JP6359016B2 - 電気的に調整可能な出力およびアライメントを有するレンズ - Google Patents

電気的に調整可能な出力およびアライメントを有するレンズ Download PDF

Info

Publication number
JP6359016B2
JP6359016B2 JP2015533749A JP2015533749A JP6359016B2 JP 6359016 B2 JP6359016 B2 JP 6359016B2 JP 2015533749 A JP2015533749 A JP 2015533749A JP 2015533749 A JP2015533749 A JP 2015533749A JP 6359016 B2 JP6359016 B2 JP 6359016B2
Authority
JP
Japan
Prior art keywords
electro
optic layer
layer
electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015533749A
Other languages
English (en)
Other versions
JP2015533226A5 (ja
JP2015533226A (ja
Inventor
ヤディン、ヨアフ
アロン、アレックス
ハダッド、ヤリーフ
Original Assignee
オプティカ アムカ(エー.エー.)リミテッド
オプティカ アムカ(エー.エー.)リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オプティカ アムカ(エー.エー.)リミテッド, オプティカ アムカ(エー.エー.)リミテッド filed Critical オプティカ アムカ(エー.エー.)リミテッド
Publication of JP2015533226A publication Critical patent/JP2015533226A/ja
Publication of JP2015533226A5 publication Critical patent/JP2015533226A5/ja
Application granted granted Critical
Publication of JP6359016B2 publication Critical patent/JP6359016B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • G02C7/081Ophthalmic lenses with variable focal length
    • G02C7/083Electrooptic lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/12Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/20Diffractive and Fresnel lenses or lens portions
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/291Two-dimensional analogue deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/28Function characteristic focussing or defocussing

Description

本発明は、一般的に光学装置に関し、特に電気的に調整可能なレンズに関するものである。
(関連出願の参照)
本出願は2012年9月30日出願の米国暫定特許出願61/707,962(特許文献1)の恩恵を主張し、それはここに参照して採り入れられる。
調整可能レンズは、その焦点距離、および/または光軸の位置などの光学特性が、一般的に電気制御により使用中に調節できる、光学要素である。このようなレンズは広範囲の用途に使用できる。例えば、米国特許7,475,985(特許文献2)それはここに参照として採り入れられるが、視力矯正の目的のための電気活性レンズの使用について記載している。
電気調整可能なレンズは、一般的に適合する電気光学的材料の薄い層を含み、その局所的実効屈折率は材料の両端に適用される電圧の関数として変化する。電極または電極アレイは、局所的に屈折率を所望の値に調節するために所望の電圧を適用するのに使用される。液晶はこの目的のために最も頻繁に使用される電気光学的材料である。(適用電圧が分子を回転させ、それが複屈折軸を変化させ、それにより実効屈折率を変化させる。)しかし、高分子ゲルのような類似の電気光学的特性を有する他の材料もこの目的に使用可能である。
実際的な使用は限られているが、液晶に基づく種々のレンズ設計が従来技術で既知である。例えば、Naumov他はこの目的のための1つのアプローチを「モード制御の液晶適応レンズ」Optics Ltters23,992−994ページ(1998)(非特許文献1)のなかで記載しており、それはここに参照して採り入れられる。著者はネマチック液晶(LC)位相修正器を球面および円柱形の波面を形成するのに使用した。分布した反応性電気インピーダンスを有する液晶セルはセル境界に適用されるAC電圧により駆動され、屈折率の所望の空間的分布を得た。
他の調整可能レンズ設計は、電極アレイを使用して、液晶ディスプレイに使用される画素格子の類に似た、液晶中の画素格子を画定している。個々の画素の屈折率は電気的に制御され、所望の位相変調プロファイルを与える。(「位相変調プロファイル」という用語は本明細書および請求項においては、調整可能レンズの電気光学層の領域に亘る、局所的に変化する実効屈折率の結果としての、その層を通過する光に適用される局所位相偏移の分布を意味する。この種の格子アレイを使用するレンズは、例えば上記の米国特許7,475,985(特許文献2)に記載されている。
米国暫定特許出願61/707,962 米国特許7,475,985
Naumov他著「モード制御の液晶適応レンズ」Optics Letters23,992−994(1998)
以下に記載される本発明の実施形態は改良された電気的に調整可能な光学装置を提供する。
従って本発明の1実施形態によれば、光学装置であって、電気光学層の活性領域内の任意の所与の位置において局所実効屈折率を有する電気光学層と、ここで実効屈折率は上記所与の位置における、電気光学層をまたいで適用される電圧波形により決定され、電気光学層の第1の側において活性領域の上方に位置する共通電極と、電気光学層の第1の側と反対側の第2の側において活性領域の上方に伸長する平行な導電性ストライプを有する、励起電極のアレイと、それぞれの制御電圧波形を励起電極に適用するように接続され、そして、複数の励起電極に適用されるそれぞれの制御電圧波形を同時に変更し、それにより電気光学層の位相変調プロファイルを変更するように構成される、制御回路と、を有することを特徴とする、光学装置が提供される。
ある実施形態では、制御回路は、位相変調プロファイルにより決定される焦点特性を持つ円柱レンズ、場合によって円柱フレネルレンズとして装置が機能するように、励起電極に制御電圧波形を適用する。一般的に、制御回路は、円柱レンズの焦点距離を変化させるため、および/または円柱レンズの焦線を装置の横方向に偏移させるために励起電極に適用される制御電圧波形を変更するように構成される。
開示された実施形態では、電気光学層が液晶であり、液晶は偏光に依存しない層として構成されてもよい。
本発明の1実施形態によれば、さらに上記に記載の第1と第2の光学装置を有する機器であって、第1と第2の光学装置が直列に配置されることを特徴とする機器が提供される。第1と第2の光学装置は共通の基板を共有する。開示された実施形態では、第2の光学装置の励起電極が第1の光学装置の励起電極に対し直角な方向に向いている、そして制御回路は、機器が球面レンズをエミュレートするように第1と第2の光学装置の励起電極に制御電圧を適用するように構成される。あるいは、制御回路は、球面レンズの光軸を偏移させるために励起電極に適用される制御電圧を変更してもよい。
あるいは、第1の光学装置の電気光学層は第1の複屈折軸を有し、そして第2の光学装置の電気光学層は、第1の複屈折軸に垂直な第2の複屈折軸を有する。
本発明の1実施形態によれば、さらに上記に記載の装置を含む眼用レンズシステムが提供される。
本発明の1実施形態によれば、さらに、光学装置であって、電気光学層の活性領域内の任意の所与の位置において局所実効屈折率を有する電気光学層と、ここで実効屈折率は上記所与の位置における電気光学層をまたいで適用される電圧波形により決定され、電気光学層の第1の側において活性領域の上方に第1の方向で伸長する第1の平行な導電性ストライプを有する第1の励起電極の第1のアレイと、電気光学層の、第1の側と反対側の、第2の側において活性領域の上方に、第1の方向に直交する、第2の方向で伸長する第2の平行な導電性ストライプを有する第2の励起電極の第2のアレイと、それぞれの制御電圧波形を励起電極に適用するように接続され、そして、第1の励起電極と第2の励起電極の両方に適用される上記それぞれの制御電圧波形を同時に変更し、それにより電気光学層内に特定の位相変調プロファイルを生成するように構成される、制御回路と、を有することを特徴とする、光学装置が提供される。
開示された実施形態では、制御回路は、異なるそれぞれの振幅で、異なる励起電極の1つに制御電圧波形を適用する、および/または異なるそれぞれのデューティサイクルを持つ制御電圧波形を、異なる励起電極の1つに適用する、ように構成される。
ある実施形態では、制御回路は、位相変調プロファイルにより決定される焦点特性を持つ、フレネルレンズのようなレンズとして装置が機能するように、励起電極に制御電圧波形を適用する。一般的に、制御回路は、レンズの焦点距離を変化させるために、および/またはレンズの光軸を偏移させるために励起電極に適用される制御電圧波形を変更するように構成される。制御回路は、非点収差球面レンズとして装置が機能するように、励起電極に制御電圧波形を適用してもよい。
ある実施形態では、制御回路は、電気光学層をまたいで適用される電圧が、ある範囲内に制限されるように、制御電圧波形を適用するように構成され、ここで上記範囲内では、局所実効屈折率は適用される電圧の準線形関数として変化する。
もう1つの実施形態では、位相変調プロファイルは第1と第2の要素関数に分離可能な1つの関数として定義され、その要素関数はそれぞれ第1と第2の方向に向いたそれぞれ第1と第2の軸に沿って変化し、そして第1と第2の励起電極に適用された制御電圧波形は、それぞれ第1と第2の要素関数にしたがって特定される。第1と第2の要素関数は、電気光学層内の異なるそれぞれの位相偏移に対応するように選択された1組の要素波形に関して定義され、それにより位相変調プロファイルは、活性領域内のそれぞれの位置における、第1と第2の要素関数に起因するそれぞれの位相偏移の和からなる。
本発明の1実施形態によれば、また上記に記載の第1と第2の光学装置を有する機器であって、第1と第2の光学装置が直列に配置され、場合によって垂直な複屈折軸を有する機器が提供される。
本発明の1実施形態によれば、さらに、光学装置であって、電気光学層の活性領域内の任意の所与の位置において局所実効屈折率を有する電気光学層を含み、実効屈折率が、その所与の位置における、電気光学層をまたいで適用される電圧により決定される装置が提供される。電気光学層は、第1と第2の側と第1と第2の側の距離に等しい層厚を有する。導電性電極は電気光学層の第1と第2の側の上方に伸長する。電極は、電気光学層の層厚の4倍より小さい電極間ピッチを有する少なくとも1つの励起電極アレイを有する。制御回路は、電気光学層の位相変調プロファイルを変更するため、制御電圧波形を励起電極に適用するように接続される。
ある開示された実施形態では、電極は透明な導電性材料の平行なストライプからなり、そのストライプはストライプの間に電気光学層の層厚より小さな隙間幅の隙間を有する。
本発明の1実施形態によれば、また、光学装置を製作する方法が提供される。その方法は:電気光学層の活性領域内の任意の所与の位置において局所実効屈折率を有する電気光学層を提供するステップを含み、ここで実効屈折率は上記所与の位置における電気光学層をまたいで適用される電圧波形により決定される。共通電極が電気光学層の第1の側に活性領域をカバーするために配置される。平行な導電性ストライプを有する励起電極のアレイが、活性領域の上方に伸長するように、電気光学層の第1の側と反対側の第2の側に配置される。制御回路が、それぞれの制御電圧波形を励起電極に適用し、そして、複数の励起電極に適用される制御電圧波形を同時に変更し、それにより電気光学層の位相変調プロファイルを変更するために接続される。
本発明の1実施形態によれば、さらに、光学装置を製作する方法であって電気光学層の活性領域内の任意の所与の位置において局所実効屈折率を有する電気光学層を提供するステップを含み、ここで実効屈折率はその所与の位置における電気光学層をまたいで適用される電圧波形により決定される。第1の平行な導電性ストライプからなる第1の励起電極の第1のアレイが、電気光学層の第1の側において活性領域の上方に第1の方向で伸長するように配置される。第2の平行な導電性ストライプからなる第2の励起電極の第2のアレイが、電気光学層の、第1の側と反対側の、第2の側において活性領域の上方に、第1の方向に直交する、第2の方向で伸長する。制御回路が、それぞれの制御電圧波形を励起電極に適用し、そして、第1の励起電極と第2の励起電極の両方に適用されるそれぞれの制御電圧波形を同時に変更し、それにより電気光学層内に特定の位相変調プロファイルを生成するように接続される。
本発明の1実施形態によれば、さらに光学装置を製作する方法が提供される。その方法は、電気光学層の活性領域内の任意の所与の位置において局所実効屈折率を有する電気光学層を提供するステップを有し、ここで実効屈折率は、その所与の位置における電気光学層をまたいで適用される電圧により決定され、電気光学層は、第1と第2の側を有し、そして第1と第2の側の間の距離に等しい層厚を有する。導電性電極が電気光学層の第1と第2の側の上方に伸長するように配置され、導電性電極は、電気光学層の層厚の4倍より小さい電極間ピッチを有する少なくとも1つの励起電極のアレイからなる。制御回路が、電気光学層の位相変調プロファイルを変更するため、制御電圧波形を励起電極に適用するように接続される。
本発明は図面を伴う以下の実施形態の詳細な記載により、より十分に理解されよう:
本発明の1実施形態に基づく、光学装置の概略側面図である。 本発明の1実施形態に基づく、光学装置の概略絵画的図解である。 本発明の1実施形態に基づく、図2Aの装置の対向する側に配置された電極の概略側面図である。 本発明の1実施形態に基づく、図2Aの装置の対向する側に配置された電極の概略側面図である。 図3Aは、本発明の別の1実施形態に基づく、光学装置の概略絵画的図解である。図3B、3Cは本発明の1実施形態に基づく、図3Aの装置の対向する側に形成された電極の概略側面図である。図3Dは、本発明の1実施形態に基づく、装置の対向する側の電極の重ね合わせを示す、図3Aの装置の概略側面図である。 本発明の1実施形態に基づく、光学装置の制御に使用される、光学装置の液晶層の実効屈折率の依存性を適用電圧の関数として示すグラフである。
(概要)
画素格子を有する電気光学材料を用いた電気的に調整可能なレンズは、原則的に、局所屈折率と画素ピッチの達成可能な範囲の制限内で、任意の所望の位相変調プロファイルを生成することができる。しかし、眼科用のような多くの用途のための実用的なレンズの実現には、非常に小さい画素の、大きなアドレス指定が可能な格子、例えば、50μm以下のピッチの少なくとも400X400画素のアレイ、が必要とされている。
液晶ディスプレイ(LCD)パネルでは、画素は、典型的には、N行M列のマトリックス状に配置されている。NxM個の画素の各々は、他の画素全てと独立した、1組の可能値(グレイレベル)を受け取ることができる。液晶(LC)層に適用される局所電圧を変化させることによって異なる画素値が得られる。典型的には、電圧は時間変化し、液晶応答時間よりも速い速度で正負の符号が入れ替わり(AC)、そして液晶は、平均電圧が一定の閾値を超えている限り、実効平均適用電圧に応答する。
LCDパネルの画素に適用される実効電圧は、駆動回路により制御される。画素数大きいため駆動回路は、通常、行と列の電極の電圧を制御し、直接各画素の電圧を制御しない。この方式は、ドライバがNxM個の代わりにN+M個だけの電圧値を制御することを可能にする。各画素の実効電圧を独立して制御する必要があるため、画素の値を逐次更新するためにドライバ内で時分割技法が使用されている。行電極は、典型的には、活性な行を選択する制御電圧に使用され、一方列電極は行制御電圧によって選択された現在活性な行の中の画素の必要な値に対応する、データ依存電圧を適用するために使用されている。ある列の必要な画素値は、このように、列電圧波形に亘ってマルチプレクスされている。
この種のタイムシェアリングは、例えば、画素毎に1つのトランジスタを横に配置することによって達成できる。トランジスタは、列電極を画素電極に接続し、そしてその導電率は対応する行電極によって制御される。行はこのように、一度に1行逐次アドレスされる。特定の行、例えば行番号kを更新する場合には、k行の電極の電圧は、その行の画素のトランジスタを開くように設定され、一方他のすべての行の電圧はトランジスタを閉じるように設定される。その後列電極の電圧が、行kの中で表示されるべきデータに応じて更新される。この種のパネルはレンズを実現できるが、トランジスタに起因する比較的低い画素フィルファクターが、回折効果を生じ、それがレンズ品質を制限する。
タイムシェアリングは、トランジスタに頼ることなく実施することができる。時分割多重化として知られるこの方式では、液晶層は直交する向きの平行な2つの電極アレイ間に配置される。X軸電極が液晶の一方の側に配置され、X軸電極と直交するY軸電極が液晶の他方の側に配置される。各画素上の電圧は、その行電極と列電極の電圧波形の間の差である。所望の位相変調プロファイルを達成するために、更新される行を除く全ての行電極の電圧は、値Vbiasに設定され、その値はVbias電圧と列電極電圧の電圧差が、液晶応答しきい値電圧より低いことを確実にするように選択される。更新される行の画素のみが液晶の閾値電圧よりも大きい電圧を受け取り、従って更新される。この方式は、しかしながら、大画素数をサポートすることができないため、高品質のレンズの実現に使用することができない。
本明細書に記載される本発明の実施形態は、既存技術で知られている装置よりも細かいピッチとより柔軟なアドレス可能性を達成することができる、新規の電気的に調整可能な光学装置を提供することにより、上記の制限を克服する。例えば開示された装置は、円柱型レンズ(1つの軸に沿った集束、ストライプ電極のアレイを使用)として動作する、または2軸収束を有する球面レンズをエミュレートするように構成されてもよい。屈折力と、光軸の位置、すなわち、このように定義されたレンズの実効中心点又は軸、の両方が、適切な制御電圧を適用することによって自由にかつ迅速に変更することができる。
一般的に、開示された装置は、分離可能な任意の位相変調プロファイルを適用するように構成することができる。二次元位相変調プロファイル
Figure 0006359016
は、2つの1次元関数の積に分解することができる場合には分離可能である:
Figure 0006359016
言い換えれば、これらの装置は、それぞれの互いに直交する軸に沿って変化する、2成分関数に分離可能な1つの関数として定義された任意の位相変調プロファイルを適用することができる。そして位相変調プロファイルは第1および第2の成分関数に起因するそれぞれの位相偏移の和を含む。(位相が周期2πの周期的関数であるため、この文脈では用語「和」は、モジュロ2πのモジュラー和を含むものと理解されるべきである。)
開示された実施形態のいくつかでは、光学装置は電気光学層を備え、それは、上述したように、その層の活性領域内の任意の場所での局所実効屈折率が、その位置の近傍で電気光学の両端に適用される電圧によって決定されることを意味する。一般的に電気光学層は、液晶層、場合により極性に無関係な液晶層(例えば、コレステリック液晶層のような)からなるが、他のタイプの電気光学材料を替わりに使用してもよい。1つの共通電極が、電気光学層の一方の側で活性領域の上方に配置される。導電性材料の平行なストライプからなる励起電極のアレイが、電気光学層の反対側活性領域の上方に延びる。
電気光学層の位相変調プロファイルを駆動し変更するために、制御回路は、励起電極にそれぞれの制御電圧を適用する。典型的には、各ストライプ(すなわち、各励起電極)が制御回路によって個別に接続され制御され、それによりいくつかの又は全ての励起電極に適用される電圧波形は同時に変更可能である。この構成は、ストライプの間の距離と、電気光学層の厚さとによってのみ制限される解像度を有する、任意の調整可能な一次元プロファイルの光学装置(例えば、円柱型レンズなど)を提供する。装置の位相変調特性は、制御回路の速度および電気光学層の応答時間によってのみ制限される速度で変更することができる。
このタイプの2つの装置は、球面レンズを軸近似下エミュレートすることができるを提供するために、一つの装置の励起電極を他の装置の励起電極と直交する方向に配向して、直角に重ねられてもよい。
他の実施形態において、光学装置は、層の対向する側に第1及び第2の励起電極のアレイを有する1つの電気光学層からなる。各アレイは、活性領域の上方に延在する導電性材料の平行なストライプを有し、第2のアレイは第1のアレイと直交する方向に配向している。制御回路は、両方のアレイの励起電極にそれぞれの制御電圧波形を適用し、そして電気光学層の両側の多重の励起電極(および場合により励起電極の全て)に適用される制御電圧を変更することが可能である。制御回路は、電気光学層内に特定の位相変調プロファイルを生成するために、第1および第2のアレイ内の励起電極に適用されるそれぞれの制御電圧波形を同時に変更してもよい。
これらの実施形態では、時分割多重方式が必要とされず、行と列の両方の電圧波形はデータ依存性である。電圧波形は、電気光学材料内で線形位相応答を生成するように選択される。形式的に述べると、液晶に適用される電圧波形に関連して使用される用語「線形位相応答」とは、第1の既定の1組の位相値
Figure 0006359016
に対応して、
1組の電圧波形
Figure 0006359016
が第1の組の電極に適用され、そして、第2の既定の1組の位相値
Figure 0006359016
に対応して、
1組の電圧波形
Figure 0006359016
が第1の組の電極と直角に配置された第2の組の電極に適用される場合、i=1..Nおよびj=1..Mのそれぞれに対し、電圧波形V(t)が電気光学層に適用される時の電気光学層を通過する光に対する位相変調プロファイル
Figure 0006359016
は、
Figure 0006359016
で与えられる、ことを意味する。実際の実施形態では、本発明者らは、16個以上の位相値の組(すなわち、N、M≧16)が、光学性能の点で良好な結果を与えることを見出した。
例えば、球面レンズは伝達関数
Figure 0006359016
を有する光学要素であり、ここにfおよびλはそれぞれレンズ焦点距離と波長である。T(x,y)は分解可能であり、
Figure 0006359016
であり、そして合計位相応答はx軸の位相寄与値とy軸の位相寄与値との和として表現できる。口半径Rのレンズの最大位相遅延は
Figure 0006359016
である。位相変調領域はN個の量子化レベル
Figure 0006359016
に分割可能である。
本発明の幾つかの実施形態では、これらの位相値に対応するため線形−位相−応答電圧波形が定義される。その後、必要な位相変調値がそれぞれの電極に対し計算される。例えば、χ=χに位置する電極は位相
Figure 0006359016
を必要とし、ここでχはレンズの中心点である。この位相値は最も近い既定の量子化レベルに量子化される。最も近い量子化レベルを
Figure 0006359016
で表示するとχ=χにおいて電極に適用される電圧波形はVx,l(t)となる。線形−位相−応答電圧波形の適切な選択により、各画素における位相変調は、X軸とY軸上の電極電圧波形に対応する、位相変調の和となり、それによりレンズを形成する。
したがって、当技術分野で公知のLCDパネルと異なり、X軸およびY軸電極の両方が、データ依存性電圧波形で駆動され、そして全ての電極が同時かつ独立して駆動されうる。この文脈で使用される用語「同時に」は、駆動波形が、アレイの電極により定義される異なる行と列内の多重の画素に、時分割多重化することなく、同時に適用されることを意味する。「独立して」という用語は、異なるデータ依存性波形がX軸とY軸の両方に沿って、各電極に適用されうることを意味する。制御回路は、典型的には、異なる電極の1つに、異なる振幅で、および/または般的には異なるデューティサイクルを持つ時間波形で、れぞれの電圧を適用してもよい。
既存技術で既知の液晶表示装置では、画素のピッチは、近隣の画素から当該画素を明確に保ち、そしてクロストークを最小化するために、液晶層の厚さに比較して大きい。隣接する電極間の距離も、同様に、液晶層の厚さに比べて大きい。対照的に、本発明のいくつかの実施形態では、電極間ピッチ(一定または可変であってよい)は、電気光学層の層厚の4倍未満であり、または場合によっては層厚の2倍未満であり、または層厚自体より小さい。電極ストライプ間の距離は、同様に、電気光学層の厚さよりも小さくてもよい。小さな電極ピッチと電極間の狭いギャップは、調整可能な光学装置の所望の微細な解像度を高める。さらに、この微細な電極形状に起因する隣接画素間のクロストークは、実際には、光学装置の領域にわたって生成される位相プロファイルを平滑化するのに有益でありうる。
(システムの記載)
図1は、本発明の実施形態に基づく、光学システム20の概略側面図である。図示される実施形態では、システム20は、ユーザの眼22の視力に対する動的矯正を提供する眼用レンズとして機能するように構成されている。本実施例は単に非限定的な一例であるが、本発明の原理の可能な用途である。
システム20は、2つの電気的に調整可能な光学装置24および26からなり、それらは直列に配置され、そして調整可能な円柱レンズとして機能するように構成されている。この種の装置は、図2A−2Cに示されている。装置24及び26における励起電極の向きに起因して、2つの装置のそれぞれの円柱軸は互いに直交し、それにより例えば、装置24は垂直な焦線を有し、一方装置26は水平な焦線を有している。装置24と26は明確化のため別々のユニットとして示されているが、2つの装置は選択肢として1つの共通基板を共有してもよい。
さらなる選択肢として、装置24および26は、従来のレンズ28と組み合わせて使用されてもよい。このレンズはシステム20のベースラインの屈折力を提供し、それは装置24および26の動作によって動的に調整される。
制御ユニット(図示せず)が、それら装置のそれぞれの屈折力とアラインメントを調整するため、光学装置24および26を制御する。例えば、眼22がフォーカスしようとする距離を調節するためにそれぞれの屈折力を増加または減少させることができる。装置24および26は、球面レンズをエミュレートするために、同じ屈折力を有するように、場合によっては非球面成分を追加して、設定されてもよい。あるいは、装置24および26は、非点収差レンズとして機能するために、異なる屈折力を有していてもよい。
図1に示されている別の例として、装置24および26の光学的中心線が、横方向にシフトし、それによりシステム20の光軸が、基準軸30から、偏向軸32にシフトする。この種の軸シフトは、システムの光軸をユーザの注視角と動的にアライメントするために、可能性として目のトラッキング協働して、適用されうる。
より一般的には、システム20は、プロファイル内の位相シフトの範囲が、装置24及び26における屈折率変化及び電気光学層の厚さの範囲により達成可能な限り、装置24および26に適切な制御電圧を適用することより制御され、水平成分と垂直成分に分離可能な実質的に任意の所望の位相プロファイルを実現することができる。位相シフトの必要な範囲を減少させるため、装置24及び26に適用される電圧は、装置が円柱フレネルレンズとして動作するように選択されてもよい。
他の実施形態では、円柱形の装置24及び26は、2次元の位相プロファイルを生成するように配置された電極を有する単一の光学装置に置き換えることができる。このような装置を、図3A−Dを参照して以下に説明する。
(調整可能な円柱形レンズ)
次に図2A−Cを参照する。それは本発明の一実施形態による、光学装置24の詳細を概略示す図である。図2Aは、装置の概略絵画的図解であり、一方図2B、2Cは対向する側に配置された電極の概略側面図である。システム20(図1)では、装置26は、装置24と同一の設計でもよいが、励起電極46図2Bに示すように垂直ではなく、水平方向に配置される。
装置24は液晶層のような電気光学層40を含み、それは当該技術分野で知られているように、一般的に適切なカプセル封入により収容される。電気光学層40は、その活性領域内(例えば、実際に液晶を含む電気光学層40の領域内)の任意の所与の位置において1つの局所実効屈折率を有し、それは、その位置で電気光学の両端に適用される電圧によって決定される。電気光学層40中の液晶は、複屈折性であってよく、その場合、装置24またはシステム20は、既存技術で既知のように、層40により通過されそして屈折される光の偏光を選択するため、偏光子を含んでよい(簡略化のため図から省略)。あるいは偏光子の必要性を回避するために、このような直交する複屈折軸を有する2つのレンズが連結され、それによりそれぞれのレンズが異なる直交する偏光上で動作してもよく、あるいは、コレステリック液晶材料の層のような、偏光に依存しない液晶層を使用してもよい。
ガラスブランクのような透明基板42及び44は、電気光学層40の両側に配置され、各電極は、図2B及び図2Cに示すように、それら基板上に配置されている。当技術分野で知られているように、電極は、インジウム・スズ酸化物(ITO)などの透明導電性材料から構成される。あるいは、妨害的な光学効果を引き起こさないように十分に薄い限りは、非透明電極が使用されてもよい。基板44上の共通電極50は、電気光学層40の一方の側で、その活性領域の上方に配置される。この共通電極は、一体構造の長方形として示されているが、それは電気光学層40の活性領域を十分にカバーする任意の形状を有して良い。基板42上の透明導電性材料の平行なストライプからなる励起電極46のアレイは、電気光学層40の反対側の活性領域の上方を伸長する。(この文脈における「平行」とは、また、数度の角度だけずれた電極を含んでもよい。)
例えば、図に示す電極パターンは、基板42及び44上にリソグラフィーにより形成されてもよく、その後基板は、既存技術で既知の接着剤またはエッチングされたスペーサを使用することにより所定の距離、一般的に数ミクロン、で互いに接着される。その後電気光学層40が挿入され、基板間に封入される。視覚的明確化のため少ない数の電極しか図2Cに示されていないが、実際には装置24は、良好な光学的特性のため、少なくとも100個の励起用ストライブ電極、場合によって400個以上の電極を含む。これと同じ条件が、図3B及び図3Cに示したストライプ電極に適用される。
制御回路48は、電極50の共通電圧レベルに対して相対的なそれぞれの制御電圧を、励起電極46に適用するように接続される。制御回路48は、一般的に既存技術で既知の増幅器および/またはスイッチからなり、それはそれぞれの電極46に適用される電圧の振幅又はデューティサイクルのいずれか、またはその両方を制御する。電極に適用される振幅および/またはデューティサイクルのパターンは、電気光学層40の位相変調プロファイルを決定する。制御回路48内の回路構成要素は、一般的には、シリコンチップとして製造され、それはその後、図2Bに示すように基板42上に接着される。あるいは、回路48の一部またはすべての構成要素は、別の1つのチップ上に形成され、適切なボンディングワイヤまたは他の接続によって基板42に接続されてもよい。いずれの場合においても、制御回路は、図3Cに示すように、電極のアレイの脇に配置することができ、そして制御回路のどの部品も電気光学層40の活性領域の上方に配置される必要がない。
回路48は、励起電極46の1組のそれぞれ(電極の全てを含んでいてもよい)に適用される制御電圧を同時にかつ独立して、変更することができる。例えば、回路48は、アレイ内のすべての奇数番目の電極に適用される制御電圧を、全ての偶数番目の電極と交互に更新することができる。この種のアプローチは、大きな電極数に容易に拡大し、従って、大きな画素数と高分解能とを有する電気的に調可能な光学システムを作成するために使用することができる。
前述のように、光学装置24は円柱形レンズとして機能するように制御することができ、その焦点特性は、電極46に適用される電圧によって電気光学層40内に誘起される位相変調プロファイルによって決定される。選択肢として、これらの電圧は、光学装置24が円柱型フレネルレンズとして機能するように設定されてもよい。励起電極46に適用される制御電圧は円柱型レンズの焦点距離を変化させるだけでなく、光学装置に横断的な方向に(即ち基板42及び44の表面に平行な方向に)円柱型レンズの焦線をシフトさせるように変更されてもよい。
(2次元位相変調プロファイルを持つ装置)
図3A−3Dは、本発明の別の1つの実施形態による、2次元位相変調プロファイルが、単一の電気光学層62内に作成される光学装置60を示している。図3Aは、光学装置の概略絵画的図解であり、一方図3B及び図3Cは、装置の対向する側に形成された透明基板64及び66の概略側面図である。図3Dは、装置の対向する側の基板64及び66上の励起電極68および72の重ね合わせを示す、装置60の概略側面図である。装置60は、例えば装置24と26の組み合わせの代わりに、システム20(図1)内に置換えられてもよい。
光学装置60は、上述の電気光学層40に類似した液晶層のような電気光学層62を含んでいる。基板64および66上のそれぞれの電極68及び72は、互いに直交する方向で層62の活性領域の上方に延在する平行な透明導電性材料のストライプからなる。電極68及び72は、図中では均一な形状及び間隔であるが、ストライプは、代替として、変化する大きさ及び/又はピッチを有することができる。
制御回路70および74は、それらは回路48(図2B)に類似した構造及び設計でよいが、制御電圧を励起電極68および72にそれぞれ適用する。光学装置24と同様に、光学装置60内の制御回路は、1つの組の励起電極のそれぞれ(電極の全てを含んでいてもよい)に適用される制御電圧を同時にかつ独立して変更することができる。しかし、制御回路70および74は、協働して電気光学層62の側の励起電極の組に適用される電圧を変化させることができ、それによって電気光学層の位相変調プロファイルを二次元で変更できる。
制御電圧は、このように、光学装置60が位相変調プロファイルによって定される焦点特性を有する、レンズ(場合によってフレネルレンズ)として機能するように、励起電極68及び72に適用されてもよい。制御電圧波形は、上記で説明し定義したように、電気光学層の線形位相応答をもたらす。制御回路は、焦点距離を変更し、および/またはレンズの光軸をシフトさせるために制御電圧を変化させることができる。制御回路70及び74により電極68及び72を横切って適用される電圧パターンは、円対称位相変調プロファイルを与えるように選択することができ、それにより、球面レンズをエミュレートすることができる。あるいは、異なる電圧パターンが適用され、それにより光学装置60が例えば、一方の軸たは他の軸に沿った他より強い円柱成分を有する、非点収差レンズとして機能してもよい。
図3Dに示すように、電極68および72の重ね合わせは、電極68の縦ストライプと電極72の水平ストライプの重なり領域により画定される、画素76のアレイを形成する。ストライプの中心間の距離が画素アレイのピッチPを規定し、一方導電性ストライプ自体の幅Dが、ピクセル76のサイズを規定する。(これらのパラメータは、光学装置60の二次元アレイに対してここに示されているが、同様の寸法および考慮事項が上述の装置24および26の一次元アレイに適用される。)電極アレイのこれらの寸法パラメータは図3Aに示す電気光学層62の層厚Tと比較される。
既存技術で既知のほとんどの液晶装置とは対照的に、光学装置60の電極間ピッチPは、電気光学層62の厚さTの4倍未満であり、そして厚さTの2倍未満であってもよい。さらにあるいは、電極ストライプ間の距離(P−D)は層厚Tより小さくて良く、場合によっては層厚Tの半分未満でよい。いくつかの実装形態では、電極間ピッチPでさえも層厚Tより小さくて良い。この寸法選択はピクセル76の高いフィルファクターを可能にし、従って高解像度を可能にする。さらに比較的厚い電気光学層62は、光学装置60が広範囲の異なる位相偏移の生成を可能にし、一方小さなピッチは高解像度での屈折率変調、従って位相偏移をサポートする。この寸法選択から生じる隣接する画素間のクロストークは、実際には、装置の位相変調プロファイルを平滑化するのに有益であり、したがって従来のレンズの二次形状をより密接に近似する。
前述のように、光学装置60、ならびにシステム20内の光学装置24と26の組み合わせは、X−及びY−方向に分離可能な位相変調プロファイルを生成するために特に使用することができる。しかしながら、液晶または他の電気光学層の実効屈折率の変化は、一般に適用された電圧において線形ではない。システム20では、光学装置24及び26の各々は、独立して制御され、したがって電圧制御回路48によって電極46に適用される電圧は、非線形性を調整するために補正されうる。一方で光学装置60では、各画素76の両端の電圧は、その画素で交差する垂直電極68と水平電極72の両方に適用される電圧の関数であり、したがって非線形性の補正は単純ではない。
本発明の実施形態では、所望の線形位相応答を達成するため、したがって、X方向とY方向で分離可能な位相変調プロファイルを実現するために少なくとも2つの異なるアプローチが使用されてよい。このような手法の1つは、図4を参照して以下に説明するように適用電圧の範囲を制限することである。あるいは、電極68及び72に適用される電圧波形を、それらの重ね合わせが電気光学層62において線形応答を与えるように、選択されてもよい。
図4は、本発明の実施形態にもとづく、装置60を制御するのに使用される適用電圧Vに対する、1つの光学装置内の液晶層の実効屈折率nの依存性を示す概略グラフである。 (このグラフは、Wangら著「液晶ブレーズ格子ビーム偏向器」応用光学39、ページ6545−6555(2000)によって提示されたデータに基づいている。)示された曲線は、全体として非線形であるが、それは、1−2Vの概略範囲でほぼ線形領域を有し、それをここでは準線形領域と呼ぶ。用語「準線形」は、本明細書および特許請求の範囲では、有効屈折率が、事前定義された±10%以内のような誤差範囲内において電圧に対してほぼ線形、即ち、n(V)=a+bVである領域を指し、ここでa、bはそれぞれ、固定偏差および勾配パラメータである。
円柱レンズプロファイルを形成する電圧Vx(x)が垂直電極68に適用され、(n(x)=a+bVx(x)は円柱状の位相プロファイルを生成する)、そして類似するが反転したプロファイルVy(y)=−Vx(y)が水平電極72に適用される場合、電気光学層62をまたぐ電圧プロファイルは、V(x,y)=Vx(x)−Vy(y)である。この電圧プロファイルは、電圧が線形(または準線形)応答領域内にあるかぎり、屈折率プロファイルを与える:
n(x、y)=a+b[Vx(x)−Vy(y)]=a+bVx(x)−bVy(y)
式の右辺第1項の(a)は一定であり、したがって、位相変調に寄与しない。第2項および第3項は、水平および垂直の円柱形レンズ成分であり、それらは一緒に二次元のレンズを構成する。
電気光学層62の準線形応答領域内において、異なる電圧を適用する、または異なるデューティサイクルに対して同じ電圧を適用する、またはそれら技術の組み合わせ、のいずれかにより、屈折率応答が準線形で等式n(x、y)=a+bVx(x)−bVy(y)が維持される限り、異なる画素76において異なる位相変調値が得られる。
一方、適用される電圧を電気光学層62の準線形範囲に制限することは、デバイス60の動作を単純化するが、この制限は必須ではない。準線形範囲外で動作した場合でも、電気光学層62の位相変調は、X軸およびY軸上に適用される変調の和として表すことができる。この場合、制御回路70および74は、電気光学層62内に特定の1組の位相偏移を生成するように選択された、それぞれの時間変化パターンを有するそれぞれの波形として、電極68および72に対し制御電圧を適用してもよい。例えば、1つのフレネルレンズに対しN個の異なる位相レベルが必要な場合は、所望の位相応答レベルを与えるために、X−方向及びY−方向の電極に対しN個の異なる電圧波形のペアが選択される。形式的には、X−方向及びY−方向の電極に対し電圧波形が定義されている:
Vx(t)およびVy(t),i=0...N−1,
それにより、それぞれのi=0...N−1に対し、電極間電位差に対する電気光学層62の位相応答は:
Figure 0006359016
であり、ここにtは時間を表し、φはベースライン位相を表す。
適切な波形の選択は、(電気光学層の制限内で)任意の所望の分離可能な位相プロファイルの実現を可能にする。これらの電圧波形を生成する方法は、以下の付録において提示される。付録に記載されたアプローチでは、デューティサイクル変調が、特定の固定電圧で電極に適用されるが、しかし、波形は、選択される一定期間(通常短い)の間に、X方向およびY方向の波形の重なりによって電気光学層の両端の電圧が2倍になるように選択される。電圧の影響は液晶によって平均化されるが、直線的にではなく、すなわち、期間2Tの間の電圧Vは、期間Tの間の2Vの電圧と等価ではない。後者がより大きな効果を有する。この追加された自由度は、問題を解決し、所望の線形応答を達成するための適切な波形を選択するために使用される。
しかし波形のこの特定の選択がこの種の実施形態の可能な実現の一例にすぎないことは、この導出に基づいて明らかであろう。波形の他の組は、同様に導出可能であり、そしてそれらは本発明の範囲内であると考える。したがって、上述の実施形態は例として引用され、本発明の範囲は上記に具体的に示し、記述したものに限定されない。むしろ、本発明の範囲は、様々な上述の特徴の組合せ、および準組み合わせの両方を含み、そして、本明細書の上記記述を読んだ当業者に想起される、従来技術にない、変形および修正を含む。
(付録−電気光学層の位相応答のための電圧波形の構築)
(問題文):
X方向およびY方向電極に対する電圧波形を定義する:
Figure 0006359016
それにより、それぞれのi,l=0...N−1に対し、X−方向及びY−方向の電極間の電位差に対する液晶位相応答は:
Figure 0006359016
(定義)
以下の電圧波形関数は−T/4<t<T/4に対して定義される。関数の残部は電圧関数が周期的でそして符号が交替することを仮定して完成される:
V(t+T/2)=−V(t)
とtの間をサポートする階段関数が定義される:
Figure 0006359016
ここでD=(t−t)/(T/2)はSt1,t2(V,t)のデューティサイクルである。液晶応答はデューティサイクルに依存し、t,tに個別に依存しない。
階段関数に対する一般的な液晶応答の位相:
Figure 0006359016
は:
1.Vの関数として単調に非減少、およびまた、Vの関数として凹面をなす。
2.Dの関数として単調に非減少、およびまた、Dの関数として凹面をなす。
2つの階段関数を引き算することにより、異なる時間領域に対する2V、V、および0に等しい波形を得る。例えば、t<t<tに対して:
Figure 0006359016
この波形は電圧2VにおいてD=(t−t)/(T/2),電圧VにおいてD=(t−t)/(T/2)のデューティサイクルを有する。液晶応答はデューティサイクルDとDに依存し、そしてt、t、tに個別に依存しない。
(所要の波形の構築)
それぞれのiに対しVX,i(t)=−VY,i(−t)と仮定する。
ステップ0:V X,0 (t)を定義:
ステップ0.0:組み合わせk=0,l=0
a.
Figure 0006359016
を満たすpを見つける。
b.t=p/2を定義する。
X,0(t)=S0,t0(V,t)従って
Y,0(t)=S−t0,0(−V,t)
X,0(t)−VY,0(t)=S−t0,t0(V,t)
そして長さpの階段関数であるVX,0(t)−VY,0(t)に対する応答は:
Figure 0006359016
したがってこれらの波形はk=l=0に対し問題文を解決する。
ステップ1:V X,1 (t)を定義
ステップ1.0:組み合わせk=1,l=0(およびk=0,l=1)
a.
Figure 0006359016
を満たすpを見つける。
b.t=p−tを定義する。
X,1(t)=S0,t1(V,t)
従って長さt+t=pの階段関数であるVX,1(t)−VY,0(t)に対する応答は:
Figure 0006359016
したがってこれらの波形はk=1,l=0(およびk=0,l=1)に対し問題文を解決する。
ステップ1.1:組み合わせk=1,l=1
要求は:
Figure 0006359016
a.ステップ1.0で定義されたように、VX,1(t)に対する
TLC{VX,1(t)−VY,1(t)}の位相応答φを計算する。
b.もしそれが要求値に十分近ければ(要求許容限度内)
Figure 0006359016
何もしない。
c.φが要求値に十分近くない場合、φ<φ+2(2π/N)である(Rの凹面特性によって)。この場合長さtのパルスは次の形式のそれぞれ長さt−χとχの2つのパルスに分離される:
Figure 0006359016
この波形の形式は以下を確実にする:
a.VX,1(t)とVY,0(t)の対応域は分断されており、従って組み合わせk=1,l=0に対する液晶応答は不変である。なぜならば、VX,1(t)−VY,0(t)はpの期間中Vに等しく、そしてそれ以外では0であるからである。
b.VX,1(t)−VY,1(t)は期間2χの間2Vに等しい。電圧2Vに対する液晶応答は電圧Vに対する液晶応答より強いため、増加するχはまた位相応答を増大させ、そしてχの値は次の式から求められる:
Figure 0006359016
ステップn:V X,n (t)を定義
ステップn.0:組み合わせk=n,l=0(およびk=0,l=n)
a.
Figure 0006359016
を満たすpを見つける。
b.t=p−tを定義する。
X,n(t)=S0,tn(V,t)
従って長さt+t=pの階段関数であるVX,n(t)−VY,0(t)に対する応答は:
Figure 0006359016
したがってこれらの波形はk=n,l=0(およびk=0,l=n)に対し問題文を解決する。
ステップn.m,m=1からn:組み合わせk=n,l=m
要求は:
Figure 0006359016
a.TLC{VX,n(t)−VY,m(t)}の位相応答φを計算する。
b.もしそれが要求値に十分近ければ(要求許容限度内)
Figure 0006359016
何もしない。
c.φが要求値に十分近くない場合、φ<φ+(n+m)(2π/N)である(Rの凹面特性によって)。この場合VX,n(t)のパルスは分離される:期間χが領域[tn−1,t]より差し引かれ、そして領域[−t1,m ,−t1,m−1]に追加される。
このことは以下を確実にする:
a.組み合わせk=n,l=0,...,m−1に対する液晶応答は不変である。
b.組み合わせk=n,l=mに対する液晶応答は追加された領域に起因して増大する。そこでは
X,n(t)−VY,m(t)=2V
増加するχは位相応答を増大させ、そして値χは以下の式から導かれる:
Figure 0006359016

Claims (9)

  1. 光学装置であって、
    電気光学層の活性領域内の任意の所与の位置において局所実効屈折率を有する電気光学層と、
    前記実効屈折率は、前記所与の位置における前記電気光学層をまたいで適用される電圧により決定され、前記電気光学層は、第1と第2の側を有し、そして前記第1と第2の側の間の距離に等しい層厚を有し;
    前記電気光学層の前記第1と第2の側の上方に伸長する導電性電極と、
    前記導電性電極は、前記電気光学層の前記層厚の4倍より小さい電極間ピッチを有する少なくとも1つの励起電極のアレイからなり、そして;
    前記電気光学層の位相変調プロファイルを変更するため、制御電圧波形を前記励起電極に適用するように接続される制御回路と;
    を有することを特徴とする、光学装置。
  2. 前記電極は透明な導電性材料の平行なストライプからなり、前記ストライプは前記電気光学層の層厚より小さな幅の隙間を前記ストライプの間に有する、ことを特徴とする請求項に記載の装置。
  3. 前記電極は、前記電気光学層の第1の側において前記活性領域の上方に第1の方向で伸長する第1の平行な導電性ストライプと、前記電気光学層の第2の側において前記活性領域の上方に、前記第1の方向に直交する、第2の方向で伸長する第2の平行な導電性ストライプと、を有することを特徴とする、請求項またはに記載の装置。
  4. 前記制御回路は、前記位相変調プロファイルにより決定される焦点特性を持つレンズとして前記装置が機能するように、前記励起電極に前記制御電圧波形を適用する、ように構成されることを特徴とする請求項のいずれかに記載の装置。
  5. 前記電気光学層が液晶である、ことを特徴とする請求項のいずれかに記載の装置。
  6. 前記液晶は偏光に依存しない層として構成される、ことを特徴とする請求項に記載の装置。
  7. 前記電極間ピッチは、前記電気光学層の前記層厚の2倍より小さい、ことを特徴とする請求項のいずれかに記載の装置。
  8. 請求項に記載の装置を有する眼用レンズシステム。
  9. 光学装置を製作する方法であって、前記方法は:
    電気光学層の活性領域内の任意の所与の位置において局所実効屈折率を有する電気光学層を提供するステップと、
    前記実効屈折率は前記所与の位置における前記電気光学層をまたいで適用される電圧波形により決定され;
    前記電気光学層の第1の側に前記活性領域をカバーするために共通電極を配置するステップと;
    前記電気光学層の前記第1の側と反対側の第2の側に、前記活性領域の上方に伸長するように、平行な導電性ストライプからなる励起電極のアレイを配置するステップと、
    ここにおいて前記電気光学層は、前記第1と前記第2の側の間の距離と等しい層厚を有し、そして前記励起電極は、前記電気光学層の前記層厚の4倍より小さい電極間ピッチを有し;
    それぞれの制御電圧波形を前記励起電極に適用し、そして、複数の前記励起電極に適用される前記それぞれの制御電圧波形を同時に変更し、それにより前記電気光学層の位相変調プロファイルを変更するために、制御回路を接続するステップと;
    を有することを特徴とする方法。
JP2015533749A 2012-09-30 2013-09-30 電気的に調整可能な出力およびアライメントを有するレンズ Active JP6359016B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261707962P 2012-09-30 2012-09-30
US61/707,962 2012-09-30
PCT/IB2013/058989 WO2014049577A1 (en) 2012-09-30 2013-09-30 Lenses with electrically-tunable power and alignment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018044816A Division JP6626145B2 (ja) 2012-09-30 2018-03-12 電気的に調整可能な出力およびアライメントを有するレンズ

Publications (3)

Publication Number Publication Date
JP2015533226A JP2015533226A (ja) 2015-11-19
JP2015533226A5 JP2015533226A5 (ja) 2016-09-29
JP6359016B2 true JP6359016B2 (ja) 2018-07-18

Family

ID=50387085

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2015533749A Active JP6359016B2 (ja) 2012-09-30 2013-09-30 電気的に調整可能な出力およびアライメントを有するレンズ
JP2018044816A Active JP6626145B2 (ja) 2012-09-30 2018-03-12 電気的に調整可能な出力およびアライメントを有するレンズ
JP2019214797A Active JP6948721B2 (ja) 2012-09-30 2019-11-27 電気的に調整可能な出力およびアライメントを有するレンズ

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2018044816A Active JP6626145B2 (ja) 2012-09-30 2018-03-12 電気的に調整可能な出力およびアライメントを有するレンズ
JP2019214797A Active JP6948721B2 (ja) 2012-09-30 2019-11-27 電気的に調整可能な出力およびアライメントを有するレンズ

Country Status (9)

Country Link
US (2) US10036901B2 (ja)
EP (2) EP3483648B1 (ja)
JP (3) JP6359016B2 (ja)
KR (1) KR102092264B1 (ja)
CN (1) CN104685409B (ja)
AU (2) AU2013322130B2 (ja)
CA (1) CA2884212C (ja)
ES (1) ES2727498T3 (ja)
WO (1) WO2014049577A1 (ja)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017158486A1 (en) * 2016-03-16 2017-09-21 Optica Amuka (A.A.) Ltd. Polarization-insensitive phase modulator
US11327385B2 (en) 2012-09-30 2022-05-10 Optica Amuka (A.A.) Ltd. Polarization-insensitive phase modulator
US11126040B2 (en) 2012-09-30 2021-09-21 Optica Amuka (A.A.) Ltd. Electrically-tunable lenses and lens systems
US20150212317A1 (en) * 2014-01-30 2015-07-30 Duke Ellington Cooke, JR. Vision correction system
EP3779582A1 (en) 2014-03-13 2021-02-17 Optica Amuka (A.A.) Ltd. Electrically-tunable lenses and lens systems
US10466391B2 (en) 2014-06-05 2019-11-05 Optica Amuka (A.A.) Ltd. Control of dynamic lenses
NZ773822A (en) 2015-03-16 2022-07-29 Magic Leap Inc Methods and systems for diagnosing and treating health ailments
US9726907B2 (en) 2015-06-23 2017-08-08 Indizen Optical Technologies, S.L. Rewritable lens and method of manufacturing
CN105572930A (zh) * 2016-03-23 2016-05-11 京东方科技集团股份有限公司 一种显示模组及显示系统
EP3440497B1 (en) 2016-04-08 2023-08-16 Magic Leap, Inc. Augmented reality systems and methods with variable focus lens elements
ES2904889T3 (es) 2016-04-17 2022-04-06 Optica Amuka A A Ltd Lente para gafas que comprende una lente de cristal líquido con accionamiento eléctrico mejorado
WO2017216716A1 (en) * 2016-06-16 2017-12-21 Optica Amuka (A.A.) Ltd. Tunable lenses for spectacles
CN115064110A (zh) 2016-08-15 2022-09-16 苹果公司 具有可变分辨率的显示器
US10690991B1 (en) 2016-09-02 2020-06-23 Apple Inc. Adjustable lens systems
US10495921B2 (en) 2016-10-19 2019-12-03 Kyungpook National University Industry-Academic Cooperation Foundation Flexible liquid crystal lens
IL301881B1 (en) 2017-02-23 2024-04-01 Magic Leap Inc Display system with variable power reflector
US11747619B2 (en) 2017-07-10 2023-09-05 Optica Amuka (A.A.) Ltd. Virtual reality and augmented reality systems with dynamic vision correction
WO2020021431A1 (en) 2018-07-23 2020-01-30 Optica Amuka (A.A.) Ltd. Tunable lenses with enhanced performance features
US11953764B2 (en) 2017-07-10 2024-04-09 Optica Amuka (A.A.) Ltd. Tunable lenses with enhanced performance features
EP3698212A4 (en) 2017-10-16 2021-07-14 Optica Amuka (A.A.) Ltd. GLASSES WITH ELECTRICALLY ADJUSTABLE LENSES CONTROLLED BY AN EXTERNAL SYSTEM
TWI637213B (zh) * 2017-10-16 2018-10-01 國立交通大學 主動矩陣式調焦鏡片及具有該鏡片的調焦眼鏡
EP3737992A4 (en) 2018-01-08 2021-10-13 Optica Amuka (A.A.) Ltd. TUNABLE FRESNEL LENS WITH IMPROVED IMAGE QUALITY
US10788685B2 (en) * 2018-02-27 2020-09-29 Facebook Technologies, Llc Systems and methods for astigmatism correction in a head-mounted display
US11703698B1 (en) 2018-08-30 2023-07-18 Apple Inc. Adjustable lens systems
CN117590582A (zh) 2019-04-11 2024-02-23 三星电子株式会社 头戴式显示设备及其操作方法
US11467370B2 (en) 2019-05-27 2022-10-11 Samsung Electronics Co., Ltd. Augmented reality device for adjusting focus region according to direction of user's view and operating method of the same
WO2020245680A1 (en) 2019-06-02 2020-12-10 Optica Amuka (A.A.) Ltd. Electrically-tunable vision aid for treatment of myopia
CN113892050A (zh) 2019-07-04 2022-01-04 三星电子株式会社 用于显示增强现实的电子设备和方法
EP4012463A4 (en) 2019-09-09 2022-10-19 Samsung Electronics Co., Ltd. INDICATOR AND SYSTEM THEREOF
US11880111B1 (en) 2020-03-04 2024-01-23 Apple Inc. Tunable lens systems with voltage selection circuitry
GB2584546B (en) 2020-04-06 2021-09-01 Novasight Ltd Method and device for treating vision impairment
US11442332B1 (en) * 2020-10-26 2022-09-13 Amazon Technologies, Inc. Tunable liquid crystal lens with electrically tunable axis of astigmatism
CN113655643A (zh) * 2021-08-18 2021-11-16 中国科学院光电技术研究所 一种基于电光材料的阵列化动态光学相位修正板
US20230258960A1 (en) * 2022-02-11 2023-08-17 Pixieray Oy Actively adaptive optical apparatuses for reducing myopia development

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3580661A (en) 1969-04-10 1971-05-25 Bell & Howell Co Rear projection viewing screen for close viewing
US3881921A (en) 1971-10-01 1975-05-06 Eastman Kodak Co Electrophotographic process employing image and control grid means
US4190330A (en) 1977-12-27 1980-02-26 Bell Telephone Laboratories, Incorporated Variable focus liquid crystal lens system
US4300818A (en) 1978-03-13 1981-11-17 Schachar Ronald A Multifocal ophthalmic lens
US4279474A (en) 1980-03-25 1981-07-21 Belgorod Barry M Spectacle lens having continuously variable controlled density and fast response time
US4584592A (en) 1984-08-13 1986-04-22 Xerox Corporation Marking head for fluid jet assisted ion projection imaging systems
JPS62209412A (ja) * 1986-03-10 1987-09-14 Jiesu:Kk 乱視補正焦点距離可変液晶レンズ
US4853764A (en) 1988-09-16 1989-08-01 Pedalo, Inc. Method and apparatus for screenless panoramic stereo TV system
JPH036518A (ja) * 1989-06-02 1991-01-14 Canon Inc 液晶レンズ
US5212583A (en) * 1992-01-08 1993-05-18 Hughes Aircraft Company Adaptive optics using the electrooptic effect
GB9211427D0 (en) 1992-05-29 1992-07-15 Crystalens Ltd Liquid crystal lens circuit
JP3309443B2 (ja) 1992-10-28 2002-07-29 ソニー株式会社 眼鏡型ビューワー
US5359444A (en) 1992-12-24 1994-10-25 Motorola, Inc. Auto-focusing optical apparatus
JPH06324298A (ja) * 1993-03-31 1994-11-25 Citizen Watch Co Ltd 光学装置
US5757546A (en) 1993-12-03 1998-05-26 Stereographics Corporation Electronic stereoscopic viewer
EP0785457A3 (en) 1996-01-17 1998-10-14 Nippon Telegraph And Telephone Corporation Optical device and three-dimensional display device
JPH1036518A (ja) 1996-05-14 1998-02-10 Elf Atochem Sa ゴム用加硫剤およびゴムの加硫方法
US5861936A (en) 1996-07-26 1999-01-19 Gillan Holdings Limited Regulating focus in accordance with relationship of features of a person's eyes
GB2315858A (en) 1996-08-01 1998-02-11 Sharp Kk System for eye detection and gaze direction determination
GB2326263A (en) 1997-06-12 1998-12-16 Sharp Kk Diffractive spatial light modulator and display
GB9803157D0 (en) 1998-02-13 1998-04-08 The Technology Partnership Plc Liquid crystal light modulator
US6152563A (en) 1998-02-20 2000-11-28 Hutchinson; Thomas E. Eye gaze direction tracker
US8005314B2 (en) 2005-12-09 2011-08-23 Amnis Corporation Extended depth of field imaging for high speed object analysis
GB9909323D0 (en) * 1999-04-22 1999-06-16 Thomas Swan & Company Limited Phase modulator
US6619799B1 (en) 1999-07-02 2003-09-16 E-Vision, Llc Optical lens system with electro-active lens having alterably different focal lengths
US6517203B1 (en) 1999-07-02 2003-02-11 E-Vision, Llc System, apparatus, and method for correcting vision using electro-active spectacles
US6871951B2 (en) 2000-06-23 2005-03-29 E-Vision, Llc Electro-optic lens with integrated components
US6986579B2 (en) 1999-07-02 2006-01-17 E-Vision, Llc Method of manufacturing an electro-active lens
US7023594B2 (en) 2000-06-23 2006-04-04 E-Vision, Llc Electro-optic lens with integrated components
US6857741B2 (en) 2002-01-16 2005-02-22 E-Vision, Llc Electro-active multi-focal spectacle lens
US7290875B2 (en) 2004-11-02 2007-11-06 Blum Ronald D Electro-active spectacles and method of fabricating same
JP4880142B2 (ja) 2001-09-18 2012-02-22 株式会社リコー 液晶素子、光偏向素子、該光偏向素子を用いた画像表示装置、光偏向素子の製造方法、及び該光偏向素子の駆動方法
BR0213012A (pt) 2001-10-05 2004-12-28 E Vision Llc Lentes eletro-ativas hìbridas
US6710758B2 (en) 2001-12-20 2004-03-23 Corning Incorporated Spatial light modulators with improved inter-pixel performance
JP4155563B2 (ja) * 2003-02-28 2008-09-24 シチズンホールディングス株式会社 液晶光変調装置およびその駆動方法
EP1760515A3 (en) 2003-10-03 2011-08-31 Invisia Ltd. Multifocal ophthalmic lens
US7289260B2 (en) 2003-10-03 2007-10-30 Invisia Ltd. Multifocal lens
US20050146495A1 (en) 2003-12-05 2005-07-07 Genesis Microchip Inc. LCD overdrive table triangular interpolation
US7327329B2 (en) 2004-01-27 2008-02-05 Genesis Microchip Inc. Dynamically selecting either frame rate conversion (FRC) or pixel overdrive in an LCD panel based display
US8120565B2 (en) 2004-02-04 2012-02-21 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Method and apparatus to enhance contrast in electro-optical display devices
WO2006012678A1 (en) 2004-08-03 2006-02-09 Silverbrook Research Pty Ltd Walk-up printing
US7365917B2 (en) 2004-08-16 2008-04-29 Xceed Imaging Ltd. Optical method and system for extended depth of focus
US7061693B2 (en) 2004-08-16 2006-06-13 Xceed Imaging Ltd. Optical method and system for extended depth of focus
DE102004062277B4 (de) 2004-12-23 2021-08-26 Rodenstock Gmbh Brillenglasvorrichtung mit elektroadaptivem Bereich, Brille, Verwendung und Verfahren zum Betreiben der Brillenglasvorrichtung
TWI282544B (en) 2005-01-21 2007-06-11 Himax Tech Inc Operation apparatus, operation method, operation apparatus for overdrive and operation method for overdrive
US8885139B2 (en) * 2005-01-21 2014-11-11 Johnson & Johnson Vision Care Adaptive electro-active lens with variable focal length
FR2888951B1 (fr) 2005-07-20 2008-02-08 Essilor Int Composant optique pixellise aleatoirement, son procede de fabrication, et son utilisation dans la fabrication d'un element optique transparent
JP4645436B2 (ja) 2005-12-22 2011-03-09 株式会社デンソー 超音波センサ
US7499217B2 (en) 2006-03-03 2009-03-03 University Of Central Florida Research Foundation, Inc. Imaging systems for eyeglass-based display devices
BRPI0713005A2 (pt) 2006-06-12 2012-04-17 Johnson & Johnson Vision Care método para reduzir o consumo de energia com lentes eletro-ópticas
GB0617945D0 (en) 2006-09-12 2006-10-18 Ucl Business Plc Imaging apparatus and methods
AR064986A1 (es) * 2007-01-22 2009-05-06 Pixeloptics Inc Material cristalino liquido colesterico en lente electroactiva
EP2140304B1 (en) 2007-04-17 2011-08-31 Koninklijke Philips Electronics N.V. Beam-shaping device
US8169589B2 (en) * 2008-03-18 2012-05-01 Symbol Technologies, Inc. Adaptive focusing using liquid crystal zone plates in electro-optical readers
CN103792740B (zh) 2008-06-06 2017-12-12 兰斯维克托公司 可调谐液晶光学装置
US8970646B2 (en) * 2008-07-09 2015-03-03 Ostendo Technologies, Inc. Image construction based video display system
KR101472052B1 (ko) 2008-07-30 2014-12-12 삼성디스플레이 주식회사 표시장치
JP5396944B2 (ja) * 2008-12-22 2014-01-22 ソニー株式会社 レンズアレイ素子および画像表示装置
JP2011041035A (ja) 2009-08-12 2011-02-24 Sony Corp シャッタメガネおよびシャッタ制御方法
EP2309310A1 (en) 2009-10-01 2011-04-13 Koninklijke Philips Electronics N.V. 3D spectacles
CN201752480U (zh) 2009-10-27 2011-03-02 谢刚 一种健眼器
EP2517068A4 (en) 2009-12-23 2013-11-20 Lensvector Inc Image Stabilization and Shifting in a Liquid Crystal Lens
WO2011101888A1 (ja) * 2010-02-17 2011-08-25 株式会社 東芝 液晶表示装置
FR2957684B1 (fr) * 2010-03-19 2012-08-03 Evosens Dispositif de variation optique, ensemble optique et procede de fabrication d'un tel dispositif
JP2011203457A (ja) 2010-03-25 2011-10-13 Konica Minolta Business Technologies Inc 画像形成装置
RU2576344C2 (ru) 2010-05-29 2016-02-27 Вэньюй ЦЗЯН Системы, способы и аппараты для создания и использования очков с адаптивной линзой на основе определения расстояния наблюдения и отслеживания взгляда в условиях низкого энергопотребления
WO2012054909A2 (en) * 2010-10-22 2012-04-26 Reald Inc. Split segmented liquid crystal modulator
CN102062985B (zh) 2010-11-16 2012-02-22 深圳超多维光电子有限公司 液晶透镜及其控制方法以及3d显示装置
US9304319B2 (en) 2010-11-18 2016-04-05 Microsoft Technology Licensing, Llc Automatic focus improvement for augmented reality displays
US8988463B2 (en) 2010-12-08 2015-03-24 Microsoft Technology Licensing, Llc Sympathetic optic adaptation for see-through display
JP5286349B2 (ja) 2010-12-27 2013-09-11 株式会社東芝 屈折率分布型液晶光学素子および画像表示装置
JP5699394B2 (ja) * 2011-01-06 2015-04-08 秋田県 液晶シリンドリカルレンズアレイおよび表示装置
US20120212696A1 (en) 2011-01-27 2012-08-23 Pixeloptics, Inc. Variable optical element comprising a liquid crystal alignment layer
US8939579B2 (en) 2011-01-28 2015-01-27 Light Prescriptions Innovators, Llc Autofocusing eyewear, especially for presbyopia correction
WO2012120470A1 (en) 2011-03-10 2012-09-13 Optika Amuka (A.A.) Ltd. Stereographic viewing with extended depth of field
JP5634926B2 (ja) 2011-03-22 2014-12-03 株式会社ジャパンディスプレイ 液晶表示装置
AU2012261826A1 (en) 2011-06-02 2014-01-09 Pixeloptics, Inc. Electro-active lenses including thin glass substrates
CN102253563A (zh) 2011-08-15 2011-11-23 南京中电熊猫液晶显示科技有限公司 一种视角优化的电驱动液晶透镜及其立体显示装置
WO2013088630A1 (ja) 2011-12-16 2013-06-20 パナソニック株式会社 可変焦点レンズの制御装置、可変焦点レンズの制御方法、および電子メガネ
JP5893447B2 (ja) 2012-03-08 2016-03-23 株式会社ジャパンディスプレイ 液晶レンズ、表示装置、及び電子機器
KR20130107953A (ko) 2012-03-23 2013-10-02 삼성디스플레이 주식회사 영상 표시 장치
JP5677359B2 (ja) 2012-04-13 2015-02-25 株式会社東芝 液晶光学素子及び画像表示装置
JP5297550B1 (ja) 2012-07-06 2013-09-25 株式会社東芝 液晶光学素子および画像表示装置
US9241669B2 (en) 2012-07-18 2016-01-26 Johnson & Johnson Vision Care, Inc. Neuromuscular sensing for variable-optic electronic ophthalmic lens
US20140036172A1 (en) 2012-08-03 2014-02-06 Pixeloptics, Inc. Electro-Active Ophthalmic Lenses Comprising Low Viscosity Liquid Crystalline Mixtures
US9235103B2 (en) 2012-10-25 2016-01-12 Au Optronics Corporation 3D liquid crystal display comprising four electrodes alternately arrange between a first and second substrate
US20150219893A1 (en) 2013-02-07 2015-08-06 Liqxtal Technology Inc. Optical system and its display system
KR102134904B1 (ko) 2013-10-30 2020-07-17 삼성디스플레이 주식회사 3차원 표시 장치 및 3차원 표시 장치용 액정 렌즈부
US9465237B2 (en) 2013-12-27 2016-10-11 Intel Corporation Automatic focus prescription lens eyeglasses
CN103777416B (zh) 2014-01-17 2017-11-24 京东方科技集团股份有限公司 一种液晶透镜及三维显示装置
JP2015209412A (ja) * 2014-04-28 2015-11-24 アサマ化成株式会社 血中エンドトキシン濃度低下組成物及び血中エンドトキシン濃度低下方法
US10466391B2 (en) 2014-06-05 2019-11-05 Optica Amuka (A.A.) Ltd. Control of dynamic lenses
US10025060B2 (en) 2015-12-08 2018-07-17 Oculus Vr, Llc Focus adjusting virtual reality headset
US9927614B2 (en) 2015-12-29 2018-03-27 Microsoft Technology Licensing, Llc Augmented reality display system with variable focus

Also Published As

Publication number Publication date
EP2901210B1 (en) 2019-02-27
KR20150066546A (ko) 2015-06-16
CN104685409A (zh) 2015-06-03
EP2901210A1 (en) 2015-08-05
JP2018120238A (ja) 2018-08-02
US10288904B2 (en) 2019-05-14
AU2013322130A1 (en) 2015-04-09
EP2901210A4 (en) 2016-04-27
AU2017203252A1 (en) 2017-06-08
WO2014049577A1 (en) 2014-04-03
EP3483648B1 (en) 2024-05-15
JP6626145B2 (ja) 2019-12-25
AU2017203252B2 (en) 2018-04-05
JP6948721B2 (ja) 2021-10-13
US10036901B2 (en) 2018-07-31
ES2727498T3 (es) 2019-10-16
CA2884212A1 (en) 2014-04-03
US20150277151A1 (en) 2015-10-01
US20180292678A1 (en) 2018-10-11
EP3483648A1 (en) 2019-05-15
JP2015533226A (ja) 2015-11-19
JP2020052409A (ja) 2020-04-02
AU2013322130B2 (en) 2017-03-09
KR102092264B1 (ko) 2020-03-24
CN104685409B (zh) 2017-08-29
CA2884212C (en) 2021-06-29

Similar Documents

Publication Publication Date Title
JP6948721B2 (ja) 電気的に調整可能な出力およびアライメントを有するレンズ
JP2015533226A5 (ja)
US11768407B2 (en) Electrically-tunable lenses and lens systems
JP6515115B2 (ja) 電気的に調整可能なレンズおよびレンズシステム
JP5173831B2 (ja) 2d/3d自動立体視表示装置
JP2017515139A5 (ja)
JP2011514980A (ja) 自動立体視(autostereoscopic)表示装置
US20150124183A1 (en) Liquid crystal display panel and method for manufacturing the same
CN117836712A (zh) 用于中央凹透镜装置的电极结构

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20160810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180314

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180619

R150 Certificate of patent or registration of utility model

Ref document number: 6359016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250