JP6350551B2 - Anodized film generation method - Google Patents

Anodized film generation method Download PDF

Info

Publication number
JP6350551B2
JP6350551B2 JP2016002518A JP2016002518A JP6350551B2 JP 6350551 B2 JP6350551 B2 JP 6350551B2 JP 2016002518 A JP2016002518 A JP 2016002518A JP 2016002518 A JP2016002518 A JP 2016002518A JP 6350551 B2 JP6350551 B2 JP 6350551B2
Authority
JP
Japan
Prior art keywords
film
hole
anodized
anodized film
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016002518A
Other languages
Japanese (ja)
Other versions
JP2017122271A (en
Inventor
恵実 杉澤
恵実 杉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2016002518A priority Critical patent/JP6350551B2/en
Publication of JP2017122271A publication Critical patent/JP2017122271A/en
Application granted granted Critical
Publication of JP6350551B2 publication Critical patent/JP6350551B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、金属製の被処理物を陽極として電解液中に配置し、被処理物の表面に陽極酸化皮膜を成膜する陽極酸化皮膜生成方法に関する。 The present invention, a metallic article to be treated was placed in the electrolytic solution as an anode, about the anodized film generation how the deposition of the anodic oxide film on the surface of the workpiece.

従来、アルミニウム成形品である内燃機関のピストン頂面(被処理物)などに陽極酸化皮膜を形成し、断熱性を高めて冷却損失を低減する技術が知られている(例えば、特許文献1〜2参照)。冷却損失を低減できるのは、陽極酸化皮膜の内部に形成される孔部によって熱伝導率および熱容量が低減され、アルミニウム基材に熱が伝導され難くなるからである。   Conventionally, a technique is known in which an anodized film is formed on a piston top surface (an object to be processed) of an internal combustion engine that is an aluminum molded article to improve heat insulation and reduce cooling loss (for example, Patent Documents 1 to 3). 2). The reason why the cooling loss can be reduced is that the heat conductivity and the heat capacity are reduced by the holes formed inside the anodized film, and it is difficult for heat to be conducted to the aluminum base material.

特許文献1の陽極酸化皮膜は、最大電圧および電解液の温度を調整して気孔率が大きく設定され、さらに酸による孔拡大処理、沸騰水や水ガラス等の無機系封止材による表面封止処理が行なわれる。   The anodized film of Patent Document 1 is set to have a large porosity by adjusting the maximum voltage and the temperature of the electrolytic solution, and further, the surface is sealed with an inorganic sealing material such as boiling water or water glass, with a pore expansion treatment using acid. Processing is performed.

特許文献2の陽極酸化皮膜の表面には、低熱伝導率で低熱容量の粉末をプラズマ溶射して被覆層が形成されている。また、陽極酸化皮膜と被覆層との密着性を高めるために、フォトエッジング法によりアルミニウム基材の表面に凹凸を形成している。   On the surface of the anodized film of Patent Document 2, a coating layer is formed by plasma spraying a powder having low thermal conductivity and low heat capacity. Moreover, in order to improve the adhesiveness of an anodized film and a coating layer, the unevenness | corrugation is formed in the surface of the aluminum base material by the photo edging method.

特開2012−46784号公報JP 2012-46784 A 特開2012−72745号公報JP 2012-72745 A

しかしながら、特許文献1の陽極酸化皮膜は気孔率を大きく設定しているので、沸騰水での封止処理によって孔部が封止できないおそれがある。この場合、燃料や燃焼ガスが陽極酸化皮膜内に侵入して、所望の断熱性能を確保できない。一方、水ガラス等の無機系封止材で封止する場合は、別途塗布装置が必要となり、製造コストの増大を招いてしまう。   However, since the anodized film of Patent Document 1 has a large porosity, there is a possibility that the pores cannot be sealed by the sealing treatment with boiling water. In this case, fuel and combustion gas penetrate | invade in an anodized film, and desired heat insulation performance cannot be ensured. On the other hand, in the case of sealing with an inorganic sealing material such as water glass, a separate coating device is required, resulting in an increase in manufacturing cost.

また、特許文献2は、フォトエッジング法により陽極酸化皮膜と被覆層との密着性を高めているが、陽極酸化皮膜と被覆層とは別材料となるので、内燃機関のように過酷な環境下では被覆層が剥離するおそれがある。しかも、フォトエッジング工程やプラズマ溶射工程が必要となるので、製造コストが大きくなってしまう。   Moreover, although patent document 2 is improving the adhesiveness of an anodized film and a coating layer by the photo edging method, since an anodized film and a coating layer become a different material, it is a severe environment like an internal combustion engine. Then, there exists a possibility that a coating layer may peel. In addition, since a photo edging process and a plasma spraying process are required, the manufacturing cost increases.

そこで、高い断熱性能を有する陽極酸化皮膜を簡便な方法で成膜できる陽極酸化皮膜生成方法が望まれている。 Therefore, the anodized film generation how the film can be formed an anodic oxide film by a simple method with high thermal insulation performance is desired.

陽極酸化皮膜生成方法の特徴構成は、金属製の被処理物を陽極として、クロム酸を含む電解液で前記被処理物に第一皮膜を成膜する第一工程と、前記第一工程の後で、前記被処理物を陽極として、硫酸、シュウ酸、及びリン酸の少なくとも一つを含む電解液で前記被処理物に第二皮膜を成膜する第二工程と、前記第一皮膜および前記第二皮膜を酸性液に浸漬し、前記第二皮膜の孔拡大処理をする第三工程と、前記第一皮膜の表面を封止する第四工程と、を備えている点にある。   The characteristic configuration of the anodic oxide film generation method includes a first step of forming a first film on the object to be processed with an electrolytic solution containing chromic acid using a metal object as an anode, and after the first step. A second step of forming a second film on the object to be processed with an electrolyte containing at least one of sulfuric acid, oxalic acid, and phosphoric acid, using the object to be processed as an anode; It is in the point provided with the 3rd process which immerses a 2nd membrane | film | coat in acidic solution, and performs the hole expansion process of said 2nd membrane | film | coat, and the 4th process of sealing the surface of said 1st membrane | film | coat.

硫酸、シュウ酸、及びリン酸を用いて成膜した陽極酸化皮膜には、それらの電解質アニオンが皮膜内部に進入(残留)し、クロム酸を用いて成膜した陽極酸化皮膜には、その電解質アニオンが皮膜内部に進入(残留)しないことが知られている。本発明者らは、アニオンが混入していない陽極酸化皮膜とアニオンが進入している陽極酸化皮膜とを共に酸性液に浸漬すると、アニオンが混入している陽極酸化皮膜は、孔部の拡大が促進されるとの知見を得た。これは、アニオンが存在しない皮膜に比べ、アニオンが存在する皮膜は不安定な状態にあるので、酸性液で溶解が進行し易いためであると推測される。   In the anodic oxide film formed using sulfuric acid, oxalic acid, and phosphoric acid, the electrolyte anions enter (residual) the film, and the anodic oxide film formed using chromic acid contains the electrolyte. It is known that anions do not enter (residual) inside the coating. When the present inventors immerse both an anodized film in which an anion is not mixed and an anodized film in which an anion has entered in an acidic liquid, the anodized film in which the anion is mixed has an enlarged pore. The knowledge that it was promoted was obtained. This is presumed to be because the film in which anions are present is in an unstable state as compared with the film in which anions are not present, so that dissolution is likely to proceed with an acidic solution.

そこで、本方法では、クロム酸を電解液として被処理物に第一皮膜を形成した後、硫酸等を電解液として第二皮膜を形成している。つまり、陽極酸化皮膜は基材の表面から順番に成長するものなので、第一皮膜と被処理物との間に第二皮膜が形成されている。これによって、第三工程において陽極酸化皮膜を酸性液に浸漬すると、第一皮膜は孔部がほとんど溶解しないのに対し、第二皮膜の孔部のみが溶解し拡大する。その結果、陽極酸化皮膜の熱伝導率および熱容量が低減され、基材に熱が伝導され難くなる。   Therefore, in this method, after forming the first film on the object to be processed using chromic acid as the electrolytic solution, the second film is formed using sulfuric acid or the like as the electrolytic solution. That is, since the anodized film grows in order from the surface of the substrate, a second film is formed between the first film and the object to be processed. Thus, when the anodized film is immersed in the acidic solution in the third step, the hole in the first film is hardly dissolved, but only the hole in the second film is dissolved and expanded. As a result, the thermal conductivity and heat capacity of the anodized film are reduced, making it difficult for heat to be conducted to the substrate.

また、第一皮膜は孔部が拡大されていないので、第四工程において、例えば沸騰水処理による孔封止処理を施せば、孔部の表面が確実に封止される。その結果、被処理物を高熱が晒される内燃機関のピストンとした場合、燃料や燃焼ガスが陽極酸化皮膜の内部に侵入するといった不都合が解消される。また、陽極酸化皮膜に被覆材を設けることなく、通常の陽極酸化処理で製造可能となるので製造コストを節約することができる。しかも、第一皮膜と第二皮膜とは共に、基材から成長する同一材料から構成されるので、内燃機関のように過酷な環境下でも剥離し難い。このように、本方法は、高い断熱性能を有する陽極酸化皮膜を簡便な方法で成膜するものである。   Moreover, since the hole part of the 1st membrane | film | coat is not expanded, if the hole sealing process by a boiling water process is performed in a 4th process, the surface of a hole part will be sealed reliably. As a result, when the object to be processed is a piston of an internal combustion engine to which high heat is exposed, the inconvenience that fuel and combustion gas enter the inside of the anodized film is solved. Moreover, since it can be manufactured by a normal anodizing process without providing a coating material on the anodized film, the manufacturing cost can be saved. Moreover, since both the first film and the second film are made of the same material that grows from the base material, they are difficult to peel even under a harsh environment like an internal combustion engine. Thus, this method forms a anodic oxide film having high heat insulation performance by a simple method.

他の特徴構成は、前記第二工程で用いられる電解液は硫酸である点にある。   Another characteristic configuration is that the electrolytic solution used in the second step is sulfuric acid.

硫酸は、アニオンが陽極酸化皮膜の膜厚方向に進入する割合が100%に近い。このため、本方法のように第二工程で硫酸を用いれば、第三工程において陽極酸化皮膜を酸性液に浸漬した場合、第二皮膜の膜厚方向に存在する孔部が膜厚方向に均等に拡大される。よって、第二皮膜の孔径を制御し易く、陽極酸化皮膜の断熱性能を確実に高めることができる。   In sulfuric acid, the rate at which anions enter the film thickness direction of the anodized film is close to 100%. For this reason, if sulfuric acid is used in the second step as in this method, when the anodized film is immersed in an acidic solution in the third step, the holes present in the film thickness direction of the second film are even in the film thickness direction. Expanded to Therefore, it is easy to control the hole diameter of the second film, and the heat insulation performance of the anodized film can be reliably improved.

陽極酸化処理装置を説明する図である。It is a figure explaining an anodizing apparatus. 本実施形態に係るアルミニウム成形品を示す図である。It is a figure which shows the aluminum molded product which concerns on this embodiment. 本実施形態に係る陽極酸化皮膜生成方法を説明する図である。It is a figure explaining the anodic oxide film production | generation method which concerns on this embodiment. 本実施例に係る陽極酸化皮膜の断面を拡大したSEM写真である。It is the SEM photograph which expanded the cross section of the anodic oxide film which concerns on a present Example. 図4の第一皮膜を拡大したSEM写真である。It is the SEM photograph which expanded the 1st membrane | film | coat of FIG. 図4の第二皮膜を拡大したSEM写真である。It is the SEM photograph which expanded the 2nd membrane | film | coat of FIG. 比較例1に係る第二皮膜の断面を拡大したSEM写真である。4 is an SEM photograph in which a cross section of a second film according to Comparative Example 1 is enlarged. 比較例2に係る陽極酸化皮膜の断面を拡大したSEM写真である。4 is an SEM photograph in which a cross section of an anodized film according to Comparative Example 2 is enlarged. 比較例3に係る陽極酸化皮膜の断面を拡大したSEM写真である。It is the SEM photograph which expanded the cross section of the anodic oxide film which concerns on the comparative example 3. 図9の陽極酸化皮膜の表面付近を拡大したSEM写真である。10 is an enlarged SEM photograph showing the vicinity of the surface of the anodized film in FIG. 9.

以下に、本発明に係るアルミニウム成形品および陽極酸化皮膜生成方法の実施形態について、図面に基づいて説明する。本実施形態では、アルミニウム成形品1として、内燃機関のピストンの頂部に陽極酸化処理を施した一例を説明する。ただし、以下の実施形態に限定されることなく、その要旨を逸脱しない範囲内で種々の変形が可能である。   Hereinafter, embodiments of an aluminum molded article and an anodized film production method according to the present invention will be described with reference to the drawings. In the present embodiment, an example will be described in which the aluminum molded product 1 is anodized on the top of a piston of an internal combustion engine. However, the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the invention.

(アルミニウム成形品)
図1に示すように、アルミニウム成形品1は、アルミニウムを含む基材2(被処理物の一例。以下、「基材2」と言う。)と、基材2の表面に形成された陽極酸化皮膜3とを備えている。なお、アルミニウム成形品1は、内燃機関のピストンの頂部や、燃焼室を区画するシリンダブロックのボア、シリンダヘッドの底面などを想定している。なお、アルミニウム成形品1は、アルミニウムを含む基材2に陽極酸化皮膜を成膜するものであれば、特に限定されない。
(Aluminum molded product)
As shown in FIG. 1, an aluminum molded product 1 includes a base 2 containing aluminum (an example of an object to be processed; hereinafter referred to as “base 2”), and an anodization formed on the surface of the base 2. And a coating 3. The aluminum molded product 1 assumes the top of a piston of an internal combustion engine, the bore of a cylinder block that defines a combustion chamber, the bottom of a cylinder head, and the like. The aluminum molded product 1 is not particularly limited as long as it forms an anodized film on the base 2 containing aluminum.

基材2としては、例えば、ダイカスト等のアルミニウム鋳造材、アルミニウム鍛造材等を用いることができる。アルミニウムとしては、純アルミニウム、アルミニウム合金等を適用できる。アルミニウム合金の種類は、銅、マンガン、ケイ素、マグネシウム、亜鉛、ニッケル、錫、鉛、チタン、クロム、ジクロニウムなどの1種又は複数種との合金が考えられる。   As the base material 2, for example, an aluminum casting material such as die casting, an aluminum forging material, or the like can be used. As aluminum, pure aluminum, aluminum alloy, or the like can be applied. As the kind of the aluminum alloy, an alloy with one kind or plural kinds of copper, manganese, silicon, magnesium, zinc, nickel, tin, lead, titanium, chromium, dicuronium and the like can be considered.

陽極酸化皮膜3を生成するために用いられる陽極酸化処理装置Xは、直流電源4と、陰極5と、内部に電解液61を有する電解槽6と、を備えている。また、基材2を陽極7として陰極5と共に電解液61の中に配置し、両極間に直流電流を通電することで、基材2の表面に陽極酸化皮膜3を形成する。電解液61は、希硫酸、シュウ酸、リン酸、クロム酸、その他有機酸などが単独で又は2種以上を混同して使用される。なお、陰極5には、鉛、白金などが使用されるが、特に限定されない。また、直流電源4に限定されず、交流電源や交直重畳電源を用いても良く、特に限定されない。   An anodizing apparatus X used for producing the anodized film 3 includes a DC power source 4, a cathode 5, and an electrolytic cell 6 having an electrolytic solution 61 inside. Further, the base material 2 is placed in the electrolyte 61 together with the cathode 5 as the anode 7, and a direct current is passed between both electrodes, thereby forming the anodic oxide film 3 on the surface of the base material 2. As the electrolytic solution 61, dilute sulfuric acid, oxalic acid, phosphoric acid, chromic acid, and other organic acids are used alone or in combination of two or more. In addition, although lead, platinum, etc. are used for the cathode 5, it does not specifically limit. Further, the power source is not limited to the DC power source 4, and an AC power source or an AC / DC superimposed power source may be used, and is not particularly limited.

また、陽極酸化処理装置Xは、直流電源4への通電を制御する通電制御部8と、電解液61の温度を制御する温度制御部9とを備えている。本実施形態における通電制御部8は、定電流制御および定電圧制御のいずれか一方を選択し、電流値、電圧値や通電時間の制御を行う。なお、通電制御部8は、バルス制御や交直重畳制御を実行しても良い。バルス制御の場合はデューティ比や周波数を所定値に設定して、陽極酸化皮膜3のセル径を制御しても良く、特に限定されない。   The anodizing apparatus X includes an energization control unit 8 that controls energization to the DC power supply 4 and a temperature control unit 9 that controls the temperature of the electrolytic solution 61. The energization control unit 8 in the present embodiment selects one of constant current control and constant voltage control, and controls the current value, voltage value, and energization time. The energization control unit 8 may execute pulse control or AC / DC superimposition control. In the case of pulse control, the cell diameter of the anodized film 3 may be controlled by setting the duty ratio and frequency to predetermined values, and there is no particular limitation.

温度制御部9は、陽極酸化処理の温度を一定に保つために、電解液61の温度を調整する。処理温度は陽極酸化皮膜3が溶解して消失してしまわない温度であれば特に限定されないが、例えば−5℃〜25℃の範囲で調整される。   The temperature control unit 9 adjusts the temperature of the electrolytic solution 61 in order to keep the temperature of the anodizing process constant. The treatment temperature is not particularly limited as long as it is a temperature at which the anodic oxide film 3 does not dissolve and disappear, but for example, it is adjusted in the range of −5 ° C. to 25 ° C.

また、電解槽6には、電解液61を撹拌する撹拌手段(不図示)が設けてあり、電解液61の温度のばらつきを抑え、基材2に電解液61の温度差が影響しないようにしてある。撹拌手段としては、例えば、ポンプで電解液61を循環させたり、エアパブリシングによる撹拌などが考えられる。   Further, the electrolytic cell 6 is provided with a stirring means (not shown) for stirring the electrolytic solution 61 so as to suppress variations in the temperature of the electrolytic solution 61 so that the temperature difference of the electrolytic solution 61 does not affect the substrate 2. It is. As the agitation means, for example, the electrolytic solution 61 is circulated by a pump, or agitation by air publishing can be considered.

図2は、陽極酸化処理装置Xで成膜されたアルミニウム成形品1の一部拡大図が示される。アルミニウム成形品1は、アルミニウムを含む基材2と、基材2の表面に形成された陽極酸化皮膜3とを備えている。この陽極酸化皮膜3は、薄膜状の無孔質である導電性の被膜であるバリア層3Aと、六角柱状のセルの集合体であるポーラス層3Bとを備えている。ポーラス層3Bは、第一孔部32aを有する第一皮膜32と、基材2と第一皮膜32との間に形成され、第一皮膜32より孔径が大きい第二孔部31aを有する第二皮膜31とを備えている。   FIG. 2 shows a partially enlarged view of the aluminum molded product 1 formed by the anodizing apparatus X. The aluminum molded product 1 includes a base material 2 containing aluminum and an anodized film 3 formed on the surface of the base material 2. The anodic oxide film 3 includes a barrier layer 3A which is a thin film-like non-porous conductive film and a porous layer 3B which is an aggregate of hexagonal columnar cells. The porous layer 3B is formed between the first film 32 having the first hole 32a and the base material 2 and the first film 32, and has a second hole 31a having a larger hole diameter than the first film 32. And a coating 31.

本実施形態では、第二皮膜31の孔径を第一皮膜32の孔径より大きく設定しているので、陽極酸化皮膜3の熱伝導率および熱容量が低減され、基材2に熱が伝導され難くなる。   In this embodiment, since the hole diameter of the second film 31 is set larger than the hole diameter of the first film 32, the thermal conductivity and heat capacity of the anodized film 3 are reduced, and heat is not easily conducted to the base material 2. .

また、第一皮膜32には、表面が封止された孔封止部33が形成されている。つまり、第一皮膜32は、表面に孔封止部33が形成された第一孔部32aを有している。第一皮膜32は孔径が小さいので、例えば沸騰水による孔封止処理を施した場合、孔封止部33を確実に形成することができる。その結果、高熱に晒される内燃機関のアルミニウム成形品1において、燃料や燃焼ガスが陽極酸化皮膜3の内部に侵入するといった不都合が解消される。また、陽極酸化皮膜3に被覆材を設けることなく、通常の陽極酸化処理で製造可能となるので製造コストを節約することができる。しかも、第一皮膜32と第二皮膜31とは共に、同じ陽極酸化皮膜3から構成されるので、内燃機関のように過酷な環境下でも剥離し難い。   Further, the first coating 32 is formed with a hole sealing portion 33 whose surface is sealed. That is, the first film 32 has a first hole portion 32a having a hole sealing portion 33 formed on the surface. Since the 1st membrane | film | coat 32 has a small hole diameter, for example, when the hole sealing process by boiling water is given, the hole sealing part 33 can be formed reliably. As a result, in the aluminum molded product 1 of the internal combustion engine exposed to high heat, the inconvenience that the fuel and the combustion gas enter the inside of the anodized film 3 is solved. Moreover, since it can be manufactured by a normal anodizing process without providing a coating material on the anodized film 3, the manufacturing cost can be saved. Moreover, since both the first film 32 and the second film 31 are composed of the same anodic oxide film 3, they are difficult to peel even under a harsh environment such as an internal combustion engine.

陽極酸化皮膜3の膜厚は、50μm〜200μmで設定されている。熱抵抗を高めるために、下限値として50μmを採用し、体積比熱が大きくなり過ぎないように、上限値として200μmを採用している。また、第一皮膜32の厚みは、第二皮膜31の厚みより小さく構成されている。詳細は後述するが、第一皮膜32は、クロム酸を電解液61として成膜されており厚膜化が困難なので、0.5μm〜5μmに設定されている。一方、バリア層3Aは数nmであり、第二皮膜31は、45μm以上200μm未満に設定されている。   The film thickness of the anodized film 3 is set to 50 μm to 200 μm. In order to increase the thermal resistance, 50 μm is adopted as the lower limit value, and 200 μm is adopted as the upper limit value so that the volume specific heat does not become too large. Further, the thickness of the first film 32 is configured to be smaller than the thickness of the second film 31. Although the details will be described later, the first film 32 is formed to have a thickness of 0.5 to 5 μm because chromic acid is used as the electrolytic solution 61 and it is difficult to increase the thickness. On the other hand, 3 A of barrier layers are several nm, and the 2nd membrane | film | coat 31 is set to 45 micrometers or more and less than 200 micrometers.

このように第一皮膜32の厚みを小さくすれば、例えば沸騰水で水和膨張させたとき、第一孔部32aを挟んで対向する壁面が接近し易くなり、孔封止部33を容易に形成することができる。また、第二皮膜31の厚みを大きくすることで、陽極酸化皮膜3の熱伝導率および熱容量を一層低減することができる。   If the thickness of the first film 32 is reduced in this way, for example, when hydrated and expanded with boiling water, the opposing wall surfaces sandwiching the first hole portion 32a are easily accessible, and the hole sealing portion 33 is easily formed. Can be formed. Further, by increasing the thickness of the second film 31, the thermal conductivity and heat capacity of the anodized film 3 can be further reduced.

ところで、電解液61のアニオンうち、硫酸イオン、シュウ酸イオン、リン酸イオンは陽極酸化皮膜3の内部に進入(残留)し、クロム酸イオンは陽極酸化皮膜3の内部に進入(残留)しないことが知られている。本発明者らは、アニオンが混入していない陽極酸化皮膜3とアニオンが進入している陽極酸化皮膜3とを共に酸性液に浸漬すると、アニオンが混入している陽極酸化皮膜3は、孔部の拡大が促進されるとの知見を得た。これは、アニオンが存在しない陽極酸化皮膜3に比べ、アニオンが存在する陽極酸化皮膜3は不安定な状態にあるので、酸性液で溶解が進行し易いためであると推測される。   By the way, among the anions of the electrolytic solution 61, sulfate ions, oxalate ions, and phosphate ions should enter (residual) into the anodized film 3, and chromate ions should not enter (residual) into the anodized film 3. It has been known. When the present inventors immerse both the anodic oxide film 3 in which the anion is not mixed and the anodic oxide film 3 in which the anion has entered in the acidic liquid, the anodic oxide film 3 in which the anion is mixed becomes the pore portion. We learned that the expansion of This is presumed to be because the anodic oxide film 3 in which anions are present is in an unstable state as compared with the anodic oxide film 3 in which no anions are present, so that dissolution is likely to proceed with an acidic solution.

そこで、第一皮膜32には電解液61のアニオンをほとんど混入させず、第二皮膜31には電解液61のアニオンが混入させることとした。これによって、酸性液を用いて第二皮膜31の第二孔部31aを拡大させることができ、陽極酸化皮膜3の熱伝導率および熱容量を一層低減することができる。しかも、第一皮膜32は、酸性液を用いて第一孔部32aが拡大しないので、孔封止部33を容易に形成することができる。   Therefore, the first coating 32 is hardly mixed with the anion of the electrolytic solution 61, and the second coating 31 is mixed with the anion of the electrolytic solution 61. Thereby, the 2nd hole 31a of the 2nd membrane | film | coat 31 can be expanded using an acidic liquid, and the thermal conductivity and heat capacity of the anodic oxide membrane 3 can be reduced further. And since the 1st hole 32a does not enlarge the 1st membrane | film | coat 32 using an acidic liquid, the hole sealing part 33 can be formed easily.

特に、第二皮膜31に混入させるアニオンは、硫酸イオンであることが好ましい。硫酸は、アニオンが陽極酸化皮膜3の膜厚方向に進入する割合が100%に近い。このため、酸性液で孔拡大処理を施した場合、第二皮膜31の膜厚方向に存在する第二孔部31aが均等に拡大される。よって、第二皮膜31の孔径を制御し易く、陽極酸化皮膜3の断熱性能を確実に高めることができる。   In particular, the anion mixed in the second film 31 is preferably a sulfate ion. In sulfuric acid, the ratio of anions entering in the film thickness direction of the anodized film 3 is close to 100%. For this reason, when the hole expansion process is performed with the acidic liquid, the second hole portions 31 a existing in the film thickness direction of the second coating 31 are uniformly expanded. Therefore, the hole diameter of the second film 31 can be easily controlled, and the heat insulating performance of the anodized film 3 can be reliably improved.

(陽極酸化皮膜生成方法)
以下、図3を用いて、本実施形態に係る陽極酸化皮膜生成方法について説明する。陽極酸化皮膜生成方法は、アルミニウムを含む基材2を陽極として、クロム酸を含む電解液61で基材2に第一皮膜32を成膜する第一工程と、第一工程の後で、基材2を陽極として、硫酸、シュウ酸、及びリン酸の少なくとも一つを含む電解液61で基材2に第二皮膜31を成膜する第二工程と、第一皮膜32および第二皮膜31を酸性液に浸漬し、第二皮膜31の孔拡大処理をする第三工程と、第一皮膜32の表面を封止する第四工程と、を備えている。なお、第一工程と第二工程とは、同じ陽極酸化処理装置Xで実行しても良いし、別の陽極酸化処理装置Xで実行しても良い。
(Anodized film generation method)
Hereinafter, the method for producing an anodized film according to the present embodiment will be described with reference to FIG. An anodic oxide film production method includes a first step of forming a first film 32 on a base material 2 with an electrolytic solution 61 containing chromic acid using the base material 2 containing aluminum as an anode, and a base layer after the first step. A second step of forming the second film 31 on the substrate 2 with the electrolyte 61 containing at least one of sulfuric acid, oxalic acid, and phosphoric acid using the material 2 as an anode, and the first film 32 and the second film 31 Is immersed in an acidic solution, and a third process for expanding the pores of the second film 31 and a fourth process for sealing the surface of the first film 32 are provided. The first step and the second step may be executed by the same anodizing apparatus X or may be executed by different anodizing apparatuses X.

まず、基材2を荒加工や表面研磨加工によって所定の形状に加工する。次いで、第一工程において、クロム酸を含む電解液61を用い、通電制御部8が、所定の電圧値(例えば40V〜60V)で定電圧制御を実行する。定電圧制御とするのは、第一皮膜32が成長するに連れて電圧が上昇し続ける定電流制御に比べて、ジュール熱の発生を抑制して高温になり難いからである。これによって、成膜初期に形成される膜厚の小さい第一皮膜32に、ヤケが生じることを防止できる。また、第一皮膜32にヤケが生じないように、温度制御部9が電解液61の温度を所定の低温度(例えば、−5℃〜10℃)に維持するのが好ましい。   First, the base material 2 is processed into a predetermined shape by roughing or surface polishing. Next, in the first step, using the electrolytic solution 61 containing chromic acid, the energization control unit 8 performs constant voltage control at a predetermined voltage value (for example, 40 V to 60 V). The reason for the constant voltage control is that the generation of Joule heat is suppressed and the temperature is hardly increased as compared with the constant current control in which the voltage continues to increase as the first film 32 grows. As a result, it is possible to prevent burns from occurring in the first film 32 having a small film thickness formed at the initial stage of film formation. Moreover, it is preferable that the temperature controller 9 maintains the temperature of the electrolytic solution 61 at a predetermined low temperature (for example, −5 ° C. to 10 ° C.) so that the first film 32 is not burnt.

第一工程によって、バリア層3Aの上に、クロム酸イオンをほとんど混入しない第一孔部32aを有する第一皮膜32が生成される。次いで、第二工程において、硫酸、シュウ酸、及びリン酸の少なくとも一つを含む電解液61を用い、通電制御部8が、所定の電流値(例えば0.1A〜5A)で定電流制御を実行する。定電流制御とすることで、所望の膜厚を形成するために必要な通電制御部8での通電時間を設定し易くなる。これは、基材2に成膜される第二皮膜31の膜厚が、電流値と処理時間との積分値に比例するためである。   By the first step, the first film 32 having the first hole portion 32a that hardly contains chromate ions is generated on the barrier layer 3A. Next, in the second step, using the electrolytic solution 61 containing at least one of sulfuric acid, oxalic acid, and phosphoric acid, the energization control unit 8 performs constant current control at a predetermined current value (for example, 0.1 A to 5 A). Run. By using constant current control, it is easy to set the energization time in the energization control unit 8 necessary for forming a desired film thickness. This is because the film thickness of the second film 31 formed on the substrate 2 is proportional to the integrated value of the current value and the processing time.

次いで、第三工程において、第一皮膜32および第二皮膜31を硫酸やリン酸などの酸性液に浸漬し、第二皮膜31の第二孔部31aを拡大する。このとき、第一皮膜32の第一孔部32aはほとんど拡大しない。これは、上述したように第一皮膜32には電解液61のアニオン(クロム酸イオン)がほとんど混入せず、第二皮膜31には電解液61のアニオン(硫酸イオン等)が混入しているからである。なお、第三工程における処理時間は、所定の熱伝導率を目標値として、第二皮膜31が溶解しきって消滅しない時間以内に設定される。   Next, in the third step, the first film 32 and the second film 31 are immersed in an acidic solution such as sulfuric acid or phosphoric acid, and the second hole 31a of the second film 31 is enlarged. At this time, the first hole 32a of the first film 32 hardly expands. As described above, the first coating 32 hardly contains anions (chromate ions) of the electrolytic solution 61, and the second coating 31 contains the anions (sulfate ions, etc.) of the electrolytic solution 61. Because. The processing time in the third step is set within a time during which the second film 31 is completely dissolved and does not disappear, with a predetermined thermal conductivity as a target value.

次いで、第四工程において、沸騰水や酢酸ニッケルなどを用いて孔封止処理を施し、第一皮膜32の表面にある第一孔部32aを封止する。例えば沸騰水処理の場合、水和膨張によって孔が封止されることとなる。このとき、第一皮膜32は膜厚が小さく、且つ第三工程においての第一孔部32aが拡大していないので、第一孔部32aの表面が確実に封止される。   Next, in the fourth step, a hole sealing process is performed using boiling water, nickel acetate, or the like to seal the first hole 32 a on the surface of the first coating 32. For example, in the case of boiling water treatment, the pores are sealed by hydration expansion. At this time, since the first film 32 has a small film thickness and the first hole 32a in the third step is not enlarged, the surface of the first hole 32a is reliably sealed.

その結果、アルミニウム成形品1を高熱が晒される内燃機関のピストンとした場合、燃料や燃焼ガスが陽極酸化皮膜3の内部に侵入するといった不都合が解消される。また、陽極酸化皮膜3に被覆材を設けることなく、通常の陽極酸化処理で製造可能となるので製造コストを節約することができる。しかも、第一皮膜32と第二皮膜31とは共に、基材2から成長する同一の酸化アルミニウムから構成されるので、内燃機関のように過酷な環境下でも剥離し難い。   As a result, when the aluminum molded product 1 is a piston of an internal combustion engine to which high heat is exposed, the inconvenience that the fuel and the combustion gas enter the inside of the anodized film 3 is solved. Moreover, since it can be manufactured by a normal anodizing process without providing a coating material on the anodized film 3, the manufacturing cost can be saved. Moreover, since both the first film 32 and the second film 31 are made of the same aluminum oxide grown from the base material 2, they are difficult to peel even under a harsh environment like an internal combustion engine.

続いて、本実施形態に係る陽極酸化皮膜生成方法で製造した陽極酸化皮膜3(本実施例)と、他の方法で製造した陽極酸化皮膜(比較例)とを比較する。比較例1は、上述の第一工程と第二工程とを実施し、第三工程と第四工程とを省略した例である。比較例2は、電解液として硫酸を用い、上述の第三工程と第四工程とを省略した例である。比較例3は、電解液として硫酸を用い、上述の第三工程と第四工程とを実施した例である。各実施例における処理条件は、下記の表1に示される。   Then, the anodic oxide film 3 (this example) manufactured with the anodic oxide film production | generation method which concerns on this embodiment is compared with the anodic oxide film (comparative example) manufactured with the other method. Comparative Example 1 is an example in which the first step and the second step are performed, and the third step and the fourth step are omitted. Comparative Example 2 is an example in which sulfuric acid is used as the electrolytic solution, and the above-described third step and fourth step are omitted. Comparative Example 3 is an example in which sulfuric acid is used as the electrolytic solution and the above-described third step and fourth step are performed. The processing conditions in each example are shown in Table 1 below.

Figure 0006350551
Figure 0006350551

本実施例や比較例3のように第三工程の孔拡大処理をする場合は、酸性液として濃度5%のリン酸を用い、25℃で40分間実施した。本実施例や比較例3のように第四工程の孔封止処理をする場合は、沸騰水を用いて60分間実施した。図4〜図6は本実施例の陽極酸化皮膜3、図7は比較例1の第二皮膜、図8は比較例2の陽極酸化皮膜、図9〜図10は比較例3の陽極酸化皮膜の拡大写真が示される。   When the hole expansion process in the third step was performed as in this example or Comparative Example 3, phosphoric acid having a concentration of 5% was used as the acidic solution, and the process was performed at 25 ° C. for 40 minutes. When the hole sealing process of the fourth step was performed as in this example or Comparative Example 3, it was carried out for 60 minutes using boiling water. 4 to 6 show the anodized film 3 of this example, FIG. 7 shows the second film of Comparative Example 1, FIG. 8 shows the anodized film of Comparative Example 2, and FIGS. 9 to 10 show the anodized film of Comparative Example 3. An enlarged photo of is shown.

図4および図5に示すように、本実施例の第一皮膜32の表面は、孔封止処理を施すことで封止されていることが分かる。一方、孔封止処理を施すことで第二皮膜31も水和膨張する。本実施例では、孔拡大処理および孔封止処理を施すことで第二皮膜31の孔径が54nm,61nm,62nm(図6参照)となり、第一工程と第二工程とを備えているが孔拡大処理および孔封止処理を施していない比較例1は、第二皮膜の孔径が47nm,51nm,59nm(図7参照)であった。つまり、本実施例の第二皮膜31の孔径は、比較例1の第二皮膜の孔径に比べて、水和膨張しているにもかかわらず大きくなっている。   As shown in FIGS. 4 and 5, it can be seen that the surface of the first film 32 of the present example is sealed by performing a hole sealing process. On the other hand, the second coating 31 also hydrates and expands by performing the hole sealing treatment. In this embodiment, the hole diameter of the second coating 31 is 54 nm, 61 nm, and 62 nm (see FIG. 6) by performing the hole enlargement process and the hole sealing process, and the first process and the second process are provided. In Comparative Example 1 in which the enlargement process and the hole sealing process were not performed, the pore diameters of the second film were 47 nm, 51 nm, and 59 nm (see FIG. 7). That is, the hole diameter of the second film 31 of this example is larger than the hole diameter of the second film of Comparative Example 1, despite being hydrated and expanded.

その結果、本実施例の熱伝導率は0.5W/m・K、比較例1の熱伝導率は1.1W/m・Kとなり、本実施例の方が比較例1に比べて断熱性能に優れていることが分かる。一方、本実施例の第二皮膜31の孔径と比較例1の第二皮膜の孔径との差以上に熱伝導率の差が大きいのは、本実施例の第二皮膜31が水和膨張し密度が低下したためであると考えられる。第二皮膜31の密度低下によって熱容量も低下する。   As a result, the thermal conductivity of this example is 0.5 W / m · K, the thermal conductivity of Comparative Example 1 is 1.1 W / m · K, and the thermal insulation performance of this Example is higher than that of Comparative Example 1. It turns out that it is excellent in. On the other hand, the difference in thermal conductivity is larger than the difference between the hole diameter of the second film 31 of this example and the hole diameter of the second film of Comparative Example 1 because the second film 31 of this example hydrates and expands. This is probably because the density has decreased. As the density of the second coating 31 decreases, the heat capacity also decreases.

また、比較例2のように、電解液として硫酸のみで陽極酸化処理を行うと共に、孔拡大処理および孔封止処理を施していない場合は、熱伝導率は1.1W/m・Kとなり、本実施例の方が比較例1に比べて断熱性能に優れていることが分かる。このように、比較例1および比較例2のように孔拡大処理を施さない場合は、熱伝導率や熱容量を低減させることができない。なお、孔封止処理を施していない場合は、例えば比較例2の図8に示すように、陽極酸化皮膜の表面に無数の孔部が存在していることが分かる。   Further, as in Comparative Example 2, when the anodizing treatment is performed only with sulfuric acid as the electrolytic solution and the pore enlargement treatment and the pore sealing treatment are not performed, the thermal conductivity is 1.1 W / m · K, It turns out that the direction of a present Example is excellent in the heat insulation performance compared with the comparative example 1. FIG. Thus, when the hole enlargement process is not performed as in Comparative Example 1 and Comparative Example 2, the thermal conductivity and the heat capacity cannot be reduced. In addition, when the hole sealing process is not performed, for example, as shown in FIG. 8 of Comparative Example 2, it can be seen that innumerable holes exist on the surface of the anodized film.

また、比較例3のように、電解液として硫酸のみで陽極酸化処理を行うと共に、孔拡大処理および孔封止処理を施した場合、陽極酸化皮膜の表面付近の孔部が拡大してしまい、水和膨張による孔封止ができなかった(図9参照)。これは、陽極酸化皮膜の表面付近の孔径が26nm,29nm,32nm(図10参照)と大きく残留していることからも、明らかである。その結果、燃料や燃焼ガスが陽極酸化皮膜内に侵入して、所望の断熱性能を確保できない。   In addition, as in Comparative Example 3, when anodizing is performed only with sulfuric acid as an electrolytic solution, and pore enlargement treatment and pore sealing treatment are performed, the pores near the surface of the anodized film are enlarged, Hole sealing due to hydration expansion could not be performed (see FIG. 9). This is also clear from the fact that the pore diameters near the surface of the anodized film remain as large as 26 nm, 29 nm, and 32 nm (see FIG. 10). As a result, fuel and combustion gas penetrate into the anodized film and the desired heat insulation performance cannot be ensured.

さらに、硫酸イオンが陽極酸化皮膜全体に混入した比較例3は、孔拡大処理前の膜厚が80.5μmであったが、孔拡大処理後の膜厚が65.3μmと大幅に減少した。一方、本実施例のように、硫酸イオンが混入した第二皮膜31をアニオンが混入していない第一皮膜32で覆っている場合、孔拡大処理前の膜厚が78.9μmであるのに対し、孔拡大処理後の膜厚が73.9μmとほとんど減少しなかった。これにより、本実施例は、孔拡大処理を行ったときに第一皮膜32が陽極酸化皮膜3全体の溶解を抑制し、所望の膜厚を維持できることが確認された。つまり、本実施例では、所望の断熱性能を確保しつつ、膜厚に熱伝導率を除して算出される熱抵抗率を高めることができる。   Furthermore, in Comparative Example 3 in which sulfate ions were mixed in the entire anodized film, the film thickness before the hole enlargement treatment was 80.5 μm, but the film thickness after the hole enlargement treatment was significantly reduced to 65.3 μm. On the other hand, when the second film 31 mixed with sulfate ions is covered with the first film 32 not mixed with anions as in this embodiment, the film thickness before the hole enlargement process is 78.9 μm. On the other hand, the film thickness after the hole expansion treatment was hardly reduced to 73.9 μm. Thus, it was confirmed that in this example, when the hole enlargement process was performed, the first film 32 can suppress the dissolution of the entire anodized film 3 and maintain a desired film thickness. That is, in this embodiment, it is possible to increase the thermal resistivity calculated by dividing the film thickness by the thermal conductivity while ensuring the desired heat insulation performance.

[その他の実施形態]
(1)陽極酸化被膜する基材2は、アルミニウム以外にチタンやタンタルなどの金属や、それらと他の金属との合金であってもよい。
(2)クロム酸を電解液61とする第一皮膜32が陽極酸化皮膜3の表層に形成される限りにおいて、第二皮膜31を2層以上で構成しても良い。
[Other Embodiments]
(1) The base material 2 to be anodized may be a metal such as titanium or tantalum other than aluminum, or an alloy of these and other metals.
(2) As long as the first film 32 containing chromic acid as the electrolytic solution 61 is formed on the surface layer of the anodic oxide film 3, the second film 31 may be composed of two or more layers.

本発明は、所望の断熱性能が要求されるアルミニウム成形品に陽極酸化皮膜を生成する方法に利用可能である。 INDUSTRIAL APPLICABILITY The present invention can be used in a method for forming an anodized film on an aluminum molded product that requires a desired heat insulation performance.

1 アルミニウム成形品
2 基材(被処理物)
3 陽極酸化皮膜
6 電解槽
7 陽極
31 第二皮膜
32 第一皮膜
33 孔封止部
61 電解液
1 Aluminum molded product 2 Base material (object to be treated)
3 Anodized film 6 Electrolytic tank 7 Anode 31 Second film 32 First film 33 Hole sealing portion 61 Electrolytic solution

Claims (2)

金属製の被処理物を陽極として、クロム酸を含む電解液で前記被処理物に第一皮膜を成膜する第一工程と、
前記第一工程の後で、前記被処理物を陽極として、硫酸、シュウ酸、及びリン酸の少なくとも一つを含む電解液で前記被処理物に第二皮膜を成膜する第二工程と、
前記第一皮膜および前記第二皮膜を酸性液に浸漬し、前記第二皮膜の孔拡大処理をする第三工程と、
前記第一皮膜の表面を封止する第四工程と、を備えている陽極酸化皮膜生成方法。
A first step of forming a first film on the object to be processed with an electrolytic solution containing chromic acid using a metal object to be processed as an anode;
After the first step, with the object to be treated as an anode, a second step of forming a second film on the object to be treated with an electrolyte containing at least one of sulfuric acid, oxalic acid, and phosphoric acid;
A third step of immersing the first film and the second film in an acidic solution, and subjecting the second film to a pore expansion treatment;
And a fourth step of sealing the surface of the first film.
前記第二工程で用いられる電解液は硫酸である請求項1に記載の陽極酸化皮膜生成方法。   The method for producing an anodized film according to claim 1, wherein the electrolytic solution used in the second step is sulfuric acid.
JP2016002518A 2016-01-08 2016-01-08 Anodized film generation method Active JP6350551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016002518A JP6350551B2 (en) 2016-01-08 2016-01-08 Anodized film generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016002518A JP6350551B2 (en) 2016-01-08 2016-01-08 Anodized film generation method

Publications (2)

Publication Number Publication Date
JP2017122271A JP2017122271A (en) 2017-07-13
JP6350551B2 true JP6350551B2 (en) 2018-07-04

Family

ID=59305841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016002518A Active JP6350551B2 (en) 2016-01-08 2016-01-08 Anodized film generation method

Country Status (1)

Country Link
JP (1) JP6350551B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7084234B2 (en) * 2018-07-04 2022-06-14 トヨタ自動車株式会社 Internal combustion engine
US11312107B2 (en) * 2018-09-27 2022-04-26 Apple Inc. Plugging anodic oxides for increased corrosion resistance
JP2023004190A (en) * 2021-06-25 2023-01-17 スズキ株式会社 Piston for internal combustion engine and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08158096A (en) * 1994-12-08 1996-06-18 Mitsubishi Materials Corp Surface treatment of aluminum or its alloy
JPH11229185A (en) * 1998-02-13 1999-08-24 Kobe Steel Ltd Aluminum material excellent in resistance to heat cracking and corrosion
JP2004098386A (en) * 2002-09-06 2004-04-02 Fuji Photo Film Co Ltd Method for manufacturing support for lithographic printing plate and support for lithographic printing plate
JP4611236B2 (en) * 2006-04-07 2011-01-12 株式会社エヌ・ティー・エス HEAT CONDUCTIVE MATERIAL, DEVICE HAVING HEAT DISSIPTION STRUCTURE, AND METHOD FOR PRODUCING HEAT CONDUCTIVE MATERIAL
JP2009223989A (en) * 2008-03-18 2009-10-01 Fujitsu Ltd Nano-hole structure and magnetic recording medium
WO2014020939A1 (en) * 2012-08-01 2014-02-06 公益財団法人神奈川科学技術アカデミー Anodic oxidation porous alumina and method for producing same, and through-hole alumina membrane and method for producing same

Also Published As

Publication number Publication date
JP2017122271A (en) 2017-07-13

Similar Documents

Publication Publication Date Title
JP6061202B2 (en) Non-metal coating and production method thereof
JP6004181B2 (en) Anodized film and method for producing the same
JP4868020B2 (en) Aluminum anodizing method and anodized aluminum
JP5394021B2 (en) Aluminum alloy piston member and manufacturing method thereof
JP6350551B2 (en) Anodized film generation method
JP5152574B2 (en) Method for anodizing aluminum member
JP2018090897A (en) Anodic oxide film and method for producing the same
CN106065488B (en) A method of preparing anode aluminium foil using positive negative pulse stuffing anodizing
TWI424096B (en) Method for forming anodic oxide film
JP2016529404A (en) Anodizing architecture for electroplating adhesion
CN103695980A (en) Preparation method of single-layer micro-arc oxidation ceramic film on surface of aluminum alloy
TWI656244B (en) High purity aluminum top coat on the substrate
KR102176791B1 (en) Method for manufacturing aluminum anodic oxide film having pillar-on-pore structure using phosphoric acid
CN105957717B (en) The multiple hair engaging aperture method of the multistage of mesohigh anode foils
US8642187B2 (en) Structural member to be used in apparatus for manufacturing semiconductor or flat display, and method for producing the same
JP2010215945A (en) Oxide layer and method of forming the same
JP5369083B2 (en) Surface-treated aluminum member having high withstand voltage and method for producing the same
CN105624757A (en) Industrial-frequency alternating-current anodic oxidation method of anode aluminum foil for aluminum electrolytic capacitor
JP2012241226A (en) Insulation-coated aluminum conductor, insulation coating, and method of producing insulation coating
Theohari et al. Study of electrochemical behavior of commercial AA5052 during anodizing in phosphoric acid solution in relation to Mg species content in films
JP6562500B2 (en) Surface-treated aluminum material and manufacturing method thereof
KR20100076908A (en) Method for anodizing aluminum and anodized aluminum
JP5798900B2 (en) Method for forming oxide film and oxide film
JPH0762595A (en) Laminated film of aluminum oxide formed by anodization of aluminum and its production
JP6390096B2 (en) Anodized film generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180521

R151 Written notification of patent or utility model registration

Ref document number: 6350551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151