JP6347879B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP6347879B2
JP6347879B2 JP2017155186A JP2017155186A JP6347879B2 JP 6347879 B2 JP6347879 B2 JP 6347879B2 JP 2017155186 A JP2017155186 A JP 2017155186A JP 2017155186 A JP2017155186 A JP 2017155186A JP 6347879 B2 JP6347879 B2 JP 6347879B2
Authority
JP
Japan
Prior art keywords
film
oxide
insulating film
oxide semiconductor
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017155186A
Other languages
English (en)
Other versions
JP2017204657A (ja
Inventor
純一 肥塚
純一 肥塚
行徳 島
行徳 島
鈴之介 平石
鈴之介 平石
岡崎 健一
健一 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2017204657A publication Critical patent/JP2017204657A/ja
Application granted granted Critical
Publication of JP6347879B2 publication Critical patent/JP6347879B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Electroluminescent Light Sources (AREA)

Description

トランジスタを有する半導体装置及びその作製方法に関する。
液晶表示装置や発光表示装置に代表されるフラットパネルディスプレイの多くに用いら
れているトランジスタは、ガラス基板上に形成されたアモルファスシリコン、単結晶シリ
コンまたは多結晶シリコンなどのシリコン半導体によって構成されている。また、該シリ
コン半導体を用いたトランジスタは、集積回路(IC)などにも利用されている。
近年、シリコン半導体に代わって、半導体特性を示す金属酸化物をトランジスタに用い
る技術が注目されている。なお、本明細書中では、半導体特性を示す金属酸化物を酸化物
半導体とよぶことにする。
例えば、酸化物半導体として、酸化亜鉛、またはIn−Ga−Zn系酸化物を用いたト
ランジスタを作製し、該トランジスタを表示装置の画素のスイッチング素子などに用いる
技術が開示されている(特許文献1及び特許文献2参照)。
特開2007−123861号公報 特開2007−96055号公報
酸化物半導体膜を用いたトランジスタにおいて、酸化物半導体膜に含まれる欠損量が多
いことは、トランジスタの電気特性の不良に繋がると共に、経時変化やストレス試験(例
えば、BT(Bias−Temperature)ストレス試験)において、トランジス
タの電気特性、代表的にはしきい値電圧の変動量が増大することの原因となる。
また、欠損に限らず、酸化物半導体膜に含まれる不純物、代表的には絶縁膜の構成元素
であるシリコンや炭素、配線の構成材料である銅等の不純物が多いと、トランジスタの電
気特性の不要の原因となる。
そこで、本発明の一態様は、酸化物半導体膜を用いた半導体装置などにおいて、酸化物
半導体膜の欠陥を低減することを課題の一とする。または、本発明の一態様は、酸化物半
導体膜を用いた半導体装置などにおいて、酸化物半導体膜の不純物濃度を低減することを
課題の一とする。または、本発明の一態様は、酸化物半導体膜を用いた半導体装置などに
おいて、電気特性を向上させることを課題の一とする。または、本発明の一態様は、酸化
物半導体膜を用いた半導体装置などにおいて、信頼性を向上させることを課題の一とする
。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。
本発明の一態様は、基板上にゲート電極及びゲート絶縁膜を形成し、ゲート絶縁膜上に
、酸化物半導体膜及び酸化物膜を有する多層膜を形成し、300℃以上400℃以下、好
ましくは320℃以上370℃以下で第1の加熱処理を行った後、多層膜に接する一対の
電極を形成し、多層膜、及び前記一対の電極上に、第1の酸化物絶縁膜を形成し、第1の
酸化物絶縁膜上に第2の酸化物絶縁膜を形成し、150℃以上300℃以下、好ましくは
200℃以上250℃以下で第2の加熱処理を行う半導体装置の作製方法であり、一対の
電極は銅、アルミニウム、金、銀、またはモリブデンを含む。
なお、真空排気された処理室内に載置された基板を180℃以上400℃以下に保持し
、処理室に原料ガスを導入して処理室内における圧力を100Pa以上250Pa以下と
し、処理室内に設けられる電極に高周波電力を供給することにより、第1の酸化物絶縁膜
を形成することができる。
また、真空排気された処理室内に載置された基板を180℃以上280℃以下に保持し
、処理室に原料ガスを導入して処理室内における圧力を100Pa以上250Pa以下と
し、処理室内に設けられる電極に0.17W/cm以上0.5W/cm以下の高周波
電力を供給することにより、第2の酸化物絶縁膜を形成することができる。
また、第1の酸化物絶縁膜及び第2の酸化物絶縁膜として、シリコンを含む堆積性気体
及び酸化性気体を原料ガスに用いて、酸化シリコン膜または酸化窒化シリコン膜を形成す
る。
なお、酸化物半導体膜は、In若しくはGaを含むことが好ましい。
また、酸化物膜の伝導帯の下端のエネルギーが、酸化物半導体膜の伝導帯の下端のエネ
ルギーよりも真空準位に近い。さらには、酸化物膜の伝導帯の下端のエネルギーと、酸化
物半導体膜の伝導帯の下端のエネルギーとの差は0.05eV以上2eV以下であること
が好ましい。なお、真空準位と伝導帯下端のエネルギー差を電子親和力ともいうため、酸
化物膜の電子親和力が、酸化物半導体膜の電子親和力より小さく、その差が0.05eV
以上2eV以下であることが好ましい。
本発明の一態様により、酸化物半導体膜を用いた半導体装置において、酸化物半導体膜
の欠陥を低減することができる。または、本発明の一態様は、酸化物半導体膜を用いた半
導体装置などにおいて、酸化物半導体膜の不純物を低減することができる。または、本発
明の一態様により、酸化物半導体膜を用いた半導体装置において、電気特性を向上させる
ことができる。または、本発明の一態様により、酸化物半導体膜を用いた半導体装置にお
いて、信頼性を向上させることができる。
トランジスタの一形態を説明する上面図及び断面図である。 トランジスタの作製方法の一形態を説明する断面図である。 トランジスタのバンド構造を説明する図である。 トランジスタの一形態を説明する断面図である。 トランジスタの一形態を説明する上面図及び断面図である。 トランジスタの一形態を説明する上面図及び断面図である。 半導体装置の一形態を説明するブロック図及び回路図である。 半導体装置の一形態を説明する上面図である。 半導体装置の一形態を説明する断面図である。 半導体装置の作製方法の一形態を説明する断面図である。 半導体装置の作製方法の一形態を説明する断面図である。 半導体装置の作製方法の一形態を説明する断面図である。 半導体装置の作製方法の一形態を説明する断面図である。 半導体装置の作製方法の一形態を説明する断面図である。 酸化物半導体の極微電子線回折パターンを示す図である。 酸化物半導体の極微電子線回折パターンを示す図である。 酸化物半導体の不純物分析結果及びXRD分析結果を示す図である。 酸化物半導体の不純物分析結果及びXRD分析結果を示す図である。 酸化物半導体の不純物分析結果及びXRD分析結果を示す図である。 酸化物半導体の不純物分析結果及びXRD分析結果を示す図である。 トランジスタのVg−Id特性を示す図である。 酸化物半導体の不純物分析結果及びXRD分析結果を示す図である。 抵抗率の温度依存性を説明する図。
以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明
は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及
び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は
、以下に示す実施の形態及び実施例の記載内容に限定して解釈されるものではない。また
、以下に説明する実施の形態及び実施例において、同一部分または同様の機能を有する部
分には、同一の符号または同一のハッチパターンを異なる図面間で共通して用い、その繰
り返しの説明は省略する。
なお、本明細書で説明する各図において、各構成の大きさ、膜の厚さ、または領域は、
明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されな
い。
また、本明細書にて用いる第1、第2、第3などの用語は、構成要素の混同を避けるた
めに付したものであり、数的に限定するものではない。そのため、例えば、「第1の」を
「第2の」または「第3の」などと適宜置き換えて説明することができる。
また、「ソース」や「ドレイン」の機能は、回路動作において電流の方向が変化する場
合などには入れ替わることがある。このため、本明細書においては、「ソース」や「ドレ
イン」の用語は、入れ替えて用いることができるものとする。
また、電圧とは2点間における電位差のことをいい、電位とはある一点における静電場
の中にある単位電荷が持つ静電エネルギー(電気的な位置エネルギー)のことをいう。た
だし、一般的に、ある一点における電位と基準となる電位(例えば接地電位)との電位差
のことを、単に電位もしくは電圧と呼び、電位と電圧が同義語として用いられることが多
い。このため、本明細書では特に指定する場合を除き、電位を電圧と読み替えてもよいし
、電圧を電位と読み替えてもよいこととする。
本明細書において、フォトリソグラフィ工程を行った後にエッチング工程を行う場合は
、フォトリソグラフィ工程で形成したマスクは除去するものとする。
(実施の形態1)
本実施の形態では、本発明の一態様である半導体装置及びその作製方法について図面を
参照して説明する。
酸化物半導体膜を用いたトランジスタにおいて、トランジスタの電気特性の不良に繋が
る欠陥の一例として酸素欠損がある。例えば、膜中に酸素欠損が含まれている酸化物半導
体膜を用いたトランジスタは、しきい値電圧がマイナス方向に変動しやすく、ノーマリー
オン特性となりやすい。これは、酸化物半導体膜に含まれる酸素欠損に起因して電荷が生
じ、低抵抗化するためである。トランジスタがノーマリーオン特性を有すると、動作時に
動作不良が発生しやすくなる、または非動作時の消費電力が高くなるなどの、様々な問題
が生じる。また、経時変化やストレス試験により、トランジスタの電気特性、代表的には
しきい値電圧の変動量が増大するという問題がある。
酸素欠損の発生原因の一つとして、トランジスタの作製工程に生じるダメージがある。
例えば、酸化物半導体膜上にプラズマCVD法またはスパッタリング法により絶縁膜、導
電膜などを形成する際、その形成条件によっては、当該酸化物半導体膜にダメージが入る
ことがある。
また、酸素欠損に限らず、絶縁膜の構成元素であるシリコンや炭素等の不純物も、トラ
ンジスタの電気特性の不良の原因となる。また、例えば、第8世代以上の大面積基板を用
いてトランジスタを作製する場合、配線遅延を抑制するため、銅、アルミニウム、金、銀
、モリブデン等の低抵抗材料を用いて配線を形成する。しかしながら、配線の構成元素で
ある、銅、アルミニウム、金、銀、モリブデン等もトランジスタの電気特性の不良の原因
となる不純物の一つである。このため、該不純物が、酸化物半導体膜に混入することによ
り、当該酸化物半導体膜が低抵抗化してしまい、経時変化やストレス試験により、トラン
ジスタの電気特性、代表的にはしきい値電圧の変動量が増大するという問題がある。
そこで、本実施の形態では、酸化物半導体膜を有するトランジスタを備える半導体装置
において、チャネル領域を有する酸化物半導体膜への酸素欠損、及び酸化物半導体膜の不
純物濃度を低減することを課題の一とする。
一方で、市場で販売されている表示装置は、画面サイズが対角60インチ以上と大型化
する傾向にあり、さらには、対角120インチ以上の画面サイズも視野に入れた開発が行
われている。このため、表示装置に用いられるガラス基板においては、第8世代以上の大
面積化が進んでいる。しかしながら、大面積基板を用いる場合、高温処理、例えば450
℃以上の加熱処理をするため加熱装置が大型で高価となってしまい、生産コストが増大し
てしまう。また、高温処理を行うと、基板の反りやシュリンクが生じてしまい、歩留まり
が低減してしまう。
そこで、本実施の形態では、少ない加熱処理工程数、及び大面積基板を用いても可能な
温度の加熱処理を用いて、半導体装置を作製することを課題の一とする。
図1(A)乃至図1(C)に、半導体装置が有するトランジスタ50の上面図及び断面
図を示す。図1に示すトランジスタ50は、チャネルエッチ型のトランジスタである。図
1(A)はトランジスタ50の上面図であり、図1(B)は、図1(A)の一点鎖線A−
B間の断面図であり、図1(C)は、図1(A)の一点鎖線C−D間の断面図である。な
お、図1(A)では、明瞭化のため、基板11、トランジスタ50の構成要素の一部(例
えば、ゲート絶縁膜17)、酸化物絶縁膜23、酸化物絶縁膜24、窒化物絶縁膜25な
どを省略している。
図1(B)及び図1(C)に示すトランジスタ50は、基板11上に設けられるゲート
電極15を有する。また、基板11及びゲート電極15上に形成されるゲート絶縁膜17
と、ゲート絶縁膜17を介して、ゲート電極15と重なる多層膜20と、多層膜20に接
する一対の電極21、22とを有する。また、ゲート絶縁膜17、多層膜20、及び一対
の電極21、22上には、酸化物絶縁膜23、酸化物絶縁膜24、及び窒化物絶縁膜25
で構成される保護膜26が形成される。
本実施の形態に示すトランジスタ50において、多層膜20は、酸化物半導体膜18及
び酸化物膜19を有する。また、酸化物半導体膜18の一部がチャネル領域として機能す
る。また、多層膜20に接するように、酸化物絶縁膜23が形成されており、酸化物絶縁
膜23に接するように酸化物絶縁膜24が形成されている。即ち、酸化物半導体膜18と
酸化物絶縁膜23との間に、酸化物膜19が設けられている。
酸化物半導体膜18は、代表的には、In−Ga酸化物膜、In−Zn酸化物膜、In
−M−Zn酸化物膜(Mは、Ti、Ga、Y、Zr、La、Ce、Nd、またはHf)が
ある。
酸化物半導体膜18がIn−M−Zn酸化物(Mは、Ti、Ga、Y、Zr、La、C
e、NdまたはHf)の場合、In−M−Zn酸化物を成膜するために用いるスパッタリ
ングターゲットの金属元素の原子数比は、In≧M、Zn≧Mを満たすことが好ましい。
このようなスパッタリングターゲットの金属元素の原子数比として、In:M:Zn=1
:1:1、In:M:Zn=3:1:2が好ましい。なお、成膜される酸化物半導体膜1
8の原子数比はそれぞれ、誤差として上記のスパッタリングターゲットに含まれる金属元
素の原子数比のプラスマイナス20%の変動を含む。
なお、酸化物半導体膜18がIn−M−Zn酸化物であるとき、InとMの原子数比率
は、ZnおよびOを除いてのInおよびMの原子数比率は、Inが25atomic%以
上、Mが75atomic%未満、さらに好ましくはInが34atomic%以上、M
が66atomic%未満とする。
酸化物半導体膜18は、エネルギーギャップが2eV以上、好ましくは2.5eV以上
、より好ましくは3eV以上である。このように、エネルギーギャップの広い酸化物半導
体を用いることで、トランジスタ50のオフ電流を低減することができる。
酸化物半導体膜18の厚さは、3nm以上200nm以下、好ましくは3nm以上10
0nm以下、さらに好ましくは3nm以上50nm以下とする。
酸化物膜19は、代表的には、In−Ga酸化物、In−Zn酸化物、In−M−Zn
酸化物(Mは、Ti、Ga、Y、Zr、La、Ce、NdまたはHf)であり、且つ酸化
物半導体膜18よりも伝導帯の下端のエネルギーが真空準位に近く、代表的には、酸化物
膜19の伝導帯の下端のエネルギーと、酸化物半導体膜18の伝導帯の下端のエネルギー
との差が、0.05eV以上、0.07eV以上、0.1eV以上、または0.15eV
以上、且つ2eV以下、1eV以下、0.5eV以下、または0.4eV以下である。即
ち、酸化物膜19の電子親和力と、酸化物半導体膜18の電子親和力との差が、0.05
eV以上、0.07eV以上、0.1eV以上、または0.15eV以上、且つ2eV以
下、1eV以下、0.5eV以下、または0.4eV以下である。
酸化物膜19として、Al、Ti、Ga、Y、Zr、La、Ce、NdまたはHfをI
nより高い原子数比で有することで、以下の効果を有する場合がある。(1)酸化物膜1
9のエネルギーギャップを大きくする。(2)酸化物膜19の電子親和力を小さくする。
(3)外部からの不純物を遮蔽する。(4)酸化物半導体膜18と比較して、絶縁性が高
くなる。また、Al、Ti、Ga、Y、Zr、La、Ce、NdまたはHfは酸素との結
合力が強い金属元素であるため、Al、Ti、Ga、Y、Zr、La、Ce、Ndまたは
HfをInより高い原子数比で有することで、酸素欠損が生じにくくなる。
酸化物膜19がIn−M−Zn酸化物であるとき、InとMの原子数比率は、Znおよ
びOを除いてのInおよびMの原子数比率は、Inが50atomic%未満、Mが50
atomic%以上、さらに好ましくは、Inが25atomic%未満、Mが75at
omic%以上とする。
また、酸化物半導体膜18、及び酸化物膜19がIn−M−Zn酸化物膜(Mは、Ti
、Ga、Y、Zr、La、Ce、NdまたはHf)の場合、酸化物半導体膜18と比較し
て、酸化物膜19に含まれるM(Al、Ti、Ga、Y、Zr、La、Ce、Nd、また
はHf)の原子数比が大きく、代表的には、酸化物半導体膜18に含まれる上記原子と比
較して、1.5倍以上、好ましくは2倍以上、さらに好ましくは3倍以上高い原子数比で
ある。
また、酸化物半導体膜18、及び酸化物膜19がIn−M−Zn酸化物膜(Mは、Ti
、Ga、Y、Zr、La、Ce、NdまたはHf)の場合、酸化物膜19をIn:M:Z
n=x:y:z[原子数比]、酸化物半導体膜18をIn:M:Zn=x:y
:z[原子数比]とすると、y/xがy/xよりも大きく、好ましくは、y
/xがy/xよりも1.5倍以上である。さらに好ましくは、y/xがy
よりも2倍以上大きく、より好ましくは、y/xがy/xよりも3倍以上大
きい。このとき、酸化物半導体膜において、yがx以上であると、当該酸化物半導体
膜を用いたトランジスタに安定した電気特性を付与できるため好ましい。ただし、y
の3倍以上になると、当該酸化物半導体膜を用いたトランジスタの電界効果移動度が
低下してしまうため、yはx3倍未満であると好ましい。
酸化物膜19がIn−M−Zn酸化物膜(Mは、Ti、Ga、Y、Zr、La、Ce、
NdまたはHf)の場合、In−M−Zn酸化物を成膜するために用いるスパッタリング
ターゲットの金属元素の原子数比は、M>In、Zn>0.5×M、更にはZn>Mを満
たすことが好ましい。このようなスパッタリングターゲットの金属元素の原子数比として
、In:Ga:Zn=1:3:2、In:Ga:Zn=1:3:4、In:Ga:Zn=
1:3:5、In:Ga:Zn=1:3:6、In:Ga:Zn=1:3:7、In:G
a:Zn=1:3:8、In:Ga:Zn=1:3:9、In:Ga:Zn=1:3:1
0、In:Ga:Zn=1:6:4、In:Ga:Zn=1:6:5、In:Ga:Zn
=1:6:6、In:Ga:Zn=1:6:7、In:Ga:Zn=1:6:8、In:
Ga:Zn=1:6:9、In:Ga:Zn=1:6:10が好ましい。なお、上記スパ
ッタリングターゲットを用いて成膜された酸化物半導体膜18、及び酸化物膜19に含ま
れる金属元素の原子数比はそれぞれ、誤差として上記スパッタリングターゲットに含まれ
る金属元素の原子数比のプラスマイナス20%の変動を含む。
酸化物半導体膜18及び酸化物膜19としては、キャリア密度の低い酸化物半導体膜を
用いる。例えば、酸化物半導体膜18、及び酸化物膜19は、キャリア密度が1×10
個/cm以下、好ましくは1×1015個/cm以下、さらに好ましくは1×10
13個/cm以下、より好ましくは1×1011個/cm以下の酸化物半導体膜を用
いる。
なお、これらに限られず、必要とするトランジスタの半導体特性及び電気特性(電界効
果移動度、しきい値電圧等)に応じて適切な組成のものを用いればよい。また、必要とす
るトランジスタの半導体特性を得るために、酸化物半導体膜18のキャリア密度や不純物
濃度、欠陥密度、金属元素と酸素の原子数比、原子間距離、密度等を適切なものとするこ
とが好ましい。
酸化物膜19は、後に形成する酸化物絶縁膜24を形成する際の、酸化物半導体膜18
へのダメージ緩和膜としても機能する。
酸化物膜19の厚さは、3nm以上100nm以下、好ましくは3nm以上50nmと
する。
なお、酸化物半導体膜18として、不純物濃度が低く、欠陥準位密度の低い酸化物半導
体膜を用いることで、さらに優れた電気特性を有するトランジスタを作製することができ
好ましい。ここでは、不純物濃度が低く、欠陥準位密度の低い(酸素欠損量の少ない)こ
とを高純度真性または実質的に高純度真性とよぶ。
高純度真性または実質的に高純度真性である酸化物半導体は、キャリア発生源が少ない
ため、キャリア密度を低くすることができる場合がある。従って、当該酸化物半導体膜に
チャネル領域が形成されるトランジスタは、しきい値電圧がマイナスとなる電気特性(ノ
ーマリーオンともいう。)になることが少ない場合がある。
また、高純度真性または実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が
低いため、トラップ準位密度も低くなる場合がある。
また、高純度真性または実質的に高純度真性である酸化物半導体膜は、オフ電流が著し
く小さく、チャネル幅が1×10μmでチャネル長Lが10μmの素子であっても、ソ
ース電極とドレイン電極間の電圧(ドレイン電圧)が1Vから10Vの範囲において、オ
フ電流が、半導体パラメータアナライザの測定限界以下、すなわち1×10−13A以下
という特性を得ることができる。
従って、当該酸化物半導体膜にチャネル領域が形成されるトランジスタは、電気特性の
変動が小さく、信頼性の高いトランジスタとなる場合がある。なお、酸化物半導体膜のト
ラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷の
ように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体膜にチャネ
ル領域が形成されるトランジスタは、電気特性が不安定となる場合がある。不純物として
は、水素、窒素、アルカリ金属、またはアルカリ土類金属等がある。
酸化物半導体膜に含まれる水素は金属原子と結合する酸素と反応して水になると共に、
酸素が脱離した格子(または酸素が脱離した部分)に酸素欠損が形成される。当該酸素欠
損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部
が金属原子と結合する酸素と結合することで、キャリアである電子を生成する場合がある
。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性
となりやすい。
このため、酸化物半導体膜18は水素ができる限り低減されていることが好ましい。具
体的には、酸化物半導体膜18において、二次イオン質量分析法(SIMS:Secon
dary Ion Mass Spectrometry)により得られる水素濃度を、
5×1019atoms/cm以下、より好ましくは1×1019atoms/cm
以下、5×1018atoms/cm以下、好ましくは1×1018atoms/cm
以下、より好ましくは5×1017atoms/cm以下、さらに好ましくは1×1
16atoms/cm以下とする。
酸化物半導体膜18において、第14族元素の一つであるシリコンや炭素が含まれると
、酸化物半導体膜18において酸素欠損量が増加し、n型化してしまう。このため、酸化
物半導体膜18におけるシリコンや炭素の濃度、または酸化物膜19と、酸化物半導体膜
18との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法により得られる濃度)
を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm
以下とする。
また、酸化物半導体膜18において、二次イオン質量分析法により得られるアルカリ金
属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは
2×1016atoms/cm以下にする。アルカリ金属及びアルカリ土類金属は、酸
化物半導体と結合するとキャリアを生成する場合があり、トランジスタのオフ電流が増大
してしまうことがある。このため、酸化物半導体膜18のアルカリ金属またはアルカリ土
類金属の濃度を低減することが好ましい。
また、酸化物半導体膜18に窒素が含まれていると、キャリアである電子が生じ、キャ
リア密度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を用い
たトランジスタはノーマリーオン特性となりやすい。従って、当該酸化物半導体膜におい
て、窒素はできる限り低減されていることが好ましい、例えば、二次イオン質量分析法に
より得られる窒素濃度は、5×1018atoms/cm以下にすることが好ましい。
また、酸化物半導体膜18及び酸化物膜19は、例えば非単結晶構造でもよい。非単結
晶構造は、例えば、後述するCAAC−OS(C Axis Aligned Crys
talline Oxide Semiconductor)、多結晶構造、後述する微
結晶構造、または非晶質構造を含む。非単結晶構造において、非晶質構造は最も欠陥準位
密度が高く、CAAC−OSは最も欠陥準位密度が低い。
酸化物半導体膜18及び酸化物膜19は、例えば非晶質構造でもよい。非晶質構造の酸
化物半導体膜は、例えば、原子配列が無秩序であり、結晶成分を有さない。
なお、酸化物半導体膜18及び酸化物膜19が、非晶質構造の領域、微結晶構造の領域
、多結晶構造の領域、CAAC−OSの領域、単結晶構造の領域の二種以上を有する混合
膜であってもよい。混合膜は、例えば、非晶質構造の領域、微結晶構造の領域、多結晶構
造の領域、CAAC−OSの領域、単結晶構造の領域のいずれか二種以上の領域を有する
単層構造の場合がある。また、混合膜は、例えば、非晶質構造の領域、微結晶構造の領域
、多結晶構造の領域、CAAC−OSの領域、単結晶構造の領域のいずれか二種以上の領
域の積層構造を有する場合がある。なお、酸化物膜19をCAAC−OSとすることで、
一対の電極21、22に含まれる銅、アルミニウム、金、銀、モリブデン等が酸化物半導
体膜18へ移動しにくくなるため、好ましい。
ここでは、酸化物半導体膜18及び酸化物絶縁膜23の間に、酸化物膜19が設けられ
ている。このため、酸化物膜19と酸化物絶縁膜23の間において、不純物及び欠陥によ
りトラップ準位が形成されても、当該トラップ準位と酸化物半導体膜18との間には隔た
りがある。この結果、酸化物半導体膜18を流れる電子がトラップ準位に捕獲されにくく
、トランジスタのオン電流を増大させることが可能であると共に、電界効果移動度を高め
ることができる。また、トラップ準位に電子が捕獲されると、該電子がマイナスの固定電
荷となってしまう。この結果、トランジスタのしきい値電圧が変動してしまう。しかしな
がら、酸化物半導体膜18とトラップ準位との間に隔たりがあるため、トラップ準位にお
ける電子の捕獲を低減することが可能であり、しきい値電圧の変動を低減することができ
る。
また、酸化物膜19は、外部からの不純物を遮蔽することが可能であるため、外部から
酸化物半導体膜18へ移動する不純物量を低減することが可能である。このため、銅、ア
ルミニウム、金、銀、またはモリブデンを用いて一対の電極21、22を形成しても、一
対の電極21、22の、銅、アルミニウム、金、銀、またはモリブデンが酸化物膜19を
介して酸化物半導体膜18に移動しにくい。または、酸化物半導体膜18に銅が移動して
も、ゲート絶縁膜17近傍であるチャネル領域には、銅、アルミニウム、金、銀、または
モリブデンが移動しにくい。この結果、トランジスタのしきい値電圧の変動を低減するこ
とができる。
また、酸化物膜19は、酸素欠損を形成しにくい。
これらのため、酸化物半導体膜18における不純物濃度及び酸素欠損量を低減すること
が可能である。
また、本実施の形態に示すトランジスタ50において、多層膜20に接するように、一
対の電極21、22が形成されている。
一対の電極21、22は、銅、アルミニウム、金、銀、モリブデン等の低抵抗材料から
なる単体金属、またはこれを主成分とする化合物または合金を、単層構造または積層構造
として用いる。例えば、シリコンを含むアルミニウム膜の単層構造、アルミニウム膜上に
チタン膜を積層する二層構造、銅−マグネシウム−アルミニウム合金膜上に、銅膜、銀膜
、または金膜を積層する二層構造、チタン膜または窒化チタン膜と、そのチタン膜または
窒化チタン膜上に重ねてアルミニウム膜、銅膜、銀膜、または金膜を積層し、さらにその
上にチタン膜または窒化チタン膜を形成する三層構造、モリブデン膜または窒化モリブデ
ン膜と、そのモリブデン膜または窒化モリブデン膜上に重ねてアルミニウム膜、銅膜、銀
膜、または金膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成す
る三層構造等がある。
一対の電極21、22を、銅、アルミニウム、金、銀、モリブデン等の低抵抗材料を用
いて形成することで、大面積基板を用いて、配線遅延を抑制した半導体装置を作製するこ
とができる。
以下に、トランジスタ50の他の構成の詳細について説明する。
基板11の材質などに大きな制限はないが、少なくとも、後の熱処理に耐えうる程度の
耐熱性を有している必要がある。例えば、ガラス基板、セラミック基板、石英基板、サフ
ァイア基板等を、基板11として用いてもよい。また、シリコンや炭化シリコンなどの単
結晶半導体基板、多結晶半導体基板、シリコンゲルマニウム等の化合物半導体基板、SO
I基板等を適用することも可能であり、これらの基板上に半導体素子が設けられたものを
、基板11として用いてもよい。なお、基板11として、ガラス基板を用いる場合、第6
世代(1500mm×1850mm)、第7世代(1870mm×2200mm)、第8
世代(2200mm×2400mm)、第9世代(2400mm×2800mm)、第1
0世代(2950mm×3400mm)等の大面積基板を用いることで、大型の表示装置
を作製することができる。
また、基板11として、可撓性基板を用い、可撓性基板上に直接、トランジスタ50を
形成してもよい。または、基板11とトランジスタ50の間に剥離層を設けてもよい。剥
離層は、その上に半導体装置を一部あるいは全部完成させた後、基板11より分離し、他
の基板に転載するのに用いることができる。その際、トランジスタ50は耐熱性の劣る基
板や可撓性の基板にも転載できる。
ゲート電極15は、クロム、銅、アルミニウム、金、銀、モリブデン、タンタル、チタ
ン、タングステンから選ばれた金属元素、または上述した金属元素を成分とする合金か、
上述した金属元素を組み合わせた合金等を用いて形成することができる。また、マンガン
、ジルコニウムのいずれか一または複数から選択された金属元素を用いてもよい。また、
ゲート電極15は、単層構造でも、二層以上の積層構造としてもよい。例えば、シリコン
を含むアルミニウム膜の単層構造、アルミニウム膜上にチタン膜を積層する二層構造、窒
化チタン膜上にチタン膜を積層する二層構造、窒化チタン膜上にタングステン膜を積層す
る二層構造、窒化タンタル膜または窒化タングステン膜上にタングステン膜を積層する二
層構造、チタン膜と、そのチタン膜上にアルミニウム膜を積層し、さらにその上にチタン
膜を形成する三層構造等がある。また、アルミニウムに、チタン、タンタル、タングステ
ン、モリブデン、クロム、ネオジム、スカンジウムから選ばれた元素の一または複数を組
み合わせた合金膜、もしくは窒化膜を用いてもよい。
また、ゲート電極15は、インジウム錫酸化物、酸化タングステンを含むインジウム酸
化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化
物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化シリコンを添加
したインジウム錫酸化物等の透光性を有する導電性材料を適用することもできる。また、
上記透光性を有する導電性材料と、上記金属元素の積層構造とすることもできる。
また、ゲート電極15とゲート絶縁膜17との間に、In−Ga−Zn系酸窒化物膜、
In−Sn系酸窒化物膜、In−Ga系酸窒化物膜、In−Zn系酸窒化物膜、Sn系酸
窒化物膜、In系酸窒化物膜、金属窒化膜(InN、ZnN等)等を設けてもよい。これ
らの膜は5eV、好ましくは5.5eV以上の仕事関数を有し、酸化物半導体の電子親和
力よりも大きい値であるため、酸化物半導体を用いたトランジスタのしきい値電圧をプラ
スにシフトすることができ、所謂ノーマリーオフ特性のスイッチング素子を実現できる。
例えば、In−Ga−Zn系酸窒化物膜を用いる場合、少なくとも酸化物半導体膜18よ
り高い窒素濃度、具体的には7原子%以上のIn−Ga−Zn系酸窒化物膜を用いる。
ゲート絶縁膜17は、例えば酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒
化シリコン、酸化アルミニウム、酸化ハフニウム、酸化ガリウムまたはGa−Zn系金属
酸化物などを用いればよく、積層または単層で設ける。
また、ゲート絶縁膜17として、ハフニウムシリケート(HfSiO)、窒素が添加
されたハフニウムシリケート(HfSi)、窒素が添加されたハフニウムアル
ミネート(HfAl)、酸化ハフニウム、酸化イットリウムなどのhigh−
k材料を用いることでトランジスタのゲートリークを低減できる。
ゲート絶縁膜17の厚さは、5nm以上400nm以下、より好ましくは10nm以上
300nm以下、より好ましくは50nm以上250nm以下とするとよい。
酸化物絶縁膜23は、酸素を透過する酸化物絶縁膜である。なお、酸化物絶縁膜23は
、後に形成する酸化物絶縁膜24を形成する際の、多層膜20へのダメージ緩和膜として
も機能する。
酸化物絶縁膜23としては、厚さが5nm以上150nm以下、好ましくは5nm以上
50nm以下の酸化シリコン、酸化窒化シリコン等を用いることができる。なお、本明細
書中において、酸化窒化シリコン膜とは、その組成として、窒素よりも酸素の含有量が多
い膜を指し、窒化酸化シリコン膜とは、その組成として、酸素よりも窒素の含有量が多い
膜を指す。
また、酸化物絶縁膜23は、欠陥量が少ないことが好ましく、代表的には、ESR測定
により、シリコンのダングリングボンドに由来するg=2.001に現れる信号のスピン
密度が3×1017spins/cm以下であることが好ましい。これは、酸化物絶縁
膜23に含まれる欠陥密度が多いと、当該欠陥に酸素が結合してしまい、酸化物絶縁膜2
3における酸素の透過量が減少してしまうためである。
また、酸化物絶縁膜23と多層膜20との界面における欠陥量が少ないことが好ましく
、代表的には、ESR測定により、多層膜20の欠陥に由来するg=1.93に現れる信
号のスピン密度が1×1017spins/cm以下、さらには検出下限以下であるこ
とが好ましい。
なお、酸化物絶縁膜23においては、外部から酸化物絶縁膜23に入った酸素が全て酸
化物絶縁膜23の外部に移動せず、酸化物絶縁膜23にとどまる酸素もある。また、酸化
物絶縁膜23に酸素が入ると共に、酸化物絶縁膜23に含まれる酸素が酸化物絶縁膜23
の外部へ移動することで、酸化物絶縁膜23において酸素の移動が生じる場合もある。
酸化物絶縁膜23として酸素を透過する酸化物絶縁膜を形成すると、酸化物絶縁膜23
上に設けられる、酸化物絶縁膜24から脱離する酸素を、酸化物絶縁膜23を介して酸化
物半導体膜18に移動させることができる。
酸化物絶縁膜23に接するように酸化物絶縁膜24が形成されている。酸化物絶縁膜2
4は、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁膜を用いて形成す
る。化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁膜は、加熱により酸
素の一部が脱離する。化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁膜
は、TDS分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms
/cm以上、好ましくは3.0×1020atoms/cm以上である酸化物絶縁膜
である。
酸化物絶縁膜24としては、厚さが30nm以上500nm以下、好ましくは50nm
以上400nm以下の、酸化シリコン、酸化窒化シリコン等を用いることができる。
また、酸化物絶縁膜24は、欠陥量が少ないことが好ましく、代表的には、ESR測定
により、シリコンのダングリングボンドに由来するg=2.001に現れる信号のスピン
密度が1.5×1018spins/cm未満、更には1×1018spins/cm
以下であることが好ましい。なお、酸化物絶縁膜24は、酸化物絶縁膜23と比較して
多層膜20から離れているため、酸化物絶縁膜23より、欠陥密度が多くともよい。
さらに、酸化物絶縁膜24上に、酸素、水素、水、アルカリ金属、アルカリ土類金属等
のブロッキング効果を有する窒化物絶縁膜25を設けることで、多層膜20からの酸素の
外部への拡散と、外部から多層膜20への水素、水等の侵入を防ぐことができる。窒化物
絶縁膜としては、窒化シリコン、窒化酸化シリコン、窒化アルミニウム、窒化酸化アルミ
ニウム等がある。なお、酸素、水素、水、アルカリ金属、アルカリ土類金属等のブロッキ
ング効果を有する窒化物絶縁膜の代わりに、酸素、水素、水等のブロッキング効果を有す
る酸化物絶縁膜を設けてもよい。酸素、水素、水等のブロッキング効果を有する酸化物絶
縁膜としては、酸化アルミニウム、酸化窒化アルミニウム、酸化ガリウム、酸化窒化ガリ
ウム、酸化イットリウム、酸化窒化イットリウム、酸化ハフニウム、酸化窒化ハフニウム
等がある。
次に、図1に示すトランジスタ50の作製方法について、図2を用いて説明する。
図2(A)に示すように、基板11上にゲート電極15を形成し、ゲート電極15上に
ゲート絶縁膜17を形成する。
ここでは、基板11としてガラス基板を用いる。
ゲート電極15の形成方法を以下に示す。はじめに、スパッタリング法、CVD法、蒸
着法等により導電膜を形成し、導電膜上にフォトリソグラフィ工程によりマスクを形成す
る。次に、該マスクを用いて導電膜の一部をエッチングして、ゲート電極15を形成する
。この後、マスクを除去する。
なお、ゲート電極15は、上記形成方法の代わりに、電解メッキ法、印刷法、インクジ
ェット法等で形成してもよい。
ここでは、厚さ100nmのタングステン膜をスパッタリング法により形成する。次に
、フォトリソグラフィ工程によりマスクを形成し、当該マスクを用いてタングステン膜を
ドライエッチングして、ゲート電極15を形成する。
ゲート絶縁膜17は、スパッタリング法、CVD法、蒸着法等で形成する。
ゲート絶縁膜17として酸化シリコン膜、酸化窒化シリコン膜、または窒化酸化シリコ
ン膜を形成する場合、原料ガスとしては、シリコンを含む堆積性気体及び酸化性気体を用
いることが好ましい。シリコンを含む堆積性気体の代表例としては、シラン、ジシラン、
トリシラン、フッ化シラン等がある。酸化性気体としては、酸素、オゾン、一酸化二窒素
、二酸化窒素等がある。
また、ゲート絶縁膜17として酸化ガリウム膜を形成する場合、MOCVD(Meta
l Organic Chemical Vapor Deposition)法を用い
て形成することができる。
次に、図2(B)に示すように、ゲート絶縁膜17上に酸化物半導体膜18及び酸化物
膜19を形成する。
酸化物半導体膜18、及び酸化物膜19の形成方法について、以下に説明する。ゲート
絶縁膜17上に、酸化物半導体膜18となる酸化物半導体膜、及び酸化物膜19となる酸
化物膜を連続的に形成する。次に、酸化物膜上にフォトリソグラフィ工程によりマスクを
形成した後、該マスクを用いて酸化物半導体膜、及び酸化物膜のそれぞれ一部をエッチン
グすることで、図2(B)に示すような、素子分離された酸化物半導体膜18、及び酸化
物膜19を有する多層膜20を形成する。この後、マスクを除去する。
酸化物半導体膜18となる酸化物半導体膜、及び酸化物膜19となる酸化物膜は、スパ
ッタリング法、塗布法、パルスレーザー蒸着法、レーザーアブレーション法等を用いて形
成することができる。
スパッタリング法で該酸化物半導体膜及び酸化物膜を形成する場合、プラズマを発生さ
せるための電源装置は、RF電源装置、AC電源装置、DC電源装置等を適宜用いること
ができる。
スパッタリングガスは、希ガス及び酸素の混合ガス、希ガス(代表的にはアルゴン、酸
素ガス等を適宜用いる。なお、希ガス及び酸素の混合ガスの場合、希ガスに対して酸素の
ガス比を高めることが好ましい。
また、ターゲットは、形成する酸化物半導体膜及び酸化物膜の組成にあわせて、適宜選
択すればよい。
酸化物半導体膜18及び酸化物膜19は、各膜を単に積層するのではなく連続接合(こ
こでは特に伝導帯の下端のエネルギーが各膜の間で連続的に変化する構造)が形成される
ように作製する。すなわち、各膜の界面において、酸化物半導体膜18にとってトラップ
中心や再結合中心のような欠陥準位、あるいはキャリアの流れを阻害するバリアを形成す
るような不純物が存在しないような積層構造とする。仮に、積層された酸化物半導体膜1
8及び酸化物膜19の間に不純物が混在していると、エネルギーバンドの連続性が失われ
、界面でキャリアがトラップされ、あるいは再結合して、消滅してしまう。
連続接合を形成するためには、ロードロック室を備えたマルチチャンバー方式の成膜装
置(スパッタリング装置)を用いて各膜を大気に触れさせることなく連続して積層するこ
とが必要となる。スパッタリング装置における各チャンバーは、酸化物半導体膜にとって
不純物となる水等を可能な限り除去すべくクライオポンプのような吸着式の真空排気ポン
プを用いて高真空排気(5×10−7Pa乃至1×10−4Pa程度まで)することが好
ましい。または、ターボ分子ポンプとコールドトラップを組み合わせて排気系からチャン
バー内に気体、特に炭素または水素を含む気体が逆流しないようにしておくことが好まし
い。
高純度真性または実質的に高純度真性である酸化物半導体膜を得るためには、チャンバ
ー内を高真空排気するのみならずスパッタガスの高純度化も必要である。スパッタガスと
して用いる酸素ガスやアルゴンガスは、露点が−40℃以下、好ましくは−80℃以下、
より好ましくは−100℃以下、より好ましくは−120℃以下にまで高純度化したガス
を用いることで酸化物半導体膜に水分等が取り込まれることを可能な限り防ぐことができ
る。
ここでは、In−Ga−Zn酸化物ターゲット(In:Ga:Zn=1:1:1)を用
いたスパッタリング法により、酸化物半導体膜として厚さ35nmのIn−Ga−Zn酸
化物膜を形成した後、In−Ga−Zn酸化物ターゲット(In:Ga:Zn=1:3:
2)を用いたスパッタリング法により、酸化物膜として厚さ20nmのIn−Ga−Zn
酸化物膜を形成する。次に、酸化物膜上にマスクを形成し、酸化物半導体膜及び酸化物膜
のそれぞれ一部を選択的にエッチングすることで、酸化物半導体膜18及び酸化物膜19
を有する多層膜20を形成する。
こののち、第1の加熱処理を行う。第1の加熱処理によって、酸化物半導体膜18に含
まれる水素、水等を脱離させ、酸化物半導体膜に含まれる水素濃度及び水濃度を低減する
ことができる。該加熱処理の温度は、代表的には、300℃以上400℃以下、好ましく
は320℃以上370℃以下とする。
第1の加熱処理は、電気炉、RTA装置等を用いることができる。RTA装置を用いる
ことで、短時間に限り、基板の歪み点以上の温度で熱処理を行うことができる。そのため
加熱処理時間を短縮することができる。
第1の加熱処理は、窒素、酸素、超乾燥空気(水の含有量が20ppm以下、好ましく
は1ppm以下、好ましくは10ppb以下の空気)、または希ガス(アルゴン、ヘリウ
ム等)の雰囲気下で行えばよい。なお、上記窒素、酸素、超乾燥空気、または希ガスに水
素、水等が含まれないことが好ましい。また、窒素または希ガス雰囲気で加熱処理した後
、酸素または超乾燥空気雰囲気で加熱してもよい。この結果、酸化物半導体膜中に含まれ
る水素、水等を脱離させると共に、酸化物半導体膜中に酸素を供給することができる。こ
の結果、酸化物半導体膜中に含まれる酸素欠損量を低減することができる。
次に、図2(C)に示すように、一対の電極21、22を形成する。
一対の電極21、22の形成方法を以下に示す。はじめに、スパッタリング法、CVD
法、蒸着法等で導電膜を形成する。次に、該導電膜上にフォトリソグラフィ工程によりマ
スクを形成する。次に、該マスクを用いて導電膜をエッチングして、一対の電極21、2
2を形成する。この後、マスクを除去する。
ここでは、厚さ50nmのチタン膜及び厚さ400nmの銅膜を順にスパッタリング法
により積層する。次に、銅膜上にフォトリソグラフィ工程によりマスクを形成し、当該マ
スクを用いてチタン膜及び銅膜をドライエッチングして、一対の電極21、22を形成す
る。
次に、図2(D)に示すように、多層膜20及び一対の電極21、22上に、酸化物絶
縁膜23を形成する。次に、酸化物絶縁膜23上に酸化物絶縁膜24を形成する。
なお、酸化物絶縁膜23を形成した後、大気に曝すことなく、連続的に酸化物絶縁膜2
4を形成することが好ましい。酸化物絶縁膜23を形成した後、大気開放せず、原料ガス
の流量、圧力、高周波電力及び基板温度の一以上を調整して、酸化物絶縁膜24を連続的
に形成することで、酸化物絶縁膜23及び酸化物絶縁膜24における界面の大気成分由来
の不純物濃度を低減することができると共に、酸化物絶縁膜24に含まれる酸素を酸化物
半導体膜18に移動させることが可能であり、酸化物半導体膜18の酸素欠損量を低減す
ることができる。
酸化物絶縁膜23としては、プラズマCVD装置の真空排気された処理室内に載置され
た基板を180℃以上400℃以下、さらに好ましくは200℃以上370℃以下に保持
し、処理室に原料ガスを導入して処理室内における圧力を20Pa以上250Pa以下、
さらに好ましくは100Pa以上250Pa以下とし、処理室内に設けられる電極に高周
波電力を供給する条件により、酸化物絶縁膜23として酸化シリコン膜または酸化窒化シ
リコン膜を形成することができる。
酸化物絶縁膜23の原料ガスとしては、シリコンを含む堆積性気体及び酸化性気体を用
いることが好ましい。シリコンを含む堆積性気体の代表例としては、シラン、ジシラン、
トリシラン、フッ化シラン等がある。酸化性気体としては、酸素、オゾン、一酸化二窒素
、二酸化窒素等がある。
上記条件を用いることで、酸化物絶縁膜23として酸素を透過する酸化物絶縁膜を形成
することができる。また、酸化物膜19及び酸化物絶縁膜23を設けることで、後に形成
する酸化物絶縁膜24の形成工程において、酸化物半導体膜18へのダメージ低減が可能
である。
なお、酸化物絶縁膜23は、プラズマCVD装置の真空排気された処理室内に載置され
た基板を300℃以上400℃以下、さらに好ましくは320℃以上370℃以下に保持
し、処理室に原料ガスを導入して処理室内における圧力を100Pa以上250Pa以下
とし、処理室内に設けられる電極に高周波電力を供給する条件により、酸化物絶縁膜23
として、酸化シリコン膜または酸化窒化シリコン膜を形成することができる。
当該成膜条件において、基板温度を300℃以上400℃以下、さらに好ましくは32
0℃以上370℃以下とすることで、シリコン及び酸素の結合力が強くなる。この結果、
酸化物絶縁膜23として、酸素が透過し、緻密であり、且つ硬い酸化物絶縁膜、代表的に
は、25℃において0.5重量%のフッ酸に対するエッチング速度が10nm/分以下、
好ましくは8nm/分以下である酸化シリコン膜または酸化窒化シリコン膜を形成するこ
とができる。
また、当該工程において、加熱をしながら酸化物絶縁膜23を形成するため、当該工程
において酸化物半導体膜18に含まれる水素、水等を脱離させることができる。酸化物半
導体膜18に含まれる水素は、プラズマ中で発生した酸素ラジカルと結合し、水となる。
酸化物絶縁膜23の成膜工程において基板が加熱されているため、酸素及び水素の結合に
より生成された水は酸化物半導体膜から脱離する。即ち、プラズマCVD法によって酸化
物絶縁膜23を形成することで、酸化物半導体膜に含まれる水、水素の含有量を低減する
ことができる。
さらには、処理室の圧力を100Pa以上250Pa以下とすることで、酸化物絶縁膜
23に含まれる水の含有量が少なくなるため、トランジスタ50の電気特性のばらつきを
低減すると共に、しきい値電圧の変動を抑制することができる。また、処理室の圧力を1
00Pa以上250Pa以下とすることで、酸化物絶縁膜23を成膜する際に、酸化物半
導体膜18を含む多層膜20へのダメージを低減することが可能であり、酸化物半導体膜
18に含まれる酸素欠損量を低減することができる。特に、酸化物絶縁膜23または後に
形成される酸化物絶縁膜24の成膜温度を高くする、代表的には220℃より高い温度と
することで、酸化物半導体膜18に含まれる酸素の一部が脱離し、酸素欠損が形成されや
すい。また、トランジスタの信頼性を高めるため、後に形成する酸化物絶縁膜24の欠陥
量を低減するための成膜条件を用いると、酸素脱離量が低減しやすい。これらの結果、酸
化物半導体膜18の酸素欠損を低減することが困難な場合がある。しかしながら、処理室
の圧力を100Pa以上250Pa以下とし、酸化物絶縁膜23の成膜時における酸化物
半導体膜18へのダメージを低減することで、酸化物絶縁膜24からの少ない酸素脱離量
でも酸化物半導体膜18中の酸素欠損を低減することが可能である。
なお、シリコンを含む堆積性気体に対する酸化性気体量を100倍以上とすることで、
酸化物絶縁膜23に含まれる水素含有量を低減することが可能である。この結果、酸化物
半導体膜18に混入する水素量を低減できるため、トランジスタのしきい値電圧のマイナ
スシフトを抑制することができる。
ここでは、酸化物絶縁膜23として、流量30sccmのシラン及び流量4000sc
cmの一酸化二窒素を原料ガスとし、処理室の圧力を200Pa、基板温度を220℃と
し、27.12MHzの高周波電源を用いて150Wの高周波電力を平行平板電極に供給
したプラズマCVD法により、厚さ50nmの酸化窒化シリコン膜を形成する。当該条件
により、酸素が透過する酸化窒化シリコン膜を形成することができる。なお、本実施の形
態においては、27.12MHzの高周波電源を用いて酸化物絶縁膜23を形成する方法
について例示したが、これに限定されず、例えば13.56MHzの高周波電源を用いて
酸化物絶縁膜23を形成してもよい。
酸化物絶縁膜24としては、プラズマCVD装置の真空排気された処理室内に載置され
た基板を180℃以上280℃以下、さらに好ましくは200℃以上240℃以下に保持
し、処理室に原料ガスを導入して処理室内における圧力を100Pa以上250Pa以下
、さらに好ましくは100Pa以上200Pa以下とし、処理室内に設けられる電極に0
.17W/cm以上0.5W/cm以下、さらに好ましくは0.25W/cm以上
0.35W/cm以下の高周波電力を供給する条件により、酸化シリコン膜または酸化
窒化シリコン膜を形成する。
酸化物絶縁膜24の原料ガスとしては、シリコンを含む堆積性気体及び酸化性気体を用
いることが好ましい。シリコンを含む堆積性気体の代表例としては、シラン、ジシラン、
トリシラン、フッ化シラン等がある。酸化性気体としては、酸素、オゾン、一酸化二窒素
、二酸化窒素等がある。
酸化物絶縁膜24の成膜条件として、上記圧力の処理室において上記パワー密度の高周
波電力を供給することで、プラズマ中で原料ガスの分解効率が高まり、酸素ラジカルが増
加し、原料ガスの酸化が進むため、酸化物絶縁膜24中における酸素含有量が化学量論的
組成よりも多くなる。一方、基板温度が、上記温度で形成された膜では、シリコンと酸素
の結合力が弱いため、後の工程の加熱処理により膜中の酸素の一部が脱離する。この結果
、化学量論的組成を満たす酸素よりも多くの酸素を含み、加熱により酸素の一部が脱離す
る酸化物絶縁膜を形成することができる。また、多層膜20上に酸化物絶縁膜23が設け
られている。このため、酸化物絶縁膜24の形成工程において、酸化物絶縁膜23が多層
膜20の保護膜となる。また、酸化物膜19が酸化物半導体膜18の保護膜となる。これ
らの結果、酸化物半導体膜18へのダメージを低減しつつ、パワー密度の高い高周波電力
を用いて酸化物絶縁膜24を形成することができる。
なお、酸化物絶縁膜24の成膜条件において、酸化性気体に対するシリコンを含む堆積
性気体の流量を増加することで、酸化物絶縁膜24の欠陥量を低減することが可能である
。代表的には、ESR測定により、シリコンのダングリングボンドに由来するg=2.0
01に現れる信号のスピン密度が6×1017spins/cm未満、好ましくは3×
1017spins/cm以下、好ましくは1.5×1017spins/cm以下
である欠陥量の少ない酸化物絶縁膜を形成することができる。この結果トランジスタの信
頼性を高めることができる。
ここでは、酸化物絶縁膜24として、流量200sccmのシラン及び流量4000s
ccmの一酸化二窒素を原料ガスとし、処理室の圧力を200Pa、基板温度を220℃
とし、27.12MHzの高周波電源を用いて1500Wの高周波電力を平行平板電極に
供給したプラズマCVD法により、厚さ400nmの酸化窒化シリコン膜を形成する。な
お、プラズマCVD装置は電極面積が6000cmである平行平板型のプラズマCVD
装置であり、供給した電力を単位面積あたりの電力(電力密度)に換算すると0.25W
/cmである。なお、本実施の形態においては、27.12MHzの高周波電源を用い
て酸化物絶縁膜24を形成する方法について例示したが、これに限定されず、例えば13
.56MHzの高周波電源を用いて酸化物絶縁膜24を形成してもよい。
次に、加熱処理を行う。該加熱処理の温度は、代表的には、150℃以上300℃以下
、好ましくは200℃以上250℃以下とする。
該加熱処理は、電気炉、RTA装置等を用いることができる。RTA装置を用いること
で、短時間に限り、基板の歪み点以上の温度で熱処理を行うことができる。そのため加熱
処理時間を短縮することができる。
加熱処理は、窒素、酸素、超乾燥空気(水の含有量が20ppm以下、好ましくは1p
pm以下、好ましくは10ppb以下の空気)、または希ガス(アルゴン、ヘリウム等)
の雰囲気下で行えばよい。なお、上記窒素、酸素、超乾燥空気、または希ガスに水素、水
等が含まれないことが好ましい。
当該加熱処理により、酸化物絶縁膜24に含まれる酸素の一部を酸化物半導体膜18に
移動させ、酸化物半導体膜18に含まれる酸素欠損量を低減することができる。
また、酸化物絶縁膜23及び酸化物絶縁膜24に水、水素等が含まる場合、水、水素等
をブロッキングする機能を有する窒化物絶縁膜25を後に形成し、加熱処理を行うと、酸
化物絶縁膜23及び酸化物絶縁膜24に含まれる水、水素等が、酸化物半導体膜18に移
動し、酸化物半導体膜18に欠陥が生じてしまう。しかしながら、当該加熱により、酸化
物絶縁膜23及び酸化物絶縁膜24に含まれる水、水素等を脱離させることが可能であり
、トランジスタ50の電気特性のばらつきを低減すると共に、しきい値電圧の変動を抑制
することができる。
なお、加熱しながら酸化物絶縁膜24を、酸化物絶縁膜23上に形成することで、酸化
物半導体膜18に酸素を移動させ、酸化物半導体膜18に含まれる酸素欠損を低減するこ
とが可能であるため、当該加熱処理を行わなくともよい。
また、該加熱処理温度を150℃以上300℃以下、好ましくは200℃以上250℃
以下とすることで、銅、アルミニウム、金、銀、モリブデン等の拡散、及び酸化物半導体
膜への混入を抑制することができる。
ここでは、窒素及び酸素雰囲気で、220℃、1時間の加熱処理を行う。
また、一対の電極21、22を形成する際、導電膜のエッチングによって、多層膜20
はダメージを受け、多層膜20のバックチャネル(多層膜20において、ゲート電極15
と対向する面と反対側の面)側に酸素欠損が生じる。しかし、酸化物絶縁膜24に化学量
論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁膜を適用することで、加熱処理
によって当該バックチャネル側に生じた酸素欠損を修復することができる。これにより、
多層膜20に含まれる欠陥を低減することができるため、トランジスタ50の信頼性を向
上させることができる。
次に、スパッタリング法、CVD法等により、窒化物絶縁膜25を形成する。
なお、窒化物絶縁膜25をプラズマCVD法で形成する場合、プラズマCVD装置の真
空排気された処理室内に載置された基板を300℃以上400℃以下、さらに好ましくは
320℃以上370℃以下にとすることで、緻密な窒化物絶縁膜を形成できるため好まし
い。
窒化物絶縁膜25としてプラズマCVD法により窒化シリコン膜を形成する場合、シリ
コンを含む堆積性気体、窒素、及びアンモニアを原料ガスとして用いことが好ましい。原
料ガスとして、窒素と比較して少量のアンモニアを用いることで、プラズマ中でアンモニ
アが解離し、活性種が発生する。当該活性種が、シリコンを含む堆積性気体に含まれるシ
リコン及び水素の結合、及び窒素の三重結合を切断する。この結果、シリコン及び窒素の
結合が促進され、シリコン及び水素の結合が少なく、欠陥が少なく、緻密な窒化シリコン
膜を形成することができる。一方、原料ガスにおいて、窒素に対するアンモニアの量が多
いと、シリコンを含む堆積性気体及び窒素それぞれの分解が進まず、シリコン及び水素結
合が残存してしまい、欠陥が増大した、且つ粗な窒化シリコン膜が形成されてしまう。こ
れらのため、原料ガスにおいて、アンモニアに対する窒素の流量比を5以上50以下、好
ましくは10以上50以下とすることが好ましい。
ここでは、プラズマCVD装置の処理室に、流量50sccmのシラン、流量5000
sccmの窒素、及び流量100sccmのアンモニアを原料ガスとし、処理室の圧力を
100Pa、基板温度を350℃とし、27.12MHzの高周波電源を用いて1000
Wの高周波電力を平行平板電極に供給したプラズマCVD法により、厚さ50nmの窒化
シリコン膜を形成する。なお、プラズマCVD装置は電極面積が6000cmである平
行平板型のプラズマCVD装置であり、供給した電力を単位面積あたりの電力(電力密度
)に換算すると1.7×10−1W/cmである。
以上の工程により、酸化物絶縁膜23、酸化物絶縁膜24、及び窒化物絶縁膜25で構
成される保護膜26を形成することができる。
次に、加熱処理を行ってもよい。該加熱処理の温度は、代表的には、150℃以上30
0℃以下、好ましくは200℃以上250℃以下とする。
以上の工程により、トランジスタ50を作製することができる。
本実施の形態では、トランジスタの作製工程において、第1の加熱処理及び第2の加熱
処理を行っているが、酸化物半導体膜を有する多層膜を形成することで、酸化物半導体膜
に含まれる不純物濃度を低減することが可能であり、且つ欠陥準位におけるキャリアのト
ラップを妨げることが可能である。この結果、それぞれの加熱処理の温度を400℃以下
としても、高温で加熱処理したトランジスタと、しきい値電圧の変動量が同等であるトラ
ンジスタを作製することができる。この結果、半導体装置のコスト削減が可能である。
また、チャネル領域として機能する酸化物半導体膜に重畳して、化学量論的組成を満た
す酸素よりも多くの酸素を含む酸化物絶縁膜を形成することで、当該酸化物絶縁膜の酸素
を酸化物半導体膜に移動させることができる。この結果、酸化物半導体膜に含まれる酸素
欠損の含有量を低減することができる。
特に、チャネル領域として機能する酸化物半導体膜と、化学量論的組成を満たす酸素よ
りも多くの酸素を含む酸化物絶縁膜との間に酸素を透過する酸化物絶縁膜を形成すること
で、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁膜を形成する際に、
当該酸化物半導体膜にダメージが入ることを抑制できる。この結果、酸化物半導体膜に含
まれる酸素欠損量を低減することができる。
そして、酸化物半導体膜上に酸化物膜を形成することで、化学量論的組成を満たす酸素
よりも多くの酸素を含む酸化物絶縁膜を形成する際に、当該酸化物半導体膜にダメージが
入ることをさらに抑制できる。加えて、酸化物膜を形成することで、当該酸化物半導体膜
上に形成させる絶縁膜、例えば酸化物絶縁膜の構成元素が、当該酸化物半導体膜に混入す
ることを抑制できる。
上記より、酸化物半導体膜を用いた半導体装置において、欠陥量が低減された半導体装
置を得ることができる。また、酸化物半導体膜を用いた半導体装置において電気特性が向
上した半導体装置を得ることができる。
<トランジスタのバンド構造>
次に、多層膜20のバンド構造について、図3を用いて説明する。
ここでは、例として、酸化物半導体膜18としてエネルギーギャップが3.15eVで
あるIn−Ga−Zn酸化物を用い、酸化物膜19としてエネルギーギャップが3.5e
VであるIn−Ga−Zn酸化物を用いる。エネルギーギャップは、分光エリプソメータ
(HORIBA JOBIN YVON社 UT−300)を用いて測定することができ
る。
酸化物半導体膜18及び酸化物膜19の真空準位と価電子帯上端のエネルギー差(イオ
ン化ポテンシャルともいう。)は、それぞれ8eV及び8.2eVである。なお、真空準
位と価電子帯上端のエネルギー差は、紫外線光電子分光分析(UPS:Ultravio
let Photoelectron Spectroscopy)装置(PHI社 V
ersaProbe)を用いて測定できる。
したがって、酸化物半導体膜18及び酸化物膜19の真空準位と伝導帯下端のエネルギ
ー差(電子親和力ともいう。)は、それぞれ4.85eV及び4.7eVである。
図3(A)は、多層膜20のバンド構造の一部を模式的に示している。ここでは、多層
膜20に酸化シリコン膜を接して設けた場合について説明する。なお、図3(A)に表す
EcI1は酸化シリコン膜の伝導帯下端のエネルギーを示し、EcS1は酸化物半導体膜
18の伝導帯下端のエネルギーを示し、EcS2は酸化物膜19の伝導帯下端のエネルギ
ーを示し、EcI2は酸化シリコン膜の伝導帯下端のエネルギーを示す。また、EcI1
は、図1(B)において、ゲート絶縁膜17に相当し、EcI2は、図1(B)において
、酸化物絶縁膜23に相当する。
図3(A)に示すように、酸化物半導体膜18及び酸化物膜19において、伝導帯下端
のエネルギーは障壁が無くなだらかに変化する。換言すると、連続的に変化するともいう
ことができる。これは、多層膜20は、酸化物半導体膜18と共通の元素を含み、酸化物
半導体膜18及び酸化物膜19の間で、酸素が相互に移動することで混合層が形成される
ためであるということができる。
図3(A)より、多層膜20の酸化物半導体膜18がウェル(井戸)となり、多層膜2
0を用いたトランジスタにおいて、チャネル領域が酸化物半導体膜18に形成されること
がわかる。なお、多層膜20は、伝導帯下端のエネルギーが連続的に変化しているため、
酸化物半導体膜18と酸化物膜19とが連続接合している、ともいえる。
なお、図3(A)に示すように、酸化物膜19と、酸化物絶縁膜23との界面近傍には
、酸化物絶縁膜23の構成元素であるシリコンまたは炭素、一対の電極21、22の構成
元素である銅、アルミニウム、金、銀、モリブデン等の不純物や欠陥に起因したトラップ
準位が形成され得るものの、酸化物膜19が設けられることにより、酸化物半導体膜18
と該トラップ準位とを遠ざけることができる。ただし、EcS1とEcS2とのエネルギ
ー差が小さい場合、酸化物半導体膜18の電子が該エネルギーを超えてトラップ準位に達
することがある。トラップ準位に電子が捕獲されることで、マイナスの固定電荷となり、
トランジスタのしきい値電圧はプラス方向にシフトしてしまう。したがって、EcS1と
EcS2とのエネルギー差を、0.1eV以上、好ましくは0.15eV以上とすると、
トランジスタのしきい値電圧の変動が低減され、安定した電気特性となるため好適である
また、図3(B)は、多層膜20のバンド構造の一部を模式的に示し、図3(A)に示
すバンド構造の変形例である。ここでは、多層膜20に酸化シリコン膜を接して設けた場
合について説明する。なお、図3(B)に表すEcI1は酸化シリコン膜の伝導帯下端の
エネルギーを示し、EcS1は酸化物半導体膜18の伝導帯下端のエネルギーを示し、E
cI2は酸化シリコン膜の伝導帯下端のエネルギーを示す。また、EcI1は、図1(B
)において、ゲート絶縁膜17に相当し、EcI2は、図1(B)において、酸化物絶縁
膜23に相当する。
図1(B)に示すトランジスタにおいて、一対の電極21、22の形成時に多層膜20
の上方、すなわち酸化物膜19がエッチングされる場合がある。一方、酸化物半導体膜1
8の上面は、酸化物膜19の成膜時に酸化物半導体膜18と酸化物膜19の混合層が形成
される場合がある。
例えば、酸化物半導体膜18が、In:Ga:Zn=1:1:1[原子数比]のIn−
Ga−Zn酸化物、またはIn:Ga:Zn=3:1:2[原子数比]のIn−Ga−Z
n酸化物をスパッタリングターゲットに用いて形成された酸化物半導体膜であり、酸化物
膜19が、In:Ga:Zn=1:3:2[原子数比]のIn−Ga−Zn酸化物、また
はIn:Ga:Zn=1:6:4[原子数比]のIn−Ga−Zn酸化物をスパッタリン
グターゲットに用いて形成された酸化物膜である場合、酸化物半導体膜18よりも酸化物
膜19のGaの含有量が多いため、酸化物半導体膜18の上面には、GaOx層または酸
化物半導体膜18よりもGaを多く含む混合層が形成されうる。
したがって、酸化物膜19がエッチングされた場合においても、EcS1のEcI2側
の伝導帯下端のエネルギーが高くなり、図3(B)に示すバンド構造のようになる場合が
ある。
図3(B)に示すバンド構造のようになる場合、チャネル領域の断面観察時において、
多層膜20は、酸化物半導体膜18のみと見かけ上観察される場合がある。しかしながら
、実質的には、酸化物半導体膜18上には、酸化物半導体膜18よりもGaを多く含む混
合層が形成されているため、該混合層を1.5層として、捉えることができる。なお、該
混合層は、例えば、EDX分析等によって、多層膜20に含有する元素を測定した場合、
酸化物半導体膜18の上方の組成を分析することで確認することができる。例えば、酸化
物半導体膜18の上方の組成が、酸化物半導体膜18中の組成よりもGaの含有量が多い
構成となることで確認することができる。
<変形例1、一対の電極について>
本実施の形態に示すトランジスタ50に設けられる一対の電極21、22として、タン
グステン、チタン、アルミニウム、銅、モリブデン、クロム、またはタンタル単体若しく
は合金等の酸素と結合しやすい導電材料を用いることが好ましい。この結果、多層膜20
に含まれる酸素と一対の電極21、22に含まれる導電材料とが結合し、多層膜20にお
いて、酸素欠損領域が形成される。また、多層膜20に一対の電極21、22を形成する
導電材料の構成元素の一部が混入する場合もある。これらの結果、多層膜20において、
一対の電極21、22と接する領域近傍に、低抵抗領域が形成される。低抵抗領域は、一
対の電極21、22に接し、且つゲート絶縁膜17と、一対の電極21、22の間に形成
される。低抵抗領域は、導電性が高いため、多層膜20と一対の電極21、22との接触
抵抗を低減することが可能であり、トランジスタのオン電流を増大させることが可能であ
る。
また、一対の電極21、22を、上記酸素と結合しやすい導電材料と、窒化チタン、窒
化タンタル、ルテニウム等の酸素と結合しにくい導電材料との積層構造としてもよい。こ
のような積層構造とすることで、一対の電極21、22と酸化物絶縁膜23との界面にお
いて、一対の電極21、22の酸化を防ぐことが可能であり、一対の電極21、22の高
抵抗化を抑制することが可能である。
<変形例2、保護膜について>
本実施の形態に示すトランジスタ50において、図4に示すように、トランジスタ50
上に、酸化物絶縁膜24及び窒化物絶縁膜25が積層される保護膜26aを設けることが
できる。図4に示すトランジスタは、酸化物半導体膜18上に酸化物膜19を有するため
、当該酸化物膜19が、酸化物絶縁膜24を形成する際の保護膜として機能する。この結
果、酸化物絶縁膜24を形成する際、酸化物半導体膜18がプラズマに曝されず、比較的
高い電力を用いるプラズマCVD法で酸化物絶縁膜24を形成する際に生じるプラズマダ
メージを低減できる。
また、酸化物絶縁膜24に含まれる酸素を、多層膜20に直接移動させることが可能で
あるため、酸化物半導体膜18への酸素供給量を増加させることが可能である。この結果
、酸化物半導体膜18の酸素欠損量をさらに低減することが可能である。
なお、本実施の形態では、多層膜を酸化物半導体膜18及び酸化物膜19の積層膜とし
たが、ゲート絶縁膜17及び酸化物半導体膜18の間に酸化物膜をさらに設けることがで
きる。ゲート絶縁膜17及び酸化物半導体膜18の間に酸化物膜を設けることで、ゲート
絶縁膜17と多層膜との界面近傍におけるシリコンや炭素の濃度、酸化物半導体膜18に
おけるシリコンや炭素の濃度を低減することができる。
なお、本実施の形態に示す構成及び方法などは、他の実施の形態及び実施例に示す構成
及び方法などと適宜組み合わせて用いることができる。
(実施の形態2)
本実施の形態では、実施の形態と異なる構造のトランジスタについて、図5を用いて説
明する。
本実施の形態では、実施の形態1と比較して、酸化物半導体膜の欠陥量をさらに低減す
ることが可能なトランジスタを有する半導体装置について図面を参照して説明する。本実
施の形態で説明するトランジスタは、実施の形態1と比較して、多層膜20のバックチャ
ネル側が保護膜で覆われており、一対の電極を形成するためのエッチング処理で生じるプ
ラズマに曝されていない点が異なる。
図5に、半導体装置が有するトランジスタ90の上面図及び断面図を示す。図5(A)
はトランジスタ90の上面図であり、図5(B)は、図5(A)の一点鎖線A−B間の断
面図であり、図5(C)は、図5(A)の一点鎖線C−D間の断面図である。なお、図5
(A)では、明瞭化のため、基板11、トランジスタ90の構成要素の一部(例えば、ゲ
ート絶縁膜17)、酸化物絶縁膜23、酸化物絶縁膜24、窒化物絶縁膜25などを省略
している。
図5に示すトランジスタ90は、基板11上に設けられるゲート電極15を有する。ま
た、基板11及びゲート電極15上に形成されるゲート絶縁膜17と、ゲート絶縁膜17
を介して、ゲート電極15と重なる多層膜20を有する。また、ゲート絶縁膜17及び多
層膜20上に、酸化物絶縁膜23、酸化物絶縁膜24、及び窒化物絶縁膜25で構成され
る保護膜26と、保護膜26上に形成され、保護膜26の開口において多層膜20に接続
する一対の電極21b、22bとを有する。
次に、トランジスタ90の作製方法を説明する。
実施の形態1と同様に、基板11上にゲート電極15を形成し、基板11及びゲート電
極15上にゲート絶縁膜17を形成する。次に、ゲート絶縁膜17上に多層膜20を形成
する。この後、第1の加熱処理を行い、酸化物半導体膜に含まれる不純物を脱離させる。
次に、実施の形態1と同様に、ゲート絶縁膜17及び多層膜20上に酸化物絶縁膜23
、酸化物絶縁膜24、及び窒化物絶縁膜25を形成する。なお、酸化物絶縁膜24を形成
した後、第2の加熱処理を行い、酸化物絶縁膜24に含まれる酸素の一部を酸化物半導体
膜18に供給する。
次に、酸化物絶縁膜23、酸化物絶縁膜24、及び窒化物絶縁膜25のそれぞれ一部を
エッチングして、多層膜20の一部を露出する開口部を形成する。この後、多層膜20に
接する一対の電極21b、22bを、実施の形態1と同様に形成する。
本実施の形態においては、一対の電極21b、22bをエッチングする際、多層膜20
が保護膜26に覆われているため、一対の電極21b、22bを形成するエッチングによ
って、多層膜20、特に多層膜20のバックチャネル領域はダメージを受けない。さらに
、酸化物絶縁膜24は、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁
膜で形成される。このため、酸化物絶縁膜24に含まれる酸素の一部を酸化物半導体膜1
8に移動させ、酸化物半導体膜18に含まれる酸素欠損量を低減することができる。
以上の工程により、多層膜20に含まれる欠陥を低減することが可能であり、トランジ
スタ50の信頼性を向上させることができる。
なお、本実施の形態に示す構成及び方法などは、他の実施の形態及び実施例に示す構成
及び方法などと適宜組み合わせて用いることができる。
(実施の形態3)
本実施の形態では、実施の形態1及び実施の形態2と異なる構造のトランジスタについ
て、図6を用いて説明する。
本実施の形態では、実施の形態1及び実施の形態2と比較して、酸化物半導体膜の欠陥
量をさらに低減することが可能なトランジスタを有する半導体装置について図面を参照し
て説明する。本実施の形態で説明するトランジスタは、実施の形態2と同様に、多層膜2
0のバックチャネル側が保護膜で覆われており、一対の電極を形成するためのエッチング
処理で生じるプラズマに曝されていない点が、実施の形態1乃至実施の形態4と異なる。
図6に、半導体装置が有するトランジスタ100の上面図及び断面図を示す。図6に示
すトランジスタ100は、チャネル保護型のトランジスタである。図6(A)はトランジ
スタ100の上面図であり、図6(B)は、図6(A)の一点鎖線A−B間の断面図であ
り、図6(C)は、図6(A)の一点鎖線C−D間の断面図である。なお、図6(A)で
は、明瞭化のため、基板11、トランジスタ100の構成要素の一部(例えば、ゲート絶
縁膜17など)を省略している。
図6に示すトランジスタ100は、基板11上に設けられるゲート電極15を有する。
また、基板11及びゲート電極15上に形成されるゲート絶縁膜17と、ゲート絶縁膜1
7を介して、ゲート電極15と重なる多層膜20とを有する。また、ゲート絶縁膜17及
び多層膜20上に、酸化物絶縁膜23a、酸化物絶縁膜24a、及び窒化物絶縁膜25a
で構成される保護膜26aと、ゲート絶縁膜17、多層膜20、及び保護膜26a上に形
成される一対の電極21c、22cとを有する。
次に、トランジスタ100の作製方法を説明する。
実施の形態1と同様に、基板11上にゲート電極15を形成し、基板11及びゲート電
極15上にゲート絶縁膜17を形成する。次に、ゲート絶縁膜17上に多層膜20を形成
する。この後、第1の加熱処理を行い、酸化物半導体膜に含まれる不純物を脱離させる。
次に、実施の形態1と同様に、ゲート絶縁膜17及び多層膜20上に、酸化物絶縁膜2
3、酸化物絶縁膜24、及び窒化物絶縁膜25を形成する。なお、酸化物絶縁膜24を形
成した後、第2の加熱処理を行い、酸化物絶縁膜24に含まれる酸素の一部を酸化物半導
体膜18に供給する。
次に、酸化物絶縁膜23、酸化物絶縁膜24、及び窒化物絶縁膜25のそれぞれ一部を
エッチングして、酸化物絶縁膜23a、酸化物絶縁膜24a、及び窒化物絶縁膜25aで
形成される保護膜26aを形成する。
次に、多層膜20に接する一対の電極21c、22cを、実施の形態1と同様に形成す
る。
本実施の形態においては、一対の電極21c、22cをエッチングする際、多層膜20
が保護膜26aに覆われているため、一対の電極21c、22cを形成するエッチングに
よって、多層膜20はダメージを受けない。さらに、酸化物絶縁膜24aは、化学量論的
組成を満たす酸素よりも多くの酸素を含む酸化物絶縁膜で形成される。このため、酸化物
絶縁膜24aに含まれる酸素の一部を酸化物半導体膜18に移動させ、酸化物半導体膜1
8に含まれる酸素欠損量を低減することができる。
なお、図6においては、保護膜26cとして、窒化物絶縁膜25aが形成されるが、酸
化物絶縁膜23a及び酸化物絶縁膜24aの積層構造であってもよい。この場合、一対の
電極21c、22cを形成した後、窒化物絶縁膜25aを形成することが好ましい。この
結果、外部から多層膜20への水素、水等の侵入を防ぐことができる。
以上の工程により、多層膜20に含まれる欠陥を低減することが可能であり、トランジ
スタ50の信頼性を向上させることができる。
なお、本実施の形態に示す構成及び方法などは、他の実施の形態及び実施例に示す構成
及び方法などと適宜組み合わせて用いることができる。
(実施の形態4)
上記実施の形態で開示された金属膜、酸化物半導体膜、無機絶縁膜など様々な膜はスパ
ッタ法やプラズマCVD(Chemical Vapor Deposition)法に
より形成することができるが、他の方法、例えば、熱CVD法により形成してもよい。熱
CVD法の例としてMOCVD(Metal Organic Chemical Va
por Deposition)法やALD(Atomic Layer Deposi
tion)法を使っても良い。
熱CVD法は、プラズマを使わない成膜方法のため、プラズマダメージにより欠陥が生
成されることが無いという利点を有する。
熱CVD法は、原料ガスと酸化剤を同時にチャンバー内に送り、チャンバー内を大気圧
または減圧下とし、基板近傍または基板上で反応させて基板上に堆積させることで成膜を
行ってもよい。
また、ALD法は、チャンバー内を大気圧または減圧下とし、反応のための原料ガスが
順次にチャンバーに導入され、そのガス導入の順序を繰り返すことで成膜を行ってもよい
。例えば、それぞれのスイッチングバルブ(高速バルブとも呼ぶ)を切り替えて2種類以
上の原料ガスを順番にチャンバーに供給し、複数種の原料ガスが混ざらないように第1の
原料ガスと同時またはその後に不活性ガス(アルゴン、或いは窒素など)などを導入し、
第2の原料ガスを導入する。なお、同時に不活性ガスを導入する場合には、不活性ガスは
キャリアガスとなり、また、第2の原料ガスの導入時にも同時に不活性ガスを導入しても
よい。また、不活性ガスを導入する代わりに真空排気によって第1の原料ガスを排出した
後、第2の原料ガスを導入してもよい。第1の原料ガスが基板の表面に吸着して第1の層
を成膜し、後から導入される第2の原料ガスと反応して、第2の層が第1の層上に積層さ
れて薄膜が形成される。このガス導入順序を制御しつつ所望の厚さになるまで複数回繰り
返すことで、段差被覆性に優れた薄膜を形成することができる。薄膜の厚さは、ガス導入
順序を繰り返す回数によって調節することができるため、精密な膜厚調節が可能であり、
微細なFETを作製する場合に適している。
MOCVD法やALD法などの熱CVD法は、これまでに記載した実施形態に開示され
た金属膜、酸化物半導体膜、無機絶縁膜など様々な膜を形成することができ、例えば、I
nGaZnO膜を成膜する場合には、トリメチルインジウム、トリメチルガリウム、及び
ジメチル亜鉛を用いる。なお、トリメチルインジウムの化学式は、In(CHであ
る。また、トリメチルガリウムの化学式は、Ga(CHである。また、ジメチル亜
鉛の化学式は、Zn(CHである。また、これらの組み合わせに限定されず、トリ
メチルガリウムに代えてトリエチルガリウム(化学式Ga(C)を用いること
もでき、ジメチル亜鉛に代えてジエチル亜鉛(化学式Zn(C)を用いること
もできる。
例えば、ALDを利用する成膜装置により酸化ハフニウム膜を形成する場合には、溶媒
とハフニウム前駆体化合物を含む液体(ハフニウムアルコキシド溶液、代表的にはテトラ
キスジメチルアミドハフニウム(TDMAH))を気化させた原料ガスと、酸化剤として
オゾン(O3)の2種類のガスを用いる。なお、テトラキスジメチルアミドハフニウムの
化学式はHf[N(CHである。また、他の材料液としては、テトラキス(エ
チルメチルアミド)ハフニウムなどがある。
例えば、ALDを利用する成膜装置により酸化アルミニウム膜を形成する場合には、溶
媒とアルミニウム前駆体化合物を含む液体(トリメチルアルミニウム(TMA)など)を
気化させた原料ガスと、酸化剤としてHOの2種類のガスを用いる。なお、トリメチル
アルミニウムの化学式はAl(CHである。また、他の材料液としては、トリス(
ジメチルアミド)アルミニウム、トリイソブチルアルミニウム、アルミニウムトリス(2
,2,6,6−テトラメチル−3,5−ヘプタンジオナート)などがある。
例えば、ALDを利用する成膜装置により酸化シリコン膜を形成する場合には、ヘキサ
クロロジシランを被形成面に吸着させ、吸着物に含まれる塩素を除去し、酸化性ガス(O
、一酸化二窒素)のラジカルを供給して吸着物と反応させる。
例えば、ALDを利用する成膜装置によりタングステン膜を成膜する場合には、WF
ガスとBガスを順次繰り返し導入して初期タングステン膜を形成し、その後、WF
ガスとHガスを同時に導入してタングステン膜を形成する。なお、Bガスに代
えてSiHガスを用いてもよい。
例えば、ALDを利用する成膜装置により酸化物半導体膜、例えばIn−Ga−Zn−
O膜を成膜する場合には、In(CHガスとOガスを順次繰り返し導入してIn
−O層を形成し、その後、Ga(CHガスとOガスを同時に導入してGaO層を
形成し、更にその後Zn(CHとOガスを同時に導入してZnO層を形成する。
なお、これらの層の順番はこの例に限らない。また、これらのガスを混ぜてIn−Ga−
O層やIn−Zn−O層、Ga−Zn−O層などの混合化合物層を形成しても良い。なお
、Oガスに変えてAr等の不活性ガスでバブリングして得られたHOガスを用いても
良いが、Hを含まないOガスを用いる方が好ましい。また、In(CHガスにか
えて、In(Cガスを用いても良い。また、Ga(CHガスにかえて、
Ga(Cガスを用いても良い。また、In(CHガスにかえて、In(
ガスを用いても良い。また、Zn(CHガスを用いても良い。
(実施の形態5)
本実施の形態では、本発明の一態様である半導体装置について、図面を用いて説明する
。なお、本実施の形態では、表示装置を例にして本発明の一態様である半導体装置を説明
する。
図7(A)に、半導体装置の一例を示す。図7(A)に示す半導体装置は、画素部10
1と、走査線駆動回路104と、信号線駆動回路106と、各々が平行または略平行に配
設され、且つ走査線駆動回路104によって電位が制御されるm本の走査線107と、各
々が平行または略平行に配設され、且つ信号線駆動回路106によって電位が制御される
n本の信号線109と、を有する。さらに、画素部101はマトリクス状に配設された複
数の画素301を有する。また、走査線107に沿って、各々が平行または略平行に配設
された容量線115を有する。なお、容量線115は、信号線109に沿って、各々が平
行または略平行に配設されていてもよい。また、走査線駆動回路104及び信号線駆動回
路106をまとめて駆動回路部という場合がある。
各走査線107は、画素部101においてm行n列に配設された画素301のうち、い
ずれかの行に配設されたn個の画素301と電気的に接続される。また、各信号線109
は、m行n列に配設された画素301のうち、いずれかの列に配設されたm個の画素30
1に電気的と接続される。m、nは、ともに1以上の整数である。また、各容量線115
は、m行n列に配設された画素301のうち、いずれかの行に配設されたn個の画素30
1と電気的に接続される。なお、容量線115が、信号線109に沿って、各々が平行ま
たは略平行に配設されている場合は、m行n列に配設された画素301のうち、いずれか
の列に配設されたm個の画素301に電気的と接続される。
図7(B)及び図7(C)は、図7(A)に示す表示装置の画素301に用いることが
できる回路構成を示している。
図7(B)に示す画素301は、液晶素子132と、トランジスタ131_1と、容量
素子133_1と、を有する。
液晶素子132の一対の電極の一方の電位は、画素301の仕様に応じて適宜設定され
る。液晶素子132は、書き込まれるデータにより配向状態が設定される。なお、複数の
画素301のそれぞれが有する液晶素子132の一対の電極の一方に共通の電位(コモン
電位)を与えてもよい。また、各行の画素301毎の液晶素子132の一対の電極の一方
に異なる電位を与えてもよい。
例えば、液晶素子132を備える表示装置の駆動方法としては、TNモード、STNモ
ード、VAモード、ASM(Axially Symmetric Aligned M
icro−cell)モード、OCB(Optically Compensated
Birefringence)モード、FLC(Ferroelectric Liqu
id Crystal)モード、AFLC(AntiFerroelectric Li
quid Crystal)モード、MVAモード、PVA(Patterned Ve
rtical Alignment)モード、IPSモード、FFSモード、またはTB
A(Transverse Bend Alignment)モードなどを用いてもよい
。また、表示装置の駆動方法としては、上述した駆動方法の他、ECB(Electri
cally Controlled Birefringence)モード、PDLC(
Polymer Dispersed Liquid Crystal)モード、PNL
C(Polymer Network Liquid Crystal)モード、ゲスト
ホストモードなどがある。ただし、これに限定されず、液晶素子及びその駆動方式として
様々なものを用いることができる。
また、ブルー相(Blue Phase)を示す液晶とカイラル剤とを含む液晶組成物
により液晶素子を構成してもよい。ブルー相を示す液晶は、応答速度が1msec以下と
短く、光学的等方性であるため、配向処理が不要であり、視野角依存性が小さい。
m行n列目の画素301において、トランジスタ131_1のソース電極及びドレイン
電極の一方は、信号線DL_nに電気的に接続され、他方は液晶素子132の一対の電極
の他方に電気的に接続される。また、トランジスタ131_1のゲート電極は、走査線G
L_mに電気的に接続される。トランジスタ131_1は、オン状態またはオフ状態にな
ることにより、データ信号のデータの書き込みを制御する機能を有する。
容量素子133_1の一対の電極の一方は、電位が供給される配線(以下、容量線CL
)に電気的に接続され、他方は、液晶素子132の一対の電極の他方に電気的に接続され
る。なお、容量線CLの電位の値は、画素301の仕様に応じて適宜設定される。容量素
子133_1は、書き込まれたデータを保持する保持容量としての機能を有する。
例えば、図7(B)の画素301を有する表示装置では、走査線駆動回路104により
各行の画素301を順次選択し、トランジスタ131_1をオン状態にしてデータ信号の
データを書き込む。
データが書き込まれた画素301は、トランジスタ131_1がオフ状態になることで
保持状態になる。これを行毎に順次行うことにより、画像を表示できる。
また、図7(C)に示す画素301は、トランジスタ131_2と、容量素子133_
2と、トランジスタ134と、発光素子135と、を有する。
トランジスタ131_2のソース電極及びドレイン電極の一方は、データ信号が与えら
れる配線(以下、信号線DL_nという)に電気的に接続される。さらに、トランジスタ
131_2のゲート電極は、ゲート信号が与えられる配線(以下、走査線GL_mという
)に電気的に接続される。
トランジスタ131_2は、オン状態またはオフ状態になることにより、データ信号の
データの書き込みを制御する機能を有する。
容量素子133_2の一対の電極の一方は、電位が与えられる配線(以下、電位供給線
VL_aという)に電気的に接続され、他方は、トランジスタ131_2のソース電極及
びドレイン電極の他方に電気的に接続される。
容量素子133_2は、書き込まれたデータを保持する保持容量としての機能を有する
トランジスタ134のソース電極及びドレイン電極の一方は、電位供給線VL_aに電
気的に接続される。さらに、トランジスタ134のゲート電極は、トランジスタ131_
2のソース電極及びドレイン電極の他方に電気的に接続される。
発光素子135のアノード及びカソードの一方は、電位供給線VL_bに電気的に接続
され、他方は、トランジスタ134のソース電極及びドレイン電極の他方に電気的に接続
される。
発光素子135としては、例えば有機エレクトロルミネセンス素子(有機EL素子とも
いう)などを用いることができる。ただし、発光素子135としては、これに限定されず
、無機材料からなる無機EL素子を用いても良い。
なお、電位供給線VL_a及び電位供給線VL_bの一方には、高電源電位VDDが与
えられ、他方には、低電源電位VSSが与えられる。
図7(C)の画素301を有する表示装置では、走査線駆動回路104により各行の画
素301を順次選択し、トランジスタ131_2をオン状態にしてデータ信号のデータを
書き込む。
データが書き込まれた画素301は、トランジスタ131_2がオフ状態になることで
保持状態になる。さらに、書き込まれたデータ信号の電位に応じてトランジスタ134の
ソース電極とドレイン電極の間に流れる電流量が制御され、発光素子135は、流れる電
流量に応じた輝度で発光する。これを行毎に順次行うことにより、画像を表示できる。
次いで、画素301に液晶素子を用いた液晶表示装置の具体的な例について説明する。
ここでは、図7(B)に示す画素301の上面図を図8に示す。なお、図8においては、
対向電極及び液晶素子を省略する。
図8において、走査線として機能する導電膜304cは、信号線に略直交する方向(図
中左右方向)に延伸して設けられている。信号線として機能する導電膜310dは、走査
線に略直交する方向(図中上下方向)に延伸して設けられている。容量線として機能する
導電膜310fは、信号線と平行方向に延伸して設けられている。なお、走査線として機
能する導電膜304cは、走査線駆動回路104(図7(A)を参照。)と電気的に接続
されており、信号線として機能する導電膜310d及び容量線として機能する導電膜31
0fは、信号線駆動回路106(図7(A)を参照。)に電気的に接続されている。
トランジスタ103は、走査線及び信号線が交差する領域に設けられている。トランジ
スタ103は、ゲート電極として機能する導電膜304c、ゲート絶縁膜(図8に図示せ
ず。)、ゲート絶縁膜上に形成されたチャネル領域が形成される多層膜308b、ソース
電極及びドレイン電極として機能する導電膜310d、310eにより構成される。なお
、導電膜304cは、走査線としても機能し、多層膜308bと重畳する領域がトランジ
スタ103のゲート電極として機能する。また、導電膜310dは、信号線としても機能
し、多層膜308bと重畳する領域がトランジスタ103のソース電極またはドレイン電
極として機能する。また、図8において、走査線は、上面形状において端部が多層膜30
8bの端部より外側に位置する。このため、走査線はバックライトなどの光源からの光を
遮る遮光膜として機能する。この結果、トランジスタに含まれる多層膜308bに光が照
射されず、トランジスタの電気特性の変動を抑制することができる。
また、導電膜310eは、開口部362cにおいて、画素電極として機能する透光性を
有する導電膜316bと電気的に接続されている。
容量素子105は、開口部362において容量線として機能する導電膜310fと接続
されている。また、容量素子105は、ゲート絶縁膜上に形成される透光性を有する導電
膜308cと、画素電極として機能する透光性を有する導電膜316cと、トランジスタ
103上に設けられる窒化物絶縁膜で形成される誘電体膜とで構成されている。即ち、容
量素子105は透光性を有する。
このように容量素子105は透光性を有するため、画素301内に容量素子105を大
きく(大面積に)形成することができる。従って、開口率を高めつつ、50%以上、好ま
しくは55%以上、好ましくは60%以上とすることが可能であると共に、電荷容量を増
大させた半導体装置を得ることができる。例えば、解像度の高い半導体装置、例えば液晶
表示装置においては、画素の面積が小さくなり、容量素子の面積も小さくなる。このため
、解像度の高い半導体装置において、容量素子に蓄積される電荷容量が小さくなる。しか
しながら、本実施の形態に示す容量素子105は透光性を有するため、当該容量素子を画
素に設けることで、各画素において十分な電荷容量を得つつ、開口率を高めることができ
る。代表的には、画素密度が200ppi以上、さらには300ppi以上である高解像
度の半導体装置に好適に用いることができる。
また、図8に示す画素301は、信号線として機能する導電膜310dと平行な辺と比
較して走査線として機能する導電膜304cと平行な辺の方が長い形状であり、且つ容量
線として機能する導電膜310fが、信号線として機能する導電膜310dと平行な方向
に延伸して設けられている。この結果、画素301に占める導電膜310fの面積を低減
することが可能であるため、開口率を高めることができる。また、容量線として機能する
導電膜310fが接続電極を用いず、直接透光性を有する導電膜308cと接するため、
さらに開口率を高めることができる。
また、本発明の一態様は、高解像度の表示装置においても、開口率を高めることができ
るため、バックライトなどの光源の光を効率よく利用することができ、表示装置の消費電
力を低減することができる。
次いで、図8の一点鎖線C−D間における断面図を図9に示す。なお、図9において、
走査線駆動回路104及び信号線駆動回路106を含む駆動回路部(上面図を省略する。
)の断面図をA−Bに示す。本実施の形態においては、縦電界方式の液晶表示装置につい
て説明する。
本実施の形態に示す表示装置は、一対の基板(基板302と基板342)間に液晶素子
322が挟持されている。
液晶素子322は、基板302の上方の透光性を有する導電膜316bと、配向性を制
御する膜(以下、配向膜318、352という)と、液晶層320と、導電膜350と、
を有する。なお、透光性を有する導電膜316bは、液晶素子322の一方の電極として
機能し、導電膜350は、液晶素子322の他方の電極として機能する。
このように、液晶表示装置とは、液晶素子を有する装置のことをいう。なお、液晶表示
装置は、複数の画素を駆動させる駆動回路等を含む。また、液晶表示装置は、別の基板上
に配置された制御回路、電源回路、信号生成回路及びバックライトモジュール等を含み、
液晶モジュールとよぶこともある。
駆動回路部において、ゲート電極として機能する導電膜304a、ゲート絶縁膜として
機能する絶縁膜305及び絶縁膜306、チャネル領域が形成される多層膜308a、ソ
ース電極及びドレイン電極として機能する導電膜310a、310bによりトランジスタ
102を構成する。多層膜308aは、ゲート絶縁膜上に設けられる。
画素部において、ゲート電極として機能する導電膜304c、ゲート絶縁膜として機能
する絶縁膜305及び絶縁膜306、ゲート絶縁膜上に形成されたチャネル領域が形成さ
れる多層膜308b、ソース電極及びドレイン電極として機能する導電膜310d、31
0eによりトランジスタ103を構成する。多層膜308bは、ゲート絶縁膜上に設けら
れる。また、導電膜310d、310e上には、絶縁膜312、絶縁膜314が保護膜と
して設けられている。
また、画素電極として機能する透光性を有する導電膜316bが、絶縁膜312及び絶
縁膜314に設けられた開口部において、導電膜310eと接続する。
また、一方の電極として機能する透光性を有する導電膜308c、誘電体膜として機能
する絶縁膜314、他方の電極として機能する透光性を有する導電膜316bにより容量
素子105を構成する。透光性を有する導電膜308cは、ゲート絶縁膜上に設けられる
また、駆動回路部において、導電膜304a、304cと同時に形成された導電膜30
4bと、導電膜310a、310b、310d、310eと同時に形成された導電膜31
0cとは、透光性を有する導電膜316bと同時に形成された透光性を有する導電膜31
6aで接続される。
導電膜304a及び透光性を有する導電膜316aは、絶縁膜306及び絶縁膜312
に設けられた開口部において接続する。また、導電膜310cと透光性を有する導電膜3
16aは、絶縁膜312及び絶縁膜314に設けられた開口部において接続する。
ここで、図9に示す表示装置の構成要素について、以下に説明する。
基板302上には、導電膜304a、304b、304cが形成されている。導電膜3
04aは、駆動回路部のトランジスタのゲート電極としての機能を有する。また、導電膜
304cは、画素部101に形成され、画素部のトランジスタのゲート電極として機能す
る。また、導電膜304bは、走査線駆動回路104に形成され、導電膜310cと接続
する。
基板302は、実施の形態1に示す基板11の材料を適宜用いることができる。
導電膜304a、304b、304cとしては、実施の形態1に示すゲート電極15の
材料及び作製方法を適宜用いることができる。
基板302、及び導電膜304a、304c、304b上には、絶縁膜305、絶縁膜
306が形成されている。絶縁膜305、絶縁膜306は、駆動回路部のトランジスタの
ゲート絶縁膜、及び画素部101のトランジスタのゲート絶縁膜としての機能を有する。
絶縁膜305としては、実施の形態1に示すゲート絶縁膜17で説明した窒化物絶縁膜
を用いて形成することが好ましい。絶縁膜306としては、実施の形態1に示すゲート絶
縁膜17で説明した酸化物絶縁膜を用いて形成することが好ましい。
絶縁膜306上には、多層膜308a、308b、透光性を有する導電膜308cが形
成されている。多層膜308aは、導電膜304aと重畳する位置に形成され、駆動回路
部のトランジスタのチャネル領域として機能する。また、多層膜308bは、導電膜30
4cと重畳する位置に形成され、画素部のトランジスタのチャネル領域として機能する。
透光性を有する導電膜308cは、容量素子105の一方の電極として機能する。
多層膜308a、308b、及び透光性を有する導電膜308cは、実施の形態1に示
す多層膜20の材料及び作製方法を適宜用いることができる。
透光性を有する導電膜308cは、多層膜308a、308bと同様の多層膜であり、
且つ不純物が含まれていることを特徴とする。不純物としては、水素がある。なお、水素
の代わりに不純物として、ホウ素、リン、スズ、アンチモン、希ガス元素、アルカリ金属
、アルカリ土類金属等が含まれていてもよい。
多層膜308a、308b、及び透光性を有する導電膜308cは共に、ゲート絶縁膜
上に形成されるが、不純物濃度が異なる。具体的には、多層膜308a、308bと比較
して、透光性を有する導電膜308cの不純物濃度が高い。例えば、多層膜308a、3
08bに含まれる水素濃度は、5×1019atoms/cm未満、好ましくは5×1
18atoms/cm未満、好ましくは1×1018atoms/cm以下、より
好ましくは5×1017atoms/cm以下、さらに好ましくは1×1016ato
ms/cm以下であり、透光性を有する導電膜308cに含まれる水素濃度は、8×1
19atoms/cm以上、好ましくは1×1020atoms/cm以上、より
好ましくは5×1020atoms/cm以上である。また、多層膜308a、308
bと比較して、透光性を有する導電膜308cに含まれる水素濃度は2倍、好ましくは1
0倍以上である。
また、透光性を有する導電膜308cは、多層膜308a、308bより抵抗率が低い
。透光性を有する導電膜308cの抵抗率が、多層膜308a、308bの抵抗率の1×
10−8倍以上1×10−1倍以下であることが好ましく、代表的には1×10−3Ωc
m以上1×10Ωcm未満、さらに好ましくは、抵抗率が1×10−3Ωcm以上1×
10−1Ωcm未満であるとよい。
酸素欠損を有する酸化物半導体に水素を添加すると、酸素欠損サイトに水素が入り伝導
帯近傍にドナー準位が形成される。この結果、酸化物半導体は、導電性が高くなり、導電
体化する。導電体化された酸化物半導体を酸化物導電体ということができる。即ち、透光
性を有する導電膜308cは、酸化物導電体で形成されるということができる。一般に、
酸化物半導体は、エネルギーギャップが大きいため、可視光に対して透光性を有する。一
方、酸化物導電体は、伝導帯近傍にドナー準位を有する酸化物半導体である。したがって
、該ドナー準位による吸収の影響は小さく、可視光に対して酸化物半導体と同程度の透光
性を有する。
多層膜308a、308bは、絶縁膜306及び絶縁膜312等の、多層膜との界面特
性を向上させることが可能な材料で形成される膜と接しているため、多層膜308a、3
08bは、半導体として機能し、多層膜308a、308bを有するトランジスタは、優
れた電気特性を有する。
一方、透光性を有する導電膜308cは、開口部362(図12(A)参照。)におい
て絶縁膜314と接する。絶縁膜314は、外部からの不純物、例えば、水、アルカリ金
属、アルカリ土類金属等が、多層膜へ拡散するのを防ぐ材料で形成される膜であり、更に
は水素を含む。このため、絶縁膜314の水素が多層膜308a、308bと同時に形成
された多層膜に拡散すると、該多層膜に含まれる酸化物半導体膜において水素は酸素と結
合し、キャリアである電子が生成される。また、絶縁膜314をプラズマCVD法または
スパッタリング法で成膜すると、多層膜308a、308Bがプラズマに曝され、酸素欠
損が生成される。当該酸素欠損に絶縁膜314に含まれる水素が入ることで、キャリアで
ある電子が生成される。これらの結果多層膜に含まれる酸化物半導体膜は、導電性が高く
なり導体として機能する。即ち、導電性の高い酸化物半導体膜ともいえる。ここでは、多
層膜308a、308bと同様の材料を主成分とし、且つ水素濃度が多層膜308a、3
08bより高いことにより、導電性が高められた金属酸化物を、透光性を有する導電膜3
08cとよぶ。
ただし、本発明の実施形態の一態様は、これに限定されず、透光性を有する導電膜30
8cは、場合によっては、絶縁膜314と接していないことも可能である。
また、本発明の実施形態の一態様は、これに限定されず、透光性を有する導電膜308
cは、場合によっては、多層膜308a、または、308bと別々の工程で形成されても
よい。その場合には、透光性を有する導電膜308cは、多層膜308a、308bと、
異なる材質を有していても良い。例えば、透光性を有する導電膜308cは、インジウム
錫酸化物(以下、ITOと示す。)、または、インジウム亜鉛酸化物等を用いて形成有し
てもよい。
本実施の形態に示す半導体装置は、トランジスタの多層膜と同時に、容量素子の一方と
なる電極を形成する。また、画素電極として機能する透光性を有する導電膜を容量素子の
他方の電極として用いる。これらのため、容量素子を形成するために、新たに導電膜を形
成する工程が不要であり、半導体装置の作製工程を削減できる。また、容量素子は、一対
の電極が透光性を有する導電膜で形成されているため、透光性を有する。この結果、容量
素子の占有面積を大きくしつつ、画素の開口率を高めることができる。
導電膜310a、310b、310c、310d、310eは、実施の形態1に示す一
対の電極21、22の材料及び作製方法を適宜用いることができる。
絶縁膜306、多層膜308a、308b、透光性を有する導電膜308c、及び導電
膜310a、310b、310c、310d、310e上には、絶縁膜312、絶縁膜3
14が形成されている。絶縁膜312は、絶縁膜306と同様に、多層膜との界面特性を
向上させることが可能な材料を用いることが好ましく、少なくとも実施の形態1に示す酸
化物絶縁膜24と同様の材料及び作製方法を適宜用いることができる。また、実施の形態
1に示すように、酸化物絶縁膜23及び酸化物絶縁膜を積層して形成してもよい。
絶縁膜314は、絶縁膜305と同様に、外部からの不純物、例えば、水、アルカリ金
属、アルカリ土類金属等が、多層膜へ拡散するのを防ぐ材料を用いることが好ましく、実
施の形態1に示す窒化物絶縁膜25の材料及び作製方法を適宜用いることができる。
また、絶縁膜314上には透光性を有する導電膜316a、316bが形成されている
。透光性を有する導電膜316aは、開口部364a(図12(C)参照。)において導
電膜304bと電気的に接続され、開口部364b(図12(C)参照。)において導電
膜310cと電気的に接続される。即ち、導電膜304b及び導電膜310cを接続する
接続電極として機能する。透光性を有する導電膜316bは、開口部364c(図12(
C)参照。)において導電膜310eと電気的に接続され、画素の画素電極としての機能
を有する。また、透光性を有する導電膜316bは、容量素子の一対の電極の一方として
機能することができる。
導電膜304b及び導電膜310cが直接接するような接続構造とするには、導電膜3
10cを形成する前に、絶縁膜305、絶縁膜306に開口部を形成するためにパターニ
ングを行い、マスクを形成する必要があるが、図9の接続構造には、当該フォトマスクが
不要である。しかしながら、図9のように、透光性を有する導電膜316aにより、導電
膜304b及び導電膜310cを接続することで、導電膜304b及び導電膜310cが
直接接する接続部を作製する必要が無くなり、フォトマスクを1枚少なくすることができ
る。即ち、半導体装置の作製工程を削減することが可能である。
透光性を有する導電膜316a、316bとしては、酸化タングステンを含むインジウ
ム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム
酸化物、酸化チタンを含むインジウム錫酸化物、ITO、インジウム亜鉛酸化物、酸化ケ
イ素を添加したインジウム錫酸化物などの透光性を有する導電性材料を用いることができ
る。
また、基板342上には、有色性を有する膜(以下、有色膜346という。)が形成さ
れている。有色膜346は、カラーフィルタとしての機能を有する。また、有色膜346
に隣接する遮光膜344が基板342上に形成される。遮光膜344は、ブラックマトリ
クスとして機能する。また、有色膜346は、必ずしも設ける必要はなく、例えば、表示
装置が白黒の場合等によって、有色膜346を設けない構成としてもよい。
有色膜346としては、特定の波長帯域の光を透過する有色膜であればよく、例えば、
赤色の波長帯域の光を透過する赤色(R)のカラーフィルタ、緑色の波長帯域の光を透過
する緑色(G)のカラーフィルタ、青色の波長帯域の光を透過する青色(B)のカラーフ
ィルタなどを用いることができる。
遮光膜344としては、特定の波長帯域の光を遮光する機能を有していればよく、金属
膜または黒色顔料等を含んだ有機絶縁膜などを用いることができる。
また、有色膜346上には、絶縁膜348が形成されている。絶縁膜348は、平坦化
層としての機能、または有色膜346が含有しうる不純物を液晶素子側へ拡散するのを抑
制する機能を有する。
また、絶縁膜348上には、導電膜350が形成されている。導電膜350は、画素部
の液晶素子が有する一対の電極の他方としての機能を有する。なお、透光性を有する導電
膜316a、316b、及び導電膜350上には、配向膜としての機能を有する絶縁膜を
別途形成してもよい。
また、透光性を有する導電膜316a、316bと導電膜350との間には、液晶層3
20が形成されている。また液晶層320は、シール材(図示しない)を用いて、基板3
02と基板342の間に封止されている。なお、シール材は、外部からの水分等の入り込
みを抑制するために、無機材料と接触する構成が好ましい。
また、透光性を有する導電膜316a、316bと導電膜350との間に液晶層320
の厚さ(セルギャップともいう)を維持するスペーサを設けてもよい。
図9に示す半導体装置に示す基板302上に設けられた素子部の作製方法について、図
10乃至図13を用いて説明する。
まず、基板302を準備する。ここでは、基板302としてガラス基板を用いる。
次に、基板302上に導電膜を形成し、該導電膜を所望の領域に加工することで、導電
膜304a、304b、304cを形成する。なお、導電膜304a、304b、304
cの形成は、所望の領域に第1のパターニングによるマスクの形成を行い、該マスクに覆
われていない領域をエッチングすることで形成することができる(図10(A)参照)。
また、導電膜304a、304b、304cとしては、代表的には、蒸着法、CVD法
、スパッタリング法、スピンコート法等を用いて形成することができる。
次に、基板302、及び導電膜304a、304b、304c上に、絶縁膜305を形
成し、絶縁膜305上に絶縁膜306を形成する(図10(A)参照)。
絶縁膜305及び絶縁膜306は、スパッタリング法、CVD法等により形成すること
ができる。なお、絶縁膜305及び絶縁膜306は、真空中で連続して形成すると不純物
の混入が抑制され好ましい。
次に、絶縁膜306上に多層膜307を形成する(図10(B)参照)。
多層膜307は、スパッタリング法、塗布法、パルスレーザー蒸着法、レーザーアブレ
ーション法などを用いて形成することができる。
次に、多層膜307を所望の領域に加工することで、島状の多層膜308a、308b
、308dを形成する。なお、多層膜308a、308b、308dの形成は、所望の領
域に第2のパターニングによるマスクの形成を行い、該マスクに覆われていない領域をエ
ッチングすることで形成することができる。エッチングとしては、ドライエッチング、ウ
エットエッチング、または双方を組み合わせたエッチングを用いることができる(図10
(C)参照)。
次に、第1の加熱処理を行う。第1の加熱処理は、実施の形態1に示す第1の加熱処理
と同様の条件を用いる。第1の加熱処理によって、多層膜308a、308b、308d
に用いる酸化物半導体の結晶性を高め、さらに絶縁膜306、及び多層膜308a、30
8b、308dから水素や水などの不純物を除去することができる。なお、酸化物半導体
をエッチングする前に第1の加熱工程を行ってもよい。
次に、絶縁膜306、及び多層膜308a、308b、308d上に導電膜309を形
成する(図11(A)参照)。
導電膜309としては、例えば、スパッタリング法を用いて形成することができる。
次に、導電膜309を所望の領域に加工することで、導電膜310a、310b、31
0c、310d、310eを形成する。なお、導電膜310a、310b、310c、3
10d、310eの形成は、所望の領域に第3のパターニングによるマスクの形成を行い
、該マスクに覆われていない領域をエッチングすることで、形成することができる(図1
1(B)参照)。
次に、絶縁膜306、多層膜308a、308b、308d、及び導電膜310a、3
10b、310c、310d、310e上を覆うように、絶縁膜311を形成する(図1
1(C)参照)。
絶縁膜311としては、実施の形態1に示す酸化物絶縁膜23及び酸化物絶縁膜24と
同様の条件を用いて積層して形成することができる。
次に、絶縁膜311を所望の領域に加工することで、絶縁膜312、及び開口部362
を形成する。なお、絶縁膜311、及び開口部362の形成は、所望の領域に第4のパタ
ーニングによるマスクの形成を行い、該マスクに覆われていない領域をエッチングするこ
とで、形成することができる(図12(A)参照)。
なお、開口部362は、多層膜308dの表面が露出するように形成する。開口部36
2の形成方法としては、例えば、ドライエッチング法を用いることができる。ただし、開
口部362の形成方法としては、これに限定されず、ウエットエッチング法、またはドラ
イエッチング法とウエットエッチング法を組み合わせた形成方法としてもよい。
こののち、第2の加熱処理を行って、絶縁膜311に含まれる酸素の一部を多層膜30
8a、308bに含まれる酸化物半導体膜に酸素を移動させ、多層膜308a、308b
に含まれる酸化物半導体膜中の酸素欠損量を低減することができる。
次に、絶縁膜312及び多層膜308d上に絶縁膜313を形成する(図12(B)参
照)。
絶縁膜313としては、外部からの不純物、例えば、酸素、水素、水、アルカリ金属、
アルカリ土類金属等が、多層膜へ拡散するのを防ぐ材料を用いることが好ましく、更には
水素を含むことが好ましく、代表的には窒素を含む無機絶縁材料、例えば窒化物絶縁膜を
用いることができる。絶縁膜313としては、例えば、CVD法を用いて形成することが
できる。
絶縁膜314は、外部からの不純物、例えば、水、アルカリ金属、アルカリ土類金属等
が、多層膜へ拡散するのを防ぐ材料で形成される膜であり、更には水素を含む。このため
、絶縁膜314の水素が多層膜308dに拡散すると、該多層膜308dに含まれる酸化
物半導体膜において水素は酸素と結合し、キャリアである電子が生成される。この結果、
多層膜308dに含まれる酸化物半導体膜は、導電性が高くなり、透光性を有する導電膜
308cとなる。
また、上記窒化シリコン膜は、ブロック性を高めるために、高温で成膜されることが好
ましく、例えば基板温度100℃以上基板の歪み点以下、より好ましくは300℃以上4
00℃以下の温度で加熱して成膜することが好ましい。また高温で成膜する場合は、多層
膜308a、308bとして用いる酸化物半導体から酸素が脱離し、キャリア濃度が上昇
する現象が発生することがあるため、このような現象が発生しない温度とする。
次に、絶縁膜313を所望の領域に加工することで、絶縁膜314、及び開口部364
a、364b、364cを形成する。なお、絶縁膜314、及び開口部364a、364
b、364cは、所望の領域に第5のパターニングによるマスクの形成を行い、該マスク
に覆われていない領域をエッチングすることで形成することができる(図12(C)参照
)。
また、開口部364aは、導電膜304bの表面が露出するように形成する。また、開
口部364bは、導電膜310cが露出するように形成する。また、開口部364cは、
導電膜310eが露出するように形成する。
なお、開口部364a、364b、364cの形成方法としては、例えば、ドライエッ
チング法を用いることができる。ただし、開口部364a、364b、364cの形成方
法としては、これに限定されず、ウエットエッチング法、またはドライエッチング法とウ
エットエッチング法を組み合わせた形成方法としてもよい。
次に、開口部364a、364b、364cを覆うように絶縁膜314上に導電膜31
5を形成する(図13(A)参照)。
導電膜315としては、例えば、スパッタリング法を用いて形成することができる。
次に、導電膜315を所望の領域に加工することで、透光性を有する導電膜316a、
316bを形成する。なお、透光性を有する導電膜316a、316bの形成は、所望の
領域に第6のパターニングによるマスクの形成を行い、該マスクに覆われていない領域を
エッチングすることで形成することができる(図13(B)参照)。
以上の工程で基板302上に、トランジスタを有する画素部及び駆動回路部を形成する
ことができる。なお、本実施の形態に示す作製工程においては、第1乃至第6のパターニ
ング、すなわち6枚のマスクでトランジスタ、及び容量素子を同時に形成することができ
る。
なお、本実施の形態では、絶縁膜314に含まれる水素を多層膜308dに拡散させて
、多層膜308dに含まれる酸化物半導体膜の導電性を高めたが、多層膜308a、30
8bをマスクで覆い、多層膜308dに不純物、代表的には、水素、ホウ素、リン、スズ
、アンチモン、希ガス元素、アルカリ金属、アルカリ土類金属等を添加して、多層膜30
8dに含まれる酸化物半導体膜の導電性を高めてもよい。多層膜308dに水素、ホウ素
、リン、スズ、アンチモン、希ガス元素等を添加する方法としては、イオンドーピング法
、イオン注入法等がある。一方、多層膜308dにアルカリ金属、アルカリ土類金属等を
添加する方法としては、該不純物を含む溶液を多層膜308dに曝す方法がある。
次に、基板302に対向して設けられる基板342上に形成される構造について、以下
説明を行う。
まず、基板342を準備する。基板342としては、基板302に示す材料を援用する
ことができる。次に、基板342上に遮光膜344、有色膜346を形成する(図14(
A)参照)。
遮光膜344及び有色膜346は、様々な材料を用いて、印刷法、インクジェット法、
フォトリソグラフィ技術を用いたエッチング方法などでそれぞれ所望の位置に形成する。
次に、遮光膜344、及び有色膜346上に絶縁膜348を形成する(図14(B)参
照)。
絶縁膜348としては、例えばアクリル樹脂、エポキシ樹脂、ポリイミド等の有機絶縁
膜を用いることができる。絶縁膜348を形成することによって、例えば、有色膜346
中に含まれる不純物等を液晶層320側に拡散することを抑制することができる。ただし
、絶縁膜348は、必ずしも設ける必要はなく、絶縁膜348を形成しない構造としても
よい。
次に、絶縁膜348上に導電膜350を形成する(図14(C)参照)。導電膜350
としては、導電膜315に示す材料を援用することができる。
以上の工程で基板342上に形成される構造を形成することができる。
次に、基板302と基板342上、より詳しくは基板302上に形成された絶縁膜31
4、透光性を有する導電膜316a、316bと、基板342上に形成された導電膜35
0上に、それぞれ配向膜318と配向膜352を形成する。配向膜318、配向膜352
は、ラビング法、光配向法等を用いて形成することができる。その後、基板302と、基
板342との間に液晶層320を形成する。液晶層320の形成方法としては、ディスペ
ンサ法(滴下法)や、基板302と基板342とを貼り合わせてから毛細管現象を用いて
液晶を注入する注入法を用いることができる。
以上の工程で、図9に示す表示装置を作製することができる。
なお、本実施の形態に示す構成及び方法などは、他の実施の形態及び実施例に示す構成
及び方法などと適宜組み合わせて用いることができる。
(実施の形態6)
本実施の形態では、上記実施の形態で説明した半導体装置に含まれているトランジスタ
において、多層膜20及び多層膜34に適用可能な一態様について説明する。なお、ここ
では、多層膜に含まれる酸化物半導体膜を一例に用いて説明するが、酸化物膜も同様の構
造とすることができる。
酸化物半導体膜は、単結晶構造の酸化物半導体(以下、単結晶酸化物半導体という。)
、多結晶構造の酸化物半導体(以下、多結晶酸化物半導体という。)、微結晶構造の酸化
物半導体(以下、微結晶酸化物半導体という。)、及び非晶質構造の酸化物半導体(以下
、非晶質酸化物半導体という。)の一以上で構成されてもよい。また、酸化物半導体膜は
、CAAC−OSで構成されていてもよい。また、酸化物半導体膜は、非晶質酸化物半導
体及び結晶粒を有する酸化物半導体で構成されていてもよい。以下に、単結晶酸化物半導
体、CAAC−OS、多結晶酸化物半導体、微結晶酸化物半導体、非晶質酸化物半導体に
ついて説明する。
<単結晶酸化物半導体>
単結晶酸化物半導体は、例えば、不純物濃度が低く、欠陥準位密度が低い(酸素欠損が
少ない)ため、キャリア密度を低くすることができる。従って、単結晶酸化物半導体をチ
ャネル領域に用いたトランジスタは、ノーマリーオンの電気特性になることが少ない場合
がある。また、単結晶酸化物半導体は、欠陥準位密度が低いため、トラップ準位密度も低
くなる場合がある。従って、単結晶酸化物半導体をチャネル領域に用いたトランジスタは
、電気特性の変動が小さく、信頼性の高いトランジスタとなる場合がある。
<CAAC−OS>
CAAC−OSは、例えば、透過型電子顕微鏡(TEM:Transmission
Electron Microscope)による観察像で、結晶部を確認することがで
きる場合がある。CAAC−OSに含まれる結晶部は、例えば、TEMによる観察像で、
一辺100nmの立方体内に収まる大きさであることが多い。また、CAAC−OSは、
TEMによる観察像で、結晶部と結晶部との境界を明確に確認できない場合がある。その
ため、CAAC−OSは、TEMによる観察像で、粒界(グレインバウンダリーともいう
。)を明確に確認できない場合がある。CAAC−OSは、例えば、明確な粒界を有さな
いため、不純物が偏析することが少ない。また、CAAC−OSは、例えば、明確な粒界
を有さないため、欠陥準位密度が高くなることが少ない。また、CAAC−OSは、例え
ば、明確な粒界を有さないため、電子移動度の低下が小さい。
CAAC−OSは、例えば、複数の結晶部を有し、当該複数の結晶部においてc軸が被
形成面の法線ベクトルまたは表面の法線ベクトルに平行な方向に揃っている場合がある。
また、CAAC−OSは、例えば、X線回折(XRD:X−Ray Diffracti
on)装置を用い、out−of−plane法による分析を行うと、配向を示す2θが
31°近傍のピークが現れる場合がある。また、CAAC−OSは、例えば、電子線回折
パターンで、スポット(輝点)が観測される場合がある。なお、特に、ビーム径が10n
mφ以下、または5nmφ以下の電子線を用いて得られる電子線回折パターンを、極微電
子線回折パターンと呼ぶ。また、CAAC−OSは、例えば、異なる結晶部間で、それぞ
れa軸及びb軸の向きが揃っていない場合がある。CAAC−OSは、例えば、c軸配向
し、a軸または/及びb軸はマクロに揃っていない場合がある。
図15は、CAAC−OSを有する試料の極微電子線回折パターンの一例である。ここ
では、試料を、CAAC−OSの被形成面に垂直な方向に切断し、厚さが40nm程度と
なるように薄片化する。また、ここでは、ビーム径が1nmφの電子線を、試料の切断面
に垂直な方向から入射させる。図15より、CAAC−OSの極微電子線回折パターンは
、スポットが観測されることがわかる。
CAAC−OSに含まれる結晶部は、例えば、c軸がCAAC−OSの被形成面の法線
ベクトルまたは表面の法線ベクトルに平行な方向になるように揃い、かつab面に垂直な
方向から見て金属原子が三角形状または六角形状に配列し、c軸に垂直な方向から見て金
属原子が層状または金属原子と酸素原子とが層状に配列している。なお、異なる結晶部間
で、それぞれa軸及びb軸の向きが異なっていてもよい。本明細書において、単に垂直と
記載する場合、80°以上100°以下、好ましくは85°以上95°以下の範囲も含ま
れることとする。また、単に平行と記載する場合、−10°以上10°以下、好ましくは
−5°以上5°以下の範囲も含まれることとする。
CAAC−OSに含まれる結晶部のc軸は、CAAC−OSの被形成面の法線ベクトル
または表面の法線ベクトルに平行な方向になるように揃うため、CAAC−OSの形状(
被形成面の断面形状または表面の断面形状)によっては互いに異なる方向を向くことがあ
る。また、結晶部は、成膜したとき、または成膜後に加熱処理などの結晶化処理を行った
ときに形成される。従って、結晶部のc軸は、CAAC−OSが形成されたときの被形成
面の法線ベクトルまたは表面の法線ベクトルに平行な方向になるように揃う。
CAAC−OSは、例えば、不純物濃度を低減することで形成することができる場合が
ある。ここで、不純物は、水素、炭素、シリコン、遷移金属元素などの酸化物半導体の主
成分以外の元素である。特に、シリコンなどの元素は、酸化物半導体を構成する金属元素
よりも酸素との結合力が強い。従って、当該元素が酸化物半導体から酸素を奪う場合、酸
化物半導体の原子配列を乱し、結晶性を低下させることがある。また、鉄やニッケルなど
の重金属、アルゴン、二酸化炭素などは、原子半径(または分子半径)が大きいため、酸
化物半導体の原子配列を乱し、酸化物半導体の結晶性を低下させることがある。従って、
CAAC−OSは、不純物濃度の低い酸化物半導体である。また、酸化物半導体に含まれ
る不純物は、キャリア発生源となる場合がある。
なお、CAAC−OSにおいて、結晶部の分布が一様でなくてもよい。例えば、CAA
C−OSの形成過程において、酸化物半導体の表面側から結晶成長させる場合、被形成面
の近傍に対し表面の近傍では結晶部の占める割合が高くなることがある。また、CAAC
−OSに不純物が混入することにより、当該不純物混入領域において結晶部の結晶性が低
下することがある。
また、CAAC−OSは、例えば、欠陥準位密度を低減することで形成することができ
る。酸化物半導体において、例えば、酸素欠損があると欠陥準位密度が増加する。酸素欠
損は、トラップ準位となることや、水素を捕獲することによってキャリア発生源となるこ
とがある。CAAC−OSを形成するためには、例えば、酸化物半導体に酸素欠損を生じ
させないことが重要となる。従って、CAAC−OSは、欠陥準位密度の低い酸化物半導
体である。または、CAAC−OSは、酸素欠損量の少ない酸化物半導体である。
CAAC−OSにおいて、一定光電流測定法(CPM:Constant Photo
current Method)で導出される吸収係数は、1×10−3/cm未満、好
ましくは1×10−4/cm未満、さらに好ましくは5×10−5/cm未満となる。吸
収係数は、酸素欠損及び不純物の混入に由来する局在準位に応じたエネルギー(波長によ
り換算)と正の相関があるため、CAAC−OSにおける欠陥準位が極めて少ない。
なお、CPM測定によって得られた吸収係数のカーブからバンドの裾に起因するアーバ
ックテールと呼ばれる吸収係数分を除くことにより、欠陥準位よる吸収係数を以下の式か
ら算出することができる。なお、アーバックテールとは、CPM測定によって得られた吸
収係数のカーブにおいて一定の傾きを有する領域をいい、当該傾きをアーバックエネルギ
ーという。
ここで、α(E)は、各エネルギーにおける吸収係数を表し、αは、アーバックテー
ルによる吸収係数を表す。
また、高純度真性または実質的に高純度真性であるCAAC−OSを用いたトランジス
タは、可視光や紫外光の照射による電気特性の変動が小さい。
<CAAC−OSの作製方法>
CAAC−OSに含まれる結晶部のc軸は、CAAC−OSの被形成面の法線ベクトル
または表面の法線ベクトルに平行な方向に揃うため、CAAC−OSの形状(被形成面の
断面形状または表面の断面形状)によっては互いに異なる方向を向くことがある。なお、
結晶部のc軸の方向は、CAAC−OSが形成されたときの被形成面の法線ベクトルまた
は表面の法線ベクトルに平行な方向となる。結晶部は、成膜することにより、または成膜
後に加熱処理などの結晶化処理を行うことにより形成される。
CAAC−OSの形成方法としては、三つ挙げられる。
第1の方法は、成膜温度を100℃以上450℃以下として酸化物半導体膜を成膜する
ことで、酸化物半導体膜に含まれる結晶部のc軸が、被形成面の法線ベクトルまたは表面
の法線ベクトルに平行な方向に揃った結晶部を形成する方法である。なお、本明細書にお
いては、成膜温度を100℃以上400℃以下とすることが好ましい。
第2の方法は、酸化物半導体膜を薄い厚さで成膜した後、200℃以上700℃以下の
加熱処理を行うことで、酸化物半導体膜に含まれる結晶部のc軸が、被形成面の法線ベク
トルまたは表面の法線ベクトルに平行な方向に揃った結晶部を形成する方法である。なお
、本明細書においては、加熱温度を200℃以上400℃以下とすることが好ましい。
第3の方法は、一層目の酸化物半導体膜を薄い厚さで成膜した後、200℃以上700
℃以下の加熱処理を行い、さらに二層目の酸化物半導体膜の成膜を行うことで、酸化物半
導体膜に含まれる結晶部のc軸が、被形成面の法線ベクトルまたは表面の法線ベクトルに
平行な方向に揃った結晶部を形成する方法である。なお、本明細書においては、加熱温度
を200℃以上400℃以下とすることが好ましい。
ここで、第1の方法を用いて、CAAC−OSを形成する方法について説明する。
<ターゲット、及びターゲットの作製方法>
また、CAAC−OSは、例えば多結晶である酸化物半導体スパッタリング用ターゲッ
トを用い、スパッタリング法によって成膜する。当該スパッタリング用ターゲットにイオ
ンが衝突すると、スパッタリング用ターゲットに含まれる結晶領域がa−b面から劈開し
、a−b面に平行な面を有する平板状またはペレット状のスパッタリング粒子として剥離
することがある。この場合、当該平板状またはペレット状のスパッタリング粒子が、結晶
状態を維持したまま被形成面に到達することで、CAAC−OSを成膜することができる
また、CAAC−OSを成膜するために、以下の条件を適用することが好ましい。
成膜時の不純物混入を低減することで、不純物によって結晶状態が崩れることを抑制で
きる。例えば、成膜室内に存在する不純物濃度(水素、水、二酸化炭素及び窒素など)を
低減すればよい。また、成膜ガス中の不純物濃度を低減すればよい。具体的には、露点が
−80℃以下、好ましくは−100℃以下、さらに好ましくは−100℃以下である成膜
ガスを用いる。
また、成膜時の被形成面の加熱温度(例えば基板加熱温度)を高めることで、被形成面
に到達後にスパッタリング粒子のマイグレーションが起こる。具体的には、被形成面の温
度を100℃以上740℃以下、好ましくは200℃以上500℃以下として成膜する。
成膜時の被形成面の温度を高めることで、平板状のスパッタリング粒子が被形成面に到達
した場合、当該被形成面上でマイグレーションが起こり、スパッタリング粒子の平らな面
が被形成面に付着する。なお、酸化物の種類によっても異なるが、スパッタリング粒子は
、a−b面と平行な面の直径(円相当径)が1nm以上30nm以下、または1nm以上
10nm以下程度となる。なお、平板状のスパッタリング粒子は、六角形の面がa−b面
と平行な面である六角柱状であってもよい。その場合、六角形の面と垂直な方向がc軸方
向である。
なお、スパッタリング用ターゲットを酸素の陽イオンを用いてスパッタリングすること
で、成膜時のプラズマダメージを軽減することができる。したがって、イオンがスパッタ
リング用ターゲットの表面に衝突した際に、スパッタリング用ターゲットの結晶性が低下
すること、または非晶質化することを抑制できる。
また、スパッタリング用ターゲットを酸素またはアルゴンの陽イオンを用いてスパッタ
リングすることで、平板状のスパッタリング粒子が六角柱状の場合、六角形状の面におけ
る角部に正の電荷を帯電させることができる。六角形状の面の角部に正の電荷を有するこ
とで、一つのスパッタリング粒子において正の電荷同士が反発し合い、平板状の形状を維
持することができる。
平板状のスパッタリング粒子の面における角部が、正の電荷を有するためには、直流(
DC)電源を用いることが好ましい。なお、高周波(RF)電源、交流(AC)電源を用
いることもできる。ただし、RF電源は、大面積の基板へ成膜可能なスパッタリング装置
への適用が困難である。また、以下に示す観点からAC電源よりもDC電源が好ましいと
考えられる。
AC電源を用いた場合、隣接するターゲットが互いにカソード電位とアノード電位を繰
り返す。平板状のスパッタリング粒子が、正に帯電している場合、互いに反発し合うこと
により、平板状の形状を維持することができる。ただし、AC電源を用いた場合、瞬間的
に電界がかからない時間が生じるため、平板状のスパッタリング粒子に帯電していた電荷
が消失して、スパッタリング粒子の構造が崩れてしまうことがある。したがって、AC電
源を用いるよりも、DC電源を用いる方が好ましいことがわかる。
また、成膜ガス中の酸素割合を高め、電力を最適化することで成膜時のプラズマダメー
ジを軽減すると好ましい。成膜ガス中の酸素割合は、30体積%以上、好ましくは100
体積%とする。
スパッタリング用ターゲットの一例として、In−Ga−Zn−O化合物ターゲットに
ついて以下に示す。
InO粉末、GaO粉末、及びZnO粉末を所定のmol数で混合し、加圧処理
後、1000℃以上1500℃以下の温度で加熱処理をすることで多結晶であるIn−G
a−Zn酸化物ターゲットとする。なお、当該加圧処理は、冷却(または放冷)しながら
行ってもよいし、加熱しながら行ってもよい。なお、X、Y及びZは任意の正数である。
ここで、所定のmol数比は、例えば、InO粉末、GaO粉末及びZnO粉末が
、2:2:1、8:4:3、3:1:1、1:1:1、4:2:3、3:1:2、1:3
:2、1:6:4、または1:9:6である。なお、粉末の種類、及びその混合するmo
l数比は、作製するスパッタリング用ターゲットによって適宜変更すればよい。
以上のような方法でスパッタリング用ターゲットを使用することで、厚さが均一であり
、結晶の配向の揃った酸化物半導体膜を成膜することができる。
<多結晶酸化物半導体>
酸化物半導体は、例えば多結晶を有してもよい。なお、多結晶を有する酸化物半導体を
、多結晶酸化物半導体と呼ぶ。多結晶酸化物半導体は複数の結晶粒を含む。
多結晶酸化物半導体は、例えば、TEMによる観察像で、結晶粒を確認することができ
る場合がある。多結晶酸化物半導体に含まれる結晶粒は、例えば、TEMによる観察像で
、2nm以上300nm以下、3nm以上100nm以下または5nm以上50nm以下
の粒径であることが多い。また、多結晶酸化物半導体は、例えば、TEMによる観察像で
、結晶粒と結晶粒との境界を確認できる場合がある。また、多結晶酸化物半導体は、例え
ば、TEMによる観察像で、粒界を確認できる場合がある。
多結晶酸化物半導体は、例えば、複数の結晶粒を有し、当該複数の結晶粒において方位
が異なっている場合がある。また、多結晶酸化物半導体は、例えば、XRD装置を用い、
out−of−plane法による分析を行うと、配向を示す2θが31°近傍のピーク
、または複数種の配向を示すピークが現れる場合がある。また、多結晶酸化物半導体は、
例えば、電子線回折パターンで、スポットが観測される場合がある。
多結晶酸化物半導体は、例えば、高い結晶性を有するため、高い電子移動度を有する場
合がある。従って、多結晶酸化物半導体をチャネル領域に用いたトランジスタは、高い電
界効果移動度を有する。ただし、多結晶酸化物半導体は、粒界に不純物が偏析する場合が
ある。また、多結晶酸化物半導体の粒界は欠陥準位となる。多結晶酸化物半導体は、粒界
がキャリア発生源、トラップ準位となる場合があるため、多結晶酸化物半導体をチャネル
領域に用いたトランジスタは、CAAC−OSをチャネル領域に用いたトランジスタと比
べて、電気特性の変動が大きく、信頼性の低いトランジスタとなる場合がある。
多結晶酸化物半導体は、高温での加熱処理、またはレーザ光処理によって形成すること
ができる。
<微結晶酸化物半導体>
微結晶酸化物半導体膜は、例えば、TEMによる観察像では、明確に結晶部を確認する
ことができない場合がある。微結晶酸化物半導体膜に含まれる結晶部は、1nm以上10
0nm以下、または1nm以上10nm以下の大きさであることが多い。特に、1nm以
上10nm以下、または1nm以上3nm以下の微結晶であるナノ結晶(nc:nano
crystal)を有する酸化物半導体膜を、nc−OS(nanocrystalli
ne Oxide Semiconductor)膜と呼ぶ。また、nc−OS膜は、例
えば、TEMによる観察像では、結晶粒界を明確に確認できない場合がある。
nc−OS膜は、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以
上3nm以下の領域)において原子配列に周期性を有する。また、nc−OS膜は、異な
る結晶部間で結晶方位に規則性が見られない。そのため、そのため、膜全体で配向性が見
られない。従って、nc−OS膜は、分析方法によっては、非晶質酸化物半導体膜と区別
が付かない場合がある。例えば、nc−OS膜に対し、結晶部よりも大きい径のX線を用
いるXRD装置を用いて構造解析を行うと、out−of−plane法による解析では
、結晶面を示すピークが検出されない。また、nc−OS膜に対し、結晶部よりも大きい
プローブ径(例えば、50nm以上)の電子線を用いる電子線回折(制限視野電子線回折
ともいう。)を行うと、ハローパターンのような回折パターンが観測される。一方、nc
−OS膜に対し、結晶部の大きさと近いか結晶部より小さいプローブ径(例えば1nm以
上30nm以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう。)を行
うと、スポットが観測される。また、nc−OS膜に対しナノビーム電子線回折を行うと
、円を描くように(リング状に)輝度の高い領域が観測される場合がある。また、nc−
OS膜に対しナノビーム電子線回折を行うと、リング状の領域内に複数のスポットが観測
される場合がある。
図16は、nc−OS膜を有する試料に対し、測定箇所を変えてナノビーム電子線回折
を行った例である。ここでは、試料を、nc−OS膜の被形成面に垂直な方向に切断し、
厚さが10nm以下となるように薄片化する。また、ここでは、プローブ径が1nmφの
電子線を、試料の切断面に垂直な方向から入射させる。図16より、nc−OS膜を有す
る試料に対しナノビーム電子線回折を行うと、結晶面を示す回折パターンが得られるが、
特定方向の結晶面への配向性は見られないことがわかった。
nc−OS膜は、非晶質酸化物半導体膜よりも規則性の高い酸化物半導体膜である。そ
のため、nc−OS膜は、非晶質酸化物半導体膜よりも欠陥準位密度が低くなる。ただし
、nc−OS膜は、異なる結晶部間で結晶方位に規則性が見られない。そのため、nc−
OS膜は、CAAC−OS膜と比べて欠陥準位密度が高くなる。
従って、nc−OS膜は、CAAC−OS膜と比べて、キャリア密度が高くなる場合が
ある。キャリア密度が高い酸化物半導体膜は、電子移動度が高くなる場合がある。従って
、nc−OS膜を用いたトランジスタは、高い電界効果移動度を有する場合がある。また
、nc−OS膜は、CAAC−OS膜と比べて、欠陥準位密度が高いため、キャリアトラ
ップが多くなる場合がある。従って、nc−OS膜を用いたトランジスタは、CAAC−
OS膜を用いたトランジスタと比べて、電気特性の変動が大きく、信頼性の低いトランジ
スタとなる。ただし、nc−OS膜は、比較的不純物が多く含まれていても形成すること
ができるため、CAAC−OS膜よりも形成が容易となり、用途によっては好適に用いる
ことができる場合がある。そのため、nc−OS膜を用いたトランジスタを有する半導体
装置は生産性高く作製することができる場合がある。
<酸化物半導体及び酸化物導電体の抵抗率の温度依存性>
ここで、酸化物半導体で形成される膜(以下、酸化物半導体膜(OS)という。)及び
酸化物導電体で形成される膜(以下、酸化物導電体膜(OC)という。)それぞれにおけ
る、抵抗率の温度依存性について、図23を用いて説明する。図23において、横軸に測
定温度を示し、縦軸に抵抗率を示す。また、酸化物半導体膜(OS)の測定結果を丸印で
示し、酸化物導電体膜(OC)の測定結果を四角印で示す。
なお、酸化物半導体膜(OS)を含む試料は、ガラス基板上に、原子数比がIn:Ga
:Zn=1:1:1.2のスパッタリングターゲットを用いたスパッタリング法により厚
さ35nmのIn−Ga−Zn酸化物膜を形成し、原子数比がIn:Ga:Zn=1:4
:5のスパッタリングターゲットを用いたスパッタリング法により厚さ20nmのIn−
Ga−Zn酸化物膜を形成し、450℃の窒素雰囲気で加熱処理した後、450℃の窒素
及び酸素の混合ガス雰囲気で加熱処理し、さらにプラズマCVD法で酸化窒化シリコン膜
を形成して、作製された。
また、酸化物導電体膜(OC)を含む試料は、ガラス基板上に、原子数比がIn:Ga
:Zn=1:1:1のスパッタリングターゲットを用いたスパッタリング法により厚さ1
00nmのIn−Ga−Zn酸化物膜を形成し、450℃の窒素雰囲気で加熱処理した後
、450℃の窒素及び酸素の混合ガス雰囲気で加熱処理し、プラズマCVD法で窒化シリ
コン膜を形成して、作製された。
図23からわかるように、酸化物導電体膜(OC)における抵抗率の温度依存性は、酸
化物半導体膜(OS)における抵抗率の温度依存性より小さい。代表的には、80K以上
290K以下における酸化物半導体膜(OC)の抵抗率の変化率は、±20%未満である
。または、150K以上250K以下における抵抗率の変化率は、±10%未満である。
即ち、酸化物導電体は、縮退半導体であり、伝導帯端とフェルミ準位とが一致または略一
致していると推定される。このため、酸化物導電体膜を、抵抗素子、配線、電極、画素電
極、コモン電極等に用いることが可能である。
なお、本実施の形態に示す構成及び方法などは、他の実施の形態及び実施例に示す構成
及び方法などと適宜組み合わせて用いることができる。
本実施例は、酸化物半導体膜の不純物分析及びXRD分析について、図17及び図18
を用いて説明する。
本実施例においては、不純物分析用のサンプルとして、5種類のサンプル(以下、試料
A1乃至試料A5)を作製した。なお、試料A5は、試料A1の比較例であり、試料A1
と結晶構造が異なる。
まず、はじめに試料A1の作製方法を以下に示す。
試料A1は、ガラス基板上に厚さ100nmのIn−Ga−Zn酸化物膜(以下、IG
ZO膜という。)を成膜し、IGZO膜上に厚さ60nmの銅膜を成膜し、銅膜上に厚さ
50nmの窒化シリコン膜を成膜した。その後、窒素雰囲気下で350℃、1時間の加熱
処理を行った。
なお、IGZO膜の成膜条件としては、スパッタリング法にて、金属酸化物ターゲット
(In:Ga:Zn=1:1:1.2)を用い、スパッタリングガスの流量比がAr/O
=1/1、圧力が0.6Pa、交流電力が2500W、基板温度が170℃の条件を用
いた。
次に、試料A2の作製方法を以下に示す。
試料A1において、IGZO膜の成膜条件の代わりに、金属酸化物ターゲット(In:
Ga:Zn=1:3:4)を用い、スパッタリングガスの流量比がAr/O=2/1、
圧力が0.4Pa、直流電力が200W、基板温度が200℃の条件を用いて、厚さ10
0nmのIGZO膜を成膜した。当該試料を試料A2とする。
次に、試料A3の作製方法を以下に示す。
試料A1において、IGZO膜の成膜条件の代わりに、金属酸化物ターゲット(In:
Ga:Zn=1:3:6)を用い、スパッタリングガスの流量比がAr/O=2/1、
圧力が0.4Pa、直流電力が200W、基板温度が200℃の条件を用いて、厚さ10
0nmのIGZO膜を成膜した。当該試料を試料A3とする。
次に、試料A4の作製方法を以下に示す。
試料A1において、IGZO膜の成膜条件の代わりに、金属酸化物ターゲット(In:
Ga:Zn=1:6:8)を用い、スパッタリングガスの流量比がAr/O=2/1、
圧力が0.4Pa、直流電力が200W、基板温度が200℃の条件を用いて、厚さ10
0nmのIGZO膜を成膜した。当該試料を試料A4とする。
次に、試料A5の作製方法を以下に示す。
試料A1において、IGZO膜の成膜条件の代わりに、金属酸化物ターゲット(In:
Ga:Zn=1:1:1.2)を用い、スパッタリングガスの流量比がAr/O=9/
1、圧力が0.6Pa、直流電力が2500W、基板温度が室温の条件を用いて、厚さ1
00nmのIGZO膜を成膜した。当該試料を試料A5とする。
試料A1及び試料A5乃至試料A5の不純物分析結果及びXRD分析結果を図17に示
し、試料A2の不純物分析結果及びXRD分析結果を図18に示し、試料A3の不純物分
析結果及びXRD分析結果を図19に示し、試料A4の不純物分析結果及びXRD分析結
果を図20に示す。なお、図17(A)において、実線は試料A1の不純物分析結果であ
り、破線は試料A5の不純物分析結果である。
なお、各図において(A)は不純部分析結果であり、(B)はXRD分析結果である。
不純物分析としては、二次イオン質量分析法(SIMS:Secondary Ion
Mass Spectrometry)を用い、図17乃至図20、図22に示す矢印の
方向から分析を行った。すなわち、ガラス基板側からの測定である。
また、図17(A)において、IGZO(1:1:1)は、Inと、Gaと、Znの原
子数比が1:1:1のスパッタリングターゲットを用いて成膜したIGZO膜を表す。図
18(A)のにおいて、IGZO(1:3:4)は、Inと、Gaと、Znの原子数比が
1:3:4のスパッタリングターゲットを用いて成膜したIGZO膜を表す。図19(A
)のにおいて、IGZO(1:3:6)は、Inと、Gaと、Znの原子数比が1:3:
6のスパッタリングターゲットを用いて成膜したIGZO膜を表す。図20(A)のにお
いて、IGZO(1:6:8)は、Inと、Gaと、Znの原子数比が1:6:8のスパ
ッタリングターゲットを用いて成膜したIGZO膜を表す。また、図18乃至図20にお
いて、破線は銅膜とIGZO膜の界面を示す。
トランジスタのチャネル領域において、電気特性に悪影響を与える銅(Cu)の濃度は
1×1018atomic/cm以上である。
図17(A)に示すように、試料A1において、銅(Cu)の濃度が1×1018at
omic/cmの領域は、銅膜及びIGZO膜の界面から約20nm基板側の領域であ
る。また、試料A5において、銅(Cu)の濃度が1×1018atomic/cm
領域は、銅膜及びIGZO膜の界面から約25nm基板側の領域である。
一方、図18(A)に示すように、試料A2において、銅(Cu)の濃度が1×10
atomic/cmの領域は、銅膜及びIGZO膜の界面から約10nm基板側の領
域である。
また、図19(A)に示すように、試料A3において、銅(Cu)の濃度が1×10
atomic/cmの領域は、銅膜及びIGZO膜の界面から約10nm基板側の領
域である。
また、図20(A)に示すように、試料A4において、銅(Cu)の濃度が1×10
atomic/cmの領域は、銅膜及びIGZO膜の界面から約10nm基板側の領
域である。
以上のことから、IGZO膜(1:1:1)上に、IGZO膜(1:3:4)、IGZ
O膜(1:3:6)、またはIGZO膜(1:6:8)を成膜し、その上に銅膜を成膜す
ることで、銅膜から銅元素(Cu)がIGZO膜(1:1:1)に拡散するのを防ぐこと
ができる。
また、図17(B)乃至図20(B)に示すように、試料A1乃至試料A4に含まれる
IGZO膜において、2θが31°近傍にピークが観察される。このピークは(009)
面を示すピークである。このことから、各試料に含まれるIGZO膜は、c軸配向した膜
であることが分かる。即ち、試料A1乃至試料A4に含まれるIGZO膜は、CAAC−
OSであることが分かる。一方、図17(B)に示すように、試料A5に含まれるIGZ
O膜において、2θが31°近傍にピークが観察されない。このことから、試料A5に含
まれるIGZO膜は、CAAC−OSでなく、nc−OSであることがわかる。
図17に示す試料A1及び試料A5の比較より、nc−OSと比較して、CAAC−O
Sの方が、銅(Cu)の拡散の抑制に有効であることが分かった。
また、次に、試料A1及び試料A5に含まれるIGZO膜の膜密度を図21に示す。試
料A1に含まれるIGZO膜の密度は6.29g/cmであり、試料A5に含まれるI
GZO膜の密度は6.19g/cmであった。nc−OSと比較して、CAAC−OS
の方が、充填率が高く、層状構造であり、結晶粒界が存在しないため、CAAC−OSに
おいて、銅(Cu)の移動が抑制されていると考えられる。また、nc−OSは充填率が
低いため、銅(Cu)の拡散が生じやすいと考えられる。
本実施例では、トランジスタのVg−Id特性の測定結果について説明する。
はじめに、試料A6に含まれるトランジスタの作製工程について説明する。本実施例で
は図2を参照して説明する。
まず、図2(A)に示すように、基板11としてガラス基板を用い、基板11上にゲー
ト電極15を形成した。
スパッタリング法で厚さ100nmのタングステン膜を形成し、フォトリソグラフィ工
程により該タングステン膜上にマスクを形成し、該マスクを用いて該タングステン膜の一
部をエッチングし、ゲート電極15を形成した。
次に、ゲート電極15上にゲート絶縁膜17を形成した。
ゲート絶縁膜17として、厚さ50nmの第1の窒化シリコン膜、厚さ300nmの第
2の窒化シリコン膜、厚さ50nmの第3の窒化シリコン膜、及び厚さ50nmの酸化窒
化シリコン膜を積層して形成した。
第1の窒化シリコン膜は、流量200sccmのシラン、流量2000sccmの窒素
、及び流量100sccmのアンモニアを原料ガスとしてプラズマCVD装置の処理室に
供給し、処理室内の圧力を100Paに制御し、27.12MHzの高周波電源を用いて
2000Wの電力を供給して形成した。
次に、第1の窒化シリコン膜の原料ガスの条件において、アンモニアの流量を2000
sccmに変更して、第2の窒化シリコン膜を形成した。
次に、流量200sccmのシラン及び流量5000sccmの窒素を原料ガスとして
プラズマCVD装置の処理室に供給し、処理室内の圧力を100Paに制御し、27.1
2MHzの高周波電源を用いて2000Wの電力を供給して、第3の窒化シリコン膜を形
成した。
次に、流量20sccmのシラン、流量3000sccmの一酸化二窒素を原料ガスと
してプラズマCVD装置の処理室に供給し、処理室内の圧力を40Paに制御し、27.
12MHzの高周波電源を用いて100Wの電力を供給して、酸化窒化シリコン膜を形成
した。
なお、第1の窒化シリコン膜乃至第3の窒化シリコン膜及び酸化窒化シリコン膜の成膜
工程において、基板温度を350℃とした。
次に、ゲート絶縁膜17を介してゲート電極15に重なる多層膜を形成した。
ここでは、ゲート絶縁膜17上に厚さ3nmの第1のIGZO膜を形成し、第1のIG
ZO膜上に厚さ35nmの第2のIGZO膜をスパッタリング法で形成し、第2のIGZ
O膜上に厚さ50nmの第3のIGZO膜を形成した。次に、フォトリソグラフィ工程に
より第3のIGZO膜上にマスクを形成し、該マスクを用いて第1のIGZO膜乃至第3
のIGZO膜のそれぞれ一部をエッチングし、多層膜を形成した。こののち、第1の加熱
処理を行った。
第1のIGZO膜及び第3のIGZO膜の成膜条件としては、スパッタリング法にて、
原子数比がIn:Ga:Zn=1:3:2のスパッタリングターゲットを用い、スパッタ
リングガスの流量比がAr/O=9/1、圧力が0.6Pa、直流電力が1500W、
基板温度が200℃の条件を用いた。
第2のIGZO膜の成膜条件としては、スパッタリング法にて、原子数比がIn:Ga
:Zn=1:1:1のスパッタリングターゲットを用い、スパッタリングガスの流量比が
Ar/O=1/1、圧力が0.6Pa、直流電力が3000W、基板温度が200℃の
条件を用いた。
第1の加熱処理は、窒素雰囲気で、350℃、1時間の加熱処理を行った後、窒素及び
酸素雰囲気で、350℃、1時間の加熱処理を行った。
ここまでの工程で得られた構成は図2(B)を参照できる。なお、図2(B)において
は、多層膜20は2層であるが、本実施例では多層膜は3層である。
次に、ゲート絶縁膜17の一部をエッチングしてゲート電極を露出した後(図示しない
。)、図2(C)に示すように、多層膜に接する一対の電極21、22を形成した。
ここでは、ゲート絶縁膜17及び多層膜上に導電膜を形成した。該導電膜として、厚さ
35nmのチタン膜上に厚さ200nmの銅膜を形成した。次に、フォトリソグラフィ工
程により該導電膜上にマスクを形成し、該マスクを用いて該導電膜の一部をウエットエッ
チングし、一対の電極21、22を形成した。
次に、減圧された処理室に基板を移動し、220℃で加熱した後、処理室に設けられる
上部電極に27.12MHzの高周波電源を用いて150Wの高周波電力を供給して、一
酸化二窒素雰囲気で発生させた酸素プラズマに多層膜20を曝した。
次に、多層膜20及び一対の電極21,22上に保護膜26を形成した(図2(D)参
照)。ここでは、保護膜26として、酸化物絶縁膜23、酸化物絶縁膜24及び窒化物絶
縁膜25を形成した。
まず、上記プラズマ処理の後、大気に曝すことなく、連続的に酸化物絶縁膜23及び酸
化物絶縁膜24を形成した。酸化物絶縁膜23として厚さ50nmの酸化窒化シリコン膜
を形成し、酸化物絶縁膜24として厚さ400nmの酸化窒化シリコン膜を形成した。
酸化物絶縁膜23は、流量30sccmのシラン及び流量4000sccmの一酸化二
窒素を原料ガスとし、処理室の圧力を200Pa、基板温度を220℃とし、150Wの
高周波電力を平行平板電極に供給したプラズマCVD法により形成した。
酸化物絶縁膜24は、流量200sccmのシラン及び流量4000sccmの一酸化
二窒素を原料ガスとし、処理室の圧力を200Pa、基板温度を220℃とし、1500
Wの高周波電力を平行平板電極に供給したプラズマCVD法により形成した。当該条件に
より、化学量論的組成を満たす酸素よりも多くの酸素を含み、加熱により酸素の一部が脱
離する酸化窒化シリコン膜を形成することができる。
次に、第2の加熱処理を行い、酸化物絶縁膜23及び酸化物絶縁膜24から水、窒素、
水素等を脱離させると共に、酸化物絶縁膜24に含まれる酸素の一部を多層膜20へ供給
した。ここでは、窒素及び酸素雰囲気で、350℃、1時間の加熱処理を行った。
次に、酸化物絶縁膜24上に窒化物絶縁膜25を形成した。ここでは、窒化物絶縁膜2
5として、厚さ100nmの窒化シリコン膜を形成した。
窒化物絶縁膜25は、流量50sccmのシラン、流量5000sccmの窒素、及び
流量100sccmのアンモニアを原料ガスとし、処理室の圧力を100Pa、基板温度
を350℃とし、1000Wの高周波電力を平行平板電極に供給したプラズマCVD法に
より形成した。
次に、図示しないが、保護膜26の一部をエッチングして、一対の電極21、22の一
部を露出する開口部を形成した。
次に、窒化物絶縁膜25上に平坦化膜を形成した(図示しない)。ここでは、組成物を
窒化物絶縁膜25上に塗布した後、露光及び現像を行って、一対の電極の一部を露光する
開口部を有する平坦化膜を形成した。なお、平坦化膜として厚さ1.5μmのアクリル樹
脂を形成した。こののち、加熱処理を行った。当該加熱処理は、温度を250℃とし、窒
素を含む雰囲気で1時間行った。
次に、一対の電極の一部に接続する導電膜を形成した(図示しない)。ここでは、スパ
ッタリング法により厚さ100nmの酸化シリコンを含むITOを形成した。この後、窒
素雰囲気で、250℃、1時間の加熱処理を行った。
以上の工程により、トランジスタを有する試料A6を作製した。
また、試料A6のトランジスタにおいて、多層膜の代わりに、第2のIGZO膜のみを
設けたトランジスタを有する試料を試料A7とする。
なお、各試料に含まれるトランジスタは、チャネル長(L)が2μm、チャネル幅(W
)が50μmである。
次に、試料A7及び試料A6に含まれるトランジスタの初期特性としてVg−Id特性
を測定した。ここでは、基板温度を25℃とし、ソース−ドレイン間の電位差(以下、ド
レイン電圧という。)を1V、10Vとし、ソース−ゲート電極間の電位差(以下、ゲー
ト電圧という。)を−15V以上+20V以下まで変化させたときのソース−ドレイン間
に流れる電流(以下、ドレイン電流という。)の変化特性、すなわちVg−Id特性を測
定した。
図22に、それぞれの試料に含まれるトランジスタのVg−Id特性を示す。図22に
示す各グラフにおいて、横軸はゲート電圧Vg、縦軸はドレイン電流Idを表す。また、
実線はそれぞれ、ドレイン電圧Vdが1V、10VのときのVg−Id特性であり、破線
はドレイン電圧Vdを10Vとしたときのゲート電圧に対する電界効果移動度を表す。な
お、当該電界効果移動度は各試料の飽和領域での結果である。
また、各試料において、基板内に同じ構造のトランジスタを20個作製した。
図22(B)に示す試料A7と比較して、図22(A)に示す試料A6において、良好
なスイッチング特性が得られていることが分かる。
試料A7に含まれるトランジスタは、第2のIGZO膜のみがゲート絶縁膜17と酸化
物絶縁膜23との間に設けられている。このため、チャネル領域は第2のIGZO膜に形
成される。第2のIGZO膜及び酸化物絶縁膜23の界面において一対の電極に含まれる
金属元素、ここでは銅が付着すると、該領域において電子トラップ準位が形成される。即
ち、チャネル領域近傍に電子トラップ準位が形成される。このため、チャネル領域を流れ
るキャリア、例えば電子が、電子トラップ準位に捕獲されてしまい、図22(B)に示す
ように、トランジスタのオン電流が低下してしまう。また、ゲート絶縁膜17及び第2の
IGZO膜の界面に銅が移動することにより、ゲート絶縁膜17及び第2のIGZO膜の
界面に電子とラップ準位が形成される。この結果、トランジスタのS値が悪化している。
一方、試料A6に含まれるトランジスタは、チャネル領域となる第2のIGZO膜上に
第3のIGZO膜が設けられているため、さらには第2のIGZO膜が第1のIGZO膜
及び第3のIGZO膜で挟持されている。また、第3のIGZO膜及び酸化物絶縁膜23
の界面において、電子トラップ準位が形成される。このため、チャネル領域と電子トラッ
プ準位が形成される領域との間が広がり、チャネル領域を流れるキャリア、例えば電子が
電子トラップ準位に捕獲されにくくなる。この結果、試料A6で作製されたトランジスタ
は、図22(A)に示すように、優れた電気特性を有する。
以上のことから、低抵抗材料を用いて電極等を形成する場合、チャネル領域となる酸化
物半導体膜と、該酸化物半導体膜と同じ構成元素で形成され且つ金属元素の原子数比が異
なる酸化物膜との積層構造とし、且つ該酸化物膜を、酸化物半導体膜と、電極との間に設
けることで、酸化物半導体膜における電子トラップ準位の形成を防ぐことが可能となる。
この結果、優れた電気特性を有するトランジスタを作製することができる。

Claims (2)

  1. ゲート電極と、
    前記ゲート電極上のゲート絶縁膜と、
    前記ゲート絶縁膜上の、InとGaとZnとを有する第1の酸化物膜と、
    前記第1の酸化物膜上の、InとGaとZnとを有する第2の酸化物膜と、
    前記第2の酸化物膜上の、ソース電極及びドレイン電極と、
    前記ソース電極上及び前記ドレイン電極上の絶縁膜と、を有し、
    前記絶縁膜は、前記ソース電極と前記ドレイン電極との間で、前記第2の酸化物膜と接する領域を有し、
    前記ソース電極及び前記ドレイン電極の各々は、Cuを有し、
    前記第2の酸化物膜のInに対するGaの原子数比は、前記第1の酸化物膜のInに対するGaの原子数比よりも大きく、
    前記第2の酸化物膜は、非単結晶構造を有し、且つ、c軸配向した結晶部を有し、
    前記第1の酸化物膜は、前記第2の酸化物膜よりもCuの濃度が低い第1の領域を有することを特徴とする半導体装置。
  2. ゲート電極と、
    前記ゲート電極上のゲート絶縁膜と、
    前記ゲート絶縁膜上の、InとGaとZnとを有する第1の酸化物膜と、
    前記第1の酸化物膜上の、InとGaとZnとを有する第2の酸化物膜と、
    前記第2の酸化物膜上の、ソース電極及びドレイン電極と、
    前記ソース電極上及び前記ドレイン電極上の絶縁膜と、を有し、
    前記絶縁膜は、前記ソース電極と前記ドレイン電極との間で、前記第2の酸化物膜と接する領域を有し、
    前記ソース電極及び前記ドレイン電極の各々は、Cuを有し、
    前記第2の酸化物膜のInに対するGaの原子数比は、前記第1の酸化物膜のInに対するGaの原子数比よりも大きく、
    前記第2の酸化物膜は、非単結晶構造を有し、且つ、c軸配向した結晶部を有し、
    前記第1の酸化物膜は、前記第2の酸化物膜よりもCuの濃度が低い第1の領域を有し、
    前記第1の領域のCuの濃度は、1×1018atomic/cm未満であることを特徴とする半導体装置。
JP2017155186A 2013-03-14 2017-08-10 半導体装置 Active JP6347879B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013051289 2013-03-14
JP2013051289 2013-03-14
JP2013249899 2013-12-03
JP2013249899 2013-12-03

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014046636A Division JP6193786B2 (ja) 2013-03-14 2014-03-10 半導体装置及びその作製方法

Publications (2)

Publication Number Publication Date
JP2017204657A JP2017204657A (ja) 2017-11-16
JP6347879B2 true JP6347879B2 (ja) 2018-06-27

Family

ID=53760981

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014046636A Active JP6193786B2 (ja) 2013-03-14 2014-03-10 半導体装置及びその作製方法
JP2017155186A Active JP6347879B2 (ja) 2013-03-14 2017-08-10 半導体装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014046636A Active JP6193786B2 (ja) 2013-03-14 2014-03-10 半導体装置及びその作製方法

Country Status (1)

Country Link
JP (2) JP6193786B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7156571B2 (ja) 2020-04-06 2022-10-19 オムロン株式会社 生活機能評価システム、生活機能評価プログラム及び生活機能評価方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10304859B2 (en) 2013-04-12 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide film on an oxide semiconductor film
WO2017163146A1 (en) * 2016-03-22 2017-09-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the same
US20170301699A1 (en) * 2016-04-13 2017-10-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the semiconductor device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040552A (ja) * 2008-07-31 2010-02-18 Idemitsu Kosan Co Ltd 薄膜トランジスタ及びその製造方法
US8476744B2 (en) * 2009-12-28 2013-07-02 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with channel including microcrystalline and amorphous semiconductor regions
US8895978B2 (en) * 2010-07-02 2014-11-25 Advanced Interconnect Materials, Llc Semiconductor device
JP5626978B2 (ja) * 2010-09-08 2014-11-19 富士フイルム株式会社 薄膜トランジスタおよびその製造方法、並びにその薄膜トランジスタを備えた装置
JP2012094853A (ja) * 2010-09-30 2012-05-17 Kobe Steel Ltd 配線構造
JP2012119664A (ja) * 2010-11-12 2012-06-21 Kobe Steel Ltd 配線構造
TWI562379B (en) * 2010-11-30 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing semiconductor device
US8952377B2 (en) * 2011-07-08 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP5052693B1 (ja) * 2011-08-12 2012-10-17 富士フイルム株式会社 薄膜トランジスタ及びその製造方法、表示装置、イメージセンサー、x線センサー並びにx線デジタル撮影装置
JP5679933B2 (ja) * 2011-08-12 2015-03-04 富士フイルム株式会社 薄膜トランジスタ及びその製造方法、表示装置、イメージセンサー、x線センサー並びにx線デジタル撮影装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7156571B2 (ja) 2020-04-06 2022-10-19 オムロン株式会社 生活機能評価システム、生活機能評価プログラム及び生活機能評価方法

Also Published As

Publication number Publication date
JP2017204657A (ja) 2017-11-16
JP6193786B2 (ja) 2017-09-06
JP2015130466A (ja) 2015-07-16

Similar Documents

Publication Publication Date Title
US11843004B2 (en) Semiconductor device having specified relative material concentration between In—Ga—Zn—O films
KR102582722B1 (ko) 반도체 장치
JP6684843B2 (ja) 半導体装置
JP2022176196A (ja) 表示装置
JP2023144004A (ja) 半導体装置
JP6347879B2 (ja) 半導体装置
TW202414844A (zh) 半導體裝置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180529

R150 Certificate of patent or registration of utility model

Ref document number: 6347879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250