JP6349157B2 - Composition for gas combustion catalyst, method for producing support including catalyst layer, and gas combustion catalyst - Google Patents

Composition for gas combustion catalyst, method for producing support including catalyst layer, and gas combustion catalyst Download PDF

Info

Publication number
JP6349157B2
JP6349157B2 JP2014116494A JP2014116494A JP6349157B2 JP 6349157 B2 JP6349157 B2 JP 6349157B2 JP 2014116494 A JP2014116494 A JP 2014116494A JP 2014116494 A JP2014116494 A JP 2014116494A JP 6349157 B2 JP6349157 B2 JP 6349157B2
Authority
JP
Japan
Prior art keywords
catalyst
gas combustion
composition
metal
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014116494A
Other languages
Japanese (ja)
Other versions
JP2015142896A (en
Inventor
博信 小野
博信 小野
朋未 牧野
朋未 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2014116494A priority Critical patent/JP6349157B2/en
Publication of JP2015142896A publication Critical patent/JP2015142896A/en
Application granted granted Critical
Publication of JP6349157B2 publication Critical patent/JP6349157B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、ガス燃焼触媒用組成物、触媒層を含む支持体の製造方法、及びガス燃焼触媒に関する。   The present invention relates to a composition for a gas combustion catalyst, a method for producing a support including a catalyst layer, and a gas combustion catalyst.

水素、炭化水素、一酸化炭素等のガスの燃焼に対する触媒が広く知られている。例えば、特許文献1には、水素製造プラントなどで排ガス中の水素を燃焼処理するための水素燃焼触媒が開示されている。この水素燃焼触媒は、ウォッシュコート層を備える担体に触媒金属が担持されている。ウォッシュコート層は、複数の結晶構造を有するジルコニアと酸化タングステンとからなっている。これにより、長期間使用しても触媒の活性が低下しにくくなっている。   Catalysts for combustion of gases such as hydrogen, hydrocarbons and carbon monoxide are widely known. For example, Patent Literature 1 discloses a hydrogen combustion catalyst for burning hydrogen in exhaust gas at a hydrogen production plant or the like. In this hydrogen combustion catalyst, a catalyst metal is supported on a carrier having a washcoat layer. The washcoat layer is composed of zirconia and tungsten oxide having a plurality of crystal structures. Thereby, even if it uses for a long period of time, it becomes difficult for the activity of a catalyst to fall.

特許文献2には、無機酸化物からなる担体に触媒金属が担持された水素燃焼触媒が開示されている。担体の表面の水酸基が所定の官能基で修飾されている。これにより、低温での反応が要求される場合でも、生成水が触媒に吸着することによる活性低下が防止されている。   Patent Document 2 discloses a hydrogen combustion catalyst in which a catalyst metal is supported on a support made of an inorganic oxide. The hydroxyl group on the surface of the carrier is modified with a predetermined functional group. Thereby, even when the reaction at a low temperature is required, a decrease in activity due to adsorption of the produced water to the catalyst is prevented.

特許文献3には、触媒を用いた可燃性ガス燃料の燃焼に伴う熱によって発生した局部的な温度差を、熱電変換材料を利用して電気エネルギーに変換する熱電発電デバイスが記載されている。貴金属が分散した、アルミナ又は酸化スズ等の酸化物の触媒用粉末をビークルと混合してペースト状の機能性材料が調製されている。このペースト状の機能性材料がディスペンサを用いて所定の位置に塗布されて微細パターンが形成されている。特許文献4には、このような微細パターンの形成方法が開示されている。   Patent Document 3 describes a thermoelectric power generation device that converts a local temperature difference generated by heat accompanying combustion of combustible gas fuel using a catalyst into electrical energy using a thermoelectric conversion material. A paste-like functional material is prepared by mixing a catalyst powder of oxide such as alumina or tin oxide in which a noble metal is dispersed with a vehicle. This pasty functional material is applied to a predetermined position using a dispenser to form a fine pattern. Patent Document 4 discloses a method for forming such a fine pattern.

特開2013−27811号公報JP 2013-27811 A 特開2011−139991号公報JP2011-139991A 特開2012−105512号公報JP 2012-105512 A 特開2006−47276号公報JP 2006-47276 A

支持体にガス燃焼用触媒の触媒層を形成するために、流動性を有するガス燃焼触媒用組成物を調製することが考えられる。この場合、ガス燃焼触媒用組成物は、触媒層の支持体への密着性を向上させるような成分を含んでいることが望ましい。しかし、特許文献1〜4では、触媒層の支持体への密着性を向上させるために、ガス燃焼触媒用組成物に含まれるべき成分について具体的な検討はなされていない。   In order to form the catalyst layer of the gas combustion catalyst on the support, it is conceivable to prepare a gas combustion catalyst composition having fluidity. In this case, the gas combustion catalyst composition desirably contains a component that improves the adhesion of the catalyst layer to the support. However, Patent Documents 1 to 4 do not specifically examine the components to be included in the gas combustion catalyst composition in order to improve the adhesion of the catalyst layer to the support.

そこで、本発明は、支持体への密着性が高い触媒層を支持体に形成するのに適したガス燃焼触媒用組成物を提供することを目的とする。   Then, an object of this invention is to provide the composition for gas combustion catalysts suitable for forming the catalyst layer with high adhesiveness to a support body on a support body.

また、本発明は、このようなガス燃焼触媒用組成物を用いた、触媒層を含む支持体の製造方法を提供することを目的とする。   Moreover, this invention aims at providing the manufacturing method of the support body containing a catalyst layer using such a composition for gas combustion catalysts.

また、本発明は、このようなガス燃焼触媒用組成物に含まれるべき触媒として望ましいガス燃焼触媒を提供することを目的とする。   Another object of the present invention is to provide a gas combustion catalyst that is desirable as a catalyst to be included in such a composition for gas combustion catalyst.

本発明は、
周期表の第7族〜第11族に属する元素からなる金属及び/又は前記金属を含む合金と、前記金属又は前記合金を担持している金属酸化物である担体とを含み、BET比表面積が30m2/g以上である触媒と、
ベーマイト粒子と、
極性溶媒と、を含有する、
ガス燃焼触媒用組成物を提供する。
The present invention
A metal comprising an element belonging to Group 7 to Group 11 of the periodic table and / or an alloy containing the metal, and a support which is a metal oxide supporting the metal or the alloy, and has a BET specific surface area. A catalyst that is 30 m 2 / g or more;
Boehmite particles,
A polar solvent,
A composition for a gas combustion catalyst is provided.

本発明は、
上記のガス燃焼触媒用組成物を支持体に塗布する工程と、
前記支持体に塗布された前記ガス燃焼触媒用組成物から前記極性溶媒を除去して触媒層を形成する工程と、を備える、
触媒層を含む支持体の製造方法を提供する。
The present invention
Applying the composition for gas combustion catalyst to a support;
Removing the polar solvent from the composition for gas combustion catalyst applied to the support to form a catalyst layer, and
A method for producing a support including a catalyst layer is provided.

本発明は、
周期表の第7族〜第11族に属する元素からなる金属及び/又は前記金属を含む合金と、
前記金属又は前記合金を担持している金属酸化物である担体と、を含み、
BET比表面積が30m2/g以上である、
ガス燃焼触媒を提供する。
The present invention
A metal comprising an element belonging to Group 7 to Group 11 of the periodic table and / or an alloy containing the metal;
A support that is a metal oxide carrying the metal or the alloy,
BET specific surface area is 30 m 2 / g or more,
A gas combustion catalyst is provided.

本発明によれば、触媒層の支持体への密着性を向上させることができる。   According to the present invention, the adhesion of the catalyst layer to the support can be improved.

触媒の担体の原料を乾燥させた乾燥物の電界放射形走査電子顕微鏡写真Field-emission scanning electron micrograph of the dried product obtained by drying the catalyst carrier material 触媒の担体の原料を乾燥させた乾燥物のX線回折パターンを示す図The figure which shows the X-ray-diffraction pattern of the dried material which dried the raw material of the support | carrier of a catalyst 実施例に係る触媒のX線回折パターンを示す図The figure which shows the X-ray-diffraction pattern of the catalyst which concerns on an Example. 実施例に係るベーマイト粒子のX線回折パターンを示す図The figure which shows the X-ray-diffraction pattern of the boehmite particle which concerns on an Example. 実施例に係る触媒のX線回折パターンを示す図The figure which shows the X-ray-diffraction pattern of the catalyst which concerns on an Example. 実施例に係る触媒のX線回折パターンを示す図The figure which shows the X-ray-diffraction pattern of the catalyst which concerns on an Example. 実施例に係る触媒のX線回折パターンを示す図The figure which shows the X-ray-diffraction pattern of the catalyst which concerns on an Example. 実施例に係るベーマイト粒子のX線回折パターンを示す図The figure which shows the X-ray-diffraction pattern of the boehmite particle which concerns on an Example. 比較例に係る触媒のX線回折パターンを示す図The figure which shows the X-ray-diffraction pattern of the catalyst which concerns on a comparative example

以下、本発明の実施形態について説明する。なお、以下の説明は本発明の一例に関するものであり、本発明はこれによって限定されるものではない。   Hereinafter, embodiments of the present invention will be described. The following description relates to an example of the present invention, and the present invention is not limited thereto.

本発明のガス燃焼触媒用組成物は、触媒と、ベーマイト粒子と、極性溶媒とを含有している。触媒は、所定のガスの燃焼に対し触媒作用を示す。触媒は、例えば、水素、一酸化炭素、炭化水素、アルコール類、アルデヒド類、ケトン類、カルボン酸類、又はアミン類の燃焼に対し触媒作用を示す。触媒は、金属及び/又は合金と、担体とを含んでいる。触媒に含まれる金属は、周期表の第7族〜第11族に属する元素からなる金属である。また、触媒に含まれる合金は、周期表の第7族〜第11族に属する元素からなる金属を含む合金である。担体は、その金属又は合金を担持している金属酸化物である。また、触媒のBET比表面積は30m2/g以上である。ガス燃焼触媒用組成物において、ベーマイト粒子が、所定のBET比表面積を有する触媒と共存していることによって、ガス燃焼触媒用組成物を支持体に塗布して形成した触媒層の支持体への密着性が向上する。すなわち、ベーマイト粒子が、ガス燃焼触媒用組成物においてバインダー成分として望ましい特性を発揮する。 The composition for gas combustion catalyst of the present invention contains a catalyst, boehmite particles, and a polar solvent. The catalyst exhibits a catalytic action for combustion of a predetermined gas. The catalyst is catalytic for the combustion of, for example, hydrogen, carbon monoxide, hydrocarbons, alcohols, aldehydes, ketones, carboxylic acids, or amines. The catalyst includes a metal and / or alloy and a support. The metal contained in the catalyst is a metal composed of elements belonging to Group 7 to Group 11 of the periodic table. Moreover, the alloy contained in the catalyst is an alloy containing a metal composed of an element belonging to Group 7 to Group 11 of the periodic table. The support is a metal oxide carrying the metal or alloy. Further, the BET specific surface area of the catalyst is 30 m 2 / g or more. In the gas combustion catalyst composition, the boehmite particles coexist with a catalyst having a predetermined BET specific surface area, whereby the catalyst layer formed by applying the gas combustion catalyst composition to the support is applied to the support. Adhesion is improved. That is, the boehmite particles exhibit desirable characteristics as a binder component in the gas combustion catalyst composition.

触媒のBET比表面積が大きいと、触媒層の支持体への密着性が向上する。また、触媒の活性も向上する。この観点から、触媒のBET比表面積は、望ましくは50m2/g以上であり、より望ましくは70m2/g以上であり、さらに望ましくは90m2/g以上であり、とりわけ望ましくは100m2/g以上である。 When the BET specific surface area of the catalyst is large, the adhesion of the catalyst layer to the support is improved. In addition, the activity of the catalyst is improved. From this viewpoint, the BET specific surface area of the catalyst is desirably 50 m 2 / g or more, more desirably 70 m 2 / g or more, further desirably 90 m 2 / g or more, and particularly desirably 100 m 2 / g. That's it.

周期表の第7族〜第11族に属する元素は、例えば、Ru、Rh、Ir、Pd、Pt、Ag、及びAuからなる群から選ばれる少なくとも1つの元素である。Ruは、例えば、一酸化炭素の燃焼に対し触媒作用を示す。Rhは、例えば、水素の燃焼に対し触媒作用を示す。Irは、例えば、一酸化炭素の燃焼に対し触媒作用を示す。Pdは、例えば、メタン等の炭化水素の燃焼に対し触媒作用を示す。Ptは、例えば、水素の燃焼に対し触媒作用を示す。Agは、例えば、一酸化炭素の燃焼に対し触媒作用を示す。Auは、例えば、一酸化炭素の燃焼に対し触媒作用を示す。触媒に含まれる合金としては、例えば、Pt−Ru合金、Pt−Rh合金、Pt−Pd合金、Pt−Ir合金、Pt−Au合金、Pt−Sn合金、Pt−Re合金、Pd−Au合金、Rh−Au合金、及びAu−Cu合金を挙げることができる。   The element belonging to Group 7 to Group 11 of the periodic table is, for example, at least one element selected from the group consisting of Ru, Rh, Ir, Pd, Pt, Ag, and Au. Ru, for example, exhibits a catalytic action on the combustion of carbon monoxide. Rh exhibits, for example, a catalytic action for hydrogen combustion. Ir exhibits, for example, a catalytic action for the combustion of carbon monoxide. Pd exhibits a catalytic action for combustion of hydrocarbons such as methane. Pt exhibits, for example, catalytic action for hydrogen combustion. Ag shows a catalytic action with respect to combustion of carbon monoxide, for example. Au, for example, exhibits a catalytic action on the combustion of carbon monoxide. Examples of alloys included in the catalyst include Pt—Ru alloy, Pt—Rh alloy, Pt—Pd alloy, Pt—Ir alloy, Pt—Au alloy, Pt—Sn alloy, Pt—Re alloy, Pd—Au alloy, Rh-Au alloy and Au-Cu alloy can be mentioned.

金属又は合金の結晶子径が所定の範囲であれば、触媒のBET比表面積が高まる。また、金属又は合金の粒子が凝集し過ぎずに担体に担持されているので、触媒活性を高めることができる。この観点から、触媒に含まれる金属又は合金の結晶子径は、例えば、30nm以下であり、望ましくは20nm以下であり、より望ましくは15nm以下であり、さらに望ましくは10nm以下である。触媒に含まれる金属又は合金の結晶子径の下限値は特に制限されないが、例えば、0.5nmである。結晶子径は、シェラー法などの公知の分析方法を用いて測定できる。   When the crystallite diameter of the metal or alloy is within a predetermined range, the BET specific surface area of the catalyst is increased. In addition, since the metal or alloy particles are supported on the support without being excessively agglomerated, the catalytic activity can be enhanced. From this viewpoint, the crystallite diameter of the metal or alloy contained in the catalyst is, for example, 30 nm or less, desirably 20 nm or less, more desirably 15 nm or less, and further desirably 10 nm or less. The lower limit of the crystallite diameter of the metal or alloy contained in the catalyst is not particularly limited, but is 0.5 nm, for example. The crystallite diameter can be measured using a known analysis method such as the Scherrer method.

金属又は合金の担体への担持量は、特に制限されないが、触媒の活性を高めるために金属又は合金の担持量は多い方がよい。他方、金属又は合金の分散性を高め、活性に寄与しない金属又は合金の量の増加を防止する観点から、金属又は合金の担体への担持量は所定の値以下であることが望ましい。このため、触媒における金属又は合金の担持率は、例えば、0.5質量%以上60質量%以下であり、望ましくは1質量%以上50質量%以下であり、より望ましくは、2質量%以上40質量%以下であり、さらに望ましくは3質量%以上30質量%以下であり、とりわけ望ましくは4質量%以上20質量%以下である。ここで、触媒における金属又は合金の担持率は、触媒の質量と担持されている金属又は合金の質量との割合と定義される。   The amount of the metal or alloy supported on the carrier is not particularly limited, but it is better that the amount of the metal or alloy supported is larger in order to increase the activity of the catalyst. On the other hand, from the viewpoint of increasing the dispersibility of the metal or alloy and preventing an increase in the amount of the metal or alloy that does not contribute to the activity, it is desirable that the amount of the metal or alloy supported on the support is not more than a predetermined value. For this reason, the loading ratio of the metal or alloy in the catalyst is, for example, 0.5% by mass or more and 60% by mass or less, desirably 1% by mass or more and 50% by mass or less, and more desirably 2% by mass or more and 40% by mass or less. The content is 3% by mass or less, more preferably 3% by mass or more and 30% by mass or less, and particularly preferably 4% by mass or more and 20% by mass or less. Here, the loading rate of the metal or alloy in the catalyst is defined as the ratio of the mass of the catalyst to the mass of the supported metal or alloy.

担体は、例えば、Y、Ce、Ti、Zr、Nb、W、Fe、Zn、Al、Si、及びSnからなる群から選ばれる少なくとも1つの元素の酸化物の粒子である。すなわち、担体は、例えば、イットリア、セリア、チタニア、ジルコニア、酸化ニオブ、酸化タングステン、酸化鉄、酸化亜鉛、アルミナ、シリカ、及び酸化スズからなる群から選ばれる少なくとも1つの酸化物の粒子である。これらの中でも、γ型の結晶構造を有するアルミナ(γ−アルミナ)の粒子を担体として用いることが望ましい。なぜなら、γ−アルミナは、触媒のBET比表面積を高め、触媒層の支持体への密着性を高める効果が大きいからである。触媒は、1種類の酸化物を担体として含んでいてもよいし、2つ以上の酸化物を担体として含んでいてもよい。   The carrier is, for example, an oxide particle of at least one element selected from the group consisting of Y, Ce, Ti, Zr, Nb, W, Fe, Zn, Al, Si, and Sn. That is, the carrier is, for example, particles of at least one oxide selected from the group consisting of yttria, ceria, titania, zirconia, niobium oxide, tungsten oxide, iron oxide, zinc oxide, alumina, silica, and tin oxide. Among these, it is desirable to use alumina (γ-alumina) particles having a γ-type crystal structure as a carrier. This is because γ-alumina has a large effect of increasing the BET specific surface area of the catalyst and improving the adhesion of the catalyst layer to the support. The catalyst may contain one kind of oxide as a support, or may contain two or more oxides as a support.

触媒層の支持体への密着性を向上させる観点から、担体はロッド形状を有することが望ましい。なぜなら、担体がロッド形状であると、触媒同士が接触して絡まりやすくなることに加え、支持体との接触比率も高まるからである。担体の形状は、例えば、5〜30nmの短軸長さ、20〜1000nmの長軸長さ、及び2〜200のアスペクト比を有するロッド形状である。例えば、担体がγ−アルミナである場合、このようなロッド形状を有する担体の原料として、ベーマイトナノロッドの分散液を用いることができる。具体的に、5〜30nmの短軸長さ、20〜1000nmの長軸長さ、及び2〜200のアスペクト比を有するロッド形状であるベーマイトナノロッドの分散液を、担体の原料として用いることができる。このようなベーマイトナノロッドの分散液は、例えば、以下のような方法で調製できる。   From the viewpoint of improving the adhesion of the catalyst layer to the support, the carrier preferably has a rod shape. This is because, when the carrier is in the rod shape, the catalyst is liable to come into contact with each other, and the contact ratio with the support increases. The shape of the carrier is, for example, a rod shape having a short axis length of 5 to 30 nm, a long axis length of 20 to 1000 nm, and an aspect ratio of 2 to 200. For example, when the carrier is γ-alumina, a boehmite nanorod dispersion can be used as a raw material for the carrier having such a rod shape. Specifically, a dispersion of boehmite nanorods having a rod shape having a minor axis length of 5 to 30 nm, a major axis length of 20 to 1000 nm, and an aspect ratio of 2 to 200 can be used as a raw material for the carrier. . Such a dispersion of boehmite nanorods can be prepared, for example, by the following method.

まず、アルミニウムのカルボン酸塩又はアルミニウムのβ−ジケトン錯体と、水と含み、かつ、アルカリ金属元素及びアルカリ土類金属元素を実質的に含まない溶液を調製する。場合によっては、この溶液に酢酸などのカルボン酸を添加してもよい。次に、この溶液を100℃〜300℃の温度で水熱処理する。これにより、担体の原料としてのベーマイトナノロッドの分散液を得ることができる。   First, a solution containing aluminum carboxylate or aluminum β-diketone complex and water and substantially free of alkali metal elements and alkaline earth metal elements is prepared. In some cases, a carboxylic acid such as acetic acid may be added to this solution. Next, this solution is hydrothermally treated at a temperature of 100 ° C to 300 ° C. Thereby, a dispersion of boehmite nanorods as a raw material for the carrier can be obtained.

上記の通り、ガス燃焼触媒用組成物において、触媒とベーマイト粒子とが共存することにより、ガス燃焼触媒用組成物を支持体に塗布して形成した触媒層の密着性を高めることができる。ベーマイト粒子の結晶子径は特に限定されないが、例えば、20nm以下である。ガス燃焼触媒用組成物における触媒の質量Wcに対するベーマイト粒子の質量Wbの比Wb/Wcは特に制限されない。ベーマイト粒子はガス燃焼触媒用組成物を用いて支持体に触媒層を形成したときに触媒層の支持体に対する密着性を向上させるので、ベーマイト粒子は、ガス燃焼触媒用組成物において所定の割合以上で含まれていることが望ましい。この観点から、ガス燃焼触媒用組成物における、Wb/Wcは、例えば、0.01以上であり、望ましくは0.02以上であり、より望ましくは0.05以上である。また、触媒の活性を確保するためには、ベーマイト粒子がガス燃焼触媒用組成物において所定の割合以下で含まれていることが望ましい。この観点から、Wb/Wcは、例えば、1以下であり、望ましくは0.5以下であり、より望ましくは0.3以下である。   As described above, in the gas combustion catalyst composition, the coexistence of the catalyst and boehmite particles can enhance the adhesion of the catalyst layer formed by applying the gas combustion catalyst composition to the support. The crystallite size of the boehmite particles is not particularly limited, but is, for example, 20 nm or less. The ratio Wb / Wc of the mass Wb of the boehmite particles to the mass Wc of the catalyst in the gas combustion catalyst composition is not particularly limited. Since boehmite particles improve the adhesion of the catalyst layer to the support when the catalyst layer is formed on the support using the composition for gas combustion catalyst, the boehmite particles are more than a predetermined ratio in the composition for gas combustion catalyst. It is desirable to be included. From this viewpoint, Wb / Wc in the composition for gas combustion catalyst is, for example, 0.01 or more, preferably 0.02 or more, and more preferably 0.05 or more. In order to ensure the activity of the catalyst, it is desirable that boehmite particles are contained in the gas combustion catalyst composition in a predetermined ratio or less. From this viewpoint, Wb / Wc is, for example, 1 or less, desirably 0.5 or less, and more desirably 0.3 or less.

極性溶媒は、ガス燃焼触媒用組成物において、触媒と、ベーマイト粒子とを分散させることができる限り特に限定されない。極性溶媒は、例えば、水又はアルコール類である。極性溶媒としては、水、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブチルアルコール、tert−ブチルアルコール、n−ペンチルアルコール、n−ヘキシルアルオール、n−ヘプチルアルコール、n−オクチルアルコール、n−ノニルアルコール、1−デカノール、1−ドデカノール、2−エチルヘキサノール、フェノール、ベンジルアルコール、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジメチルセロソルブ、エチルセロソルブ、プロピルセロソルブ、ブチルセロソルブ、フェニルセロソルブ、グリセリン、及びテルピネオールを例示できる。   The polar solvent is not particularly limited as long as the catalyst and boehmite particles can be dispersed in the gas combustion catalyst composition. The polar solvent is, for example, water or alcohols. Examples of polar solvents include water, methanol, ethanol, n-propanol, isopropanol, n-butyl alcohol, tert-butyl alcohol, n-pentyl alcohol, n-hexyl alcohol, n-heptyl alcohol, n-octyl alcohol, n- Nonyl alcohol, 1-decanol, 1-dodecanol, 2-ethylhexanol, phenol, benzyl alcohol, ethylene glycol, propylene glycol, diethylene glycol, dimethyl cellosolve, ethyl cellosolve, propyl cellosolve, butyl cellosolve, phenyl cellosolve, glycerin, and terpineol can be exemplified .

次に、ガス燃焼触媒用組成物の製造方法の一例について説明する。まず、担体若しくは担体の前駆物質の粉体、又は、これらが分散された分散液を準備し、これを、金属若しくは合金の分散液又は金属塩の溶液と混合する。この混合液から溶媒を除去して固形物を得る。金属又は合金の分散液としては、例えば、ポリビニルピロリドン(PVP)、ポリエチレンイミン(PEI)、若しくはポリアクリル酸(PAA)等の高分子又はテトラメチルアンモニウム(TMA)等の分散剤によって金属又は合金の粒子が安定的に分散しているコロイド液を用いることができる。また、金属塩の溶液としては、金属の有機塩又は金属の無機塩の溶液を用いることができる。触媒において金属又は合金の結晶子径を小さくして触媒の活性を高めるためには、金属又は合金のコロイド液を用いることが望ましい。また、金属塩の溶液を用いる場合でも、触媒において金属又は合金の結晶子径を小さくして触媒の活性を高めるためには、塩素などのハロゲン元素を含まない金属塩を用いることが望ましく、特に金属塩が有機塩である溶液を用いることが望ましい。   Next, an example of the manufacturing method of the composition for gas combustion catalysts is demonstrated. First, a carrier or carrier precursor powder or a dispersion in which these are dispersed is prepared, and this is mixed with a metal or alloy dispersion or a metal salt solution. The solvent is removed from the mixture to obtain a solid. Examples of the dispersion of the metal or alloy include, for example, a polymer such as polyvinylpyrrolidone (PVP), polyethyleneimine (PEI), or polyacrylic acid (PAA), or a dispersant such as tetramethylammonium (TMA). A colloidal solution in which particles are stably dispersed can be used. As the metal salt solution, a metal organic salt solution or a metal inorganic salt solution can be used. In order to increase the activity of the catalyst by reducing the crystallite diameter of the metal or alloy in the catalyst, it is desirable to use a colloidal liquid of the metal or alloy. Even when a metal salt solution is used, it is desirable to use a metal salt containing no halogen element such as chlorine, in order to increase the activity of the catalyst by reducing the crystallite diameter of the metal or alloy in the catalyst. It is desirable to use a solution in which the metal salt is an organic salt.

次に、上記のようにして得られた固形物を焼成し、粉砕する。これにより、触媒の粉体が得られる。焼成温度及び焼成時間は特に限定されない。焼成温度は、例えば、200〜600℃であり、焼成時間は、例えば、0.1時間〜5時間である。   Next, the solid material obtained as described above is fired and pulverized. Thereby, catalyst powder is obtained. The firing temperature and firing time are not particularly limited. The firing temperature is, for example, 200 to 600 ° C., and the firing time is, for example, 0.1 hour to 5 hours.

次に、触媒の粉体を、ベーマイト粒子が極性溶媒に分散されたゾル液に添加する。すなわち、このようなゾル液がガス燃焼触媒用組成物のバインダー成分として供給される。触媒の粉体が添加されたゾル液を攪拌して触媒を極性溶媒に分散させる。これにより、本実施形態のガス燃焼触媒用組成物を得ることができる。触媒を極性溶媒に分散させるための攪拌時間は、特に制限されないが、例えば、1〜120分間である。なお、ベーマイト粒子が極性溶媒に分散されたゾル液の使用に代えて、触媒の粉体及びベーマイト粒子の粉体を極性溶媒に添加した後に攪拌により触媒の粉体及びベーマイト粒子の粉体を極性溶媒に分散させてガス燃焼触媒用組成物を得てもよい。   Next, the catalyst powder is added to a sol solution in which boehmite particles are dispersed in a polar solvent. That is, such a sol liquid is supplied as a binder component of the composition for gas combustion catalyst. The sol solution to which the catalyst powder is added is stirred to disperse the catalyst in a polar solvent. Thereby, the composition for gas combustion catalysts of this embodiment can be obtained. The stirring time for dispersing the catalyst in the polar solvent is not particularly limited, and is, for example, 1 to 120 minutes. Instead of using a sol solution in which boehmite particles are dispersed in a polar solvent, the catalyst powder and boehmite particle powder are polarized by adding the catalyst powder and boehmite particle powder to the polar solvent and then stirring. A composition for gas combustion catalyst may be obtained by dispersing in a solvent.

次に、触媒層を含む支持体の製造方法について説明する。触媒層を含む支持体は、上記のようにして得られたガス燃焼触媒用組成物を支持体に塗布する工程と、支持体に塗布されたガス燃焼触媒用組成物から極性溶媒を除去して触媒層を形成する工程とによって製造される。支持体は、特に制限されないが、例えば、熱酸化膜付Si基板等の半導体基板、金属製の支持体、セラミック製の支持体、ガラス基板、樹脂基板などを挙げることができる。支持体の形状は特に制限されないが、例えば、平板状、ハニカム状、円筒状、リング状、ペレット状である。   Next, the manufacturing method of the support body containing a catalyst layer is demonstrated. The support including the catalyst layer includes a step of applying the gas combustion catalyst composition obtained as described above to the support, and removing the polar solvent from the gas combustion catalyst composition applied to the support. And a step of forming a catalyst layer. The support is not particularly limited, and examples thereof include a semiconductor substrate such as a Si substrate with a thermal oxide film, a metal support, a ceramic support, a glass substrate, and a resin substrate. The shape of the support is not particularly limited, and examples thereof include a flat plate shape, a honeycomb shape, a cylindrical shape, a ring shape, and a pellet shape.

支持体に、ガス燃焼触媒用組成物を塗布する方法は特に限定されないが、例えば、スピンコーティング法、スプレー法、スクリーン印刷法、スタンプ印刷法、インクジェット法、又はディップ法を用いることができる。   A method for applying the composition for gas combustion catalyst to the support is not particularly limited, and for example, a spin coating method, a spray method, a screen printing method, a stamp printing method, an ink jet method, or a dip method can be used.

以下に、実施例を用いて本発明を詳細に説明する。なお、以下の実施例は本発明の一例であり、本発明は以下の実施例に限定されない。   Hereinafter, the present invention will be described in detail with reference to examples. The following examples are examples of the present invention, and the present invention is not limited to the following examples.

<実施例1>
塩基性の酢酸アルミニウム(シグマアルドリッチ社製)22.6g及び酢酸(和光純薬工業社製)1.2gを水560gに添加して溶液を調製した。この溶液をオートクレーブに入れて、200℃で24時間の水熱処理を行った。その後、オートクレーブを室温まで冷却し、反応溶液をオートクレーブから取り出した。この反応溶液の一部を乾燥させて乾燥物を得た。図1は、この乾燥物をFE−SEM(電界放射形走査電子顕微鏡)で観察した写真である。図2は、この乾燥物のXRD(X線回折)による測定結果を示す。図1及び図2に示す結果から、この乾燥物は、ベーマイトナノロッドの集合体であることが確認された。
<Example 1>
A solution was prepared by adding 22.6 g of basic aluminum acetate (Sigma Aldrich) and 1.2 g of acetic acid (Wako Pure Chemical Industries) to 560 g of water. This solution was put into an autoclave and hydrothermally treated at 200 ° C. for 24 hours. Thereafter, the autoclave was cooled to room temperature, and the reaction solution was taken out from the autoclave. A part of this reaction solution was dried to obtain a dried product. FIG. 1 is a photograph of this dried product observed with an FE-SEM (field emission scanning electron microscope). FIG. 2 shows the measurement results of this dried product by XRD (X-ray diffraction). From the results shown in FIGS. 1 and 2, it was confirmed that the dried product was an aggregate of boehmite nanorods.

上記の反応溶液の半量にヘキサクロロ白金(IV)酸水溶液(田中貴金属工業社製、Pt含有量:15.325重量%)2.58gを投入して混合した。その後、この混合液を、ロータリーエバポレーターによって減圧した100℃の温度の環境に置いて、この混合液から溶媒を除去して固形物を得た。次に、得られた固形物を550℃の温度の空気雰囲気で1時間焼成した後粉砕し、触媒Aを得た。この触媒AのPtの担持率は10質量%であった。図3は、触媒AのXRDによる測定結果を示す。図3に示す通り、Ptの回折ピーク及びγ−アルミナの回折ピークが認められた。2θ=39.8°付近のPt(111)面の回折ピークからPtの結晶子径を算出したところ、Ptの結晶子径は、22.4nmであった。また、触媒AのBET比表面積は、99m2/gであった。 Half of the above reaction solution was mixed with 2.58 g of an aqueous hexachloroplatinum (IV) acid solution (Tanaka Kikinzoku Kogyo Co., Ltd., Pt content: 15.325 wt%). Then, this liquid mixture was put in the environment of the temperature of 100 degreeC decompressed with the rotary evaporator, the solvent was removed from this liquid mixture, and solid substance was obtained. Next, the obtained solid was calcined in an air atmosphere at a temperature of 550 ° C. for 1 hour and then pulverized to obtain Catalyst A. The catalyst A supported by Pt was 10% by mass. FIG. 3 shows the measurement results of Catalyst A by XRD. As shown in FIG. 3, a diffraction peak of Pt and a diffraction peak of γ-alumina were observed. When the crystallite diameter of Pt was calculated from the diffraction peak of the Pt (111) plane near 2θ = 39.8 °, the crystallite diameter of Pt was 22.4 nm. Further, the BET specific surface area of the catalyst A was 99 m 2 / g.

触媒A0.50g、ベーマイト粒子のゾル液(日産化学工業社製、アルミナ含有量:20重量%、商品名:アルミナゾル520)0.22g、及び適量の水をガラス容器に入れて、自転公転式撹拌機(シンキー社製、商品名:あわとり練太郎)を用いて数分間撹拌脱泡し、実施例1に係るガス燃焼触媒用組成物を得た。図4は、アルミナゾル520を少量乾燥して得た固形物のXRD測定結果を示す。図4より、この固形物はベーマイト(AlO(OH))であることが確認された。アルミナゾル520は、23.5質量%のベーマイト粒子を含む分散液であることが確認された。実施例1に係るガス燃焼触媒用組成物におけるベーマイトの質量と触媒の質量との比(ベーマイトの質量/触媒の質量)は、0.10であった。図4の2θ=13.9°付近の回折ピークから算出されるベーマイト粒子の結晶子径は8.3nmであった。   0.50 g of catalyst A, 0.22 g of sol solution of boehmite particles (manufactured by Nissan Chemical Industries, Ltd., alumina content: 20% by weight, product name: alumina sol 520), and an appropriate amount of water are placed in a glass container, and rotation and revolution type stirring is performed. The composition for gas combustion catalyst according to Example 1 was obtained by stirring and degassing for several minutes using a machine (trade name: manufactured by Shinky Co., Ltd., trade name: Nertaro Awatori). FIG. 4 shows an XRD measurement result of a solid obtained by drying a small amount of alumina sol 520. From FIG. 4, it was confirmed that this solid was boehmite (AlO (OH)). The alumina sol 520 was confirmed to be a dispersion containing 23.5% by weight boehmite particles. The ratio of the boehmite mass to the catalyst mass (mass of boehmite / mass of catalyst) in the composition for gas combustion catalyst according to Example 1 was 0.10. The crystallite diameter of the boehmite particles calculated from the diffraction peak near 2θ = 13.9 ° in FIG. 4 was 8.3 nm.

<実施例2>
ヘキサクロロ白金(IV)酸水溶液の代わりに、PtPVPコロイド水溶液(田中貴金属工業社製、Pt含有量:4.0wt%)9.87gを用いた以外は実施例1と同様にして、触媒Aの代わりに触媒Bを作製し、実施例2に係るガス燃焼触媒用組成物を得た。触媒BにおけるPtの担持率は10質量%であった。触媒BのXRD測定結果を図5に示す。触媒BのBET比表面積及び触媒BにおけるPtの結晶子径の測定結果を表1に示す。実施例2に係るガス燃焼触媒用組成物において、ベーマイトの質量と触媒の質量との比(ベーマイトの質量/触媒の質量)は、0.10であった。
<Example 2>
Instead of the hexachloroplatinum (IV) acid aqueous solution, the catalyst A was replaced in the same manner as in Example 1 except that 9.87 g of a PtPVP colloid aqueous solution (Tanaka Kikinzoku Kogyo Co., Ltd., Pt content: 4.0 wt%) was used. Catalyst B was prepared in the same manner as above, and a gas combustion catalyst composition according to Example 2 was obtained. The supporting rate of Pt in the catalyst B was 10% by mass. The XRD measurement result of the catalyst B is shown in FIG. Table 1 shows the measurement results of the BET specific surface area of catalyst B and the crystallite diameter of Pt in catalyst B. In the composition for gas combustion catalyst according to Example 2, the ratio of boehmite mass to catalyst mass (boehmite mass / catalyst mass) was 0.10.

<実施例3>
ヘキサクロロ白金(IV)酸水溶液の代わりに、エタノールアミンPt溶液(田中貴金属工業社製、Pt含有量:8.850wt%)4.46gを用いた以外は実施例1と同様にして、触媒Aの代わりに触媒Cを作製し、実施例3に係るガス燃焼触媒用組成物を得た。触媒CにおけるPtの担持率は10質量%であった。触媒CのXRD測定結果を図6に示す。触媒CのBET比表面積及び触媒CにおけるPtの結晶子径の測定結果を表1に示す。ベーマイトの質量と触媒の質量との比(ベーマイトの質量/触媒の質量)は、0.10であった。
<Example 3>
In the same manner as in Example 1 except that 4.46 g of an ethanolamine Pt solution (Tanaka Kikinzoku Kogyo Co., Ltd., Pt content: 8.850 wt%) was used instead of the hexachloroplatinic (IV) acid aqueous solution, Instead, catalyst C was prepared, and the composition for gas combustion catalyst according to Example 3 was obtained. The supporting rate of Pt in the catalyst C was 10% by mass. The XRD measurement result of the catalyst C is shown in FIG. Table 1 shows the measurement results of the BET specific surface area of catalyst C and the crystallite diameter of Pt in catalyst C. The ratio of the boehmite mass to the catalyst mass (boehmite mass / catalyst mass) was 0.10.

<実施例4>
ヘキサクロロ白金(IV)酸水溶液の代わりに、PtPAAコロイド水溶液(田中貴金属工業社製、Pt含有量:2.0wt%)19.75gを用いた以外は実施例1と同様にして、触媒Aの代わりに触媒Dを作製し、実施例4に係るガス燃焼触媒用組成物を得た。触媒DにおけるPtの担持率は10質量%であった。触媒DのXRD測定結果を図7に示す。触媒DのBET比表面積及び触媒DにおけるPtの結晶子径の測定結果を表1に示す。ベーマイトの質量と触媒の質量との比(ベーマイトの質量/触媒の質量)は、0.10であった。
<Example 4>
Instead of the aqueous solution of hexachloroplatinic (IV) acid, in the same manner as in Example 1 except that 19.75 g of an aqueous PtPAA colloidal solution (Tanaka Kikinzoku Kogyo Co., Ltd., Pt content: 2.0 wt%) was used, A catalyst D was prepared to obtain a gas combustion catalyst composition according to Example 4. The loading ratio of Pt in catalyst D was 10% by mass. The XRD measurement result of catalyst D is shown in FIG. Table 1 shows the measurement results of the BET specific surface area of catalyst D and the crystallite diameter of Pt in catalyst D. The ratio of the boehmite mass to the catalyst mass (boehmite mass / catalyst mass) was 0.10.

<実施例5>
実施例2で得られた触媒B0.50g、ベーマイト粒子のゾル液(日産化学工業社製、アルミナ含有量:20重量%、商品名:アルミナゾル520)0.15g、及びプロピレングリコール4.5gと、直径1mmのジルコニアビーズ15gとをガラス容器に入れて、ペイントシェーカーにより1時間分散処理した。その後、ろ過によりジルコニアビーズを分離し、実施例5に係るガス燃焼触媒用組成物を得た。実施例5に係るガス燃焼触媒用組成物において、ベーマイトの質量と触媒の質量との比(ベーマイトの質量/触媒の質量)は、0.07であった。
<Example 5>
0.55 g of the catalyst B obtained in Example 2, 0.15 g of a sol solution of boehmite particles (manufactured by Nissan Chemical Industries, Ltd., alumina content: 20 wt%, product name: alumina sol 520), and 4.5 g of propylene glycol; 15 g of zirconia beads having a diameter of 1 mm were placed in a glass container and dispersed for 1 hour using a paint shaker. Thereafter, the zirconia beads were separated by filtration, and the composition for gas combustion catalyst according to Example 5 was obtained. In the composition for gas combustion catalyst according to Example 5, the ratio of boehmite mass to catalyst mass (boehmite mass / catalyst mass) was 0.07.

<実施例6>
実施例2で得られた触媒B0.50g、ベーマイト粒子のゾル液(日産化学工業社製、アルミナ含有量:10重量%、商品名:アルミナゾル200)0.30g、及びエチレングリコール4.5gと、直径1mmのジルコニアビーズとをガラス容器に入れて、ペイントシェーカーにより1時間分散処理を行った。その後、ろ過によりジルコニアビーズを分離し、実施例6に係るガス燃焼触媒用組成物を得た。実施例6に係るガス燃焼触媒用組成物において、ベーマイトの質量と触媒の質量との比(ベーマイトの質量/触媒の質量)は、0.07であった。
<Example 6>
0.50 g of catalyst B obtained in Example 2, 0.30 g of a sol solution of boehmite particles (manufactured by Nissan Chemical Industries, Ltd., alumina content: 10% by weight, product name: alumina sol 200), and 4.5 g of ethylene glycol; A zirconia bead having a diameter of 1 mm was placed in a glass container and subjected to a dispersion treatment for 1 hour using a paint shaker. Thereafter, the zirconia beads were separated by filtration, and the composition for gas combustion catalyst according to Example 6 was obtained. In the composition for gas combustion catalyst according to Example 6, the ratio of boehmite mass to catalyst mass (boehmite mass / catalyst mass) was 0.07.

図8は、アルミナゾル200を少量乾燥して得た固形物のXRD測定結果を示す。図8に示す通り、この固形物はベーマイト(AlO(OH))であることが確認された。アルミナゾル200は、11.8質量%のベーマイト粒子を含む分散液であることが確認された。図8の2θ=38.5°付近の回折ピークから算出されるベーマイト粒子の結晶子径は3.6nmであった。   FIG. 8 shows an XRD measurement result of a solid obtained by drying a small amount of the alumina sol 200. As shown in FIG. 8, this solid was confirmed to be boehmite (AlO (OH)). The alumina sol 200 was confirmed to be a dispersion containing 11.8% by weight boehmite particles. The crystallite diameter of the boehmite particles calculated from the diffraction peak around 2θ = 38.5 ° in FIG. 8 was 3.6 nm.

<比較例1>
アルミナ(和光純薬工業社製)4.89g、ヘキサクロロ白金(IV)酸水溶液(田中貴金属工業社製、Pt含有量:15.325wt%)4.89g、及び水450gをビーカーに入れて撹拌混合した。その後、この混合液を、ロータリーエバポレーターによって減圧した100℃の温度の環境に置いて溶媒を除去し、固形物を得た。次に、得られた固形物を550℃の温度の空気雰囲気で1時間焼成した後粉砕し、触媒Eを得た。触媒EにおけるPt担持率は10質量%であった。触媒EのXRD測定結果を図9に示す。図9に示す通り、Ptの回折ピークとα型の結晶構造のアルミナ(α−アルミナ)の回折ピークが認められた。2θ=39.8°付近のPt(111)回折ピークからPtの結晶子径を算出したところ、Ptの結晶子径は、36.5nmであった。また、触媒EのBET比表面積は、0.8m2/gであった。
<Comparative Example 1>
4.89 g of alumina (manufactured by Wako Pure Chemical Industries, Ltd.), 4.89 g of hexachloroplatinum (IV) acid aqueous solution (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., Pt content: 15.325 wt%), and 450 g of water are mixed in a beaker. did. Thereafter, this mixed solution was placed in an environment at a temperature of 100 ° C. reduced in pressure by a rotary evaporator, and the solvent was removed to obtain a solid. Next, the obtained solid was calcined in an air atmosphere at a temperature of 550 ° C. for 1 hour and then pulverized to obtain Catalyst E. The Pt loading on catalyst E was 10% by mass. The XRD measurement result of the catalyst E is shown in FIG. As shown in FIG. 9, a diffraction peak of Pt and a diffraction peak of alumina having an α-type crystal structure (α-alumina) were observed. When the crystallite diameter of Pt was calculated from the Pt (111) diffraction peak around 2θ = 39.8 °, the crystallite diameter of Pt was 36.5 nm. Further, the BET specific surface area of the catalyst E was 0.8 m 2 / g.

触媒E0.50g、ベーマイト粒子のゾル液(日産化学工業社製、アルミナ含有量:20重量%、商品名:アルミナゾル520、)0.22g、及び適量の水をガラス容器に入れて、自転公転式撹拌機(シンキー社製、商品名:あわとり練太郎)を用いて数分間撹拌脱泡し、比較例1に係るガス燃焼触媒用組成物を得た。比較例1に係るガス燃焼触媒用組成物におけるベーマイト粒子の質量と触媒の質量との比(ベーマイトの質量/触媒の質量)は、0.10であった。   0.50 g of catalyst E, sol solution of boehmite particles (Nissan Chemical Industry Co., Ltd., alumina content: 20% by weight, trade name: alumina sol 520), 0.22 g, and an appropriate amount of water are placed in a glass container, and the rotation and revolution type Using a stirrer (manufactured by Shinky Co., Ltd., trade name: Nertaro Awatori), the mixture was stirred and degassed for several minutes to obtain a gas combustion catalyst composition according to Comparative Example 1. The ratio of the mass of boehmite particles to the mass of the catalyst in the gas combustion catalyst composition according to Comparative Example 1 (the mass of boehmite / the mass of the catalyst) was 0.10.

<比較例2>
触媒A0.25g、バインダー成分としての粒子径10〜20nmのシリカの水分散ゾル(日産化学工業社製、SiO2含有量:20wt%、商品名:スノーテックスO)0.11g、及び適量の水をガラス容器に入れて、自転公転式撹拌機(シンキー社製、商品名:あわとり練太郎)を用いて数分間撹拌脱泡し、比較例2に係るガス燃焼触媒用組成物を得た。
<Comparative example 2>
0.25 g of catalyst A, water-dispersed sol of silica having a particle size of 10 to 20 nm as a binder component (manufactured by Nissan Chemical Industries, SiO 2 content: 20 wt%, trade name: Snowtex O) 0.11 g, and an appropriate amount of water Was put into a glass container and stirred and degassed for several minutes using a rotation and revolution type stirrer (trade name: Aritori Nertaro, manufactured by Shinky Corporation), to obtain a composition for gas combustion catalyst according to Comparative Example 2.

<比較例3及び比較例4>
触媒Aの代わりに、触媒Bを用いた以外は比較例2と同様にして、比較例3に係るガス燃焼触媒用組成物を得た。また、触媒Aの代わりに、触媒Eを用いた以外は比較例2と同様にして、比較例4に係るガス燃焼触媒用組成物を得た。
<Comparative Example 3 and Comparative Example 4>
A gas combustion catalyst composition according to Comparative Example 3 was obtained in the same manner as in Comparative Example 2 except that Catalyst B was used instead of Catalyst A. Moreover, the composition for gas combustion catalysts which concerns on the comparative example 4 was obtained like the comparative example 2 except having used the catalyst E instead of the catalyst A.

<比較例5>
触媒A0.25g、バインダー成分としてのエチルセルロース(和光純薬工業株式会社製)0.11g、及び適量のテルピネオールをガラス容器に入れて、自転公転式撹拌機(株式会社シンキー製、あわとり練太郎)を用いて数分間撹拌脱泡し、比較例5に係るガス燃焼触媒用組成物を得た。
<Comparative Example 5>
0.25 g of catalyst A, 0.11 g of ethyl cellulose (manufactured by Wako Pure Chemical Industries, Ltd.) as a binder component, and an appropriate amount of terpineol were placed in a glass container, and a rotating and rotating stirrer (manufactured by Shinky Co., Ltd. Was used to stir and degas for several minutes to obtain a composition for gas combustion catalyst according to Comparative Example 5.

<比較例6及び比較例7>
触媒Aの代わりに触媒Bを用いた以外は比較例5と同様にして比較例6に係るガス燃焼触媒用組成物を得た。また、触媒Aの代わりに触媒Eを用いた以外は比較例5と同様にして比較例7に係るガス燃焼触媒用組成物を得た。
<Comparative Example 6 and Comparative Example 7>
A gas combustion catalyst composition according to Comparative Example 6 was obtained in the same manner as in Comparative Example 5 except that Catalyst B was used instead of Catalyst A. Moreover, the composition for gas combustion catalysts which concerns on the comparative example 7 was obtained like the comparative example 5 except having used the catalyst E instead of the catalyst A.

<触媒層の支持体に対する密着性の評価>
各実施例及び各比較例に係るガス燃焼触媒用組成物を、それぞれ2cm×2cmの面積の熱酸化膜付Si基板上に滴下し、スピンコーター(ミカサ社製)を用いて基板へ塗布した。塗布後の基板を焼成炉へ置き、500℃の温度の空気雰囲気で10分間加熱した。これにより、片面に触媒層を保持する基板を作製した。いずれのガス燃焼触媒用組成物を用いて形成した基板においても、触媒層の厚さ(膜厚)は3μmであった。
<Evaluation of adhesion of catalyst layer to support>
The composition for gas combustion catalyst according to each example and each comparative example was dropped onto a Si substrate with a thermal oxide film having an area of 2 cm × 2 cm, and applied to the substrate using a spin coater (manufactured by Mikasa). The substrate after coating was placed in a firing furnace and heated in an air atmosphere at a temperature of 500 ° C. for 10 minutes. This produced the board | substrate which hold | maintains a catalyst layer on one side. In any substrate formed using any composition for gas combustion catalyst, the thickness (film thickness) of the catalyst layer was 3 μm.

上記で得られた触媒層とSi基板との密着性を調べるために、Si基板上の触媒層をセルロース系繊維不織布(旭化成社製、商品名:ベンコット)でこすった。このときに、触媒層の剥がれがない場合を○、触媒層の一部が剥がれる場合を△、触媒層がすべて剥がれる場合を×とし、触媒層とSi基板との密着性を3段階で評価した。各実施例及び各比較例に係るガス燃焼触媒用組成物を用いて形成した触媒層の評価結果を表2に示す。表2に示す通り、実施例1〜6に係るガス燃焼触媒用組成物を用いて形成した触媒層のSi基板に対する密着性は良好であった。   In order to examine the adhesion between the catalyst layer obtained above and the Si substrate, the catalyst layer on the Si substrate was rubbed with a cellulose fiber nonwoven fabric (trade name: Bencot, manufactured by Asahi Kasei Co., Ltd.). At this time, the case where the catalyst layer was not peeled was evaluated as ◯, the case where a part of the catalyst layer was peeled as Δ, and the case where the catalyst layer was completely peeled as ×, and the adhesion between the catalyst layer and the Si substrate was evaluated in three stages. . Table 2 shows the evaluation results of the catalyst layers formed using the compositions for gas combustion catalysts according to each example and each comparative example. As shown in Table 2, the adhesion of the catalyst layers formed using the gas combustion catalyst compositions according to Examples 1 to 6 to the Si substrate was good.

<触媒の活性の評価>
実施例1〜4及び比較例1に係るガス燃焼触媒用組成物を用いて、上記の密着性評価で使用した基板と同様の、片面に触媒層を保持する基板を作製した。いずれの基板においても、触媒層の厚さ(膜厚)は3μmであった。
<Evaluation of catalyst activity>
Using the composition for gas combustion catalyst according to Examples 1 to 4 and Comparative Example 1, a substrate holding a catalyst layer on one side was prepared in the same manner as the substrate used in the above adhesion evaluation. In any substrate, the thickness (film thickness) of the catalyst layer was 3 μm.

水素燃焼に関する触媒の活性を調べるために、触媒層を保持した基板を内径2.6cmの石英反応管の中に入れ、石英反応管を加熱装置に設置した。反応管内には空気を300ml/分の流量で流しながら、触媒層の表面温度を50℃(基準温度)に維持した。続いて、反応管内に流通させるガスを空気から体積基準で2%の水素を含む水素と空気の混合気体に変更し、この混合気体を300ml/分の流量で3分間流した。その後、反応管に流通させるガスを再び空気に変更し、空気を300ml/分の流量で流した。この期間中に、水素の燃焼熱によって触媒層の表面温度が上昇し最高温度に到達した後に下降した。各触媒層の水素燃焼に関する活性を基準温度からの温度変化ΔT(最高温度−基準温度)で評価した。結果を表3に示す。なお、温度変化ΔTが大きいほど水素燃焼に対する触媒の活性が高いと判断できる。   In order to investigate the activity of the catalyst related to hydrogen combustion, the substrate holding the catalyst layer was placed in a quartz reaction tube having an inner diameter of 2.6 cm, and the quartz reaction tube was installed in a heating apparatus. While the air was allowed to flow through the reaction tube at a flow rate of 300 ml / min, the surface temperature of the catalyst layer was maintained at 50 ° C. (reference temperature). Subsequently, the gas to be circulated in the reaction tube was changed from air to a mixed gas of hydrogen and air containing 2% hydrogen on a volume basis, and this mixed gas was allowed to flow at a flow rate of 300 ml / min for 3 minutes. Thereafter, the gas flowing through the reaction tube was changed to air again, and air was flowed at a flow rate of 300 ml / min. During this period, the surface temperature of the catalyst layer increased due to the combustion heat of hydrogen and decreased after reaching the maximum temperature. The activity related to hydrogen combustion of each catalyst layer was evaluated by a temperature change ΔT (maximum temperature−reference temperature) from the reference temperature. The results are shown in Table 3. It can be determined that the greater the temperature change ΔT, the higher the activity of the catalyst for hydrogen combustion.

表3に示す通り、実施例1〜4に係るガス燃焼触媒用組成物を用いて形成した触媒層は、水素燃焼に関し高い触媒の活性を示した。また、触媒のBET比表面積が大きいほど、又は、触媒におけるPtの結晶子径が小さいほど、水素燃焼に関する触媒層の活性が高まることが示唆された。   As shown in Table 3, the catalyst layer formed using the composition for gas combustion catalyst according to Examples 1 to 4 showed high catalyst activity with respect to hydrogen combustion. It was also suggested that the activity of the catalyst layer related to hydrogen combustion increases as the BET specific surface area of the catalyst increases or as the Pt crystallite size in the catalyst decreases.

Claims (8)

周期表の第7族〜第11族に属する元素からなる金属及び/又は前記金属を含む合金と、前記金属又は前記合金を担持している金属酸化物である担体とを含み、BET比表面積が30m2/g以上である触媒と、
ベーマイト粒子と、
極性溶媒と、を含有
前記担体は、5〜30nmの短軸長さ、20〜1000nmの長軸長さ、及び2〜200のアスペクト比を有するロッド形状であり、
前記担体はγ‐アルミナを含むとともにα‐アルミナを含んでいない、
ガス燃焼触媒用組成物。
A metal comprising an element belonging to Group 7 to Group 11 of the periodic table and / or an alloy containing the metal, and a support which is a metal oxide supporting the metal or the alloy, and has a BET specific surface area. A catalyst that is 30 m 2 / g or more;
Boehmite particles,
It contains a polar solvent, and
The carrier is in the form of a rod having a minor axis length of 5-30 nm, a major axis length of 20-1000 nm, and an aspect ratio of 2-200,
The carrier comprises γ-alumina and no α-alumina,
Composition for gas combustion catalyst.
前記ベーマイト粒子の結晶子径が20nm以下である、請求項1に記載のガス燃焼触媒用組成物。   The composition for gas combustion catalysts according to claim 1, wherein the boehmite particles have a crystallite diameter of 20 nm or less. 前記触媒は、Co、Mn、Ni、Cu、及びFeを担持している金属酸化物である担体を含まない、請求項1又は2に記載のガス燃焼触媒用組成物。The composition for gas combustion catalyst according to claim 1 or 2, wherein the catalyst does not include a support that is a metal oxide supporting Co, Mn, Ni, Cu, and Fe. 前記元素は、Ru、Rh、Ir、Pd、Pt、Ag、及びAuからなる群から選ばれる少なくとも1つの元素である、請求項1〜3のいずれか1項に記載のガス燃焼触媒用組成物。 The elements, Ru, Rh, Ir, Pd , Pt, Ag, and Ru at least one element der selected from the group consisting of Au, gas combustion catalyst according to any one of Motomeko 1-3 Composition. 前記金属又は前記合金の結晶子径が30nm以下である、請求項1〜4のいずれか1項に記載のガス燃焼触媒用組成物。   The composition for gas combustion catalysts of any one of Claims 1-4 whose crystallite diameter of the said metal or the said alloy is 30 nm or less. 前記触媒は、水素の燃焼に対し触媒作用を示す、請求項1〜5のいずれか1項に記載のガス燃焼触媒用組成物。   The composition for gas combustion catalyst according to any one of claims 1 to 5, wherein the catalyst exhibits a catalytic action with respect to hydrogen combustion. 請求項1〜6のいずれか1項に記載のガス燃焼触媒用組成物を支持体に塗布する工程と、
前記支持体に塗布された前記ガス燃焼触媒用組成物から前記極性溶媒を除去して触媒層を形成する工程と、を備える、
触媒層を含む支持体の製造方法。
Applying the composition for gas combustion catalyst according to any one of claims 1 to 6 to a support;
Removing the polar solvent from the composition for gas combustion catalyst applied to the support to form a catalyst layer, and
A method for producing a support including a catalyst layer.
周期表の第7族〜第11族に属する元素からなる金属及び/又は前記金属を含む合金と、
前記金属又は前記合金を担持している金属酸化物である担体と、を含み、
BET比表面積が30m2/g以上であり、
前記担体は、5〜30nmの短軸長さ、20〜1000nmの長軸長さ、及び2〜200のアスペクト比を有するロッド形状であり、
前記担体はγ‐アルミナを含むとともにα‐アルミナを含んでいない、
ガス燃焼触媒。
A metal comprising an element belonging to Group 7 to Group 11 of the periodic table and / or an alloy containing the metal;
A support that is a metal oxide carrying the metal or the alloy,
Der BET specific surface area of 30m 2 / g or more is,
The carrier is in the form of a rod having a minor axis length of 5-30 nm, a major axis length of 20-1000 nm, and an aspect ratio of 2-200,
The carrier comprises γ-alumina and no α-alumina,
Gas combustion catalyst.
JP2014116494A 2013-12-24 2014-06-05 Composition for gas combustion catalyst, method for producing support including catalyst layer, and gas combustion catalyst Active JP6349157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014116494A JP6349157B2 (en) 2013-12-24 2014-06-05 Composition for gas combustion catalyst, method for producing support including catalyst layer, and gas combustion catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013265671 2013-12-24
JP2013265671 2013-12-24
JP2014116494A JP6349157B2 (en) 2013-12-24 2014-06-05 Composition for gas combustion catalyst, method for producing support including catalyst layer, and gas combustion catalyst

Publications (2)

Publication Number Publication Date
JP2015142896A JP2015142896A (en) 2015-08-06
JP6349157B2 true JP6349157B2 (en) 2018-06-27

Family

ID=53888332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014116494A Active JP6349157B2 (en) 2013-12-24 2014-06-05 Composition for gas combustion catalyst, method for producing support including catalyst layer, and gas combustion catalyst

Country Status (1)

Country Link
JP (1) JP6349157B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6777982B2 (en) * 2015-10-14 2020-10-28 株式会社日本触媒 Composition for gas sensor
JP6860870B2 (en) * 2015-10-14 2021-04-21 株式会社日本触媒 Gas sensor
WO2017064865A1 (en) * 2015-10-14 2017-04-20 株式会社日本触媒 Gas-sensitive body, gas sensor and composition for gas-sensitive body of gas sensor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193532U (en) * 1987-05-29 1988-12-13
JPH08215567A (en) * 1995-02-10 1996-08-27 Toyo C C I Kk Catalyst for purification of exhaust gas
JP2001070803A (en) * 1999-09-09 2001-03-21 Hitachi Ltd Exhaust gas purification catalyst, supporting honeycomb structure for the same, and process for purifying exhaust gas using the same
JP3870783B2 (en) * 2001-12-27 2007-01-24 日産自動車株式会社 Exhaust gas purification system for fuel cell vehicle and purification method for exhaust gas of fuel cell vehicle
JP2005313012A (en) * 2004-04-27 2005-11-10 Nissan Motor Co Ltd Exhaust gas clarification catalyst, catalytic active particle and its production method
JP2007160255A (en) * 2005-12-15 2007-06-28 Nissan Motor Co Ltd Catalyst for selectively oxidizing carbon monoxide and its manufacturing method
JP5130632B2 (en) * 2006-02-28 2013-01-30 日産自動車株式会社 Exhaust gas purification catalyst and method for producing the same
WO2012029090A1 (en) * 2010-08-31 2012-03-08 日立Geニュークリア・エナジー株式会社 Nuclear waste gas recombination catalyst and recombiner
JP2012066165A (en) * 2010-09-21 2012-04-05 Denso Corp Catalyst for purifying automobile exhaust gas

Also Published As

Publication number Publication date
JP2015142896A (en) 2015-08-06

Similar Documents

Publication Publication Date Title
RU2731104C2 (en) Catalysts based on platinum group metals (pgm) for automotive exhaust treatment
RU2730496C2 (en) Rhodium-containing catalysts for treating automotive exhausts
US20160038874A1 (en) Three way catalytic converter using hybrid catalytic particles
JP4547935B2 (en) Exhaust gas purification catalyst, exhaust gas purification catalyst, and catalyst manufacturing method
KR20160074566A (en) Catalyst design for heavy-duty diesel combustion engines
CN108355632B (en) Oxide nanosheet, preparation method thereof and composite catalyst
JP2002248347A (en) Compound oxide powder and catalyst and manufacturing method thereof
JP2016531725A (en) High surface area catalyst
JP5335505B2 (en) Noble metal support and method for producing carboxylic acid ester using the same as catalyst
JP5336235B2 (en) Noble metal support and method for producing carboxylic acid ester using the same as catalyst
JP5806536B2 (en) Catalyst precursor dispersion, catalyst, and exhaust gas purification method
JP2006281155A (en) Catalyst body
JP6349157B2 (en) Composition for gas combustion catalyst, method for producing support including catalyst layer, and gas combustion catalyst
JP2008012527A (en) Catalyst-bearing particle and manufacturing method of catalytic material using this particle
JP3265534B2 (en) Exhaust gas purification catalyst
JP4296908B2 (en) Catalyst body and method for producing the same
JP2006181484A (en) Catalyst, exhaust gas cleaning catalyst and method for preparing the catalyst
WO2017064865A1 (en) Gas-sensitive body, gas sensor and composition for gas-sensitive body of gas sensor
WO2019167515A1 (en) Exhaust purification three-way catalyst and manufacturing method therefor, and exhaust purification monolithic catalyst
WO2016047504A1 (en) Steam reforming catalyst composition and steam reforming catalyst
JP2016198725A (en) Method for producing noble metal-supported catalyst for exhaust gas purification
Long et al. Synthesis of nanostructured Pt/CeO2–ZrO2–Al2O3 catalysts by a two-step sol–gel method
JP2007054685A (en) Catalyst for water gas shift reaction
JP5761797B2 (en) Mixed catalyst, catalyst-supporting structure provided with the same, and method for producing the same
JP2019055380A (en) Nox absorption material and its production method, and nox absorption member using the same and automobile exhaust gas catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180604

R150 Certificate of patent or registration of utility model

Ref document number: 6349157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150