JP6390096B2 - Anodized film generation method - Google Patents

Anodized film generation method Download PDF

Info

Publication number
JP6390096B2
JP6390096B2 JP2013264104A JP2013264104A JP6390096B2 JP 6390096 B2 JP6390096 B2 JP 6390096B2 JP 2013264104 A JP2013264104 A JP 2013264104A JP 2013264104 A JP2013264104 A JP 2013264104A JP 6390096 B2 JP6390096 B2 JP 6390096B2
Authority
JP
Japan
Prior art keywords
current
energization
film
value
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013264104A
Other languages
Japanese (ja)
Other versions
JP2015120945A (en
Inventor
恵実 廣瀬
恵実 廣瀬
大之 小林
大之 小林
誠喜 加藤
誠喜 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2013264104A priority Critical patent/JP6390096B2/en
Publication of JP2015120945A publication Critical patent/JP2015120945A/en
Application granted granted Critical
Publication of JP6390096B2 publication Critical patent/JP6390096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、金属製の被処理物を陽極として陰極と共に電解液中に配置し、被処理物の表面に酸化処理を行う陽極酸化皮膜生成方法に関する。   The present invention relates to a method for producing an anodic oxide film in which a metal object to be treated is disposed in an electrolyte together with a cathode as an anode, and an oxidation treatment is performed on the surface of the object to be treated.

従来の上記陽極酸化皮膜生成方法として、直流電流をスイッチングしてパルス電圧を出力し、正電圧印加と電荷除去とを周期的に反復する方法が知られている(例えば、特許文献1)。特許文献1には、正電圧印加時間を、電流波形のピーク到達時間の1〜3倍に設定することで処理速度の高速化が図られると記載されている。   As a conventional method for generating the anodic oxide film, a method is known in which a direct current is switched to output a pulse voltage, and positive voltage application and charge removal are periodically repeated (for example, Patent Document 1). Patent Document 1 describes that the processing speed can be increased by setting the positive voltage application time to 1 to 3 times the peak arrival time of the current waveform.

また、特許文献2の方法では、定電流を所定時間印加した後、酸化皮膜のヤケが発生する電圧に達する前に交直重畳制御に移行して電圧を一定に保つことで、ヤケの防止や処理速度の高速化を実現している。   Moreover, in the method of Patent Document 2, after applying a constant current for a predetermined time, before reaching the voltage at which the burn of the oxide film occurs, the control is switched to AC / DC superposition control to keep the voltage constant. High speed is realized.

特開2009−228069号公報JP 2009-228069 A 特開2009−235539号公報JP 2009-235539 A

従来の陽極酸化皮膜生成方法は、例えばピストンのように外観形状が整形である被処理物の表面に被膜生成する場合において最適化を実現しているが、複数の突起などが外面に形成された複雑形状の被処理物については考慮されていない。つまり、特許文献1−2のような高電流密度下での高速処理では、突起部に電流が集中してジュール熱が過大となり酸化皮膜のヤケが発生し易いことや、各部位どうしの膜厚バランスが不均一となるおそれがある。   The conventional anodic oxide film generation method achieves optimization when generating a film on the surface of an object to be processed that has a shaped appearance such as a piston, but a plurality of protrusions are formed on the outer surface. No consideration is given to workpieces with complex shapes. That is, in high-speed processing under a high current density as in Patent Document 1-2, current concentrates on the protrusions, Joule heat becomes excessive, and the oxide film tends to be burned, and the thickness of each part The balance may be uneven.

また、特許文献1の方法は、正電圧印加と電荷除去との周期を制御するために、プラス側及びマイナス側の直流電源やインバータ装置などを用いるといった複雑な制御が必要となり、高コスト化を招いてしまう。また、電荷除去をしている間は酸化皮膜を形成しないので、処理時間にロスが生じてしまう。   In addition, the method of Patent Document 1 requires complicated control such as using positive and negative DC power supplies and inverter devices in order to control the cycle of positive voltage application and charge removal, which increases costs. I will invite you. Further, since the oxide film is not formed during the charge removal, the processing time is lost.

そこで、本発明は、複雑形状の被処理物において、簡便な方法で高速処理を実現し、膜厚の均一化を図ることのできる陽極酸化皮膜生成方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for producing an anodic oxide film that can achieve high-speed processing by a simple method on a workpiece having a complicated shape and can achieve a uniform film thickness.

本発明に係る陽極酸化皮膜生成方法の特徴構成は、筒状の円筒部と当該円筒部から突出した突起部とを有する金属製の被処理物を陽極として、陰極と共に電解液中に配置し、
前記被処理物の表面のうち各部位どうしの温度差が予め設定した所定値以内となるように第一直流電流を両極間に通電して保持する第一通電工程と、前記第一直流電流よりも大きな値の第二直流電流を前記両極間に通電する少なくとも一つの第二通電工程と、を備え、前記第一通電工程は、通電開始から前記第一直流電流まで電流値を上昇させる第一上昇工程と前記第一直流電流で電流値を保持する第一保持工程とからなり、前記第一直流電流は、酸化処理される前記円筒部と前記突起部との温度差に基づき設定される点にある。
The characteristic configuration of the method for producing an anodic oxide film according to the present invention is a metal workpiece having a cylindrical cylindrical portion and a protruding portion protruding from the cylindrical portion as an anode, and disposed in an electrolyte together with a cathode.
A first energization step of energizing and holding the first DC current between both electrodes so that the temperature difference between the portions of the surface of the workpiece is within a predetermined value set in advance; and from the first DC current At least one second energization step of energizing a second DC current having a large value between the two electrodes, wherein the first energization step increases the current value from the start of energization to the first DC current. And a first holding step for holding a current value with the first DC current, wherein the first DC current is set based on a temperature difference between the cylindrical portion to be oxidized and the protruding portion. It is in.

本構成によると、直流電流のみを用いて定電流制御を行うといった簡便な方法で、被処理物の陽極酸化処理が行われる。一方、突起を有する被処理物に直流電流を印可した際、突起部に電流が集中してジュール熱が発生し、突起部の温度は急激に上昇してしまう。その結果、酸化皮膜にヤケが生じたり、突起部の膜厚が円筒部の膜厚より大きくなって膜厚が不均一になる。これは、特に、酸化処理の初期の段階で顕著に現れる。   According to this configuration, the anodizing treatment of the object to be processed is performed by a simple method in which constant current control is performed using only direct current. On the other hand, when a direct current is applied to an object to be processed having protrusions, the current concentrates on the protrusions and Joule heat is generated, and the temperature of the protrusions rapidly increases. As a result, burns occur in the oxide film, and the film thickness of the protrusion becomes larger than the film thickness of the cylindrical part, resulting in non-uniform film thickness. This is particularly noticeable at an early stage of the oxidation treatment.

そこで、本構成では、第一通電工程と、一つ又は二つ以上の第二通電工程とを含む多段階の通電工程とし、第二直流電流より小さな第一直流電流の電流値で通電して保持することにした。このため、一度に第二直流電流の値まで上昇させる場合に比べ、酸化処理の初期において被処理物の表面粗度が整い、表面性状が安定する。また、初期段階における突起部の急激な温度上昇を回避するような小さな電流値を所定時間保持することで、酸化皮膜のヤケを防止し、突起部と円筒部とにおける膜厚の均一化を図ることができる。その結果、酸化処理速度を高めるために、次の第二通電工程で電流値を上昇させても、各部位の安定化された初期被膜によって各部位の温度は緩やかに上昇し、全体的に膜厚バランスの取れた所望の酸化皮膜を生成することができる。   Therefore, in this configuration, a multi-stage energization process including a first energization process and one or more second energization processes is performed, and the energization is performed with a current value of the first DC current smaller than the second DC current. Decided to keep. For this reason, compared with the case where it raises to the value of a 2nd direct current at once, the surface roughness of a to-be-processed object is arranged in the initial stage of an oxidation process, and surface property is stabilized. In addition, by maintaining a small current value that avoids a rapid temperature rise of the protrusion in the initial stage for a predetermined time, the oxide film can be prevented from being burned, and the film thickness can be made uniform between the protrusion and the cylindrical portion. be able to. As a result, even if the current value is increased in the next second energization step in order to increase the oxidation treatment speed, the temperature of each part gradually rises due to the stabilized initial film of each part, and the film is entirely formed. A desired oxide film having a balanced thickness can be produced.

さらに、本構成では、酸化処理の初期において、被処理物の表面のうち各部位どうしの温度差、つまり突起部と円筒部とにおける温度差が予め設定した所定値以内となる電流値に設定する。このため、被処理物の表面積や複雑な外観形状に関わらず、突起部の急激な温度上昇を回避することができる。例えば、高速処理を行う上で大きな電流を通電した方が望ましいが、突起部に集中する電流も大きくなる。つまり、極力大きくした方がよい第一直流電流の値を、突起部と円筒部とにおける温度差に応じて最適な値に設定している。よって、高速酸化処理において均一な酸化皮膜を確実に生成することができる。   Further, in this configuration, at the initial stage of the oxidation treatment, the temperature difference between the respective portions of the surface of the workpiece, that is, the temperature difference between the protruding portion and the cylindrical portion is set to a current value that is within a predetermined value set in advance. . For this reason, regardless of the surface area of the object to be processed and the complicated external shape, it is possible to avoid a rapid temperature rise of the protrusions. For example, it is desirable to apply a large current for high-speed processing, but the current concentrated on the protrusions also increases. That is, the value of the first direct current that should be increased as much as possible is set to an optimum value according to the temperature difference between the protrusion and the cylindrical portion. Therefore, a uniform oxide film can be reliably generated in the high-speed oxidation treatment.

他の特徴構成は、前記第二通電工程は、前記第一直流電流の電流値から前記第二直流電流の電流値まで上昇させる第二上昇工程と前記第二直流電流で電流値を保持する第二保持工程とからなる点にある。   In another characteristic configuration, the second energization step includes a second ascending step of increasing the current value of the first DC current from the current value of the first DC current to a current value of the second DC current, and a second current holding step. The second holding step.

第一通電工程の初期段階に安定したアルマイト膜を生成していれば、その後、第二通電工程で連続して電流値を大きくしても各部位の温度は、均一に上昇する。その結果、本構成であれば、膜厚がある程度均一になった状態でアルマイト膜が成長する。   If a stable alumite film is generated in the initial stage of the first energization process, then the temperature of each part rises uniformly even if the current value is continuously increased in the second energization process. As a result, with this configuration, the alumite film grows with the film thickness being uniform to some extent.

本実施形態に係る陽極酸化処理装置を説明する図である。It is a figure explaining the anodizing apparatus based on this embodiment. 複雑形状を有する被処理物の一例である。It is an example of the to-be-processed object which has a complicated shape. 第1実施例に係る通電工程を示す図である。It is a figure which shows the electricity supply process which concerns on 1st Example. 被処理物の表面に酸化皮膜が成長する説明図である。It is explanatory drawing in which an oxide film grows on the surface of a to-be-processed object. 第1実施例、比較例における上昇温度と初期膜厚との関係を示す図である。It is a figure which shows the relationship between the raise temperature in a 1st Example and a comparative example, and an initial stage film thickness. 第1実施例に係る通電時間と温度との関係を示す図である。It is a figure which shows the relationship between the electricity supply time which concerns on 1st Example, and temperature. 比較例に係る通電時間と温度との関係を示す図である。It is a figure which shows the relationship between the electricity supply time which concerns on a comparative example, and temperature. 第2実施例に係る通電工程を示す図である。It is a figure which shows the electricity supply process which concerns on 2nd Example.

以下に、本発明に係る陽極酸化処理の実施形態について、図面に基づいて説明する。本実施形態では、陽極酸化処理の一例としてアルミニウム基材の表面にアルマイト膜を形成する例を説明する。ただし、以下の実施形態に限定されることなく、その要旨を逸脱しない範囲内で種々の変形が可能である。   Hereinafter, embodiments of an anodizing treatment according to the present invention will be described with reference to the drawings. In the present embodiment, an example in which an alumite film is formed on the surface of an aluminum substrate will be described as an example of anodizing treatment. However, the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the invention.

アルミニウム基材1(被処理物の一例)としては、例えば、ダイカスト等のアルミニウム鋳造材、アルミニウム鍛造材等を用いることができる。アルミニウムとしては、純アルミニウム、アルミニウム合金等を適用できる。アルミニウム合金の種類は、銅、マンガン、ケイ素、マグネシウム、亜鉛、ニッケル、錫、鉛、チタン、クロム、ジクロニウムなどの1種又は複数種との合金が考えられる。なお、陽極酸化被膜する基材は、アルミニウム以外にチタンやタンタルなどの金属や、それらと他の金属との合金であってもよい。   As the aluminum substrate 1 (an example of an object to be processed), for example, an aluminum casting material such as die casting, an aluminum forging material, or the like can be used. As aluminum, pure aluminum, aluminum alloy, or the like can be applied. As the kind of the aluminum alloy, an alloy with one kind or plural kinds of copper, manganese, silicon, magnesium, zinc, nickel, tin, lead, titanium, chromium, dicuronium and the like can be considered. The base material to be anodized may be a metal such as titanium or tantalum other than aluminum, or an alloy of these with other metals.

本実施形態において陽極酸化皮膜を生成するアルミニウム基材1は、図2に示すように、筒状の円筒部P2,P4と円筒部P2,P4から突出して形成される突起部P1,P3とを有する複雑形状材として説明する。このような複雑形状のアルミニウム基材1の表面に酸化皮膜を形成するにあたって、特に突起部P1,P3に電流が集中しやすく、酸化皮膜のヤケが発生したり、電流値のアンバランスに起因して各部位P1〜P4間での膜厚が不均一になりやすい。これは、特に、高速で酸化皮膜を生成する高密度電流下において顕著に現れる。本実施形態では、詳細は後述するが、バルス制御や交直重畳制御ではなく、簡便な方法である定電流制御において、膜厚の均一化を図ることとしている。   In the present embodiment, as shown in FIG. 2, the aluminum base material 1 that generates the anodized film includes cylindrical cylindrical portions P2 and P4 and protruding portions P1 and P3 that protrude from the cylindrical portions P2 and P4. It demonstrates as a complicated shape material which has. When forming an oxide film on the surface of such an aluminum substrate 1 having a complicated shape, the current tends to concentrate particularly on the protrusions P1 and P3, the oxide film may be burned, or the current value is unbalanced. Therefore, the film thickness between the portions P1 to P4 tends to be non-uniform. This is particularly noticeable under high-density current that generates an oxide film at high speed. Although details will be described later in this embodiment, the film thickness is made uniform in constant current control, which is a simple method, not pulse control or AC / DC superimposition control.

陽極酸化皮膜を生成するために用いられる陽極酸化処理装置は、図1に示すように、直流電源3と、陰極4と、内部に電解液51を有する電解槽5と、を備えている。また、アルミニウム基材1を陽極6として陰極4と共に電解液51の中に配置し、両極間に直流電流を通電することで、アルミニウム基材1の表面にアルマイト膜2を形成する。電解液51は、希硫酸、シュウ酸、その他有機酸などが使用され、陰極4には鉛、白金などが使用されるが、特に限定されない。   As shown in FIG. 1, the anodizing apparatus used for generating the anodized film includes a DC power source 3, a cathode 4, and an electrolytic cell 5 having an electrolytic solution 51 inside. Moreover, the aluminum base material 1 is arrange | positioned in the electrolyte solution 51 with the cathode 4 as the anode 6, and an alumite film | membrane 2 is formed on the surface of the aluminum base material 1 by supplying a direct current between both electrodes. As the electrolytic solution 51, dilute sulfuric acid, oxalic acid, other organic acids, and the like are used, and lead, platinum, and the like are used for the cathode 4, but are not particularly limited.

電解槽5には、陽極酸化処理の温度を一定に保つために、電解液51の温度を調整する温度調節手段(不図示)が設けてある。処理温度はアルマイト膜2が溶解して消失してしまわない温度であれば特に限定されないが、例えば−5℃〜20℃の範囲で調整される。   The electrolytic cell 5 is provided with temperature adjusting means (not shown) for adjusting the temperature of the electrolytic solution 51 in order to keep the temperature of the anodizing treatment constant. The treatment temperature is not particularly limited as long as the alumite film 2 does not dissolve and disappear, but is adjusted in the range of, for example, -5 ° C to 20 ° C.

また、電解槽5には、電解液51を撹拌する撹拌手段(不図示)が設けてあり、電解液51の温度のばらつきを抑え、アルミニウム基材1に電解液51の温度差が影響しないようにしてある。撹拌手段としては、例えば、ポンプで電解液51を循環させたり、エアパブリシングによる撹拌などが考えられる。   The electrolytic bath 5 is provided with a stirring means (not shown) for stirring the electrolytic solution 51 so as to suppress variations in the temperature of the electrolytic solution 51 so that the temperature difference of the electrolytic solution 51 does not affect the aluminum substrate 1. It is. As the agitation means, for example, the electrolytic solution 51 is circulated by a pump, or agitation by air publishing can be considered.

(制御方法)
本実施形態における陽極酸化処理、図3に示すように、アルミニウム基材1の円筒部P2,P4と突起部P1,P3との温度差に応じて決定される第一直流電流A1を両極間に通電して保持する第一通電工程S1,S2と、第一直流電流A1より大きな値の第二直流電流A2を両極間に通電して保持する第二通電工程S3,S4と、を備えている。また、第一通電工程S1,S2は、第一直流電流A1まで所定の勾配で上昇させる第一上昇工程S1と、第一直流電流A1で保持する第一保持工程S2とを有する。同様に、第二通電工程S3,S4は、第一直流電流A1から第二直流電流A2まで所定の勾配で上昇させる第二上昇工程S3と、第二直流電流A2で保持する第二保持工程S4とを有する。
(Control method)
In the present embodiment, as shown in FIG. 3, the first direct current A1 determined according to the temperature difference between the cylindrical portions P2 and P4 of the aluminum substrate 1 and the protrusions P1 and P3 is between the two electrodes. First energization steps S1 and S2 for energizing and holding, and second energization steps S3 and S4 for energizing and holding the second DC current A2 having a value larger than the first DC current A1 between the two electrodes. . The first energization processes S1 and S2 include a first ascending process S1 that increases the first DC current A1 with a predetermined gradient, and a first holding process S2 that holds the first DC current A1. Similarly, in the second energization processes S3 and S4, a second ascending process S3 for increasing the first DC current A1 to the second DC current A2 with a predetermined gradient, and a second holding process S4 for holding with the second DC current A2. And have.

一般的に、電流値と通電時間との積分値によってアルマイト膜2の膜厚が決定されるので、陽極酸化処理が施されたアルミニウム基材1の生産効率を高めるには、処理速度を向上させて短時間で所望の膜厚を形成することが求められる。一方、図3の従来例に示すように酸化処理の初期から大きな直流電流を印可すると、アルマイト膜2のヤケが生じたり、膜厚バランスが不均一となる。   In general, since the thickness of the alumite film 2 is determined by the integral value of the current value and the energization time, in order to increase the production efficiency of the aluminum base material 1 that has been subjected to the anodizing treatment, the processing speed is increased. Therefore, it is required to form a desired film thickness in a short time. On the other hand, when a large direct current is applied from the initial stage of the oxidation treatment as shown in the conventional example of FIG. 3, the alumite film 2 is burned or the film thickness balance is not uniform.

ここで、アルミニウム基材1の表面にアルマイト膜2が生成される一般的な流れを説明する。電解処理に先だって、アルミニウム基材1は、荒加工や表面研磨加工などが行われるが、表面を十分に平滑化するのは困難であり、微小な凹凸が発生してしまう。このアルミニウム基材1を電解処理すると、アルミニウムが溶解して、導電性の被膜であるバリア層が生成され始める。次いで、バリア層が一定の厚さに成長すると、微細な孔が形成され、六角柱状のセルの集合体であるポーラス層(多孔質皮膜)が生成され始める。次いで、この孔の部分で被膜の溶解と生成が同時に起こって孔が下がり、最終的には、電流値と処理時間との積分値に比例して所定の膜厚を有するアルマイト膜2が生成される。   Here, a general flow in which the alumite film 2 is generated on the surface of the aluminum base 1 will be described. Prior to the electrolytic treatment, the aluminum substrate 1 is subjected to roughing or surface polishing, but it is difficult to sufficiently smooth the surface, and minute irregularities are generated. When this aluminum substrate 1 is subjected to electrolytic treatment, aluminum is dissolved and a barrier layer, which is a conductive film, starts to be generated. Next, when the barrier layer grows to a certain thickness, fine pores are formed, and a porous layer (porous film) that is an aggregate of hexagonal columnar cells starts to be generated. Next, dissolution and generation of the coating simultaneously occur in the hole portion, the hole is lowered, and finally an alumite film 2 having a predetermined film thickness is generated in proportion to the integrated value of the current value and the processing time. The

続いて、図4を用いて、本実施形態の電流波形で直流電流を通電した場合における、アルミニウム基材1の表面にアルマイト膜2が成長する過程を説明する。通電を開始した時点(図3の(a)点)では、図4(a)に示すように、アルミニウム基材1の表面には、微小な凹凸が存在する。次いで、第一直流電流A1まで緩やかに電流値を上昇させる(図3の(b)点)と、凹凸を埋めるようにアルマイト膜2が生成され始める(図4(b))。この第一直流電流A1を所定時間保持する(図3の(c)点)と、図4(c)に示すように、膜厚の均一化されたアルマイト膜2が生成される。この酸化処理の初期段階に電流値が大きすぎると、図7に示す比較例のように電流が集中しやすい突起部P1,P3の温度が急上昇して、アルマイト膜2にヤケが生じやすい。さらに、図5の比較例に示すように、初期段階における膜厚のばらつきが大きくなってしまう。ここで電流値を低くすることで、各部位P1〜P4の温度のばらつきがなく、凹凸を埋めるよう、均一な膜厚に成膜することができる。   Next, a process in which the alumite film 2 grows on the surface of the aluminum substrate 1 when a direct current is applied with the current waveform of the present embodiment will be described with reference to FIG. At the time of starting energization (point (a) in FIG. 3), as shown in FIG. 4 (a), the surface of the aluminum substrate 1 has minute irregularities. Next, when the current value is gradually increased to the first direct current A1 (point (b) in FIG. 3), the alumite film 2 starts to be formed so as to fill the unevenness (FIG. 4 (b)). When the first direct current A1 is held for a predetermined time (point (c) in FIG. 3), as shown in FIG. 4 (c), an alumite film 2 having a uniform thickness is generated. If the current value is too large at the initial stage of the oxidation treatment, the temperatures of the protrusions P1 and P3 where the current tends to concentrate as in the comparative example shown in FIG. Furthermore, as shown in the comparative example of FIG. 5, the film thickness variation at the initial stage becomes large. Here, by reducing the current value, it is possible to form a film with a uniform film thickness so as to fill the unevenness without causing variations in the temperatures of the portions P1 to P4.

最終的(図3の(d)点)には、図4(d)に示すように、電流値と処理時間との積分値に比例して所定の膜厚を有するアルマイト膜2が生成され、初期段階における膜厚の均一化によって、最終的な膜厚も均一化されていることが分かる。つまり、初期段階に安定したアルマイト膜2を生成していれば、その後の電流値を大きくしても各部位P1〜P4間のアルマイト膜2が均一に生成される点に着目し、本実施形態では最適な第一直流電流A1及び第一通電時間T1,T2を設定することとした。   Finally (point (d) in FIG. 3), as shown in FIG. 4 (d), an alumite film 2 having a predetermined film thickness in proportion to the integral value of the current value and the processing time is generated. It can be seen that the final film thickness is made uniform by making the film thickness uniform in the initial stage. In other words, if the stable anodized film 2 is generated at the initial stage, the present embodiment is focused on that the anodized film 2 between the portions P1 to P4 is uniformly generated even if the subsequent current value is increased. Then, the optimum first DC current A1 and first energization times T1 and T2 are set.

第一直流電流A1の値は、アルミニウム基材1の各部位P1〜P4どうしの温度差が予め設定した所定値以内となるように設定される。また、第一通電時間T1,T2は、アルミニウム基材1の形状や表面積などに応じて各部位P1〜P4の膜厚が均一になる時間に設定される。   The value of the first direct current A1 is set so that the temperature difference between the portions P1 to P4 of the aluminum base 1 is within a predetermined value set in advance. The first energization times T1 and T2 are set to times when the film thicknesses of the portions P1 to P4 are uniform according to the shape and surface area of the aluminum base 1.

(第1実施例)
図3及び図5−7を用いて第1実施例について説明する。図3は、本実施例と比較例とにおける電流波形である。図5は、第一通電工程S1,S2の通電時間を20秒とした時の各部位P1〜P4の温度上昇と膜厚との関係を示す図である。図6−7は、本実施例と比較例とにおける通電時間と各部位P1〜P4の温度との関係を示す図である。
(First embodiment)
The first embodiment will be described with reference to FIGS. 3 and 5-7. FIG. 3 shows current waveforms in the present example and the comparative example. FIG. 5 is a diagram showing the relationship between the temperature rise and the film thickness of each part P1 to P4 when the energization time of the first energization steps S1 and S2 is 20 seconds. 6-7 is a figure which shows the relationship between the electricity supply time and the temperature of each site | part P1-P4 in a present Example and a comparative example.

本実施例では、第一上昇工程S1における第一電流上昇時間T1を5〜10秒、第一上昇工程S1における第一電流保持時間T2を10〜20秒に設定した。これは、初期段階に安定したアルマイト膜2が生成される時間は、経験上、アルミニウム基材1の形状や表面積が変化しても第一通電時間T1,T2の範囲内に収めることができると判明したためである。つまり、第一通電時間T1,T2は、各部位P1〜P4の膜厚が比較的平滑化される初期段階の時間として設定している。   In this example, the first current rising time T1 in the first rising step S1 was set to 5 to 10 seconds, and the first current holding time T2 in the first rising step S1 was set to 10 to 20 seconds. This is because the time during which the stable alumite film 2 is generated in the initial stage can be within the range of the first energization times T1 and T2 even if the shape and surface area of the aluminum base material 1 are changed. It is because it became clear. That is, the first energization times T1 and T2 are set as initial stage times when the thicknesses of the portions P1 to P4 are relatively smoothed.

また、第一電流上昇時間T1は、第一直流電流A1が大きなほど、緩やかな勾配で通電上昇するように時間を長く設定するのが好ましい。これは、上述したように、急激に電流値を上昇させた場合、アルマイト膜2にヤケが生じやすくなるのを防止するためである。   Further, it is preferable that the first current rise time T1 is set to be long so that the energization rises with a gentle gradient as the first DC current A1 increases. As described above, this is to prevent the anodized film 2 from being easily burned when the current value is suddenly increased.

さらに、第一通電工程S1,S2で安定したアルマイト膜2が生成されていれば、その後に急激な温度上昇は発生し難いので、第二電流上昇時間T3(例えば、0〜10秒)は、適宜設ければよい。第二電流保持時間T4は、アルミニウム基材1の形状や表面積に応じて、目標とする膜厚を生成するために必要な処理時間である。   Furthermore, if a stable anodized film 2 is generated in the first energization steps S1 and S2, a rapid temperature rise is unlikely to occur thereafter, so the second current rise time T3 (for example, 0 to 10 seconds) What is necessary is just to provide suitably. The second current holding time T4 is a processing time necessary for generating a target film thickness in accordance with the shape and surface area of the aluminum substrate 1.

第一直流電流A1の値を決定するに際しては、図2に示すように、実際に酸化処理されるアルミニウム基材1の円筒部P2,P4及び突起部P1,P3の温度を、温度センサK1〜K4によって計測する。具体的には、直流電源3の電流値を上昇させていき、温度センサK1〜K4の測定値の差の最大値が予め設定した所定値を超えた時、その直前の電流値を第一直流電流A1として設定する。本実施例では、図6に示すように、第一通電時間T1,T2におけるアルミニウム基材1の各部位P1〜P4の温度上昇が均一になるように第一直流電流A1の値を決定した。なお、温度センサK1〜K4は、熱電対、サーミスタや測温抵抗体などが想定されるが特に限定されない。   When determining the value of the first direct current A1, as shown in FIG. 2, the temperatures of the cylindrical portions P2, P4 and the protrusions P1, P3 of the aluminum base material 1 actually oxidized are measured by the temperature sensors K1 to K1, respectively. Measure with K4. Specifically, when the current value of the DC power supply 3 is increased and the maximum value of the difference between the measured values of the temperature sensors K1 to K4 exceeds a predetermined value, the current value immediately before that is set to the first DC Set as current A1. In the present embodiment, as shown in FIG. 6, the value of the first direct current A1 is determined so that the temperature rises at the portions P1 to P4 of the aluminum base material 1 during the first energization times T1 and T2 are uniform. The temperature sensors K1 to K4 are not particularly limited, although thermocouples, thermistors, resistance temperature detectors, and the like are assumed.

図7には、第一直流電流A1を設けず、初期段階から電流値を上昇させた比較例が示される。この比較例では、各部位P1〜P4どうしの温度差が最大で7〜8℃発生した。つまり、突起部P1,P3に電流が集中してジュール熱が発生し、突起部P1,P3の温度が急激に上昇して微小(軽微)なヤケが発生した直後に温度が低下することとなる。   FIG. 7 shows a comparative example in which the first direct current A1 is not provided and the current value is increased from the initial stage. In this comparative example, the temperature difference between the portions P1 to P4 occurred at 7 to 8 ° C. at the maximum. In other words, current concentrates on the protrusions P1 and P3, Joule heat is generated, the temperature of the protrusions P1 and P3 rapidly increases, and the temperature decreases immediately after a minute (slight) burn is generated. .

さらに、図5に示すように、第一通電時間T1,T2経過後に測定した各部位P1〜P4の膜厚において、比較例は本実施例に比べて大きなばらつきが生じている。その結果、突起部P1,P3の膜厚が円筒部P2,P4の膜厚より大きくなってしまい、膜厚が不均一になったままアルマイト膜2が生成されてしまう。参考に6個のアルミニウム基材1で検証すると、比較例では、膜厚平均が約12μmに対して、最終的な膜厚のばらつきが2.7〜4.0μmと大きなものであった。   Furthermore, as shown in FIG. 5, the comparative example has a large variation in the film thicknesses of the respective portions P1 to P4 measured after the first energization times T1 and T2 have passed, as compared with the present example. As a result, the film thickness of the protrusions P1 and P3 becomes larger than the film thickness of the cylindrical parts P2 and P4, and the alumite film 2 is generated while the film thickness is not uniform. When verified with six aluminum base materials 1 for reference, in the comparative example, the final film thickness variation was as large as 2.7 to 4.0 μm with respect to the average film thickness of about 12 μm.

一方、本実施例では、各部位P1〜P4どうしの温度差がほぼゼロとなる第一直流電流A1に設定しているので、図5に示すように各部位P1〜P4の膜厚ばらつきが少ない。さらに、次の第二通電工程S3,S4に移行しても、各部位P1〜P4どうしの温度差がほぼゼロとなった状態を維持している。つまり、上述したように初期段階に安定したアルマイト膜2を生成していれば、その後の電流値を大きくしても各部位P1〜P4の温度は、均一に上昇する。その結果、膜厚がある程度均一になった状態でアルマイト膜2が成長する。参考に6個のアルミニウム基材1で検証すると、膜厚平均が約12μmに対して、最終的な膜厚のばらつきが1.9〜3.4μmと比較例に比べ改善された。なお、本実施例では、各部位P1〜P4どうしの温度差がほぼゼロとなるように設定したが、2〜3℃の温度差があっても良い。   On the other hand, in this embodiment, since the temperature difference between the parts P1 to P4 is set to the first direct current A1 at which the temperature difference is substantially zero, the film thickness variations of the parts P1 to P4 are small as shown in FIG. . Furthermore, even if it transfers to following 2nd electricity supply process S3, S4, the state from which the temperature difference between each site | part P1-P4 became substantially zero is maintained. That is, if the stable alumite film 2 is generated in the initial stage as described above, the temperatures of the portions P1 to P4 are uniformly increased even if the subsequent current value is increased. As a result, the alumite film 2 grows in a state where the film thickness becomes uniform to some extent. When verified with six aluminum substrates 1 as a reference, the final film thickness variation was 1.9 to 3.4 μm compared to the comparative example, while the average film thickness was about 12 μm. In this embodiment, the temperature difference between the portions P1 to P4 is set to be substantially zero, but there may be a temperature difference of 2 to 3 ° C.

(第2実施例)
第1実施例では、第二通電工程S3,S4を一段階設けたが、本実施例では、図8に示すように第二通電工程を二段階(S3〜S4,S5〜S6)設けている。例えば、高速処理をするために第二直流電流A2の値を急激に大きくする必要がある場合などにおいて、第二直流電流A2を急上昇させると、安定化したアルマイト膜2に大きな負荷がかかり、ヤケの発生が考えられる。そこで、本実施例のように第二通電工程を多段階とすることで、各部位P1〜P4の温度は緩やかに上昇し、各部位P1〜P4間の温度差が生じ難くなって、アルマイト膜2の生成不良を防止することができる。
(Second embodiment)
In the first embodiment, the second energization processes S3 and S4 are provided in one stage, but in this embodiment, the second energization process is provided in two stages (S3 to S4, S5 to S6) as shown in FIG. . For example, when the value of the second DC current A2 needs to be suddenly increased in order to perform high-speed processing, if the second DC current A2 is suddenly increased, a large load is applied to the stabilized alumite film 2, and the The occurrence of Therefore, by making the second energization process multistage as in the present embodiment, the temperature of each part P1 to P4 rises gently, and the temperature difference between each part P1 to P4 hardly occurs, and the anodized film 2 generation failure can be prevented.

第1実施例で示したように、第一通電工程S1,S2で安定したアルマイト膜2を生成すれば、以降の第二通電工程S3〜S6では各部位P1〜P4どうしの温度差のない状態が維持される。つまり、第一通電工程S1,S2における第一直流電流A1の値と第一通電時間T1,T2とを最適なものとすれば、その後の処理時間や電流値はアルミニウム基材1に形成されるアルマイト膜2の膜厚に応じて適宜設定すれば良い。本実施例においても、アルマイト膜2の最終的な膜厚バランスの均一化が図られる。   As shown in the first embodiment, if a stable alumite film 2 is generated in the first energization steps S1 and S2, there is no temperature difference between the portions P1 to P4 in the subsequent second energization steps S3 to S6. Is maintained. That is, if the value of the first DC current A1 and the first energization times T1 and T2 in the first energization steps S1 and S2 are optimized, the subsequent processing time and current value are formed on the aluminum base 1. What is necessary is just to set suitably according to the film thickness of the alumite film | membrane 2. FIG. Also in this embodiment, the final film thickness balance of the alumite film 2 can be made uniform.

[その他の実施形態]
(1)上述した実施例では、第二通電工程を一段階又は二段階に設定したが、例えば三段階にするなど、さらに第二通電工程を細分化させても良い。
(2)上述した実施例では、第一通電時間T1,T2を各部位P1〜P4の膜厚が均一になる時間に設定したが、例えば、各部位P1〜P4の膜厚が所定の厚さ(例えば1〜2μm)になる時間に設定しても良い。また、所定の厚さは、安定したアルマイト膜2が生成される膜厚として、最終的な目標膜厚に対する比率で設定しても良い。
(3)本実施形態における陽極酸化皮膜生成方法は、複数の突起部などを有する複雑形状の被処理物を対象としたが、外観形状が整形である被処理物に適用しても良いことは勿論である。
[Other Embodiments]
(1) In the above-described embodiment, the second energization process is set to one stage or two stages, but the second energization process may be further subdivided, for example, to three stages.
(2) In the above-described embodiment, the first energization times T1 and T2 are set to the time when the film thicknesses of the respective parts P1 to P4 are uniform. For example, the film thicknesses of the respective parts P1 to P4 are a predetermined thickness. You may set to the time which becomes (for example, 1-2 micrometers). Further, the predetermined thickness may be set as a film thickness at which a stable alumite film 2 is generated, at a ratio to the final target film thickness.
(3) The method for generating an anodic oxide film in the present embodiment is intended for a workpiece having a complex shape having a plurality of protrusions and the like. However, the method may be applied to a workpiece having a shaped external appearance. Of course.

本発明の陽極酸化皮膜生成方法は、被処理物の表面に酸化皮膜を高速で生成する方法として利用可能である。   The method for producing an anodized film of the present invention can be used as a method for producing an oxide film on the surface of an object to be processed at a high speed.

1 アルミニウム基材(被処理物)
2 アルマイト膜(酸化皮膜)
4 陰極
6 陽極
51 電解液
A1 第一直流電流
A2 第二直流電流
K1〜K4 各部位における温度
S1,S2 第一通電工程
S3,S4 第二通電工程
T1,T2 第一通電時間
1 Aluminum substrate (object to be treated)
2 Anodized film (oxide film)
4 Cathode 6 Anode 51 Electrolyte A1 1st direct current A2 2nd direct current K1-K4 Temperature S1, S2 in each part 1st electricity supply process S3, S4 2nd electricity supply process T1, T2 1st electricity supply time

Claims (2)

筒状の円筒部と当該円筒部から突出した突起部とを有する金属製の被処理物を陽極として、陰極と共に電解液中に配置し、
前記被処理物の表面のうち各部位どうしの温度差が予め設定した所定値以内となるように第一直流電流を両極間に通電して保持する第一通電工程と、
前記第一直流電流よりも大きな値の第二直流電流を前記両極間に通電する少なくとも一つの第二通電工程と、を備え、
前記第一通電工程は、通電開始から前記第一直流電流まで電流値を上昇させる第一上昇工程と前記第一直流電流で電流値を保持する第一保持工程とからなり、
前記第一直流電流は、酸化処理される前記円筒部と前記突起部との温度差に基づき設定される陽極酸化皮膜生成方法。
A metal object having a cylindrical cylindrical portion and a protruding portion protruding from the cylindrical portion is used as an anode, and is disposed in the electrolyte together with the cathode.
A first energization step of energizing and holding the first direct current between both electrodes so that the temperature difference between the parts of the surface of the workpiece is within a predetermined value set in advance;
And at least one second energization step of energizing a second DC current having a value larger than the first DC current between the two electrodes,
The first energization step includes a first increase step of increasing a current value from the start of energization to the first DC current and a first holding step of maintaining a current value with the first DC current,
The first direct current is an anodized film generation method set based on a temperature difference between the cylindrical portion to be oxidized and the protrusion.
前記第二通電工程は、前記第一直流電流の電流値から前記第二直流電流の電流値まで上昇させる第二上昇工程と前記第二直流電流で電流値を保持する第二保持工程とからなる請求項に記載の陽極酸化皮膜生成方法。 The second energizing step includes a second ascending step for increasing the current value of the first DC current from the current value of the first DC current to a current value of the second DC current and a second holding step for holding the current value with the second DC current. The method for producing an anodized film according to claim 1 .
JP2013264104A 2013-12-20 2013-12-20 Anodized film generation method Active JP6390096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013264104A JP6390096B2 (en) 2013-12-20 2013-12-20 Anodized film generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013264104A JP6390096B2 (en) 2013-12-20 2013-12-20 Anodized film generation method

Publications (2)

Publication Number Publication Date
JP2015120945A JP2015120945A (en) 2015-07-02
JP6390096B2 true JP6390096B2 (en) 2018-09-19

Family

ID=53532821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013264104A Active JP6390096B2 (en) 2013-12-20 2013-12-20 Anodized film generation method

Country Status (1)

Country Link
JP (1) JP6390096B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115369464B (en) * 2022-08-24 2023-07-18 合肥微睿光电科技有限公司 Method for generating oxide film on surface of upper electrode, upper electrode and cathode plate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839337B1 (en) * 1968-11-01 1973-11-22
JPS4979334A (en) * 1972-12-08 1974-07-31
JP2908105B2 (en) * 1992-02-10 1999-06-21 ワイケイケイ株式会社 Electrolytic coloring of aluminum or aluminum alloy
JP3004622B2 (en) * 1998-02-24 2000-01-31 中小企業事業団 High speed anodizing method of aluminum
JP5152574B2 (en) * 2008-03-28 2013-02-27 アイシン精機株式会社 Method for anodizing aluminum member
US8999133B2 (en) * 2010-08-30 2015-04-07 Sharp Kabushiki Kaisha Method for forming anodized layer and mold production method

Also Published As

Publication number Publication date
JP2015120945A (en) 2015-07-02

Similar Documents

Publication Publication Date Title
JP6061202B2 (en) Non-metal coating and production method thereof
JP5152574B2 (en) Method for anodizing aluminum member
Han et al. Improved two-step anodization technique for ordered porous anodic aluminum membranes
JP4868020B2 (en) Aluminum anodizing method and anodized aluminum
Zhang et al. Bamboo shoot nanotubes with diameters increasing from top to bottom: Evidence against the field-assisted dissolution equilibrium theory
CN103695980B (en) A kind of preparation method of single-layer micro-arc oxidation ceramic film on surface of aluminum alloy
TWI424096B (en) Method for forming anodic oxide film
JP2009263770A (en) Method of manufacturing electrode for electrolysis
Wang et al. Investigation of the hole-formation process during double-sided through-mask electrochemical machining
JP6390096B2 (en) Anodized film generation method
CN106065488A (en) A kind of method utilizing positive negative pulse stuffing anodizing to prepare anode aluminium foil
JP2016514213A (en) High purity aluminum topcoat on substrate
JP6350551B2 (en) Anodized film generation method
JP5691135B2 (en) Anodized film and anodizing method
US7612986B2 (en) Aluminum plate for aluminum electrolytic capacitor electrode, aluminum electrolytic capacitor, and method for manufacturing aluminum electrolytic capacitor
JP6581287B2 (en) Manufacturing method of lens mold
JPWO2008004634A1 (en) Aluminum alloy anodizing method and power source for aluminum alloy anodizing
JP2019525011A5 (en)
KR101207708B1 (en) Method for anodizing aluminum and anodized aluminum
JP2019151899A (en) Production method of aluminum component and production device of aluminum component
JP2004035930A (en) Aluminum alloy material and anodization treatment method therefor
RU2550393C1 (en) Method for electrolyte-plasma treatment of metal surface
RU2389830C2 (en) Method for micro-arc oxidation
KR102048707B1 (en) Al-Mg-Zn .
JP2022508896A (en) Process for removing metal support structures on laminated metal parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180806

R151 Written notification of patent or utility model registration

Ref document number: 6390096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151