JP7069843B2 - Manufacturing method of aluminum parts - Google Patents

Manufacturing method of aluminum parts Download PDF

Info

Publication number
JP7069843B2
JP7069843B2 JP2018038773A JP2018038773A JP7069843B2 JP 7069843 B2 JP7069843 B2 JP 7069843B2 JP 2018038773 A JP2018038773 A JP 2018038773A JP 2018038773 A JP2018038773 A JP 2018038773A JP 7069843 B2 JP7069843 B2 JP 7069843B2
Authority
JP
Japan
Prior art keywords
oxide film
anodic oxide
electrolytic solution
aluminum
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018038773A
Other languages
Japanese (ja)
Other versions
JP2019151899A (en
Inventor
寛 三辻
毅 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2018038773A priority Critical patent/JP7069843B2/en
Publication of JP2019151899A publication Critical patent/JP2019151899A/en
Application granted granted Critical
Publication of JP7069843B2 publication Critical patent/JP7069843B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、表面に陽極酸化皮膜が形成されたアルミニウム部品の製造方法に関する。 The present invention relates to a method for manufacturing an aluminum component having an anodic oxide film formed on its surface.

従来よりアルミニウム部品に対して陽極酸化皮膜を形成することが行われている(例えば、特許文献1参照)。 Conventionally, an anodic oxide film has been formed on an aluminum component (see, for example, Patent Document 1).

アルミニウム部品に形成される陽極酸化皮膜は、耐食性、耐摩耗性、硬度、絶縁性などの特性に優れることが知られている。 It is known that the anodic oxide film formed on an aluminum component is excellent in properties such as corrosion resistance, wear resistance, hardness, and insulating property.

特開2015-102111号公報(特許請求の範囲など)JP-A-2015-102111 (Claims, etc.)

優れた特性をもつ陽極酸化皮膜であるが、粗材の表面に陽極酸化皮膜を形成するためには長時間(20分~60分程度)の処理が必要である。陽極酸化皮膜の生成は、電流が流れた量に比例するため、陽極酸化皮膜の生成速度を向上して処理時間を短縮するためには電流密度を向上する必要がある。 Although the anodic oxide film has excellent properties, long-term treatment (about 20 to 60 minutes) is required to form the anodic oxide film on the surface of the rough material. Since the formation of the anodic oxide film is proportional to the amount of current flowing, it is necessary to improve the current density in order to improve the formation rate of the anodic oxide film and shorten the processing time.

しかしながら、単純に電流密度を高くして陽極酸化処理を行うと、得られた陽極酸化皮膜の延性が低くなって外力により亀裂が生じることがあり、高圧ガスが流入して高い応力が加わる部品や高温環境で用いられる部品に陽極酸化皮膜を形成した場合の破断の原因ともなりうるおそれがある。 However, if the current density is simply increased and the anodic oxidation treatment is performed, the ductility of the obtained anodic oxide film becomes low and cracks may occur due to external force, and high-pressure gas flows in and high stress is applied to parts and parts. If an anodized film is formed on a part used in a high temperature environment, it may cause breakage.

本発明は上記実情に鑑み完成したものであり、陽極酸化処理の速度を大きくしても亀裂が生じ難い陽極酸化皮膜が形成できるアルミニウム部品の製造方法を提供することを解決すべき課題とする。 The present invention has been completed in view of the above circumstances, and it is an object to be solved to provide a method for manufacturing an aluminum component capable of forming an anodized film in which cracks are unlikely to occur even if the speed of anodizing treatment is increased.

(1.アルミニウム部品の製造方法)
上記課題を解決する目的で本発明者らは鋭意検討を行った結果、粗材の表面に生成した陽極酸化皮膜について亀裂が生じやすいかどうかを判断するために生成した陽極酸化皮膜のセルサイズに着目すれば良いことに想到した。後述する実施例の結果から、陽極酸化皮膜では印加する電圧の大きくなると形成されるセルサイズも大きくなることが分かり、更に印加する電圧を18V以下にすることによりセルサイズを40nm以下にすることが可能になって、亀裂の生成が抑制できるとの知見を得た。これらの知見に基づき以下の発明を完成した。なお、本明細書中における「陽極酸化皮膜のセルサイズ」とはJIS H0201:1998の701模式図に基づく隣接する702被膜セルにおける703微細孔の距離をいう。
(1. Manufacturing method of aluminum parts)
As a result of diligent studies for the purpose of solving the above problems, the present inventors decided on the cell size of the anodic oxide film formed in order to determine whether or not cracks are likely to occur in the anodic oxide film formed on the surface of the rough material. I came up with the idea that I should pay attention to it. From the results of the examples described later, it can be seen that the cell size formed in the anodic oxide film increases as the applied voltage increases, and the cell size can be reduced to 40 nm or less by further reducing the applied voltage to 18 V or less. It was found that it became possible and the formation of cracks could be suppressed. Based on these findings, the following invention was completed. The "cell size of the anodic oxide film" in the present specification means the distance of 703 micropores in the adjacent 702 film cell based on the 701 schematic diagram of JIS H0201: 1998.

すなわち、本発明に係るアルミニウム部品の製造方法は、アルミニウム又はアルミニウム合金からなり被処理対象である粗材を陽極とし、陰極とともに硫酸濃度が150g/L~300g/Lの電解液に接触させ、電流密度が0.8A/dm~7.5A/dm、印加電圧が13V以上18V以下(ただし、15V以下を除く)の定電圧条件で前記陽極と前記陰極との間に電流を流して、セルサイズが40nm以下の陽極酸化皮膜を生成し、前記陽極と前記陰極との間に流れた電流の積分値を算出し、算出した前記積分値に基づき算出される陽極酸化皮膜の生成厚みが所定値になったときに処理を終了することにより、所定厚みの前記陽極酸化皮膜を生成し、165℃で1時間の熱処理を行ったときに亀裂が発生しないアルミニウム部品を製造する。 That is, in the method for manufacturing an aluminum component according to the present invention, a crude material made of aluminum or an aluminum alloy and to be treated is used as an anode, and a cathode and an electrolytic solution having a sulfuric acid concentration of 150 g / L to 300 g / L are brought into contact with each other to generate an electric current. A current is passed between the anode and the cathode under constant voltage conditions where the density is 0.8 A / dm 2 to 7.5 A / dm 2 and the applied voltage is 13 V or more and 18 V or less (excluding 15 V or less) . An anodic oxide film having a cell size of 40 nm or less is generated, an integrated value of the current flowing between the anode and the cathode is calculated, and the formed thickness of the anodic oxide film calculated based on the calculated integrated value is predetermined. By terminating the treatment when the value is reached, the anodic oxide film having a predetermined thickness is formed, and an aluminum component in which cracks do not occur when heat-treated at 165 ° C. for 1 hour is manufactured.

陽極酸化処理において電流密度を高くして陽極酸化皮膜の生成速度を向上しても、印加する電圧を18V以下にして陽極酸化皮膜のセルサイズを一定以下にすることで亀裂の生成を抑制することが可能になった。特に定電圧での処理を行うことによりセルサイズの大きさが安定化できた。 Even if the current density is increased in the anodic oxidation treatment to improve the formation rate of the anodic oxide film, the formation of cracks can be suppressed by setting the applied voltage to 18 V or less and keeping the cell size of the anodic oxide film below a certain level. Is now possible. In particular, the cell size could be stabilized by processing at a constant voltage.

実施形態におけるアルミニウム部品の製造装置を示す模式図である。It is a schematic diagram which shows the manufacturing apparatus of the aluminum part in an embodiment. 実施例においてアルミニウム部品の製造方法を実施するときの電流の経時変化を示したグラフである。It is a graph which showed the time-dependent change of the electric current at the time of carrying out the manufacturing method of the aluminum part in an Example. 陽極と陰極との間に流れた電流の積分値と生成される陽極酸化皮膜の厚みとの相関を示したグラフである。It is a graph which showed the correlation between the integral value of the electric current which flowed between an anode and a cathode, and the thickness of the generated anodized film.

(1.第一実施形態:アルミニウム部品の製造方法)
(1-1.構成)
本実施形態のアルミニウム部品の製造方法について、以下に説明を行う。本実施形態のアルミニウム部品の製造方法は、アルミニウム又はアルミニウム合金からなる粗材を被処理対象として硫酸を含有する電解液中において陽極酸化処理を行い、その素材の表面に陽極酸化皮膜を形成してアルミニウム部品とする方法である。粗材を構成する材料としては、アルミニウム又はアルミニウム合金であり、アルミニウム合金としては、アルミニウム元素を主成分とするものであれば特に限定しない。さらに、粗材の表面にアルミニウム又はアルミニウム合金が露出する構成を有するものであれば充分であり、内部を形成する材料は特に限定しない。
(1. First Embodiment: Manufacturing method of aluminum parts)
(1-1. Configuration)
The method for manufacturing the aluminum parts of the present embodiment will be described below. In the method for manufacturing aluminum parts of the present embodiment, a crude material made of aluminum or an aluminum alloy is subjected to anodizing treatment in an electrolytic solution containing sulfuric acid as a target to be treated, and an anodizing film is formed on the surface of the material. This is a method of using aluminum parts. The material constituting the crude material is aluminum or an aluminum alloy, and the aluminum alloy is not particularly limited as long as it contains an aluminum element as a main component. Further, it is sufficient as long as it has a structure in which aluminum or an aluminum alloy is exposed on the surface of the rough material, and the material forming the inside is not particularly limited.

アルミニウム部品としては外力により亀裂が生じ難い陽極酸化皮膜が形成できるため、どのような製品の部品であっても適用することが可能であるが、特に大きな外力が加わる部品に適用されることが好ましい。例えば、高圧ガスに適用されるバルブボディである。 Since an anodic oxide film that is unlikely to crack due to external force can be formed as an aluminum component, it can be applied to any product component, but it is particularly preferable to apply it to a component to which a large external force is applied. .. For example, a valve body applied to high pressure gas.

本製造方法は、第1工程と第2工程とをその他必要な工程とを有する。
第1工程は、被処理対象である粗材を陽極とし、陰極とともに電解液に接触させる工程である。電解液は硫酸を含有する。電解液について好ましい条件は後述する。電解液への接触は、例えば電解液中に粗材を浸漬して行うことが挙げられる。陰極については特に限定されない。
The present manufacturing method includes a first step, a second step, and other necessary steps.
The first step is a step in which the crude material to be treated is used as an anode and is brought into contact with the electrolytic solution together with the cathode. The electrolytic solution contains sulfuric acid. Preferred conditions for the electrolytic solution will be described later. The contact with the electrolytic solution may be performed, for example, by immersing the crude material in the electrolytic solution. The cathode is not particularly limited.

第2工程は、電流密度が0.8A/dm~7.5A/dm、印加電圧18V以下の定電圧条件で陽極と陰極との間に電流を流して陽極酸化処理を行う工程である。 The second step is a step of performing anodizing treatment by passing a current between the anode and the cathode under constant voltage conditions where the current density is 0.8 A / dm 2 to 7.5 A / dm 2 and the applied voltage is 18 V or less. ..

電流密度はこの下限値以上にすることで陽極酸化皮膜が形成される速度が速くなるためできるだけ高い方が好ましい。また、電流密度はこの上限値以下にすることで形成される陽極酸化皮膜に”膜焼け”が生じない。なお”膜焼け”とは、電流密度が高いために均一に電流が流れず一部に集中することで発生するものと推測でき、言葉の通り外観が焼けたような状態になっており、得られた陽極酸化皮膜の特性が充分でない。 It is preferable that the current density is as high as possible because the rate at which the anodic oxide film is formed increases when the current density is equal to or higher than this lower limit. Further, when the current density is set to the upper limit or less, "film burning" does not occur in the anodic oxide film formed. It can be inferred that "film burning" occurs when the current does not flow uniformly due to the high current density and is concentrated in a part of the film. The characteristics of the anodized film obtained are not sufficient.

電流密度を制御する方法としては、適正な電解液を採用することで実現できる。適正な電解液とは、上述の電流密度の範囲内に入るような抵抗値をもつように調節された電解液である。抵抗値の調節は、電解液の硫酸濃度や温度を制御することで実現できる。硫酸濃度や温度を高くすることにより抵抗値は低下し電流密度が高くできる。電解液中の濃度は含有される硫酸の濃度が150g/L~300g/Lであることが好ましい。電解液の温度は10℃以上30℃以下であることが好ましい。 As a method of controlling the current density, it can be realized by adopting an appropriate electrolytic solution. An appropriate electrolytic solution is an electrolytic solution adjusted to have a resistance value within the range of the above-mentioned current density. The resistance value can be adjusted by controlling the sulfuric acid concentration and temperature of the electrolytic solution. By increasing the sulfuric acid concentration and temperature, the resistance value can be reduced and the current density can be increased. As for the concentration in the electrolytic solution, the concentration of the sulfuric acid contained is preferably 150 g / L to 300 g / L. The temperature of the electrolytic solution is preferably 10 ° C. or higher and 30 ° C. or lower.

印加する電圧の大きさとしては、高い方が電流密度を向上しやすいため望ましい。特に下限値は限定しないが、酸化還元反応により表面に陽極酸化皮膜が形成できる電圧が理論上の下限値である。 As for the magnitude of the applied voltage, it is desirable that the higher the voltage is, the easier it is to improve the current density. Although the lower limit is not particularly limited, the theoretical lower limit is the voltage at which an anodic oxide film can be formed on the surface by the redox reaction.

第2工程においては、前記陽極と前期陰極との間に流れる電流の値を測定して積分することによって得られる電流値の積分値に基づき、成膜状況を精度良く算出することができる。従来技術では、電流密度を一定して陽極酸化処理を行うことが通常であったため、処理時間と流した電流の量とが比例することになり、処理時間を測定することで陽極酸化皮膜の生成速度を算出することが可能であった。 In the second step, the film formation state can be calculated accurately based on the integrated value of the current value obtained by measuring and integrating the value of the current flowing between the anode and the cathode in the first half. In the prior art, it was usual to perform anodizing with a constant current density, so the processing time is proportional to the amount of current flowing, and the anodizing film is formed by measuring the processing time. It was possible to calculate the speed.

(1-2.作用効果)
上述の構成を有することから本実施形態のアルミニウム部品の製造方法は、粗材に印加される電流が電解液の状況などの要因により変動したとしても電圧を18V以下に制限することができ、セルサイズを適正な範囲(40nm以下)に収めることができるため、亀裂の生成を抑制することができる。そして、電源の上限を制限した状態で電流値を大きくすることで陽極酸化皮膜の生成速度を大きくすることが可能になった。つまり、亀裂の生成が抑制できた陽極酸化皮膜を速い速度で生成することが可能になった。
(1-2. Action effect)
Since it has the above-mentioned configuration, the method for manufacturing an aluminum component of the present embodiment can limit the voltage to 18 V or less even if the current applied to the rough material fluctuates due to factors such as the condition of the electrolytic solution, and the cell. Since the size can be kept within an appropriate range (40 nm or less), the formation of cracks can be suppressed. Then, by increasing the current value with the upper limit of the power supply limited, it became possible to increase the formation rate of the anodic oxide film. That is, it has become possible to form an anodic oxide film in which the formation of cracks can be suppressed at a high speed.

(2.第二実施形態:アルミニウム部品の製造装置)
(2-1.構成)
本実施形態のアルミニウム部品の製造装置は、上述したアルミニウム部品の製造方法を好適に実施できる装置である。本実施形態のアルミニウム部品の製造装置は、図1に示すように、浸漬槽10と電源装置20と制御装置30と温度調節手段40と陽極配線21と陰極配線22と陰極25及び26とを有する。
(2. Second embodiment: Aluminum component manufacturing apparatus)
(2-1. Configuration)
The aluminum component manufacturing apparatus of the present embodiment is an apparatus capable of suitably carrying out the above-mentioned aluminum component manufacturing method. As shown in FIG. 1, the aluminum component manufacturing apparatus of the present embodiment includes a dipping tank 10, a power supply device 20, a control device 30, a temperature control means 40, an anode wiring 21, a cathode wiring 22, and a cathode 25 and 26. ..

浸漬槽10は、電解液Eを保持する部材であり、内部に被処理対象である粗材Wが浸漬できる。電解液Eは、前述したアルミニウム部品の製造方法の欄にて説明した通りなので更なる説明は省略する。 The immersion tank 10 is a member that holds the electrolytic solution E, and the rough material W to be treated can be immersed therein. Since the electrolytic solution E is as described in the above-mentioned column of the method for manufacturing aluminum parts, further description will be omitted.

電源装置20は、定電圧電源である。出力する電圧は、18V以下であり、前述したアルミニウム部品の製造方法の欄にて説明した通りである。電源装置20からは、陽極配線21と陰極配線22が接続されている。陽極配線21には粗材Wが接続される。陰極配線22には陰極25及び26が接続される。陰極25及び26と粗材Wとは間隙を空けて電解液E中に配設されるようにジグ(図略)に固定される。 The power supply device 20 is a constant voltage power supply. The output voltage is 18 V or less, as described in the above-mentioned column of the method for manufacturing aluminum parts. From the power supply device 20, the anode wiring 21 and the cathode wiring 22 are connected. A rough material W is connected to the anode wiring 21. Cathodes 25 and 26 are connected to the cathode wiring 22. The cathodes 25 and 26 and the crude material W are fixed to a jig (not shown) so as to be disposed in the electrolytic solution E with a gap.

制御装置30は、電源装置20を制御する電源装置制御部30aと温度調節手段40を制御する温度調節手段制御部30bとをもつ。電源装置制御部30aは制御線31が接続される。温度調節手段制御部30bは制御線32が接続される。 The control device 30 includes a power supply device control unit 30a for controlling the power supply device 20 and a temperature control means control unit 30b for controlling the temperature control means 40. A control line 31 is connected to the power supply control unit 30a. A control line 32 is connected to the temperature control means control unit 30b.

電源装置制御部30aは、電流積分部30a1と制御部30a2とをもち、電流積分部30a1が出力する電流値を時間で積分して、制御部30a2がその積分値に基づき生成した陽極酸化皮膜の厚みを算出して目標の厚みとなったときに電源装置20からの電圧の出力を停止する制御を行う。 The power supply control unit 30a has a current integrating unit 30a1 and a control unit 30a2, integrates the current value output by the current integrating unit 30a1 over time, and the control unit 30a2 of the anodized film generated based on the integrated value. The thickness is calculated and control is performed to stop the output of the voltage from the power supply device 20 when the target thickness is reached.

温度調節手段制御部30bは、温度調節手段40が測定した電解液Eの温度に基づき、電解液Eの温度が目標値になるように温度調節手段40を制御する。電解液Eの温度の目標値については前述したアルミニウム部品の製造方法にて説明した通りである。 The temperature control means control unit 30b controls the temperature control means 40 so that the temperature of the electrolytic solution E becomes a target value based on the temperature of the electrolytic solution E measured by the temperature control means 40. The target value of the temperature of the electrolytic solution E is as described in the above-mentioned method for manufacturing aluminum parts.

温度調節手段40は、電解液E中に浸漬するように配設され、電解液を撹拌する撹拌手段(図略)と電解液Eを加熱するヒータ(図略)と電解液Eの温度を測定する温度計(図略)とをもつ。 The temperature controlling means 40 is arranged so as to be immersed in the electrolytic solution E, and measures the temperatures of the stirring means (not shown) for stirring the electrolytic solution, the heater (not shown) for heating the electrolytic solution E, and the electrolytic solution E. It has a thermometer (not shown).

なお、図1では、粗材Wが1つである態様を記載しているが、複数の粗材Wについて同時に処理する態様を採用することも可能である。その場合には、電源装置20、電源装置制御部30a、陰極25及び26、陽極配線21、陰極配線22については粗材Wの数似合わせて複数組を用意する必要がある。浸漬槽10、電解液E、温度調節手段40、温度調節手段制御部30bについては、複数の粗材Wを組として、その複数の粗材Wの数よりも少ない数として用意することもできる。 Although FIG. 1 describes an embodiment in which there is only one crude material W, it is also possible to adopt an embodiment in which a plurality of crude materials W are processed at the same time. In that case, it is necessary to prepare a plurality of sets of the power supply device 20, the power supply device control unit 30a, the cathodes 25 and 26, the anode wiring 21, and the cathode wiring 22 according to the number of rough materials W. The immersion tank 10, the electrolytic solution E, the temperature control means 40, and the temperature control means control unit 30b can be prepared as a set of a plurality of crude materials W in a number smaller than the number of the plurality of crude materials W.

(2-2.作用効果)
上述の構成を有することから本実施形態のアルミニウム部品の製造装置は、粗材に印加される電圧が電解液の状況などの要因により変動したとしても18V以下に制限することができるためにセルサイズを適正な範囲(40nm以下)に収めることができるため、亀裂の生成を抑制することができる。そして、電源の上限を制限した状態で電流値を大きくすることで陽極酸化皮膜の生成速度を大きくすることが可能になった。つまり、亀裂の生成が抑制できた陽極酸化皮膜を速い速度で生成することが可能になった。
(2-2. Action effect)
Since it has the above-mentioned configuration, the aluminum component manufacturing apparatus of the present embodiment can be limited to 18 V or less even if the voltage applied to the crude material fluctuates due to factors such as the condition of the electrolytic solution, and thus the cell size. Can be contained in an appropriate range (40 nm or less), so that the formation of cracks can be suppressed. Then, by increasing the current value with the upper limit of the power supply limited, it became possible to increase the formation rate of the anodic oxide film. That is, it has become possible to form an anodic oxide film in which the formation of cracks can be suppressed at a high speed.

本発明のアルミニウム部品の製造方法及び製造装置について以下実施例に基づき詳細に説明を行う。 The manufacturing method and manufacturing apparatus for aluminum parts of the present invention will be described in detail based on the following examples.

(試験1)
陽極酸化皮膜のセルサイズと印加する電圧との関係を評価した。印加する電圧としては18V(試験例1-1)、20V(試験例1-2)、22V(試験例1-3)とした。それぞれに流れた電流密度のピーク値は試験例1-1が1A/dm、試験例1-2が5A/dm、試験例1-3が7.5A/dmであった。そのため生成する陽極酸化皮膜の厚みを一定にするため処理時間は、試験例1-1が900秒、試験例1-2が180秒、試験例1-3が120秒とした。得られた陽極酸化皮膜が形成された粗材について、165℃で1時間処理した。その後、陽極酸化皮膜が形成された方向と直交する方向での断面での様子を金属顕微鏡及びSEMにて観察し、陽極酸化皮膜における亀裂の発生の有無、セルサイズを測定した。
(Test 1)
The relationship between the cell size of the anodic oxide film and the applied voltage was evaluated. The applied voltages were 18V (Test Example 1-1), 20V (Test Example 1-2), and 22V (Test Example 1-3). The peak values of the current densities flowing through each were 1 A / dm 2 in Test Example 1-1, 5 A / dm 2 in Test Example 1-2, and 7.5 A / dm 2 in Test Example 1-3. Therefore, in order to keep the thickness of the anodic oxide film formed constant, the treatment time was 900 seconds for Test Example 1-1, 180 seconds for Test Example 1-2, and 120 seconds for Test Example 1-3. The obtained crude material on which the anodic oxide film was formed was treated at 165 ° C. for 1 hour. Then, the state in the cross section in the direction orthogonal to the direction in which the anodic oxide film was formed was observed with a metallurgical microscope and SEM, and the presence or absence of cracks in the anodic oxide film and the cell size were measured.

その結果、亀裂が発生しなかったのは試験例1-1のみであった。セルサイズは、試験例1-1が40nm、試験例1-2が50nm、試験例1-3が55nmであった。従って、印加する電圧は18V以下にすることで亀裂の発生を抑制できることが分かった。亀裂が抑制できたのはセルサイズが40nm以下にすることができたからであることが分かった。さらに、印加する電圧を13Vとした場合にも陽極酸化皮膜が生成すること及び亀裂が発生しないことを確認した。 As a result, only Test Example 1-1 did not generate a crack. The cell size was 40 nm for Test Example 1-1, 50 nm for Test Example 1-2, and 55 nm for Test Example 1-3. Therefore, it was found that the occurrence of cracks can be suppressed by setting the applied voltage to 18 V or less. It was found that the cracks could be suppressed because the cell size could be reduced to 40 nm or less. Furthermore, it was confirmed that an anodic oxide film was formed and cracks did not occur even when the applied voltage was 13 V.

(試験2)
試験1の条件にて亀裂が発生しなかった試験例1の条件(印加する電圧が18V)において、電流の値(ピーク値)を変化させたときの亀裂の発生の有無及びセルサイズの変化について検討を行った。流した電流の値は表1に示す。電流の値は、表1に示すように電解液の温度及ぶ含有される硫酸の濃度を調節することで制御した。陽極酸化皮膜を形成した粗材について試験1と同様の評価を行った。さらに、外観を観察し膜焼けの発生の有無を確認した。結果を表1に示す。
(Test 2)
Regarding the presence or absence of cracks and changes in cell size when the current value (peak value) is changed under the conditions of Test Example 1 (applied voltage is 18 V) in which cracks did not occur under the conditions of Test 1. Study was carried out. The values of the applied current are shown in Table 1. The value of the current was controlled by adjusting the concentration of sulfuric acid contained in the temperature of the electrolytic solution as shown in Table 1. The crude material on which the anodic oxide film was formed was evaluated in the same manner as in Test 1. Furthermore, the appearance was observed to confirm the presence or absence of film burning. The results are shown in Table 1.

Figure 0007069843000001
Figure 0007069843000001

表1より明らかなように、電流密度が0.98A/dm(試験例2-1)から7.19A/dm(試験例2-5)の範囲において膜焼けや亀裂が発生しないことが分かった。この場合に電解液の硫酸濃度200g/Lの場合においては電解液温度が10℃(試験例2-1)から30℃(試験例2-5)の範囲において温度の上昇に伴い電流密度が上昇していくことが明らかとなり、この範囲において生成した陽極酸化皮膜は膜焼け及び亀裂が発生しないことが分かった。セルサイズについても40nmであり電流密度が変化してもセルサイズは変化しなかった。 As is clear from Table 1, no film burning or cracking occurs when the current density is in the range of 0.98 A / dm 2 (Test Example 2-1) to 7.19 A / dm 2 (Test Example 2-5). Do you get it. In this case, when the sulfuric acid concentration of the electrolytic solution is 200 g / L, the current density increases as the temperature rises in the range of 10 ° C. (Test Example 2-1) to 30 ° C. (Test Example 2-5). It was clarified that the anodic oxide film formed in this range did not burn or crack. The cell size was also 40 nm, and the cell size did not change even if the current density changed.

電解液の硫酸濃度300g/Lの場合においては電解液温度が15℃(試験例2-6)において生成した陽極酸化皮膜は膜焼け及び亀裂が発生しないことが分かった。セルサイズについても40nmであり電流密度が変化してもセルサイズは変化しなかった。電解液温度20℃(試験例2-7)、25℃(試験例2-8)では膜焼け及び亀裂の生成が認められた。この場合に電流密度が電解液温度20℃では11.4A/dm、25℃では68.6A/dmであり、電解液温度が高くなって電流密度が高くなり過ぎたことから大きなジュール熱が発生したことが原因であると推測された。 It was found that when the sulfuric acid concentration of the electrolytic solution was 300 g / L, the anodic oxide film formed at the electrolytic solution temperature of 15 ° C. (Test Example 2-6) did not cause film burning or cracking. The cell size was also 40 nm, and the cell size did not change even if the current density changed. Film burning and crack formation were observed at electrolyte temperatures of 20 ° C (Test Example 2-7) and 25 ° C (Test Example 2-8). In this case, the current density is 11.4 A / dm 2 at an electrolytic solution temperature of 20 ° C. and 68.6 A / dm 2 at 25 ° C., and the current density becomes too high due to the high electrolytic solution temperature, resulting in a large Joule heat. It was speculated that the cause was the occurrence of.

電解液の硫酸濃度は、200g/Lの方が300g/Lよりも生成した陽極酸化皮膜の膜厚のばらつきが小さくなっており好ましいことが分かった。 It was found that the sulfuric acid concentration of the electrolytic solution was preferably 200 g / L because the variation in the film thickness of the formed anodic oxide film was smaller than that of 300 g / L.

(試験3)
印加する電圧を18Vに固定したときの電流値の経時変化を図2に示す。図2より明らかなように電流値は経時的に変化するが、電流の積分値と、生成した陽極酸化皮膜の厚みとの間にほぼ相関があることが確認できた(図3参照)。従って、電流密度の積分値を算出することで陽極酸化皮膜の厚みが測定できることを確認した。
(Test 3)
FIG. 2 shows the change with time of the current value when the applied voltage is fixed at 18V. As is clear from FIG. 2, the current value changes with time, but it was confirmed that there is almost a correlation between the integrated value of the current and the thickness of the generated anodic oxide film (see FIG. 3). Therefore, it was confirmed that the thickness of the anodic oxide film can be measured by calculating the integrated value of the current density.

10…浸漬槽 20…電源装置 21…陽極配線 22…陰極配線 25、26…陰極 30…制御装置 30a…電源装置制御部 30b…温度調節手段制御部 40…温度調節手段 W…粗材(被処理対象) 10 ... Immersion tank 20 ... Power supply device 21 ... Anode wiring 22 ... Cathode wiring 25, 26 ... Cathode 30 ... Control device 30a ... Power supply device control unit 30b ... Temperature control means control unit 40 ... Temperature control means W ... Rough material (processed) subject)

Claims (2)

アルミニウム又はアルミニウム合金からなり被処理対象である粗材を陽極とし、陰極とともに硫酸濃度が150g/L~300g/Lの電解液に接触させ、
電流密度が0.8A/dm~7.5A/dm、印加電圧が13V以上18V以下(ただし、15V以下を除く)の定電圧条件で前記陽極と前記陰極との間に電流を流して、セルサイズが40nm以下の陽極酸化皮膜を生成し、
前記陽極と前記陰極との間に流れた電流の積分値を算出し、算出した前記積分値に基づき算出される陽極酸化皮膜の生成厚みが所定値になったときに処理を終了することにより、所定厚みの前記陽極酸化皮膜を生成し、
165℃で1時間の熱処理を行ったときに亀裂が発生しないアルミニウム部品の製造方法。
A crude material made of aluminum or an aluminum alloy and to be treated is used as an anode, and is brought into contact with an electrolytic solution having a sulfuric acid concentration of 150 g / L to 300 g / L together with a cathode.
A current is passed between the anode and the cathode under constant voltage conditions where the current density is 0.8 A / dm 2 to 7.5 A / dm 2 and the applied voltage is 13 V or more and 18 V or less (excluding 15 V or less) . , Produces an anodic oxide film with a cell size of 40 nm or less,
By calculating the integrated value of the current flowing between the anode and the cathode and ending the process when the formed thickness of the anodic oxide film calculated based on the calculated integrated value reaches a predetermined value. Generates the anodic oxide film of a predetermined thickness and
A method for manufacturing an aluminum part in which cracks do not occur when heat-treated at 165 ° C. for 1 hour.
前記硫酸濃度が150g/L~300g/Lの電解液の場合に、前記電流密度が0.8A/dm~7.5A/dmとなるように、前記電解液の温度を10℃以上30℃以下の範囲内で一定値とする、請求項1に記載のアルミニウム部品の製造方法。 When the sulfuric acid concentration is 150 g / L to 300 g / L, the temperature of the electrolytic solution is 10 ° C. or higher and 30 so that the current density is 0.8 A / dm 2 to 7.5 A / dm 2 . The method for manufacturing an aluminum component according to claim 1, wherein the value is constant within the range of ° C. or lower.
JP2018038773A 2018-03-05 2018-03-05 Manufacturing method of aluminum parts Active JP7069843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018038773A JP7069843B2 (en) 2018-03-05 2018-03-05 Manufacturing method of aluminum parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018038773A JP7069843B2 (en) 2018-03-05 2018-03-05 Manufacturing method of aluminum parts

Publications (2)

Publication Number Publication Date
JP2019151899A JP2019151899A (en) 2019-09-12
JP7069843B2 true JP7069843B2 (en) 2022-05-18

Family

ID=67948389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018038773A Active JP7069843B2 (en) 2018-03-05 2018-03-05 Manufacturing method of aluminum parts

Country Status (1)

Country Link
JP (1) JP7069843B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102382082B1 (en) * 2021-11-12 2022-04-04 (주)코미코 Method for manufacturing Anodized Coating Layer on Aluminium Member and Aluminium Member for Semiconductor Manufaturing Device by the Same
KR102625655B1 (en) * 2022-11-02 2024-01-16 재단법인대구경북과학기술원 Anodizing apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145383A (en) 2015-02-06 2016-08-12 栗田工業株式会社 Surface treatment method for aluminum or aluminum alloy, and surface treatment device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141400A (en) * 1982-02-15 1983-08-22 Nippon Telegr & Teleph Corp <Ntt> Manufacture of alumite coated al alloy substrate
JPH07109040B2 (en) * 1986-12-17 1995-11-22 三菱アルミニウム株式会社 Aluminum alloy wheel rim and method of manufacturing the same
JPH04120298A (en) * 1990-09-07 1992-04-21 Showa Alum Corp Method for controlling thickness of anodically oxidized film in anodic-oxidation treatment
JPH1191034A (en) * 1997-09-22 1999-04-06 Mitsubishi Alum Co Ltd Surface-treated aluminum laminate with excellent barrier properties

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145383A (en) 2015-02-06 2016-08-12 栗田工業株式会社 Surface treatment method for aluminum or aluminum alloy, and surface treatment device

Also Published As

Publication number Publication date
JP2019151899A (en) 2019-09-12

Similar Documents

Publication Publication Date Title
JP7069843B2 (en) Manufacturing method of aluminum parts
JP5529839B2 (en) Stainless steel member, method for producing the same, separator for use in polymer electrolyte fuel cell, and method for producing the same
TWI424096B (en) Method for forming anodic oxide film
EP2891566A1 (en) Method for manufacturing stabilizer, and heating device
JP2018090897A (en) Anodic oxide film and method for producing the same
JP6228891B2 (en) Titanium alloy used for separator material for fuel cell and method for producing separator material
CN112154229B (en) Anodic oxidation apparatus, anodic oxidation method, and method for manufacturing cathode of anodic oxidation apparatus
JP6591445B2 (en) Devices intended for anodizing and anodizing
JP4365415B2 (en) How to produce high adhesion thick protective coating of valve metal parts by micro arc oxidation
Liang et al. Localized surface modification on 1018 low-carbon steel by electrolytic plasma process and its impact on corrosion behavior
JP5863836B2 (en) Method and apparatus for producing glass from a glass melt while reducing bubble formation
JP4807845B2 (en) Solid electrolytic capacitor manufacturing equipment
JP2005225738A (en) Method and apparatus for electrically heating glass
CN104947172B (en) Plating tool and the method using the plating tool
RU2483146C1 (en) Method of micro arc oxidising of titanium alloy bars for antifriction weld deposition
Shtefan et al. Regularities of the deposition of cobalt-tungsten alloys by pulsed currents
JP6086866B2 (en) How to remove the coating film on the workpiece
JP6870389B2 (en) How to remove the oxide film on the surface of metal material
El-Egamy Electrochemical behavior of antimony and antimony oxide films in acid solutions
Özer et al. Coupled Inductive Annealing‐Electrochemical Setup for Controlled Preparation and Characterization of Alloy Crystal Surface Electrodes
RU2322722C1 (en) Method for producing oxide layer on anodes of oxide-semiconductor and electrolytic capacitors
JP6959521B2 (en) Method for manufacturing solid polymer fuel cell separator and polymer electrolyte fuel cell separator
Shinonaga et al. Improvement in Corrosion Resistance of Al-Cu Alloy by Large-area Electron Beam Irradiation
RU2506578C2 (en) Device for melt conductivity measurement
JP2010209457A (en) Method of manufacturing surface treated member for semiconductor liquid crystal manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220418

R150 Certificate of patent or registration of utility model

Ref document number: 7069843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150