JP2019151899A - Production method of aluminum component and production device of aluminum component - Google Patents

Production method of aluminum component and production device of aluminum component Download PDF

Info

Publication number
JP2019151899A
JP2019151899A JP2018038773A JP2018038773A JP2019151899A JP 2019151899 A JP2019151899 A JP 2019151899A JP 2018038773 A JP2018038773 A JP 2018038773A JP 2018038773 A JP2018038773 A JP 2018038773A JP 2019151899 A JP2019151899 A JP 2019151899A
Authority
JP
Japan
Prior art keywords
current
aluminum
anode
cathode
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018038773A
Other languages
Japanese (ja)
Other versions
JP7069843B2 (en
Inventor
寛 三辻
Hiroshi Mitsuji
寛 三辻
高橋 毅
Takeshi Takahashi
高橋  毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2018038773A priority Critical patent/JP7069843B2/en
Publication of JP2019151899A publication Critical patent/JP2019151899A/en
Application granted granted Critical
Publication of JP7069843B2 publication Critical patent/JP7069843B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

To provide a production device of an aluminum component that can form an anodic oxide film, in which a crack is difficult to occur even in an improved speed of an anodic oxidation treatment.SOLUTION: A production device of an aluminum component comprises: an immersion tank 10 that holds electrolyte E including sulfuric acid and immerses a crude material W, which is a to-be-treated object composed of an aluminum or an aluminum alloy, into the electrolyte E; a power supply 20 that flows an electric current under a constant-voltage condition in which the crude material W is an anode, the electrolyte E is a cathode, a current density is 0.8 A/dmto 7.5 A/dm, and an applied voltage is 18 V or lower; and a controller 30 having a current integration unit 30a1 that calculates a current integral value in which the current has flown from the power supply 20 to the crude material W through the anode and the cathode, and a control unit 30a2 that calculates a thickness of an anodic oxide film produced on the basis of the current integral value calculated by the current integration unit 30a1 and controls the power supply 20 so that the treatment will be stopped when the calculated thickness reaches a specified value.SELECTED DRAWING: Figure 2

Description

本発明は、表面に陽極酸化皮膜が形成されたアルミニウム部品の製造方法及びアルミニウム部品の製造装置に関する。   The present invention relates to a method for manufacturing an aluminum part having an anodized film formed on the surface and an apparatus for manufacturing an aluminum part.

従来よりアルミニウム部品に対して陽極酸化皮膜を形成することが行われている(例えば、特許文献1参照)。   Conventionally, an anodized film is formed on an aluminum part (see, for example, Patent Document 1).

アルミニウム部品に形成される陽極酸化皮膜は、耐食性、耐摩耗性、硬度、絶縁性などの特性に優れることが知られている。   Anodized films formed on aluminum parts are known to be excellent in properties such as corrosion resistance, wear resistance, hardness, and insulation.

特開2015−102111号公報(特許請求の範囲など)JP2015-102111A (Claims etc.)

優れた特性をもつ陽極酸化皮膜であるが、粗材の表面に陽極酸化皮膜を形成するためには長時間(20分〜60分程度)の処理が必要である。陽極酸化皮膜の生成は、電流が流れた量に比例するため、陽極酸化皮膜の生成速度を向上して処理時間を短縮するためには電流密度を向上する必要がある。   Although it is an anodic oxide film having excellent characteristics, a long-time treatment (about 20 to 60 minutes) is required to form the anodic oxide film on the surface of the rough material. Since the generation of the anodized film is proportional to the amount of current flowing, it is necessary to improve the current density in order to improve the generation rate of the anodized film and shorten the processing time.

しかしながら、単純に電流密度を高くして陽極酸化処理を行うと、得られた陽極酸化皮膜の延性が低くなって外力により亀裂が生じることがあり、高圧ガスが流入して高い応力が加わる部品や高温環境で用いられる部品に陽極酸化皮膜を形成した場合の破断の原因ともなりうるおそれがある。   However, if the anodization treatment is performed simply by increasing the current density, the ductility of the obtained anodized film may be reduced and cracks may occur due to external force. There is a possibility that it may cause breakage when an anodized film is formed on a part used in a high temperature environment.

本発明は上記実情に鑑み完成したものであり、陽極酸化処理の速度を大きくしても亀裂が生じ難い陽極酸化皮膜が形成できるアルミニウム部品の製造方法を提供することを解決すべき課題とする。   The present invention has been completed in view of the above circumstances, and an object to be solved is to provide a method for manufacturing an aluminum part capable of forming an anodic oxide film that hardly causes cracks even if the speed of anodizing treatment is increased.

さらに、上述したアルミニウム部品の製造方法に好適なアルミニウム部品の製造装置を提供することも解決すべき課題とする。   Furthermore, another object to be solved is to provide an aluminum component manufacturing apparatus suitable for the above-described aluminum component manufacturing method.

(1.アルミニウム部品の製造方法)
上記課題を解決する目的で本発明者らは鋭意検討を行った結果、粗材の表面に生成した陽極酸化皮膜について亀裂が生じやすいかどうかを判断するために生成した陽極酸化皮膜のセルサイズに着目すれば良いことに想到した。後述する実施例の結果から、陽極酸化皮膜では印加する電圧の大きくなると形成されるセルサイズも大きくなることが分かり、更に印加する電圧を18V以下にすることによりセルサイズを40nm以下にすることが可能になって、亀裂の生成が抑制できるとの知見を得た。これらの知見に基づき以下の発明を完成した。なお、本明細書中における「陽極酸化皮膜のセルサイズ」とはJIS H0201:1998の701模式図に基づく隣接する702被膜セルにおける703微細孔の距離をいう。
(1. Manufacturing method of aluminum parts)
In order to solve the above-mentioned problems, the present inventors have conducted intensive studies. As a result, the cell size of the anodic oxide film generated to determine whether cracks are likely to occur in the anodic oxide film generated on the surface of the coarse material is determined. I came up with the idea of paying attention. From the results of Examples to be described later, it can be seen that in the anodized film, the cell size formed increases as the applied voltage increases, and the cell size can be reduced to 40 nm or less by further reducing the applied voltage to 18 V or less. It became possible and the knowledge that the generation of cracks could be suppressed was obtained. Based on these findings, the following invention has been completed. In the present specification, “cell size of anodized film” refers to the distance between 703 micropores in adjacent 702 coated cells based on the 701 schematic diagram of JIS H0201: 1998.

すなわち、本発明に係るアルミニウム部品の製造方法は、アルミニウム又はアルミニウム合金からなり被処理対象である粗材を陽極とし、陰極とともに硫酸を含有する電解液に接触させ、電流密度が0.8A/dm〜7.5A/dm、印加電圧18V以下の定電圧条件で前記陽極と前期陰極との間に電流を流して陽極酸化処理を行う。 That is, in the method for producing an aluminum part according to the present invention, a rough material made of aluminum or an aluminum alloy is used as an anode, and the anode is brought into contact with an electrolyte containing sulfuric acid together with the cathode, and the current density is 0.8 A / dm. Anodization is performed by passing a current between the anode and the previous cathode under a constant voltage condition of 2 to 7.5 A / dm 2 and an applied voltage of 18 V or less.

陽極酸化処理において電流密度を高くして陽極酸化皮膜の生成速度を向上しても、印加する電圧を18V以下にして陽極酸化皮膜のセルサイズを一定以下にすることで亀裂の生成を抑制することが可能になった。特に定電圧での処理を行うことによりセルサイズの大きさが安定化できた。   Even if the current density is increased in the anodizing treatment to improve the generation rate of the anodized film, the generation of cracks is suppressed by setting the applied voltage to 18 V or less and the cell size of the anodized film to a certain value or less. Became possible. In particular, the cell size can be stabilized by processing at a constant voltage.

(2.アルミニウム部品の製造装置)
本発明にかかるアルミニウム部品の製造装置は、硫酸を含有する電解液を保持し、アルミニウム又はアルミニウム合金からなり被処理対象である粗材を陽極とし、陰極とともに前記電解液中に浸漬する浸漬槽と、電流密度が0.8A/dm〜7.5A/dm、印加電圧18V以下の定電圧条件で前記陽極と前期陰極との間に電流を流す電源装置と、前記電源装置から前記陽極と前記陰極との間に流れた電流の積分値を算出する電流積分部と、前記電流積分部が算出した電流の積分値に基づき、生成される陽極酸化皮膜の厚みを算出し、算出した厚みが所定値になったときに処理を終了するように前記電源装置を制御する制御部とをもつ制御装置とを有する。
(2. Aluminum parts manufacturing equipment)
An apparatus for manufacturing an aluminum component according to the present invention includes an immersion tank that holds an electrolytic solution containing sulfuric acid, uses a rough material made of aluminum or an aluminum alloy as an anode, and is immersed in the electrolytic solution together with a cathode. A power supply device for passing a current between the anode and the previous cathode under a constant voltage condition of a current density of 0.8 A / dm 2 to 7.5 A / dm 2 and an applied voltage of 18 V or less, and from the power supply device to the anode Based on the integrated value of the current calculated by the current integrating unit and the current integrating unit that calculates the integrated value of the current flowing between the cathode and the cathode, the thickness of the anodized film that is generated is calculated. And a control device having a control unit for controlling the power supply device so as to end the processing when the predetermined value is reached.

実施形態におけるアルミニウム部品の製造装置を示す模式図である。It is a schematic diagram which shows the manufacturing apparatus of the aluminum component in embodiment. 実施例においてアルミニウム部品の製造方法を実施するときの電流の経時変化を示したグラフである。It is the graph which showed the time-dependent change of the electric current when implementing the manufacturing method of an aluminum component in an Example. 陽極と陰極との間に流れた電流の積分値と生成される陽極酸化皮膜の厚みとの相関を示したグラフである。It is the graph which showed the correlation with the integrated value of the electric current which flowed between the anode and the cathode, and the thickness of the produced | generated anodic oxide film.

(1.第一実施形態:アルミニウム部品の製造方法)
(1−1.構成)
本実施形態のアルミニウム部品の製造方法について、以下に説明を行う。本実施形態のアルミニウム部品の製造方法は、アルミニウム又はアルミニウム合金からなる粗材を被処理対象として硫酸を含有する電解液中において陽極酸化処理を行い、その素材の表面に陽極酸化皮膜を形成してアルミニウム部品とする方法である。粗材を構成する材料としては、アルミニウム又はアルミニウム合金であり、アルミニウム合金としては、アルミニウム元素を主成分とするものであれば特に限定しない。さらに、粗材の表面にアルミニウム又はアルミニウム合金が露出する構成を有するものであれば充分であり、内部を形成する材料は特に限定しない。
(1. First embodiment: Method for manufacturing aluminum part)
(1-1. Configuration)
The manufacturing method of the aluminum component of this embodiment is demonstrated below. The manufacturing method of the aluminum component of this embodiment performs anodizing treatment in an electrolytic solution containing sulfuric acid on a rough material made of aluminum or an aluminum alloy, and forms an anodized film on the surface of the material. This is a method of making an aluminum part. The material constituting the coarse material is aluminum or an aluminum alloy, and the aluminum alloy is not particularly limited as long as it contains an aluminum element as a main component. Furthermore, it is sufficient if it has a structure in which aluminum or an aluminum alloy is exposed on the surface of the rough material, and the material forming the interior is not particularly limited.

アルミニウム部品としては外力により亀裂が生じ難い陽極酸化皮膜が形成できるため、どのような製品の部品であっても適用することが可能であるが、特に大きな外力が加わる部品に適用されることが好ましい。例えば、高圧ガスに適用されるバルブボディである。   As an aluminum part, an anodic oxide film that is not easily cracked by an external force can be formed. Therefore, it can be applied to any product part, but it is preferably applied to a part to which a particularly large external force is applied. . For example, a valve body applied to high-pressure gas.

本製造方法は、第1工程と第2工程とをその他必要な工程とを有する。
第1工程は、被処理対象である粗材を陽極とし、陰極とともに電解液に接触させる工程である。電解液は硫酸を含有する。電解液について好ましい条件は後述する。電解液への接触は、例えば電解液中に粗材を浸漬して行うことが挙げられる。陰極については特に限定されない。
This manufacturing method includes a first step and a second step and other necessary steps.
The first step is a step in which a rough material to be treated is used as an anode and is brought into contact with the electrolyte together with the cathode. The electrolytic solution contains sulfuric acid. Preferred conditions for the electrolyte will be described later. For example, the contact with the electrolytic solution may be performed by immersing a crude material in the electrolytic solution. The cathode is not particularly limited.

第2工程は、電流密度が0.8A/dm〜7.5A/dm、印加電圧18V以下の定電圧条件で陽極と陰極との間に電流を流して陽極酸化処理を行う工程である。 The second step is a step in which an anodic oxidation treatment is performed by passing a current between the anode and the cathode under a constant voltage condition of a current density of 0.8 A / dm 2 to 7.5 A / dm 2 and an applied voltage of 18 V or less. .

電流密度はこの下限値以上にすることで陽極酸化皮膜が形成される速度が速くなるためできるだけ高い方が好ましい。また、電流密度はこの上限値以下にすることで形成される陽極酸化皮膜に”膜焼け”が生じない。なお”膜焼け”とは、電流密度が高いために均一に電流が流れず一部に集中することで発生するものと推測でき、言葉の通り外観が焼けたような状態になっており、得られた陽極酸化皮膜の特性が充分でない。   The current density is preferably as high as possible because the speed at which the anodized film is formed is increased by setting the current density to be equal to or higher than this lower limit. Further, when the current density is set to the upper limit value or less, “film burn” does not occur in the anodized film formed. “Film burn” is presumed to occur when the current density is high and the current does not flow uniformly but concentrates on a part of the film. The properties of the anodized film obtained are not sufficient.

電流密度を制御する方法としては、適正な電解液を採用することで実現できる。適正な電解液とは、上述の電流密度の範囲内に入るような抵抗値をもつように調節された電解液である。抵抗値の調節は、電解液の硫酸濃度や温度を制御することで実現できる。硫酸濃度や温度を高くすることにより抵抗値は低下し電流密度が高くできる。電解液中の濃度は含有される硫酸の濃度が150g/L〜300g/Lであることが好ましい。電解液の温度は10℃以上30℃以下であることが好ましい。   A method for controlling the current density can be realized by employing an appropriate electrolyte. An appropriate electrolytic solution is an electrolytic solution adjusted to have a resistance value that falls within the range of the current density described above. The adjustment of the resistance value can be realized by controlling the sulfuric acid concentration and temperature of the electrolytic solution. By increasing the sulfuric acid concentration and temperature, the resistance value decreases and the current density can be increased. The concentration of the sulfuric acid contained in the electrolytic solution is preferably 150 g / L to 300 g / L. The temperature of the electrolytic solution is preferably 10 ° C. or higher and 30 ° C. or lower.

印加する電圧の大きさとしては、高い方が電流密度を向上しやすいため望ましい。特に下限値は限定しないが、酸化還元反応により表面に陽極酸化皮膜が形成できる電圧が理論上の下限値である。   As the magnitude of the voltage to be applied, a higher one is desirable because the current density is easily improved. The lower limit is not particularly limited, but the voltage at which an anodic oxide film can be formed on the surface by the oxidation-reduction reaction is the theoretical lower limit.

第2工程においては、前記陽極と前期陰極との間に流れる電流の値を測定して積分することによって得られる電流値の積分値に基づき、成膜状況を精度良く算出することができる。従来技術では、電流密度を一定して陽極酸化処理を行うことが通常であったため、処理時間と流した電流の量とが比例することになり、処理時間を測定することで陽極酸化皮膜の生成速度を算出することが可能であった。   In the second step, the film formation state can be accurately calculated based on the integrated value of the current value obtained by measuring and integrating the value of the current flowing between the anode and the previous cathode. In the prior art, it was normal to perform anodization treatment with a constant current density, so the treatment time and the amount of current passed were proportional, and the anodized film was formed by measuring the treatment time. It was possible to calculate the speed.

(1−2.作用効果)
上述の構成を有することから本実施形態のアルミニウム部品の製造方法は、粗材に印加される電流が電解液の状況などの要因により変動したとしても電圧を18V以下に制限することができ、セルサイズを適正な範囲(40nm以下)に収めることができるため、亀裂の生成を抑制することができる。そして、電源の上限を制限した状態で電流値を大きくすることで陽極酸化皮膜の生成速度を大きくすることが可能になった。つまり、亀裂の生成が抑制できた陽極酸化皮膜を速い速度で生成することが可能になった。
(1-2. Effects)
Since it has the above-described configuration, the aluminum part manufacturing method of this embodiment can limit the voltage to 18 V or less even if the current applied to the rough material varies due to factors such as the state of the electrolyte. Since the size can be within an appropriate range (40 nm or less), generation of cracks can be suppressed. And it became possible to enlarge the production | generation speed | rate of an anodic oxide film by enlarging an electric current value in the state which restrict | limited the upper limit of the power supply. That is, it became possible to produce an anodized film that could suppress the formation of cracks at a high rate.

(2.第二実施形態:アルミニウム部品の製造装置)
(2−1.構成)
本実施形態のアルミニウム部品の製造装置は、上述したアルミニウム部品の製造方法を好適に実施できる装置である。本実施形態のアルミニウム部品の製造装置は、図1に示すように、浸漬槽10と電源装置20と制御装置30と温度調節手段40と陽極配線21と陰極配線22と陰極25及び26とを有する。
(2. Second embodiment: Aluminum component manufacturing apparatus)
(2-1. Configuration)
The aluminum component manufacturing apparatus of the present embodiment is an apparatus that can suitably carry out the above-described aluminum component manufacturing method. As shown in FIG. 1, the aluminum component manufacturing apparatus of the present embodiment includes a dipping bath 10, a power supply device 20, a control device 30, a temperature adjusting means 40, an anode wiring 21, a cathode wiring 22, and cathodes 25 and 26. .

浸漬槽10は、電解液Eを保持する部材であり、内部に被処理対象である粗材Wが浸漬できる。電解液Eは、前述したアルミニウム部品の製造方法の欄にて説明した通りなので更なる説明は省略する。   The immersion tank 10 is a member that holds the electrolytic solution E, and the rough material W that is the object to be processed can be immersed therein. Since the electrolytic solution E is as described in the above-mentioned column of the method for manufacturing an aluminum part, further description is omitted.

電源装置20は、定電圧電源である。出力する電圧は、18V以下であり、前述したアルミニウム部品の製造方法の欄にて説明した通りである。電源装置20からは、陽極配線21と陰極配線22が接続されている。陽極配線21には粗材Wが接続される。陰極配線22には陰極25及び26が接続される。陰極25及び26と粗材Wとは間隙を空けて電解液E中に配設されるようにジグ(図略)に固定される。   The power supply device 20 is a constant voltage power supply. The voltage to be output is 18 V or less, as described in the column of the method for manufacturing an aluminum part described above. An anode wiring 21 and a cathode wiring 22 are connected from the power supply device 20. A coarse material W is connected to the anode wiring 21. Cathodes 25 and 26 are connected to the cathode wiring 22. The cathodes 25 and 26 and the coarse material W are fixed to a jig (not shown) so as to be disposed in the electrolytic solution E with a gap therebetween.

制御装置30は、電源装置20を制御する電源装置制御部30aと温度調節手段40を制御する温度調節手段制御部30bとをもつ。電源装置制御部30aは制御線31が接続される。温度調節手段制御部30bは制御線32が接続される。   The control device 30 includes a power supply device control unit 30 a that controls the power supply device 20 and a temperature adjustment unit control unit 30 b that controls the temperature adjustment unit 40. A control line 31 is connected to the power supply controller 30a. A control line 32 is connected to the temperature adjusting means control unit 30b.

電源装置制御部30aは、電流積分部30a1と制御部30a2とをもち、電流積分部30a1が出力する電流値を時間で積分して、制御部30a2がその積分値に基づき生成した陽極酸化皮膜の厚みを算出して目標の厚みとなったときに電源装置20からの電圧の出力を停止する制御を行う。   The power supply device control unit 30a has a current integration unit 30a1 and a control unit 30a2, integrates the current value output by the current integration unit 30a1 with time, and the control unit 30a2 generates an anodic oxide film generated based on the integration value. Control is performed to stop the output of the voltage from the power supply device 20 when the thickness is calculated to reach the target thickness.

温度調節手段制御部30bは、温度調節手段40が測定した電解液Eの温度に基づき、電解液Eの温度が目標値になるように温度調節手段40を制御する。電解液Eの温度の目標値については前述したアルミニウム部品の製造方法にて説明した通りである。   Based on the temperature of the electrolytic solution E measured by the temperature adjusting unit 40, the temperature adjusting unit control unit 30b controls the temperature adjusting unit 40 so that the temperature of the electrolytic solution E becomes a target value. About the target value of the temperature of the electrolyte solution E, it is as having demonstrated with the manufacturing method of the aluminum component mentioned above.

温度調節手段40は、電解液E中に浸漬するように配設され、電解液を撹拌する撹拌手段(図略)と電解液Eを加熱するヒータ(図略)と電解液Eの温度を測定する温度計(図略)とをもつ。   The temperature adjusting means 40 is disposed so as to be immersed in the electrolytic solution E, and measures the temperature of the electrolytic solution E, a stirring unit (not shown) for stirring the electrolytic solution, a heater (not shown) for heating the electrolytic solution E, and the electrolytic solution E. And a thermometer (not shown).

なお、図1では、粗材Wが1つである態様を記載しているが、複数の粗材Wについて同時に処理する態様を採用することも可能である。その場合には、電源装置20、電源装置制御部30a、陰極25及び26、陽極配線21、陰極配線22については粗材Wの数似合わせて複数組を用意する必要がある。浸漬槽10、電解液E、温度調節手段40、温度調節手段制御部30bについては、複数の粗材Wを組として、その複数の粗材Wの数よりも少ない数として用意することもできる。   In addition, although the aspect with one coarse material W is described in FIG. 1, the aspect which processes simultaneously about the several coarse material W is also employable. In that case, it is necessary to prepare a plurality of sets of the power supply device 20, the power supply control unit 30 a, the cathodes 25 and 26, the anode wiring 21, and the cathode wiring 22 in accordance with the number of coarse materials W. About immersion tank 10, electrolyte solution E, temperature control means 40, and temperature control means control part 30b, it can also prepare as a number smaller than the number of the plurality of coarse materials W by making a plurality of coarse materials W into a set.

(2−2.作用効果)
上述の構成を有することから本実施形態のアルミニウム部品の製造装置は、粗材に印加される電圧が電解液の状況などの要因により変動したとしても18V以下に制限することができるためにセルサイズを適正な範囲(40nm以下)に収めることができるため、亀裂の生成を抑制することができる。そして、電源の上限を制限した状態で電流値を大きくすることで陽極酸化皮膜の生成速度を大きくすることが可能になった。つまり、亀裂の生成が抑制できた陽極酸化皮膜を速い速度で生成することが可能になった。
(2-2. Effects)
Since the aluminum part manufacturing apparatus of the present embodiment has the above-described configuration, the cell size can be limited to 18 V or less even if the voltage applied to the rough material varies due to factors such as the state of the electrolyte. Can be contained in an appropriate range (40 nm or less), and therefore, generation of cracks can be suppressed. And it became possible to enlarge the production | generation speed | rate of an anodic oxide film by enlarging an electric current value in the state which restrict | limited the upper limit of the power supply. That is, it became possible to produce an anodized film that could suppress the formation of cracks at a high rate.

本発明のアルミニウム部品の製造方法及び製造装置について以下実施例に基づき詳細に説明を行う。   The method and apparatus for producing an aluminum part of the present invention will be described in detail based on the following examples.

(試験1)
陽極酸化皮膜のセルサイズと印加する電圧との関係を評価した。印加する電圧としては18V(試験例1−1)、20V(試験例1−2)、22V(試験例1−3)とした。それぞれに流れた電流密度のピーク値は試験例1−1が1A/dm、試験例1−2が5A/dm、試験例1−3が7.5A/dmであった。そのため生成する陽極酸化皮膜の厚みを一定にするため処理時間は、試験例1−1が900秒、試験例1−2が180秒、試験例1−3が120秒とした。得られた陽極酸化皮膜が形成された粗材について、165℃で1時間処理した。その後、陽極酸化皮膜が形成された方向と直交する方向での断面での様子を金属顕微鏡及びSEMにて観察し、陽極酸化皮膜における亀裂の発生の有無、セルサイズを測定した。
(Test 1)
The relationship between the cell size of the anodized film and the applied voltage was evaluated. The applied voltages were 18V (Test Example 1-1), 20V (Test Example 1-2), and 22V (Test Example 1-3). The peak value of the current density that flowed through each was 1 A / dm 2 in Test Example 1-1, 5 A / dm 2 in Test Example 1-2, and 7.5 A / dm 2 in Test Example 1-3. Therefore, in order to make the thickness of the generated anodic oxide film constant, the processing time was 900 seconds for Test Example 1-1, 180 seconds for Test Example 1-2, and 120 seconds for Test Example 1-3. About the obtained rough material in which the anodic oxide film was formed, it processed at 165 degreeC for 1 hour. Then, the state in the cross section in the direction orthogonal to the direction in which the anodized film was formed was observed with a metal microscope and SEM, and the presence or absence of cracks in the anodized film and the cell size were measured.

その結果、亀裂が発生しなかったのは試験例1−1のみであった。セルサイズは、試験例1−1が40nm、試験例1−2が50nm、試験例1−3が55nmであった。従って、印加する電圧は18V以下にすることで亀裂の発生を抑制できることが分かった。亀裂が抑制できたのはセルサイズが40nm以下にすることができたからであることが分かった。さらに、印加する電圧を13Vとした場合にも陽極酸化皮膜が生成すること及び亀裂が発生しないことを確認した。   As a result, only Test Example 1-1 had no cracks. The cell size was 40 nm in Test Example 1-1, 50 nm in Test Example 1-2, and 55 nm in Test Example 1-3. Therefore, it was found that cracking can be suppressed by applying a voltage of 18 V or less. It was found that the crack could be suppressed because the cell size could be reduced to 40 nm or less. Further, it was confirmed that an anodized film was generated and no crack was generated even when the applied voltage was 13V.

(試験2)
試験1の条件にて亀裂が発生しなかった試験例1の条件(印加する電圧が18V)において、電流の値(ピーク値)を変化させたときの亀裂の発生の有無及びセルサイズの変化について検討を行った。流した電流の値は表1に示す。電流の値は、表1に示すように電解液の温度及ぶ含有される硫酸の濃度を調節することで制御した。陽極酸化皮膜を形成した粗材について試験1と同様の評価を行った。さらに、外観を観察し膜焼けの発生の有無を確認した。結果を表1に示す。
(Test 2)
Regarding the presence or absence of cracks and the change in cell size when the current value (peak value) was changed under the conditions of Test Example 1 where the crack was not generated under the conditions of Test 1 (the applied voltage was 18 V). Study was carried out. Table 1 shows the values of the flowed current. The current value was controlled by adjusting the temperature of the electrolyte and the concentration of sulfuric acid contained as shown in Table 1. The same evaluation as in Test 1 was performed on the crude material on which the anodized film was formed. Furthermore, the appearance was observed to confirm the presence or absence of film burn. The results are shown in Table 1.

Figure 2019151899
Figure 2019151899

表1より明らかなように、電流密度が0.98A/dm(試験例2−1)から7.19A/dm(試験例2−5)の範囲において膜焼けや亀裂が発生しないことが分かった。この場合に電解液の硫酸濃度200g/Lの場合においては電解液温度が10℃(試験例2−1)から30℃(試験例2−5)の範囲において温度の上昇に伴い電流密度が上昇していくことが明らかとなり、この範囲において生成した陽極酸化皮膜は膜焼け及び亀裂が発生しないことが分かった。セルサイズについても40nmであり電流密度が変化してもセルサイズは変化しなかった。 As is apparent from Table 1, no film burning or cracking occurs in the current density range of 0.98 A / dm 2 (Test Example 2-1) to 7.19 A / dm 2 (Test Example 2-5). I understood. In this case, when the sulfuric acid concentration of the electrolytic solution is 200 g / L, the current density increases as the temperature rises when the electrolytic solution temperature ranges from 10 ° C. (Test Example 2-1) to 30 ° C. (Test Example 2-5). It was found that the anodized film formed in this range does not cause film burning and cracks. The cell size was 40 nm, and the cell size did not change even when the current density changed.

電解液の硫酸濃度300g/Lの場合においては電解液温度が15℃(試験例2−6)において生成した陽極酸化皮膜は膜焼け及び亀裂が発生しないことが分かった。セルサイズについても40nmであり電流密度が変化してもセルサイズは変化しなかった。電解液温度20℃(試験例2−7)、25℃(試験例2−8)では膜焼け及び亀裂の生成が認められた。この場合に電流密度が電解液温度20℃では11.4A/dm、25℃では68.6A/dmであり、電解液温度が高くなって電流密度が高くなり過ぎたことから大きなジュール熱が発生したことが原因であると推測された。 When the sulfuric acid concentration of the electrolytic solution was 300 g / L, it was found that the anodic oxide film produced at the electrolytic solution temperature of 15 ° C. (Test Example 2-6) did not cause film burning and cracking. The cell size was 40 nm, and the cell size did not change even when the current density changed. Film burning and generation of cracks were observed at electrolyte temperatures of 20 ° C. (Test Example 2-7) and 25 ° C. (Test Example 2-8). In this case the current density electrolyte temperature 20 ° C. At 11.4 A / dm 2, a 25 ° C. In 68.6A / dm 2, a large Joule heat since the current density electrolyte temperature becomes high too high It was speculated that this was caused by the occurrence of

電解液の硫酸濃度は、200g/Lの方が300g/Lよりも生成した陽極酸化皮膜の膜厚のばらつきが小さくなっており好ましいことが分かった。   It has been found that the sulfuric acid concentration of the electrolytic solution is preferably 200 g / L because the variation in the thickness of the anodized film formed is smaller than that of 300 g / L.

(試験3)
印加する電圧を18Vに固定したときの電流値の経時変化を図2に示す。図2より明らかなように電流値は経時的に変化するが、電流の積分値と、生成した陽極酸化皮膜の厚みとの間にほぼ相関があることが確認できた(図3参照)。従って、電流密度の積分値を算出することで陽極酸化皮膜の厚みが測定できることを確認した。
(Test 3)
FIG. 2 shows the change with time of the current value when the applied voltage is fixed at 18V. As is clear from FIG. 2, the current value changed with time, but it was confirmed that there was a substantial correlation between the integrated value of the current and the thickness of the generated anodic oxide film (see FIG. 3). Therefore, it was confirmed that the thickness of the anodized film can be measured by calculating the integral value of the current density.

10…浸漬槽 20…電源装置 21…陽極配線 22…陰極配線 25、26…陰極 30…制御装置 30a…電源装置制御部 30b…温度調節手段制御部 40…温度調節手段 W…粗材(被処理対象)     DESCRIPTION OF SYMBOLS 10 ... Immersion tank 20 ... Power supply device 21 ... Anode wiring 22 ... Cathode wiring 25, 26 ... Cathode 30 ... Control device 30a ... Power supply device control part 30b ... Temperature adjustment means control part 40 ... Temperature adjustment means W ... Rough material (to-be-processed) Target)

Claims (5)

アルミニウム又はアルミニウム合金からなり被処理対象である粗材を陽極とし、陰極とともに硫酸を含有する電解液に接触させ、
電流密度が0.8A/dm〜7.5A/dm、印加電圧18V以下の定電圧条件で前記陽極と前期陰極との間に電流を流して陽極酸化処理を行うアルミニウム部品の製造方法。
A rough material to be treated made of aluminum or an aluminum alloy is used as an anode, and brought into contact with an electrolytic solution containing sulfuric acid together with a cathode.
A method for producing an aluminum component, wherein anodization is performed by passing a current between the anode and the previous cathode under a constant voltage condition of a current density of 0.8 A / dm 2 to 7.5 A / dm 2 and an applied voltage of 18 V or less.
前記陽極と前期陰極との間に流れた電流の積分値に基づき、生成される陽極酸化皮膜の厚みを制御する請求項1に記載のアルミニウム部品の製造方法。   The manufacturing method of the aluminum component of Claim 1 which controls the thickness of the anodic oxide film produced | generated based on the integral value of the electric current which flowed between the said anode and a previous cathode. 前記電解液の硫酸濃度が150g/L〜300g/Lである請求項1又は2に記載のアルミニウム部品の製造方法。   The method for producing an aluminum part according to claim 1 or 2, wherein the electrolytic solution has a sulfuric acid concentration of 150 g / L to 300 g / L. 硫酸を含有する電解液を保持し、アルミニウム又はアルミニウム合金からなり被処理対象である粗材を陽極とし、陰極とともに前記電解液中に浸漬する浸漬槽と、
電流密度が0.8A/dm〜7.5A/dm、印加電圧18V以下の定電圧条件で前記陽極と前期陰極との間に電流を流す電源装置と、
前記電源装置から前記陽極と前記陰極との間に流れた電流の積分値を算出する電流積分部と、前記電流積分部が算出した電流の積分値に基づき、生成される陽極酸化皮膜の厚みを算出し、算出した厚みが所定値になったときに処理を終了するように前記電源装置を制御する制御部とをもつ制御装置と、
を有するアルミニウム部品の製造装置。
A dipping tank that holds an electrolytic solution containing sulfuric acid, is made of aluminum or an aluminum alloy and is a rough material to be treated as an anode, and is immersed in the electrolytic solution together with the cathode;
A power supply device for passing a current between the anode and the previous cathode under a constant voltage condition of a current density of 0.8 A / dm 2 to 7.5 A / dm 2 and an applied voltage of 18 V or less;
Based on the integrated value of the current calculated by the current integrating unit calculated by the current integrating unit that calculates the integrated value of the current that flows between the anode and the cathode from the power supply device, the thickness of the generated anodic oxide film A control device having a control unit for calculating and controlling the power supply device so as to end the processing when the calculated thickness reaches a predetermined value;
An apparatus for manufacturing an aluminum part.
前記電解液の温度を調節する温度調節手段を有し、
前記制御装置は、前記電解液の温度を10℃以上30℃以下の範囲内で一定値になるように前記温度調節手段を制御する請求項4に記載のアルミニウム部品の製造装置。
Temperature adjusting means for adjusting the temperature of the electrolyte solution;
The said control apparatus is a manufacturing apparatus of the aluminum component of Claim 4 which controls the said temperature adjustment means so that the temperature of the said electrolyte solution may become a fixed value within the range of 10 degreeC or more and 30 degrees C or less.
JP2018038773A 2018-03-05 2018-03-05 Manufacturing method of aluminum parts Active JP7069843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018038773A JP7069843B2 (en) 2018-03-05 2018-03-05 Manufacturing method of aluminum parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018038773A JP7069843B2 (en) 2018-03-05 2018-03-05 Manufacturing method of aluminum parts

Publications (2)

Publication Number Publication Date
JP2019151899A true JP2019151899A (en) 2019-09-12
JP7069843B2 JP7069843B2 (en) 2022-05-18

Family

ID=67948389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018038773A Active JP7069843B2 (en) 2018-03-05 2018-03-05 Manufacturing method of aluminum parts

Country Status (1)

Country Link
JP (1) JP7069843B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102382082B1 (en) * 2021-11-12 2022-04-04 (주)코미코 Method for manufacturing Anodized Coating Layer on Aluminium Member and Aluminium Member for Semiconductor Manufaturing Device by the Same
KR102625655B1 (en) * 2022-11-02 2024-01-16 재단법인대구경북과학기술원 Anodizing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141400A (en) * 1982-02-15 1983-08-22 Nippon Telegr & Teleph Corp <Ntt> Manufacture of alumite coated al alloy substrate
JPS63153296A (en) * 1986-12-17 1988-06-25 Mitsubishi Alum Co Ltd Wheel rim made of aluminum alloy and its production
JPH04120298A (en) * 1990-09-07 1992-04-21 Showa Alum Corp Method for controlling thickness of anodically oxidized film in anodic-oxidation treatment
JPH1191034A (en) * 1997-09-22 1999-04-06 Mitsubishi Alum Co Ltd Surface-treated aluminum laminate with excellent barrier properties
JP2016145383A (en) * 2015-02-06 2016-08-12 栗田工業株式会社 Surface treatment method for aluminum or aluminum alloy, and surface treatment device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141400A (en) * 1982-02-15 1983-08-22 Nippon Telegr & Teleph Corp <Ntt> Manufacture of alumite coated al alloy substrate
JPS63153296A (en) * 1986-12-17 1988-06-25 Mitsubishi Alum Co Ltd Wheel rim made of aluminum alloy and its production
JPH04120298A (en) * 1990-09-07 1992-04-21 Showa Alum Corp Method for controlling thickness of anodically oxidized film in anodic-oxidation treatment
JPH1191034A (en) * 1997-09-22 1999-04-06 Mitsubishi Alum Co Ltd Surface-treated aluminum laminate with excellent barrier properties
JP2016145383A (en) * 2015-02-06 2016-08-12 栗田工業株式会社 Surface treatment method for aluminum or aluminum alloy, and surface treatment device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102382082B1 (en) * 2021-11-12 2022-04-04 (주)코미코 Method for manufacturing Anodized Coating Layer on Aluminium Member and Aluminium Member for Semiconductor Manufaturing Device by the Same
KR102625655B1 (en) * 2022-11-02 2024-01-16 재단법인대구경북과학기술원 Anodizing apparatus

Also Published As

Publication number Publication date
JP7069843B2 (en) 2022-05-18

Similar Documents

Publication Publication Date Title
Timoshenko et al. Investigation of plasma electrolytic oxidation processes of magnesium alloy MA2-1 under pulse polarisation modes
JP5833987B2 (en) Aluminum alloy excellent in anodizing property and anodized aluminum alloy member
TWI424096B (en) Method for forming anodic oxide film
JP2019151899A (en) Production method of aluminum component and production device of aluminum component
JP6450838B2 (en) Method for manufacturing chrome-plated parts
JP2018534416A (en) Stainless steel for fuel cell separator and manufacturing method thereof
JP2010168642A (en) Anodization method of aluminum and anodized aluminum
JP2018090897A (en) Anodic oxide film and method for producing the same
JP5648660B2 (en) Method of anodizing aluminum
Yang et al. Surface treatment of Ti6al4V parts made by powder bed fusion additive manufacturing processes using electropolishing
Hocheng et al. Electropolishing of 316L stainless steel for anticorrosion passivation
Kusmanov et al. Some features of anodic plasma electrolytic processes in aqueous solution
JP2007204831A (en) Aluminum material having thick anodic oxide-film, and method for forming anodic oxide film on aluminum material at high speed
JP6591445B2 (en) Devices intended for anodizing and anodizing
JP6350551B2 (en) Anodized film generation method
US20080087551A1 (en) Method for anodizing aluminum alloy and power supply for anodizing aluminum alloy
JP4365415B2 (en) How to produce high adhesion thick protective coating of valve metal parts by micro arc oxidation
Yang et al. Localized Ni deposition improved by saccharin sodium in the intermittent MAGE process
WO2001000904A1 (en) Method for electrolytic coloring of aluminum material
Ivanov et al. On electrodeposition of thick coatings of increased continuity
Shtefan et al. Regularities of the deposition of cobalt-tungsten alloys by pulsed currents
JP2014065946A (en) Aluminum anode oxide coating
Gao et al. Passivation Behavior of Different Building Planes of Selective Laser Melting 316L Stainless Steel in 3.5% NaCl Solution
Venugopal et al. EFFECT OF ELECTROCHEMICAL PROCESS PARAMETERS ON THE HASTELLOY C-276 ALLOY FOR MACHINING SPEED AND SURFACE-CORROSION FACTOR
Shinonaga et al. Improvement in Corrosion Resistance of Al-Cu Alloy by Large-area Electron Beam Irradiation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220418

R150 Certificate of patent or registration of utility model

Ref document number: 7069843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150