部における露光条件を制御するための露光制御信号を前記撮像部に出力する露光制御部と、
    前記可視光信号生成部で生成された各色成分信号及び前記赤外光信号生成部で生成された前記赤外光信号に基づいて、前記可視光の信号量に対する、前記赤色成分光の信号量の第1信号比率、前記緑色成分光の信号量の第2信号比率及び前記青色成分光の信号量の第3信号比率、並びに、前記可視光及び前記赤外光の総信号量に対する前記赤外光の信号量の第4信号比率を算出する信号比率算出部と、
    前記信号比率算出部により算出された前記第1信号比率、前記第2信号比率、前記第3信号比率及び前記第4信号比率に基づいて、前記被写体への赤外線の照射量を算出し、該算出した赤外線の照射量を前記赤外線照射部に出力する赤外線照射量制御部と、
    前記信号比率算出部により算出された前記第1信号比率、前記第2信号比率、前記第3信号比率及び前記第4信号比率に基づいて、前記被写体に照射されている光の光源を判定する光源判定部と、
    前記信号比率算出部で算出された前記第1信号比率、前記第2信号比率、前記第3信号比率及び前記第4信号比率、前記赤外線照射量制御部で算出された前記赤外線の照射量、前記第1光学フィルタの配置位置、並びに、前記光源判定部の判定結果に基づいて、前記可視光信号処理部、前記赤外光信号処理部及び前記信号合成部で実行される信号処理に必要な設定パラメータを算出する信号処理設定値算出部と、を有する
    請求項3に記載の撮像装置。
  5. 前記信号比率算出部は、前記赤外線照射量制御部で算出された前記赤外線の照射量及び前記光源判定部の判定結果に基づいて、前記第1光学フィルタを前記第1の位置及び前記第2の位置のいずれに配置するかを判定し、該判定結果に対応する制御信号を前記所定の制御信号として前記光学フィルタ制御部に出力する
    請求項4に記載の撮像装置。
  6. 前記信号比率算出部は、前記第1光学フィルタが前記第1の位置に配置されている場合には、前記第1信号比率、前記第2信号比率及び前記第3信号比率を用いて前記第4信号比率の推定値を算出する
    請求項4に記載の撮像装置。
  7. さらに、
    前記第1光学フィルタが前記第1の位置に配置されている場合に、前記入射光に含まれる前記赤外光を受光し、該受光した赤外光に対応する電気信号を前記信号比率算出部に出力する赤外線受光部を備える
    請求項4に記載の撮像装置。
  8. 前記光源判定部は、所定の判定データを用いて前記光源の判定処理を行い、
    前記信号比率算出部は、前記第1信号比率、前記第2信号比率及び前記第3信号比率と所定の光源推定データとに基づいて、前記第4信号比率の推定値を算出し、
    さらに、
    複数の被写体の撮像環境のそれぞれに対して設定された複数の前記所定の判定データ及び複数の前記所定の光源推定データを記憶するとともに、別の判定データ及び別の光源推定データの少なくとも一方を外部から記憶させることが可能な記憶部を備える
    請求項4に記載の撮像装置。
  9. さらに、
    複数の被写体の撮像環境のそれぞれに対して設定された複数の前記設定パラメータを記憶するとともに、別の設定パラメータを外部から記憶させることが可能な記憶部を備える
    請求項4に記載の撮像装置。
  10. さらに、
    可視光及び赤外光を透過し、該赤外光の波長帯域より可視光側の波長を有する近赤外光を遮断し、且つ、前記第1の位置と前記第2の位置との間で移動可能な第2光学フィルタを備え、
    前記光学フィルタ制御部は、前記所定の制御信号に基づいて、前記第1光学フィルタを前記第1の位置及び前記第2の位置の一方に配置し且つ前記第2光学フィルタを前記第1の位置及び前記第2の位置の他方に配置する
    請求項1に記載の撮像装置。
  11. 被写体からの入射光を結像して光学像を生成するレンズ、並びに、可視光及び赤外光を同時に受光可能であり、前記レンズを介して入射された光信号を電気信号に変換する撮像素子を有する撮像部と、可視光のみを透過する光学フィルタと、可視光信号生成部と、赤外光信号生成部と、制御部と、光学フィルタ制御部と、を備える撮像装置の前記可視光信号生成部が、前記電気信号に含まれる可視光成分の信号のみを算出することと、
    前記赤外光信号生成部が、前記電気信号に含まれる赤外光成分の信号のみを算出することと、
    前記制御部が、前記可視光信号生成部及び前記赤外光信号生成部で算出された信号に基づいて、所定の制御信号を出力することと、
    前記光学フィルタ制御部が、前記所定の制御信号に基づいて、前記光学フィルタを前記入射光の光路上の第1の位置又は前記光路上の位置以外の第2の位置に配置することと、
    を含む撮像方法。
JP2015165753A 2015-08-25 2015-08-25 撮像装置及び撮像方法 Active JP6360816B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015165753A JP6360816B2 (ja) 2015-08-25 2015-08-25 撮像装置及び撮像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015165753A JP6360816B2 (ja) 2015-08-25 2015-08-25 撮像装置及び撮像方法

Publications (2)

Publication Number Publication Date
JP2017046100A JP2017046100A (ja) 2017-03-02
JP6360816B2 true JP6360816B2 (ja) 2018-07-18

Family

ID=58210137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015165753A Active JP6360816B2 (ja) 2015-08-25 2015-08-25 撮像装置及び撮像方法

Country Status (1)

Country Link
JP (1) JP6360816B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7057221B2 (ja) * 2018-05-24 2022-04-19 キヤノン株式会社 撮像装置、その制御方法、および制御プログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4630781B2 (ja) * 2005-09-26 2011-02-09 キヤノン株式会社 波長成分の割合検出装置及びそれを用いた撮像装置
JP4895385B2 (ja) * 2007-04-10 2012-03-14 キヤノン株式会社 撮像装置
JP2010161455A (ja) * 2009-01-06 2010-07-22 Olympus Corp 赤外線混合撮像装置

Also Published As

Publication number Publication date
JP2017046100A (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6538819B2 (ja) 画像処理装置、画像処理方法およびプログラム
JP6568719B2 (ja) 撮像方法及び撮像装置
US9712757B2 (en) Image capturing apparatus capable of compositing images generated using the same development parameter and control method therefor
JP6351903B1 (ja) 画像処理装置、画像処理方法、及び撮影装置
JP5397788B2 (ja) 画像入力装置
US9967527B2 (en) Imaging device, image processing device, image processing method, and image processing program
JP2020185394A (ja) 電子内視鏡用プロセッサ及び電子内視鏡システム
JP6538818B2 (ja) 画像処理装置、画像処理方法およびプログラム
JP4305327B2 (ja) 撮像装置、ホワイトバランス制御方法及びホワイトバランス制御プログラム
KR102113488B1 (ko) 컬러 이미지를 향상시키기 위한 방법, 및 이러한 방법을 수행하는 어셈블리
KR20190116077A (ko) 이미지 처리
TWI625588B (zh) Camera control device
CN109561817B (zh) 电子内窥镜系统
JP6348254B2 (ja) 撮像装置
US11200647B2 (en) Image processing
US9871969B2 (en) Image processing device, imaging device, image processing method, and image processing program
JP6360816B2 (ja) 撮像装置及び撮像方法
JP4993670B2 (ja) 撮像装置及びその制御方法
US10187592B2 (en) Imaging device, image signal processing method, and image signal processing program
JP6466809B2 (ja) 撮像装置および撮像方法
JP6827782B2 (ja) 画像処理装置、撮像装置、画像処理方法、画像処理プログラム、および記録媒体
JP5464008B2 (ja) 画像入力装置
JP2009290795A (ja) 画像処理装置、画像処理方法、画像処理プログラム、記録媒体、および電子情報機器
JP5885023B2 (ja) 撮像装置、ホワイトバランス制御方法及びホワイトバランス制御プログラム
JP5600580B2 (ja) 画像処理装置、及び撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180625

R150 Certificate of patent or registration of utility model

Ref document number: 6360816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150