JP6357739B2 - Fluorescence detector - Google Patents

Fluorescence detector Download PDF

Info

Publication number
JP6357739B2
JP6357739B2 JP2013164086A JP2013164086A JP6357739B2 JP 6357739 B2 JP6357739 B2 JP 6357739B2 JP 2013164086 A JP2013164086 A JP 2013164086A JP 2013164086 A JP2013164086 A JP 2013164086A JP 6357739 B2 JP6357739 B2 JP 6357739B2
Authority
JP
Japan
Prior art keywords
collimating lens
light
light receiving
cylindrical body
fluorescence detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013164086A
Other languages
Japanese (ja)
Other versions
JP2015031682A (en
Inventor
雄大 青柳
雄大 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2013164086A priority Critical patent/JP6357739B2/en
Publication of JP2015031682A publication Critical patent/JP2015031682A/en
Application granted granted Critical
Publication of JP6357739B2 publication Critical patent/JP6357739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、自動分析装置等に備える蛍光検出器に関する。   The present invention relates to a fluorescence detector provided in an automatic analyzer or the like.

自動分析装置等に備える蛍光検出器においては、試料に照射する励起光の波長を限定し、当該試料から発する特定の蛍光を検出するために、それぞれ特定の波長帯域を有するバンドパス型の干渉フィルタが用いられることが多い。   In a fluorescence detector provided in an automatic analyzer or the like, a band-pass interference filter having a specific wavelength band is provided to limit the wavelength of excitation light applied to the sample and detect specific fluorescence emitted from the sample. Is often used.

干渉フィルタは、フィルタ表面に対する光の入射を垂直入射から斜方入射に変化させると透過スペクトルが短波長側にシフトする、という原理上の特性を有する。蛍光検出器において蛍光検出波長の選択に干渉フィルタを用いる場合、斜方入射によって透過スペクトルは励起光側へ(短波長側へ)シフトする。   The interference filter has the principle characteristic that the transmission spectrum shifts to the short wavelength side when the incidence of light on the filter surface is changed from normal incidence to oblique incidence. When an interference filter is used to select a fluorescence detection wavelength in the fluorescence detector, the transmission spectrum is shifted to the excitation light side (to the short wavelength side) by oblique incidence.

励起光を試料に照射する際、試料を収容した容器から様々な方向に励起光が散乱(乱反射)する。散乱した励起光の一部は、検出用干渉フィルタの表面に対して斜めに入射すると、透過スペクトルが短波長側にシフトした干渉フィルタを通過して受光部で検出されることで、バックグラウンドノイズとなる。バックグラウンドノイズの割合が大きくなると、蛍光検出器で測定する試料から本来発生する蛍光量の変化が相対的に小さく観測されるため、検出感度が低下する。   When irradiating the sample with excitation light, the excitation light is scattered (diffusely reflected) in various directions from the container in which the sample is stored. When a part of the scattered excitation light is incident on the surface of the interference filter for detection obliquely, it passes through the interference filter whose transmission spectrum is shifted to the short wavelength side and is detected by the light receiving unit, thereby causing background noise. It becomes. When the background noise ratio increases, the change in the amount of fluorescence originally generated from the sample measured by the fluorescence detector is observed to be relatively small, so that the detection sensitivity decreases.

干渉フィルタの表面に対して斜めに入射する光の量を低減させる方法として、干渉フィルタの光入射側に、コリメートレンズや、絞りや、光の吸収に波長選択性がある色ガラスフィルタを設ける方法が知られている。   As a method of reducing the amount of light incident obliquely on the surface of the interference filter, a method of providing a collimating lens, a diaphragm, or a color glass filter having wavelength selectivity for light absorption on the light incident side of the interference filter It has been known.

コリメートレンズを設ける方法は、試料が蛍光の点光源とみなせない限り、斜めに照射される光は残存するため、試料の体積を点光源とみなせるほど小さくするか、光学系を大きくする対策をとる必要がある。しかしながら、前者の対策は蛍光強度が低くなり検出が難しくなる問題があり、後者の対策は装置の大型化につながる問題がある。   The method of providing a collimating lens is that, as long as the sample cannot be regarded as a fluorescent point light source, the obliquely irradiated light remains. Therefore, measures are taken to make the volume of the sample small enough to be regarded as a point light source or to increase the optical system. There is a need. However, the former measure has a problem that the fluorescence intensity becomes low and detection becomes difficult, and the latter measure has a problem that leads to an increase in the size of the apparatus.

絞りを設ける方法も、コリメートレンズを設ける方法と同様、試料が蛍光の点光源とみなせない限り、大きな効果を得ることはできず、またコリメートレンズと併用しなければ、受光部で検出する蛍光量も少なくなる。   As with the method of providing a collimating lens, the method of providing an aperture cannot provide a significant effect unless the sample can be regarded as a fluorescent point light source. Less.

色ガラスフィルタは、透過スペクトルの入射角依存性をもたない光学フィルタであるが、選択できる波長範囲の選択肢が少なく、必ずしも目的の光学系に合わない問題がある。また色ガラスフィルタは、干渉フィルタに比べて透過スペクトルの阻止帯から透過帯への遷移が極めて緩慢である。そのため、干渉フィルタへの斜方入射時に生ずる短波長側へのシフトに備えて、色ガラスフィルタの透過率が0%となる帯域と、干渉フィルタへの垂直入射時における透過率が0%となる帯域とが一致するよう、色ガラスフィルタを選択し、当該色ガラスフィルタを干渉フィルタの光入射側に設けたとしても、干渉フィルタの透過帯域と色ガラスフィルタの低透過率の帯域とがオーバーラップし、蛍光の検出感度が低下するという問題がある。   The colored glass filter is an optical filter having no dependency on the incident angle of the transmission spectrum, but there are few choices of the wavelength range that can be selected, and there is a problem that the color glass filter does not necessarily match the target optical system. Also, the color glass filter has a very slow transition from the stop band to the transmission band of the transmission spectrum as compared with the interference filter. Therefore, in preparation for the shift to the short wavelength side that occurs at the oblique incidence to the interference filter, the transmittance of the colored glass filter is 0% and the transmittance at the time of perpendicular incidence to the interference filter is 0%. Even if the color glass filter is selected so that the bands match, and the color glass filter is provided on the light incident side of the interference filter, the transmission band of the interference filter and the low transmittance band of the color glass filter overlap. However, there is a problem that the fluorescence detection sensitivity decreases.

そこで本発明の目的は、試料に励起光を照射する励起光照射手段と、当該試料から発する蛍光を干渉フィルタに通過させて受光部で検出する蛍光検出手段と、を備えた蛍光検出器において、干渉フィルタの表面に対して斜方に入射して受光部に到達する妨害光(励起光)の量を簡易な構成で低減可能な蛍光検出器を提供することにある。   Therefore, an object of the present invention is a fluorescence detector comprising: excitation light irradiating means for irradiating a sample with excitation light; and fluorescence detecting means for detecting fluorescence at the light receiving unit by passing fluorescence emitted from the sample through an interference filter. An object of the present invention is to provide a fluorescence detector that can reduce the amount of interference light (excitation light) incident obliquely with respect to the surface of the interference filter and reaching the light receiving unit with a simple configuration.

上記課題を鑑みてなされた本発明は、以下の態様を包含する。   This invention made | formed in view of the said subject includes the following aspects.

すなわち本発明の第一の態様は、
試料に励起光を照射する励起光照射手段と、当該試料から発する蛍光を検出する蛍光検出手段とを備えた蛍光検出器であって、
前記蛍光検出手段が、開口部と閉口部を設け内壁が遮光処理された筒状体と、前記開口部側に設けたコリメートレンズと、前記閉口部側に設けた受光部と、前記コリメートレンズと前記受光部とを結ぶ光軸上に設けた干渉フィルタとを有し、かつ、前記コリメートレンズから前記受光部までの距離が前記コリメートレンズの有効径よりも長い、前記蛍光検出器である。
That is, the first aspect of the present invention is:
A fluorescence detector comprising excitation light irradiation means for irradiating a sample with excitation light, and fluorescence detection means for detecting fluorescence emitted from the sample,
The fluorescence detection means includes an opening and a closing part, and a cylindrical body whose inner wall is shielded from light, a collimating lens provided on the opening part side, a light receiving part provided on the closing part side, and the collimating lens, The fluorescence detector having an interference filter provided on an optical axis connecting to the light receiving unit, and having a distance from the collimating lens to the light receiving unit being longer than an effective diameter of the collimating lens.

また本発明の第二の態様は、筒状体の内壁に凹凸を設けた、前記第一の態様に記載の蛍光検出器である。   Moreover, the 2nd aspect of this invention is a fluorescence detector as described in said 1st aspect which provided the unevenness | corrugation in the inner wall of a cylindrical body.

また本発明の第三の態様は、筒状体が円筒状であり、かつ、前記筒状体の内壁に設けた凹凸が当該内壁に沿って形成した螺旋状の溝である、前記第二の態様に記載の蛍光検出器である。   The third aspect of the present invention is the second aspect, wherein the cylindrical body is a cylindrical shape, and the unevenness provided on the inner wall of the cylindrical body is a spiral groove formed along the inner wall. It is a fluorescence detector as described in an aspect.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の蛍光検出器は、蛍光検出器を構成する蛍光検出手段を、開口部と閉口部を設け内壁が遮光処理された筒状体と、前記開口部に設けたコリメートレンズと、前記閉口部に設けた受光部と、前記コリメートレンズと前記受光部とを結ぶ光軸上に設けた干渉フィルターとを有した手段とし、かつ、前記コリメートレンズから前記受光部までの距離が前記コリメートレンズの有効径よりも長いことを特徴としている。   The fluorescence detector of the present invention comprises a fluorescence detection means constituting the fluorescence detector, a cylindrical body provided with an opening and a closing portion and whose inner wall is shielded from light, a collimating lens provided in the opening, and the closing portion. A light receiving portion provided on the optical axis, and an interference filter provided on an optical axis connecting the collimating lens and the light receiving portion, and the distance from the collimating lens to the light receiving portion is effective for the collimating lens. It is characterized by being longer than the diameter.

本発明の蛍光検出器において、干渉フィルターは、コリメートレンズと受光部とを結ぶ光軸上であれば任意の位置に設けてよい。一例として干渉フィルタをコリメートレンズの受光部側に重ねて設けた場合、一般にコリメートレンズは筒状体の開口部から入射した光を筒状体の閉口部に設けた受光部に集光させる効果を有する。しかしながら、蛍光を発する試料およびそれを収容する容器は一定の体積を有しているため、当該試料および容器がコリメートレンズの近傍に配置されていると、コリメートレンズからの視野体積が大きくなり、たとえコリメートレンズを透過しても干渉フィルタの表面に対して斜めに入射する光(斜方入射光)を阻止することはできない。受光部まで到達する斜方入射光は、コリメートレンズの有効径が小さいほど、またコリメートレンズと受光部との距離が大きいほど防止することができる。しかしながら、単にコリメートレンズの有効径を小さくすると蛍光検出器の感度が低下し、単にコリメートレンズと受光部との距離を大きくすると蛍光検出器が大型化する。そこで本発明の蛍光検出器では、筒状体の開口部に設けたコリメートレンズから筒状体の閉口部に設けた受光部までの距離を前記コリメートレンズの有効径よりも長くすることで、斜方入射光が直接受光部に到達することを防止し、かつ蛍光検出器の大型化も防止している。なお、干渉フィルタを受光部近傍に設ける場合、筒状体の開口部に設けたコリメートレンズを斜方透過した光(斜方入射光)は、受光部に至るまでに遮光処理された筒状体の内壁によって大部分吸収され、干渉フィルタに到達する斜方入射光自体が極めて少なくなるため、結果として受光部への斜方入射光の到達を防止することができる。   In the fluorescence detector of the present invention, the interference filter may be provided at an arbitrary position as long as it is on the optical axis connecting the collimating lens and the light receiving unit. As an example, when an interference filter is provided so as to overlap the light receiving part side of the collimating lens, the collimating lens generally has the effect of condensing the light incident from the opening of the cylindrical body on the light receiving part provided at the closed part of the cylindrical body. Have. However, since the sample that emits fluorescence and the container that accommodates it have a certain volume, if the sample and the container are arranged in the vicinity of the collimating lens, the field volume from the collimating lens becomes large. Even if the light passes through the collimating lens, it cannot block light incident obliquely on the surface of the interference filter (obliquely incident light). Obliquely incident light reaching the light receiving portion can be prevented as the effective diameter of the collimating lens is smaller and as the distance between the collimating lens and the light receiving portion is larger. However, simply reducing the effective diameter of the collimating lens decreases the sensitivity of the fluorescence detector, and simply increasing the distance between the collimating lens and the light receiving portion increases the size of the fluorescence detector. Therefore, in the fluorescence detector of the present invention, the distance from the collimating lens provided at the opening of the cylindrical body to the light receiving portion provided at the closed portion of the cylindrical body is set longer than the effective diameter of the collimating lens. This prevents the incident light from directly reaching the light receiving section and prevents the fluorescence detector from becoming large. When the interference filter is provided in the vicinity of the light receiving part, the light that is obliquely transmitted through the collimating lens provided in the opening of the cylindrical body (obliquely incident light) is light-shielded before reaching the light receiving part. Since the obliquely incident light itself that is mostly absorbed by the inner wall and reaches the interference filter is extremely small, it is possible to prevent the obliquely incident light from reaching the light receiving section as a result.

垂直入射するときの透過ピーク波長がλmaxの干渉フィルタを入射角φで斜方入射するときの透過ピーク波長λは以下に示す式で算出できる。 The transmission peak wavelength λ when obliquely incident at an incident angle φ through an interference filter having a transmission peak wavelength of λ max when perpendicularly incident can be calculated by the following equation.

λ=λmax√(1−[sinφ/n]
λ:斜方入射するときの透過ピーク波長
λmax:垂直入射するときの透過ピーク波長
n:比屈折率(n=n(空気の屈折率)/n(干渉膜の実効屈折率))
φ:入射角
例えば、干渉フィルタとして、比屈折率が1.8でピーク波長500nmのバンドパスフィルタを用いた場合、入射角30°で光が斜方入射すると、ピーク波長が480nmとなり、透過帯域が短波長側へ20nmシフトする。したがって検出用干渉フィルタとしてピーク波長500nmのバンドパスフィルタをコリメートレンズの受光部側に重ねて設け、励起光用干渉フィルタとして中心波長480nmのバンドパスフィルタを用いる場合は、検出用干渉フィルタを入射角30°で斜方入射した励起光が直接受光部に到達しないように、筒状体の開口部に設けたコリメートレンズから受光部までの距離を設定すればよい。
λ = λ max √ (1- [sin φ / n] 2 )
λ: transmission peak wavelength at oblique incidence λ max : transmission peak wavelength at perpendicular incidence n: relative refractive index (n = n 0 (refractive index of air) / ne (effective refractive index of interference film))
φ: Incident angle For example, when a bandpass filter having a relative refractive index of 1.8 and a peak wavelength of 500 nm is used as an interference filter, when light is incident obliquely at an incident angle of 30 °, the peak wavelength becomes 480 nm, and the transmission band Shifts by 20 nm toward the short wavelength side. Therefore, when a band-pass filter having a peak wavelength of 500 nm is provided as an interference filter for detection on the light receiving part side of the collimator lens, and a band-pass filter having a center wavelength of 480 nm is used as the excitation light interference filter, the detection interference filter is set to the incident angle What is necessary is just to set the distance from the collimating lens provided in the opening part of the cylindrical body to the light receiving part so that the excitation light obliquely incident at 30 ° does not directly reach the light receiving part.

具体的には、コリメートレンズから受光部までの距離を前記コリメートレンズの有効径と等しくした場合、受光部に直接入射する光の最大入射角は約27°となるため、本発明の蛍光検出器であれば、前述した入射角30°で斜方入射される励起光が受光部へ直接入射されるのを阻止できることがわかる。なお蛍光検出器の大型化が許されるならば、コリメートレンズから受光部までの距離をコリメートレンズの有効径の2倍以上とするとさらに好ましい。   Specifically, when the distance from the collimating lens to the light receiving unit is made equal to the effective diameter of the collimating lens, the maximum incident angle of light directly incident on the light receiving unit is about 27 °, and therefore the fluorescence detector of the present invention. If so, it can be seen that the excitation light obliquely incident at the aforementioned incident angle of 30 ° can be prevented from being directly incident on the light receiving portion. If an increase in the size of the fluorescence detector is permitted, it is more preferable that the distance from the collimating lens to the light receiving unit is at least twice the effective diameter of the collimating lens.

受光部に直接入射する光の最大入射角以上で干渉フィルタに斜方入射した光は、干渉フィルタの透過帯域がより短波長側にシフトするため、干渉フィルタを透過する励起光量はさらに増大するが、本発明の蛍光検出器では干渉フィルタから受光部までの光導波路を構成する筒状体の内壁は遮光処理(例えば、黒色処理や無反射処理)しているため、干渉フィルタを透過する励起光の大部分は筒状体の内壁で吸収される。しかしながら、干渉フィルタから受光部までの光導波路を構成する筒状体の内壁が遮光処理されていても、干渉フィルタを透過する励起光の全てが吸収されるわけではなく、内壁で反射し、受光部に到達する光も僅かに存在する。そこで筒状体の内壁に周期的に凹凸を設けると、内壁の凹凸部で反射した励起光を筒状体の開口部側へ反射させることができ、受光部に到達する励起光量をさらに低減できるため、好ましい。なお筒状体の内壁に設ける凹凸をコリメートレンズを透過した光と平行な矩形凹凸形状とした場合(図2)、凸部の割合は少ないほどよく、凹部は深いほどよい。また筒状体の内壁に設ける凹凸の断面が三角形状(のこぎりの歯状、蛇腹状)とする場合(図3)、山と谷の角度は小さい(鋭い)ほどよい。また、凹凸を雌ネジ形状とすると(螺旋状の溝を内壁に沿って形成させると)加工性、コスト面でさらに好ましい。   For light that is obliquely incident on the interference filter at a angle greater than or equal to the maximum incident angle of light that is directly incident on the light receiving unit, the transmission band of the interference filter shifts to a shorter wavelength side. In the fluorescence detector of the present invention, since the inner wall of the cylindrical body constituting the optical waveguide from the interference filter to the light receiving part is subjected to a light shielding process (for example, a black process or a non-reflective process), excitation light that passes through the interference filter Is absorbed by the inner wall of the cylindrical body. However, even if the inner wall of the cylindrical body that constitutes the optical waveguide from the interference filter to the light receiving part is shielded, not all of the excitation light that passes through the interference filter is absorbed, but is reflected by the inner wall and received. There is also a small amount of light reaching the part. Therefore, if irregularities are periodically provided on the inner wall of the cylindrical body, the excitation light reflected by the irregularities on the inner wall can be reflected to the opening side of the cylindrical body, and the amount of excitation light reaching the light receiving section can be further reduced. Therefore, it is preferable. In addition, when the unevenness | corrugation provided in the inner wall of a cylindrical body is made into the rectangular uneven | corrugated shape parallel to the light which permeate | transmitted the collimating lens (FIG. 2), the ratio of a convex part is so good that a concave part is deep. Moreover, when the uneven | corrugated cross section provided in the inner wall of a cylindrical body is made into the shape of a triangle (sawtooth shape, bellows shape) (FIG. 3), the angle of a peak and a valley is so preferable that it is small (sharp). Further, it is more preferable in terms of workability and cost that the irregularities are formed into a female screw shape (when a spiral groove is formed along the inner wall).

筒状体の形状には特に限定はなく、例えば、円筒状、球形状、閉口部(受光部)側がコリメートレンズの有効径よりも大きい直径を有する円錐台状があげられる。   The shape of the cylindrical body is not particularly limited, and examples thereof include a cylindrical shape, a spherical shape, and a truncated cone shape having a closed portion (light receiving portion) side having a diameter larger than the effective diameter of the collimating lens.

本発明の蛍光検出器は、試料に励起光を照射する励起光照射手段と、開口部と閉口部を設け内壁が遮光処理された筒状体と前記開口部に設けたコリメートレンズと前記閉口部に設けた受光部と前記受光部から前記コリメートレンズまでを結ぶ光軸上に設けた干渉フィルタとを有する前記試料から発する蛍光を検出する蛍光検出手段とを備えており、かつ前記コリメートレンズから前記受光部までの距離が前記コリメートレンズの有効径よりも長いことを特徴としている。本発明の蛍光検出器は、干渉フィルタの表面に対し斜めに入射することで当該干渉フィルタを透過する励起光の、受光部への照射量を低減させることができる。また本発明の蛍光検出器は、筒状体の開口部に設けたコリメートレンズから受光部までの距離、すなわち実質的に筒状体の長さを長くすることで効果が得られるため、従来の方法(絞りや色ガラスフィルタを設ける方法)と比較し、簡易な構成で励起光に起因する妨害光を低減させることができる。   The fluorescence detector of the present invention includes an excitation light irradiating means for irradiating a sample with excitation light, a cylindrical body provided with an opening and a closing portion and having an inner wall shielded, a collimator lens provided in the opening, and the closing portion. A fluorescence detecting means for detecting fluorescence emitted from the sample, and a light detecting portion provided on the optical axis connecting the light receiving portion to the collimating lens, and from the collimating lens The distance to the light receiving part is longer than the effective diameter of the collimating lens. The fluorescence detector of the present invention can reduce the irradiation amount of the excitation light transmitted through the interference filter to the light receiving unit by being obliquely incident on the surface of the interference filter. In addition, the fluorescence detector of the present invention is effective by increasing the distance from the collimating lens provided in the opening of the cylindrical body to the light receiving section, that is, by substantially increasing the length of the cylindrical body. Compared to a method (a method of providing a diaphragm or a colored glass filter), interference light caused by excitation light can be reduced with a simple configuration.

なお筒状体の内壁に凹凸を設けると、コリメートレンズを通過し、干渉フィルタを通過する前または後の斜方入射光を当該凹凸により筒状体の開口部側へ反射させることができ、妨害光の受光部への照射をさらに低減させることができるため、好ましい。   If the inner wall of the cylindrical body is provided with irregularities, the oblique incident light before or after passing through the collimating lens and passing through the interference filter can be reflected to the opening side of the cylindrical body by the irregularities. This is preferable because irradiation of the light receiving part can be further reduced.

本発明の蛍光検出器の構成図である。It is a block diagram of the fluorescence detector of the present invention. 本発明の蛍光検出器の一態様を示す図である。It is a figure which shows the one aspect | mode of the fluorescence detector of this invention. 本発明の蛍光検出器の一態様を示す図である。It is a figure which shows the one aspect | mode of the fluorescence detector of this invention. 実施例1の結果を示す図である。It is a figure which shows the result of Example 1.

以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は当該実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example, this invention is not limited to the said Example.

実施例1
図1に示す蛍光検出器を用い、コリメートレンズ21から受光部23までの距離を変化させたときの、受光部23に照射される光量を測定した。なお、励起光源11として470nmの発光ダイオードを、励起光用干渉フィルタ12として透過帯域465nmから475nmのバンドパスフィルタを、検出用干渉フィルタ22として透過帯域505nmから515nm、比屈折率1.8、内径φ8mmのバンドパスフィルタを、試料容器31として先端部の曲率が2mmの無色透明ポリプロピレン製容器を、検出用干渉フィルタ22から受光部23までの光導波路を覆う筒状体20として内壁表面を黒クローム処理した内径φ8mmの中空管を、それぞれ用いた。なお、検出用干渉フィルタ22はコリメートレンズ21の受光部23側に重ねて設けており、試料容器31先端部とコリメートレンズ21との距離は8mmである。
Example 1
Using the fluorescence detector shown in FIG. 1, the amount of light irradiated to the light receiving unit 23 when the distance from the collimating lens 21 to the light receiving unit 23 was changed was measured. The excitation light source 11 is a light emitting diode of 470 nm, the excitation light interference filter 12 is a transmission band 465 nm to 475 nm, the detection interference filter 22 is a transmission band 505 nm to 515 nm, a relative refractive index of 1.8, an inner diameter A φ8 mm bandpass filter is used as the sample container 31, a colorless transparent polypropylene container with a tip curvature of 2 mm, and a cylindrical body 20 covering the optical waveguide from the detection interference filter 22 to the light receiving unit 23, and the inner wall surface is black chrome. Each of the treated hollow tubes having an inner diameter of φ8 mm was used. The detection interference filter 22 is provided so as to overlap the light receiving portion 23 side of the collimating lens 21, and the distance between the tip of the sample container 31 and the collimating lens 21 is 8 mm.

コリメートレンズ21から受光部23までの距離を5mmから17mmの範囲で変化させた上で、蛍光色素で修飾した核酸プローブを含む蛍光試料32およびブランク(蛍光試料を含まない水)から発せられる蛍光量を測定した。結果を図4に示す(黒丸印:蛍光試料、黒四角印:ブランク、×印:蛍光試料/ブランク比)。コリメートレンズ21から受光部23までの距離をコリメートレンズ21の有効径(φ8mm)よりも短くすると、蛍光試料、ブランクともに検出器出力の増加が確認され、S/N比(蛍光試料/ブランク比)が顕著に低下した。一方、コリメートレンズ21から受光部23までの距離をコリメートレンズ21の有効径(φ8mm)よりも長くすると、蛍光試料、ブランクともに検出器出力の増加は抑制され、S/N比が向上していることがわかる。つまり、コリメートレンズ21から受光部23までの距離をコリメートレンズ21の有効径より長くすることにより、干渉フィルタの表面に対して斜めに入射することで受光部に照射される励起光に由来する妨害光を低減することができることがわかる。   The amount of fluorescence emitted from the fluorescent sample 32 including the nucleic acid probe modified with the fluorescent dye and the blank (water not including the fluorescent sample) after changing the distance from the collimating lens 21 to the light receiving unit 23 in the range of 5 mm to 17 mm. Was measured. The results are shown in FIG. 4 (black circle: fluorescent sample, black square: blank, x: fluorescent sample / blank ratio). When the distance from the collimating lens 21 to the light receiving unit 23 is shorter than the effective diameter (φ8 mm) of the collimating lens 21, an increase in detector output is confirmed for both the fluorescent sample and the blank, and the S / N ratio (fluorescent sample / blank ratio). Decreased significantly. On the other hand, when the distance from the collimating lens 21 to the light receiving unit 23 is made longer than the effective diameter (φ8 mm) of the collimating lens 21, an increase in detector output is suppressed for both the fluorescent sample and the blank, and the S / N ratio is improved. I understand that. In other words, by making the distance from the collimating lens 21 to the light receiving unit 23 longer than the effective diameter of the collimating lens 21, interference caused by excitation light that is incident on the light receiving unit obliquely with respect to the surface of the interference filter. It can be seen that light can be reduced.

実施例2
図1に示す蛍光検出器と図3に示す蛍光検出器を用いて、光導波路としての筒状体の内壁に凹凸を設けたことによる効果を検証した。
Example 2
Using the fluorescence detector shown in FIG. 1 and the fluorescence detector shown in FIG. 3, the effect of providing irregularities on the inner wall of a cylindrical body as an optical waveguide was verified.

励起光源11として450nmの発光ダイオードを、励起光用干渉フィルタ12として透過帯域445nmから455nmのバンドパスフィルタを、検出用干渉フィルタ22として透過帯域470nmから495nm、比屈折率1.8、内径φ8mmのバントパスフィルタを、筒状体20として内壁表面を黒クローム処理した内径φ8mmの中空管にM8三角雌ネジ(ピッチ1.25mm、谷の径8mm)相当の凹凸25を内壁に設けたものを、それぞれ用い、コリメートレンズ21から受光部23までの距離は13mmとした。なお、コリメートレンズ21の有効径、使用した試料容器31、試料容器31先端部からコリメートレンズ21までの距離は実施例1と同じである。   A 450 nm light emitting diode as the excitation light source 11, a bandpass filter with a transmission band of 445 nm to 455 nm as the interference filter 12 for excitation light, a transmission band of 470 nm to 495 nm as the interference filter 22 for detection, a relative refractive index of 1.8, and an inner diameter of φ8 mm. A Buntpass filter having a cylindrical body 20 with an inner wall surface of black chrome-treated hollow tube with an inner diameter of φ8 mm and an M8 triangular female screw (pitch 1.25 mm, valley diameter 8 mm) equivalent unevenness 25 provided on the inner wall The distance from the collimating lens 21 to the light receiving unit 23 was 13 mm. The effective diameter of the collimating lens 21, the used sample container 31, and the distance from the tip of the sample container 31 to the collimating lens 21 are the same as those in the first embodiment.

図1に示す蛍光検出器と図3に示す蛍光検出器を用いて、蛍光色素で修飾した核酸プローブを含む蛍光試料32およびブランク(蛍光試料を含まない水)から発する蛍光量を測定した。結果を表1に示す。光導波路としての筒状体の内壁に凹凸を設けることで、ブランクから発せられる検出器出力が顕著に低下し、結果S/N比(蛍光試料/ブランク比)が向上していることがわかる。   Using the fluorescence detector shown in FIG. 1 and the fluorescence detector shown in FIG. 3, the amount of fluorescence emitted from a fluorescent sample 32 containing a nucleic acid probe modified with a fluorescent dye and a blank (water not containing a fluorescent sample) was measured. The results are shown in Table 1. It can be seen that by providing irregularities on the inner wall of the cylindrical body as the optical waveguide, the detector output emitted from the blank is significantly reduced, and as a result, the S / N ratio (fluorescent sample / blank ratio) is improved.

Figure 0006357739
Figure 0006357739

11 励起光源
12 励起光用干渉フィルタ
20 筒状体(光導波路)
21 コリメートレンズ
22 検出用干渉フィルタ
23 受光部
24 矩形の凹凸
25 雌ネジ形状の凹凸
31 試料容器
32 蛍光試料
DESCRIPTION OF SYMBOLS 11 Excitation light source 12 Excitation light interference filter 20 Tubular body (optical waveguide)
DESCRIPTION OF SYMBOLS 21 Collimating lens 22 Interference filter for detection 23 Light-receiving part 24 Rectangular unevenness 25 Female screw-shaped unevenness 31 Sample container 32 Fluorescent sample

Claims (3)

試料に励起光を照射する励起光照射手段と、当該試料から発する蛍光を検出する蛍光検出手段とを備えた蛍光検出器であって、
前記蛍光検出手段が、開口部と閉口部を設け内壁が遮光処理された筒状体と、前記開口部側に設けたコリメートレンズと、前記閉口部側に設けた受光部と、前記コリメートレンズと前記受光部とを結ぶ光軸上に設けた干渉フィルタとからなり、かつ、前記コリメートレンズから前記受光部までの距離が前記コリメートレンズの有効口径よりも長く有効口径の2倍よりも短い、前記蛍光検出器。
A fluorescence detector comprising excitation light irradiation means for irradiating a sample with excitation light, and fluorescence detection means for detecting fluorescence emitted from the sample,
The fluorescence detection means includes an opening and a closing part, and a cylindrical body whose inner wall is shielded from light, a collimating lens provided on the opening part side, a light receiving part provided on the closing part side, and the collimating lens, consists interference filter provided on an optical axis connecting the light receiving portion, and shorter than twice the length rather effective diameter than the effective diameter of the distance from the collimating lens to said light receiving portion is the collimating lens, The fluorescence detector.
筒状体の内壁に凹凸を設けた、請求項1に記載の蛍光検出器。 The fluorescence detector according to claim 1, wherein irregularities are provided on the inner wall of the cylindrical body. 筒状体が円筒状であり、かつ、前記筒状体の内壁に設けた凹凸が当該内壁に沿って形成した螺旋状の溝である、請求項2に記載の蛍光検出器。 The fluorescence detector according to claim 2, wherein the cylindrical body is cylindrical, and the unevenness provided on the inner wall of the cylindrical body is a spiral groove formed along the inner wall.
JP2013164086A 2013-08-07 2013-08-07 Fluorescence detector Active JP6357739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013164086A JP6357739B2 (en) 2013-08-07 2013-08-07 Fluorescence detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013164086A JP6357739B2 (en) 2013-08-07 2013-08-07 Fluorescence detector

Publications (2)

Publication Number Publication Date
JP2015031682A JP2015031682A (en) 2015-02-16
JP6357739B2 true JP6357739B2 (en) 2018-07-18

Family

ID=52517100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013164086A Active JP6357739B2 (en) 2013-08-07 2013-08-07 Fluorescence detector

Country Status (1)

Country Link
JP (1) JP6357739B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114486823A (en) * 2021-12-24 2022-05-13 广东唯实生物技术有限公司 Optical path system and handheld device for lateral immunochromatography instrument

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232384A (en) * 1975-09-08 1977-03-11 Fuji Photo Film Co Ltd Densitometer
JPH04122336U (en) * 1991-04-20 1992-11-02 株式会社堀場製作所 radiation thermometer
JPH0943147A (en) * 1995-07-28 1997-02-14 Bunshi Bio Photonics Kenkyusho:Kk Dark-field vertical illuminating type fluorescene microscope device
AU676270B1 (en) * 1995-09-05 1997-03-06 Bayer Corporation Diffused light reflectance readhead
JP4515089B2 (en) * 2001-08-13 2010-07-28 浜松ホトニクス株式会社 Spectroscopic apparatus and spectral method
JP3872745B2 (en) * 2002-11-15 2007-01-24 三菱重工業株式会社 Gas component measuring method and apparatus
WO2007010803A1 (en) * 2005-07-15 2007-01-25 Olympus Corporation Light measuring instrument
WO2007091530A1 (en) * 2006-02-07 2007-08-16 The Furukawa Electric Co., Ltd. Photodetector and measurement object reader
JP4987515B2 (en) * 2007-03-08 2012-07-25 能美防災株式会社 smoke detector
JP2009063402A (en) * 2007-09-06 2009-03-26 Canon Inc Apparatus for manufacturing sensing element, method of manufacturing sensing element, and sensing device with sensing element
JP5169586B2 (en) * 2008-07-30 2013-03-27 富士電機株式会社 Laser gas analyzer, oxygen gas concentration measurement method
JP2010071682A (en) * 2008-09-16 2010-04-02 Fujifilm Corp Sensing device, substance detecting method, inspection chip, and inspection kit

Also Published As

Publication number Publication date
JP2015031682A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
US9377351B2 (en) Angle of incidence selective band pass filter for implantable chemical sensor
RU2015117776A (en) SPECTROSCOPIC MEASURING DEVICE
US20160320564A1 (en) Optical probe for optical coherence tomography and manufacturing method therefor
JP6217674B2 (en) Transmission probe, optical apparatus, and liquid permeation overmeasurement method
JP6357739B2 (en) Fluorescence detector
CN105979871A (en) Non-invasive system and method for measuring a substance concentration
JP2012255738A5 (en)
JP2007198883A (en) Spectral measuring instrument by optical fiber probe
JP2017102107A (en) Optical fiber device and sensor system
JP6134207B2 (en) Gas detector
CN106802232B (en) A kind of microcobjective numerical aperture measurement method and system based on total reflection
JP6682095B2 (en) Optical member and light guide member
CN107991286B (en) Raman spectrum detection equipment and method based on reflected light power
JP2018084523A5 (en)
JP2014238333A (en) Liquid immersion probe and infrared spectrophotometer
US10384152B2 (en) Backscatter reductant anamorphic beam sampler
JP6379007B2 (en) Piping and dryness measuring device
EP3165905B1 (en) Gas concentration measurement device
JP2007127666A (en) Biological spectrum measurement device
CN206594055U (en) Moisture content determining device
CN113466210A (en) Apparatus and method for increasing water signal intensity in Raman spectrum
JP7205190B2 (en) Optical measuring instrument
JP6664771B2 (en) Optical system structure, optical measuring device and optical measuring method
JP2013068461A (en) Refraction factor measuring apparatus, sugar concentration measuring apparatus and method therefor
JP2016080431A (en) Photoprobe, measuring apparatus and measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180604

R151 Written notification of patent or utility model registration

Ref document number: 6357739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151