JP6347389B2 - Non-contact power feeding device, non-contact power receiving device, and non-contact power feeding system - Google Patents

Non-contact power feeding device, non-contact power receiving device, and non-contact power feeding system Download PDF

Info

Publication number
JP6347389B2
JP6347389B2 JP2014133029A JP2014133029A JP6347389B2 JP 6347389 B2 JP6347389 B2 JP 6347389B2 JP 2014133029 A JP2014133029 A JP 2014133029A JP 2014133029 A JP2014133029 A JP 2014133029A JP 6347389 B2 JP6347389 B2 JP 6347389B2
Authority
JP
Japan
Prior art keywords
power receiving
power
contact power
coil
power feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014133029A
Other languages
Japanese (ja)
Other versions
JP2016012975A (en
Inventor
稔博 秋山
稔博 秋山
豊彦 辻本
豊彦 辻本
弘士 小原
弘士 小原
秀明 安倍
秀明 安倍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014133029A priority Critical patent/JP6347389B2/en
Priority to PCT/JP2015/003182 priority patent/WO2015198602A1/en
Publication of JP2016012975A publication Critical patent/JP2016012975A/en
Application granted granted Critical
Publication of JP6347389B2 publication Critical patent/JP6347389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling

Description

本発明は、非接触給電装置、非接触受電装置、及び非接触給電システムに関し、より詳細には、非接触で電力を伝達する非接触給電装置、非接触受電装置、及び非接触給電システムに関する。   The present invention relates to a non-contact power feeding device, a non-contact power receiving device, and a non-contact power feeding system, and more particularly to a non-contact power feeding device, a non-contact power receiving device, and a non-contact power feeding system that transmit power in a non-contact manner.

従来、1次側ユニットから2次側ユニットに非接触で電力を供給する非接触電源装置が提案されている(例えば特許文献1参照)。   Conventionally, a non-contact power supply device that supplies power from the primary unit to the secondary unit in a non-contact manner has been proposed (see, for example, Patent Document 1).

この非接触電源装置が備える2次側ユニットは、結合トランスの2次側巻線に流れる誘起電流を整流、平滑する整流平滑回路と、整流平滑回路の出力を正弦波の交流電圧に変換して負荷に供給するインバータ回路とを備えていた。   The non-contact power supply device includes a secondary unit that rectifies and smoothes the induced current flowing in the secondary winding of the coupling transformer, and converts the output of the rectifying and smoothing circuit into a sinusoidal AC voltage. And an inverter circuit for supplying the load.

特開2004−96853号公報JP 2004-96853 A

特許文献1に記載の非接触電源装置では、結合トランスの2次側巻線に流れる誘起電流を整流平滑回路が直流電圧に変換している。したがって、負荷に交流電圧を供給するために、整流平滑回路から出力される直流電圧を交流電圧に変換するインバータ回路が必要であり、インバータ回路を備える分だけ装置が大型になっていた。また2次側ユニットでは、整流平滑回路が結合トランスの2次側の交流出力を直流に変換した後、インバータ回路が整流平滑回路の直流出力を交流に変換しているため、直流と交流の変換ロスが2回分発生し、装置全体での電力損失が増大する要因となっていた。   In the non-contact power supply device described in Patent Document 1, the rectifying and smoothing circuit converts the induced current flowing in the secondary winding of the coupling transformer into a DC voltage. Therefore, in order to supply the alternating voltage to the load, an inverter circuit that converts the direct current voltage output from the rectifying and smoothing circuit into the alternating current voltage is necessary, and the apparatus becomes large by the amount of provision of the inverter circuit. In the secondary unit, since the inverter circuit converts the DC output of the rectifying / smoothing circuit to AC after the rectifying / smoothing circuit converts the AC output on the secondary side of the coupling transformer to DC, the DC / AC conversion is performed. Loss was generated twice, which was a factor of increasing power loss in the entire apparatus.

本発明は上記課題に鑑みて為され、非接触給電システム全体で、電力損失を抑制しつつ小型化を図った非接触給電装置、非接触受電装置、及び非接触給電システムを提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a non-contact power supply device, a non-contact power reception device, and a non-contact power supply system that are reduced in size while suppressing power loss in the entire non-contact power supply system. And

本発明の非接触給電装置は、非接触受電装置が備える受電コイルに電磁的に結合されて、前記受電コイルに電磁誘導により電力を供給する給電コイルと、前記非接触受電装置から負荷に印加される交流電圧の周期でデューティ比が増減を繰り返すようなPWM(Pulse Width Modulation)信号に応じて、入力電圧をスイッチングすることによって前記給電コイルに印加する励磁電流を発生する励磁部とを備えたことを特徴とする。   The non-contact power feeding device of the present invention is electromagnetically coupled to a power receiving coil included in the non-contact power receiving device and supplies power to the power receiving coil by electromagnetic induction, and is applied to a load from the non-contact power receiving device. An excitation unit that generates an excitation current to be applied to the power supply coil by switching an input voltage in response to a PWM (Pulse Width Modulation) signal whose duty ratio repeatedly increases and decreases with a period of AC voltage. It is characterized by.

本発明の非接触受電装置は、非接触給電装置が備える給電コイルに電磁的に結合されて、前記給電コイルから電磁誘導により電力を受ける受電コイルと、電磁誘導により前記受電コイルに発生する交流波形から、負荷に印加される交流電圧の周波数よりも高周波の周波数成分を減衰させるフィルタ部とを備えたことを特徴とする。   The contactless power receiving device of the present invention is a power receiving coil that is electromagnetically coupled to a power feeding coil included in the contactless power feeding device and receives power from the power feeding coil by electromagnetic induction, and an AC waveform generated in the power receiving coil by electromagnetic induction. And a filter unit for attenuating a frequency component having a frequency higher than the frequency of the AC voltage applied to the load.

本発明の非接触給電システムは、上記の非接触給電装置と、上記の非接触受電装置とを備えたことを特徴とする。   A non-contact power feeding system according to the present invention includes the above-described non-contact power feeding device and the above-described non-contact power receiving device.

本発明によれば、非接触給電システム全体で、電力損失を抑制しつつ小型化を図った非接触給電装置、非接触受電装置、及び非接触給電システムを実現できる。   ADVANTAGE OF THE INVENTION According to this invention, the non-contact electric power feeder, the non-contact electric power receiving apparatus, and the non-contact electric power feeding system which achieved size reduction, suppressing the power loss with the whole non-contact electric power feeding system are realizable.

本実施形態のブロック図である。It is a block diagram of this embodiment. 本実施形態の回路図である。It is a circuit diagram of this embodiment. 本実施形態のPWM信号発生部における正弦波信号、基準信号、PWM信号の波形図である。It is a wave form diagram of the sine wave signal in the PWM signal generation part of this embodiment, a reference signal, and a PWM signal. 本実施形態の給電コイルに印加される電圧、及び、受電装置から出力される交流電圧の波形図である。It is a wave form diagram of the AC voltage output from the voltage applied to the feed coil of this embodiment, and a power receiving apparatus. 本実施形態の別の回路構成を示す回路図である。It is a circuit diagram which shows another circuit structure of this embodiment.

以下、本実施形態に係る非接触給電システムについて図面を参照して説明する。なお、以下に説明する構成は本発明の一例に過ぎない。本発明は、以下の実施形態に限定されず、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。   Hereinafter, the non-contact power feeding system according to the present embodiment will be described with reference to the drawings. The configuration described below is merely an example of the present invention. The present invention is not limited to the following embodiments, and various modifications can be made according to the design and the like as long as they do not depart from the technical idea of the present invention.

図1は本実施形態の非接触給電システム10のブロック図であり、図2は本実施形態の非接触給電システム10の概略的な回路図である。   FIG. 1 is a block diagram of a contactless power supply system 10 of the present embodiment, and FIG. 2 is a schematic circuit diagram of the contactless power supply system 10 of the present embodiment.

本実施形態の非接触給電システム10は、図1に示すように、非接触給電装置(以下、給電装置と言う。)20と、非接触受電装置(以下、受電装置と言う。)30とを備える。本実施形態の非接触給電システム10では、例えば、給電装置20が造営材(床や壁など)の裏側に設置され、受電装置20は造営材の表側に配置される。給電装置20は、交流電源100から供給された電力を、受電装置30に非接触で供給する。受電装置30は、例えば商用交流電源で動作する負荷40(掃除機やテレビ受像機などの一般的な電気機器)の電源プラグ(図示せず)が着脱自在に接続されるコンセント部33を備えている。受電装置30は、給電装置20から非接触で供給された電力を、コンセント部33に接続された負荷40に供給する。したがって、造営材の裏側において複数箇所に給電装置20を設置しておけば、造営材の表側において、負荷40の近くにある給電装置20から受電可能な位置に受電装置30を配置して、この受電装置30から負荷40に電力を供給させることができる。   As shown in FIG. 1, the non-contact power feeding system 10 of the present embodiment includes a non-contact power feeding device (hereinafter referred to as a power feeding device) 20 and a non-contact power receiving device (hereinafter referred to as a power receiving device) 30. Prepare. In the non-contact power feeding system 10 of the present embodiment, for example, the power feeding device 20 is installed on the back side of a construction material (floor, wall, etc.), and the power receiving device 20 is arranged on the front side of the construction material. The power feeding device 20 supplies the power supplied from the AC power supply 100 to the power receiving device 30 in a contactless manner. The power receiving device 30 includes an outlet 33 to which a power plug (not shown) of a load 40 (a general electric device such as a vacuum cleaner or a television receiver) operating with a commercial AC power source is detachably connected. Yes. The power receiving device 30 supplies the power supplied from the power supply device 20 in a contactless manner to the load 40 connected to the outlet unit 33. Therefore, if the power feeding devices 20 are installed at a plurality of locations on the back side of the construction material, the power receiving device 30 is arranged at a position where power can be received from the power feeding device 20 near the load 40 on the front side of the construction material. Power can be supplied from the power receiving device 30 to the load 40.

給電装置20は、整流平滑回路21と、励磁回路22(励磁部)と、給電コイル23と、PWM信号発生部241を含む制御回路24とを備える(図2参照)。   The power supply device 20 includes a rectifying / smoothing circuit 21, an excitation circuit 22 (excitation unit), a power supply coil 23, and a control circuit 24 including a PWM signal generation unit 241 (see FIG. 2).

整流平滑回路21は、例えば商用交流電源のような交流電源100から入力される交流電圧を全波整流器(図示せず)で整流した後、コンデンサ(図示せず)で平滑して、電圧値が一定の直流電圧に変換する。   The rectifying / smoothing circuit 21 rectifies an AC voltage input from an AC power source 100 such as a commercial AC power source with a full-wave rectifier (not shown), and then smoothes the voltage with a capacitor (not shown). Convert to constant DC voltage.

励磁回路22は、受電装置30から負荷40に供給される交流電圧V2の周期でデューティ比が変化するPWM信号に応じて、整流平滑回路21から入力される入力電圧をスイッチングすることによって、給電コイル23に印加する励磁電流を発生する。   The excitation circuit 22 switches the input voltage input from the rectifying and smoothing circuit 21 in accordance with a PWM signal whose duty ratio changes with the period of the AC voltage V2 supplied from the power receiving device 30 to the load 40, thereby supplying the feeding coil. An excitation current to be applied to 23 is generated.

給電コイル23は、受電装置30が備える受電コイル31に電磁的に結合されて、受電コイル31に電磁誘導により電力を供給する。   The power feeding coil 23 is electromagnetically coupled to a power receiving coil 31 provided in the power receiving device 30 and supplies power to the power receiving coil 31 by electromagnetic induction.

制御回路24は、励磁回路22の動作を制御する。   The control circuit 24 controls the operation of the excitation circuit 22.

受電装置30は、受電コイル31と、フィルタ回路32とを備える。また本実施形態の受電装置30はコンセント部33をさらに備えている。   The power receiving device 30 includes a power receiving coil 31 and a filter circuit 32. The power receiving device 30 according to the present embodiment further includes an outlet portion 33.

受電コイル31は、給電装置20が備える給電コイル23に電磁的に結合されて、給電コイル23から電磁誘導により電力を受ける。   The power reception coil 31 is electromagnetically coupled to a power supply coil 23 included in the power supply device 20 and receives power from the power supply coil 23 by electromagnetic induction.

フィルタ回路32は、電磁誘導により受電コイル31に発生する交流波形から、負荷40に供給する交流電圧V2の周波数よりも高周波の周波数成分を減衰させる。フィルタ回路32の出力電圧は、コンセント部33に接続された負荷40に、コンセント部33を介して印加される。   The filter circuit 32 attenuates a frequency component having a frequency higher than the frequency of the AC voltage V <b> 2 supplied to the load 40 from the AC waveform generated in the power receiving coil 31 by electromagnetic induction. The output voltage of the filter circuit 32 is applied to the load 40 connected to the outlet unit 33 via the outlet unit 33.

次に、図2の回路図を参照して、励磁回路22、制御回路24、及びフィルタ回路32の具体構成を説明する。   Next, specific configurations of the excitation circuit 22, the control circuit 24, and the filter circuit 32 will be described with reference to the circuit diagram of FIG.

励磁回路22は4つのスイッチング素子221〜224を備えている。スイッチング素子221〜224は例えば電界効果トランジスタからなり、スイッチング素子221〜224は制御回路24によってオン/オフが制御される。ここで、スイッチング素子221,222の直列回路と、スイッチング素子223,224の直列回路とが、整流平滑回路21の出力端子間に並列に接続されており、励磁回路22はフルブリッジ構成のインバータ回路で構成されている。スイッチング素子221,222の接続点P1と、スイッチング素子223,224の接続点P2の間に給電コイル23が電気的に接続されている。   The excitation circuit 22 includes four switching elements 221 to 224. The switching elements 221 to 224 are composed of, for example, field effect transistors, and the switching elements 221 to 224 are controlled to be turned on / off by the control circuit 24. Here, the series circuit of the switching elements 221, 222 and the series circuit of the switching elements 223, 224 are connected in parallel between the output terminals of the rectifying / smoothing circuit 21, and the excitation circuit 22 is an inverter circuit having a full bridge configuration. It consists of The feeding coil 23 is electrically connected between a connection point P1 of the switching elements 221 and 222 and a connection point P2 of the switching elements 223 and 224.

制御回路24は、PWM信号発生部241と、NOTゲート242とを備える。   The control circuit 24 includes a PWM signal generator 241 and a NOT gate 242.

PWM信号発生部241は、受電装置30から負荷40に供給される交流電圧V2の周期で、デューティ比が増減を繰り返すようなPWM信号S3を発生する。このPWM信号S3のデューティ比は、交流電圧V2の周期で、一定の変化パターンにしたがって増減を周期的に繰り返している。   The PWM signal generation unit 241 generates a PWM signal S3 in which the duty ratio repeatedly increases and decreases in the cycle of the AC voltage V2 supplied from the power receiving device 30 to the load 40. The duty ratio of the PWM signal S3 is periodically increased and decreased according to a constant change pattern in the period of the AC voltage V2.

このPWM信号発生部241は、正弦波発生回路243と、三角波発生回路244と、コンパレータ245とを備えている。   The PWM signal generation unit 241 includes a sine wave generation circuit 243, a triangular wave generation circuit 244, and a comparator 245.

正弦波発生回路243は、交流電圧V2と周波数がほぼ同じ周波数(例えば商用交流電源の周波数であって、50Hz又は60Hz)である正弦波信号S1を発生する。   The sine wave generation circuit 243 generates a sine wave signal S1 having a frequency that is substantially the same as the AC voltage V2 (for example, the frequency of a commercial AC power supply, 50 Hz or 60 Hz).

三角波発生回路244は、正弦波信号S1よりも周波数が高く、且つ、信号のピーク値が正弦波信号S1よりもやや大きい三角波信号である基準信号S2を発生する。なお、基準信号S2の周波数は正弦波信号S1の周波数の2倍以上であればよく、本実施形態では約5倍に設定されている。   The triangular wave generation circuit 244 generates a reference signal S2 that is a triangular wave signal having a frequency higher than that of the sine wave signal S1 and a peak value of the signal that is slightly larger than that of the sine wave signal S1. The frequency of the reference signal S2 only needs to be twice or more the frequency of the sine wave signal S1, and is set to about 5 times in this embodiment.

コンパレータ245は、正弦波信号S1の信号レベルと、三角波信号である基準信号S2の信号レベルの高低を比較する。ここで、コンパレータ245のマイナス入力端子には正弦波信号S1が入力され、コンパレータ245のプラス入力端子には基準信号S2が入力されている。したがって、図3に示すように、正弦波信号S1の信号レベルが基準信号S2の信号レベルよりも高い期間では、コンパレータ245から出力されるPWM信号S3の信号レベルはローレベルとなる。正弦波信号S1の信号レベルが基準信号S2の信号レベルよりも低い期間では、PWM信号S3の信号レベルはハイレベルとなる。よって、PWM信号S3は、正弦波信号S1の周期T1で、デューティ比が増減を繰り返すようなデューティ信号であって、基準信号S2と正弦波信号S1との差分が大きいほどオン期間の割合が大きくなるようなデューティ信号となる。   The comparator 245 compares the signal level of the sine wave signal S1 with the level of the reference signal S2 that is a triangular wave signal. Here, the sine wave signal S <b> 1 is input to the minus input terminal of the comparator 245, and the reference signal S <b> 2 is input to the plus input terminal of the comparator 245. Therefore, as shown in FIG. 3, during the period in which the signal level of the sine wave signal S1 is higher than the signal level of the reference signal S2, the signal level of the PWM signal S3 output from the comparator 245 becomes a low level. During a period in which the signal level of the sine wave signal S1 is lower than the signal level of the reference signal S2, the signal level of the PWM signal S3 is high. Therefore, the PWM signal S3 is a duty signal whose duty ratio repeatedly increases and decreases in the cycle T1 of the sine wave signal S1, and the larger the difference between the reference signal S2 and the sine wave signal S1, the larger the ratio of the on period. The duty signal is as follows.

コンパレータ245から出力されるPWM信号S3は、スイッチング素子221,224の制御電極にそれぞれ入力される。またPWM信号S3はNOTゲート242に入力され、NOTゲート242の出力信号はスイッチング素子222,223の制御電極にそれぞれ入力される。すなわち、スイッチング素子222,223の制御電極には、PWM信号S3のハイ/ローを反転させた信号が入力される。   The PWM signal S3 output from the comparator 245 is input to the control electrodes of the switching elements 221 and 224, respectively. The PWM signal S3 is input to the NOT gate 242, and the output signal of the NOT gate 242 is input to the control electrodes of the switching elements 222 and 223, respectively. That is, a signal obtained by inverting the high / low of the PWM signal S3 is input to the control electrodes of the switching elements 222 and 223.

PWM信号S3の信号レベルがハイの期間では、スイッチング素子221,224がオン、スイッチング素子222,223がオフになり、整流平滑回路21からスイッチング素子221→給電コイル23→スイッチング素子224の経路で電流が流れる。一方、PWM信号S3の信号レベルがローの期間では、スイッチング素子221,224がオフ、スイッチング素子222,223がオンになり、整流平滑回路21からスイッチング素子223→給電コイル23→スイッチング素子222の経路で電流が流れる。したがって、スイッチング素子221,224の組と、スイッチング素子222,223の組とが交互にオン/オフされることによって、給電コイル23には交流電流が印加され、給電コイル23の周りには励磁電流の時間変化に応じた磁束が発生する。   During the period when the signal level of the PWM signal S3 is high, the switching elements 221 and 224 are turned on, the switching elements 222 and 223 are turned off, and a current flows from the rectifying / smoothing circuit 21 to the switching element 221 → the feeding coil 23 → the switching element 224. Flows. On the other hand, during the period when the signal level of the PWM signal S3 is low, the switching elements 221 and 224 are turned off and the switching elements 222 and 223 are turned on, and the path from the rectifying and smoothing circuit 21 to the switching element 223 → the feeding coil 23 → the switching element 222. Current flows. Therefore, an alternating current is applied to the feeding coil 23 by alternately turning on / off the group of switching elements 221 and 224 and the group of switching elements 222 and 223, and an exciting current around the feeding coil 23. Magnetic flux is generated according to the time change.

一方、受電装置30が備えるフィルタ回路32は、受電コイル31と、受電コイル31の両端間に接続されたコンデンサ321とを用いたLCフィルタ回路で構成される。受電コイル31とコンデンサ321とを用いたLCフィルタ回路はローパスフィルタ回路であり、負荷40に印加する交流電圧V2の周波数よりも高周波の周波数成分を減衰させる。なお、本実施形態ではLCフィルタ回路のインダクタを受電コイル31が兼用しているが、受電コイル31とは別に設けたインダクタとコンデンサ321とでLCフィルタ回路を構成してもよい。また、フィルタ回路32はLCフィルタ回路に限定されず、交流電圧V2の周波数よりも高周波の周波数成分を減衰させるフィルタ回路であれば、抵抗器とコンデンサとを用いたRC直列回路でもよいし、それ以外のフィルタ回路でもよい。   On the other hand, the filter circuit 32 included in the power receiving device 30 includes an LC filter circuit using the power receiving coil 31 and a capacitor 321 connected between both ends of the power receiving coil 31. The LC filter circuit using the power receiving coil 31 and the capacitor 321 is a low-pass filter circuit, and attenuates a frequency component higher in frequency than the frequency of the AC voltage V2 applied to the load 40. In the present embodiment, the power receiving coil 31 also serves as the inductor of the LC filter circuit, but the inductor and the capacitor 321 provided separately from the power receiving coil 31 may constitute the LC filter circuit. The filter circuit 32 is not limited to the LC filter circuit, and may be an RC series circuit using a resistor and a capacitor as long as it is a filter circuit that attenuates a frequency component higher than the frequency of the AC voltage V2. Other filter circuits may be used.

コンデンサ321の両側の端子がコンセント部33に電気的に接続されており、コンデンサ321の両端電圧(すなわちフィルタ回路32の出力電圧)が、コンセント部33を介して負荷40に印加される。   The terminals on both sides of the capacitor 321 are electrically connected to the outlet unit 33, and the voltage across the capacitor 321 (that is, the output voltage of the filter circuit 32) is applied to the load 40 via the outlet unit 33.

次に、本実施形態の非接触給電システム10の動作を説明する。なお、受電装置30は、受電コイル31が給電コイル23と磁気的に結合され、給電装置20から非接触で電力の供給を受けることができる位置に配置されている。   Next, operation | movement of the non-contact electric power feeding system 10 of this embodiment is demonstrated. The power receiving device 30 is disposed at a position where the power receiving coil 31 is magnetically coupled to the power feeding coil 23 and can receive power from the power feeding device 20 in a contactless manner.

整流平滑回路21は、交流電源100から入力される交流電圧を整流、平滑して、電圧値が一定の直流電圧に変換し、励磁回路22に出力する。PWM信号発生部241では、コンパレータ245のマイナス入力端子に正弦波信号S1が入力され、コンパレータ245のプラス入力端子に基準信号S2が入力されている。コンパレータ245は、正弦波信号S1と基準信号S2との高低に応じて、出力の信号レベルがハイ又はローに切り替わることによって、交流電圧V2の周期でデューティ比が周期的に変動を繰り返すようなPWM信号S3を発生する。このPWM信号S3はスイッチング素子221,224の制御電極に入力され、PWM信号S3のハイ/ローを反転させた信号(NOTゲート242の出力信号)がスイッチング素子222,223に入力される。   The rectifying / smoothing circuit 21 rectifies and smoothes the AC voltage input from the AC power supply 100, converts the voltage to a DC voltage having a constant voltage value, and outputs the DC voltage to the excitation circuit 22. In the PWM signal generator 241, the sine wave signal S1 is input to the negative input terminal of the comparator 245, and the reference signal S2 is input to the positive input terminal of the comparator 245. The comparator 245 performs PWM such that the duty ratio periodically changes in the cycle of the AC voltage V2 by switching the output signal level to high or low according to the level of the sine wave signal S1 and the reference signal S2. Signal S3 is generated. The PWM signal S3 is input to the control electrodes of the switching elements 221 and 224, and a signal obtained by inverting high / low of the PWM signal S3 (output signal of the NOT gate 242) is input to the switching elements 222 and 223.

PWM信号S3の信号レベルがハイの期間には、スイッチング素子221,224がオン、スイッチング素子222,223がオフになり、給電コイル23には接続点P1から接続点P2に向かって電流が流れる。一方、PWM信号S3の信号レベルがローの期間には、スイッチング素子221,224がオフ、スイッチング素子222,223がオンになり、給電コイル23には接続点P2から接続点P1に向かって電流が流れる。PWM信号S3は、図3に示すように、交流電圧V2の周期と同じ周期T1で、デューティ比が同一の変化パターンにしたがって増減を繰り返すような信号となっている。そのため、励磁回路22から給電コイル23に印加される電圧V1は、図4に示すように、PWM信号S3がハイの期間には正の一定電圧となり、PWM信号S3がローの期間には負の一定電圧となるような矩形波のパルス電圧となる。このとき、給電コイル23に流れる電流は電圧V1に応じて変化し、電流変化に応じた磁束が給電コイル23の周囲に発生する。   During the period when the signal level of the PWM signal S3 is high, the switching elements 221 and 224 are turned on, the switching elements 222 and 223 are turned off, and a current flows through the feeding coil 23 from the connection point P1 to the connection point P2. On the other hand, during the period when the signal level of the PWM signal S3 is low, the switching elements 221 and 224 are turned off and the switching elements 222 and 223 are turned on, and current flows from the connection point P2 to the connection point P1. Flowing. As shown in FIG. 3, the PWM signal S <b> 3 is a signal that repeatedly increases and decreases according to the same change pattern with the same duty ratio at the same cycle T <b> 1 as the cycle of the AC voltage V <b> 2. Therefore, as shown in FIG. 4, the voltage V1 applied from the excitation circuit 22 to the feeding coil 23 is a positive constant voltage when the PWM signal S3 is high, and is negative when the PWM signal S3 is low. The pulse voltage of the rectangular wave is a constant voltage. At this time, the current flowing through the feeding coil 23 changes according to the voltage V <b> 1, and a magnetic flux corresponding to the current change is generated around the feeding coil 23.

ここで、給電コイル23の近傍に、受電装置30の受電コイル31が存在していれば、給電コイル23の周囲に磁束が発生することによって、電磁誘導により受電コイル31に電流が流れる。受電コイル31に発生する交流波形には、交流電圧V2の周波数よりも高周波の周波数成分(PWM信号S3の周波数成分)が存在するが、この高周波成分は受電コイル31とコンデンサ321とで構成されるローパスフィルタによって減衰させられる。したがって、フィルタ回路32から出力される交流電圧V2は、図4に示すように、高周波成分が減衰させられた後の正弦波交流電圧となり、この交流電圧V2が負荷40に印加される。すなわち、負荷40には、商用交流電源の電源電圧と同様の交流電圧V2が印加されるから、商用交流電源の供給を受けて動作する負荷40を動作させることができる。   Here, if the power receiving coil 31 of the power receiving device 30 exists in the vicinity of the power feeding coil 23, a magnetic flux is generated around the power feeding coil 23, whereby a current flows through the power receiving coil 31 by electromagnetic induction. The AC waveform generated in the power receiving coil 31 has a frequency component higher than the frequency of the AC voltage V2 (frequency component of the PWM signal S3). This high frequency component is constituted by the power receiving coil 31 and the capacitor 321. It is attenuated by a low-pass filter. Therefore, the AC voltage V2 output from the filter circuit 32 becomes a sine wave AC voltage after the high frequency component is attenuated as shown in FIG. 4, and this AC voltage V2 is applied to the load 40. That is, since the AC voltage V2 similar to the power supply voltage of the commercial AC power supply is applied to the load 40, the load 40 that operates upon receiving the supply of the commercial AC power supply can be operated.

ところで、上記実施形態の非接触給電システムでは、励磁回路22がフルブリッジインバータ回路で構成されているが、図5に示すように励磁回路22がハーフブリッジインバータ回路で構成されていてもよい。また、図5に示す給電装置20では、交流電源100から入力される交流電圧を直流に変換する整流平滑回路21の代わりに、電池25と平滑回路26とを備えている。なお、励磁回路22、電池25、及び平滑回路26以外の構成は図2に示す非接触給電システム10と同様であるので、共通する構成要素には同一の符号を付して、その説明は省略する。   By the way, in the non-contact electric power feeding system of the said embodiment, although the excitation circuit 22 is comprised by the full bridge inverter circuit, as shown in FIG. 5, the excitation circuit 22 may be comprised by the half bridge inverter circuit. 5 includes a battery 25 and a smoothing circuit 26 instead of the rectifying and smoothing circuit 21 that converts an alternating voltage input from the alternating current power supply 100 into a direct current. Since the configuration other than the excitation circuit 22, the battery 25, and the smoothing circuit 26 is the same as that of the non-contact power feeding system 10 shown in FIG. 2, the same components are denoted by the same reference numerals and the description thereof is omitted. To do.

図1及び図2に示す給電装置20は外部の交流電源100から電力を得ているが、図5に示す給電装置20は内蔵の電池25から電力を得ている。電池25は1次電池でも良いし、鉛蓄電池やニッケル水素電池やリチウムイオン電池のような2次電池でもよく、負荷40に供給する電力量に応じた蓄電量の電池を使用すればよい。   The power feeding device 20 shown in FIGS. 1 and 2 obtains power from an external AC power supply 100, but the power feeding device 20 shown in FIG. 5 obtains power from a built-in battery 25. The battery 25 may be a primary battery, or may be a secondary battery such as a lead storage battery, a nickel hydride battery, or a lithium ion battery, and a battery with a storage amount corresponding to the amount of power supplied to the load 40 may be used.

平滑回路26は、電池25の出力電圧を平滑して励磁回路22に出力する。   The smoothing circuit 26 smoothes the output voltage of the battery 25 and outputs it to the excitation circuit 22.

励磁回路22は、2個のスイッチング素子225,226と2個のコンデンサ227,228を備えたハーフブリッジインバータ回路である。平滑回路26の出力端子間に、2個のスイッチング素子225,226の直列回路と、2個のコンデンサ227,228の直列回路が並列に接続されている。スイッチング素子225,226の接続点P3と、コンデンサ227,228の接続点P4との間に給電コイル23が接続されている。スイッチング素子225,226は例えば電界効果トランジスタからなり、スイッチング素子225,226は制御回路24によってオン/オフが制御される。高電位側のスイッチング素子225の制御電極には、PWM信号発生部241が発生したPWM信号S3が入力される。低電位側のスイッチング素子226の制御電極には、PWM信号S3のハイ/ローをNOTゲート242で反転させた信号が入力される。   The excitation circuit 22 is a half-bridge inverter circuit including two switching elements 225 and 226 and two capacitors 227 and 228. Between the output terminals of the smoothing circuit 26, a series circuit of two switching elements 225 and 226 and a series circuit of two capacitors 227 and 228 are connected in parallel. The feeding coil 23 is connected between a connection point P3 of the switching elements 225 and 226 and a connection point P4 of the capacitors 227 and 228. The switching elements 225 and 226 are composed of, for example, field effect transistors, and the switching elements 225 and 226 are controlled to be turned on / off by the control circuit 24. The PWM signal S3 generated by the PWM signal generator 241 is input to the control electrode of the switching element 225 on the high potential side. A signal obtained by inverting the high / low of the PWM signal S3 by the NOT gate 242 is input to the control electrode of the switching element 226 on the low potential side.

PWM信号S3がハイの期間には、スイッチング素子225がオン、スイッチング素子226がオフになり、平滑回路26からスイッチング素子225→給電コイル23→コンデンサ228の経路で、給電コイル23に電流が流れ、コンデンサ228が充電される。PWM信号S3がローの期間には、スイッチング素子225がオフ、スイッチング素子226がオンになり、コンデンサ228が放電して、コンデンサ228→給電コイル23→スイッチング素子226→コンデンサ228の経路で、給電コイル23に電流が流れる。   During the period when the PWM signal S3 is high, the switching element 225 is turned on and the switching element 226 is turned off. A current flows from the smoothing circuit 26 to the feeding coil 23 through the path of the switching element 225 → the feeding coil 23 → the capacitor 228. Capacitor 228 is charged. During the period in which the PWM signal S3 is low, the switching element 225 is turned off, the switching element 226 is turned on, the capacitor 228 is discharged, and the feeding coil passes through the path of the capacitor 228 → the feeding coil 23 → the switching element 226 → the capacitor 228. A current flows through 23.

したがって、PWM信号S3のハイ/ローに応じてスイッチング素子225,226が交互にオン/オフすることによって、給電コイル23には交流電流が印加され、給電コイル23の周りには励磁電流の時間変化に応じた磁束が発生する。これにより、給電コイル23から電磁誘導により受電コイル31に電力が供給され、受電装置30から負荷40に電力が供給される。   Accordingly, when the switching elements 225 and 226 are alternately turned on / off according to the high / low of the PWM signal S3, an alternating current is applied to the feeding coil 23, and the excitation current changes with time around the feeding coil 23. Magnetic flux corresponding to Accordingly, power is supplied from the power feeding coil 23 to the power receiving coil 31 by electromagnetic induction, and power is supplied from the power receiving device 30 to the load 40.

以上説明したように、本実施形態の給電装置20は給電コイル23と励磁回路22(励磁部)とを備えたことを特徴とする。給電コイル23は、受電装置30が備える受電コイル31に電磁的に結合されて、受電コイル31に電磁誘導により電力を供給する。励磁回路22は、受電装置30から負荷40に印加される交流電圧V2の周期でデューティ比が増減を繰り返すようなPWM信号S3に応じて、入力電圧をスイッチングすることによって給電コイル23に印加する励磁電流を発生する。   As described above, the power supply device 20 according to the present embodiment includes the power supply coil 23 and the excitation circuit 22 (excitation unit). The power feeding coil 23 is electromagnetically coupled to a power receiving coil 31 provided in the power receiving device 30 and supplies power to the power receiving coil 31 by electromagnetic induction. The excitation circuit 22 is an excitation that is applied to the feeding coil 23 by switching the input voltage in accordance with the PWM signal S3 whose duty ratio repeatedly increases and decreases in the period of the AC voltage V2 applied from the power receiving device 30 to the load 40. Generate current.

このように、励磁回路22は、交流電圧V2の周期でデューティ比が増減を繰り返すようなPWM信号S3に応じて、入力電圧をスイッチングすることによって、励磁電流を発生している。その結果、給電コイル23には、PWM信号S3のハイ/ローに応じて正負が反転するような励磁電流が流れることになり、電磁誘導によって受電コイル31に励磁電流に応じた交流電流が流れることになる。したがって、受電装置30では、受電コイル31に発生する交流成分から、交流電圧V2の周波数よりも高周波の周波数成分をフィルタ回路32で減衰させることで、所望の周波数の交流電圧V2を得ることができ、非接触で電力の供給を受けることができる。よって、従来の受電装置のように受電コイル31の交流出力を一旦直流に変換した後に所望の周波数の交流電圧V2に変換する動作を行わなくて済むから、直流と交流の変換ロスが発生せず、システム全体として電力損失を低減できる。また、受電装置30に、受電コイル31の交流出力を一旦直流に変換した後に所望の周波数の交流電圧V2に変換する変換回路を備える必要が無いから、変換回路の分だけ受電装置30を小型にできるという利点もある。   Thus, the excitation circuit 22 generates the excitation current by switching the input voltage in accordance with the PWM signal S3 whose duty ratio repeatedly increases and decreases in the cycle of the AC voltage V2. As a result, an exciting current whose polarity is reversed according to the high / low of the PWM signal S3 flows in the power supply coil 23, and an alternating current corresponding to the exciting current flows in the power receiving coil 31 by electromagnetic induction. become. Therefore, the power receiving device 30 can obtain the AC voltage V2 having a desired frequency by attenuating the frequency component higher than the frequency of the AC voltage V2 from the AC component generated in the power receiving coil 31 by the filter circuit 32. It can receive power without contact. Therefore, unlike the conventional power receiving apparatus, it is not necessary to perform the operation of converting the AC output of the power receiving coil 31 to DC once and then converting it to the AC voltage V2 having a desired frequency, so that no DC / AC conversion loss occurs. The power loss can be reduced as a whole system. In addition, since it is not necessary to provide the power receiving device 30 with a conversion circuit that converts the AC output of the power receiving coil 31 into direct current and then converts it into the AC voltage V2 having a desired frequency, the power receiving device 30 is reduced in size by the conversion circuit. There is also an advantage of being able to do it.

また、本実施形態の給電装置20において、PWM信号S3を生成するPWM信号発生部241を備えてもよい。PWM信号発生部241は、受電装置30から負荷40に印加される交流電圧V2と周期が同じ正弦波信号S1の信号レベルと、正弦波信号S1よりも周波数が高い基準信号S2の信号レベルとの高低を比較することによって、PWM信号S3を生成する。これにより、PWM信号発生部241は、負荷40に印加される交流電圧V2の周期でデューティ比が増減を繰り返すようなPWM信号S3を生成することができる。このPWM信号S3に応じて励磁回路22が入力電圧をスイッチングすることによって、PWM信号S3のハイ/ローに応じて正負が反転するような励磁電流を給電コイル23に流すことができる。   Further, the power supply apparatus 20 of the present embodiment may include a PWM signal generation unit 241 that generates the PWM signal S3. The PWM signal generation unit 241 has a signal level of the sine wave signal S1 having the same period as the AC voltage V2 applied from the power receiving device 30 to the load 40, and a signal level of the reference signal S2 having a higher frequency than the sine wave signal S1. The PWM signal S3 is generated by comparing the levels. As a result, the PWM signal generator 241 can generate the PWM signal S3 such that the duty ratio repeatedly increases and decreases in the cycle of the AC voltage V2 applied to the load 40. When the excitation circuit 22 switches the input voltage according to the PWM signal S3, an excitation current whose polarity is inverted according to the high / low of the PWM signal S3 can be supplied to the feeding coil 23.

本実施形態の受電装置30は受電コイル31とフィルタ回路32(フィルタ部)とを備えたことを特徴とする。受電コイル31は、給電装置20が備える給電コイル23に電磁的に結合されて、給電コイル23から電磁誘導により電力を受ける。フィルタ回路32は、電磁誘導により受電コイル31に発生する交流波形から、負荷40に印加する交流電圧V2の周波数よりも高周波の周波数成分を減衰させている。   The power receiving device 30 of this embodiment includes a power receiving coil 31 and a filter circuit 32 (filter unit). The power reception coil 31 is electromagnetically coupled to a power supply coil 23 included in the power supply device 20 and receives power from the power supply coil 23 by electromagnetic induction. The filter circuit 32 attenuates a frequency component having a frequency higher than the frequency of the AC voltage V <b> 2 applied to the load 40 from the AC waveform generated in the power receiving coil 31 by electromagnetic induction.

このように、フィルタ回路32が、受電コイル31に発生する交流波形から、交流電圧V2の周波数よりも高周波の周波数成分を減衰させることで、所望の周波数の交流電圧V2を負荷40に印加することができる。また、受電装置30は、従来例のように受電コイル31の交流出力を一旦直流に変換した後に所望の周波数の交流電圧に変換する動作を行っていないので、直流と交流の変換ロスが発生せず、システム全体として電力損失を低減できる。また、受電装置30はフィルタ回路32のみを備え、受電コイル31の交流出力を一旦直流に変換した後に所望の周波数の交流電圧V2に変換する変換回路を備えていないから、変換回路の分だけ受電装置30を小型にできるという利点もある。   In this way, the filter circuit 32 applies the AC voltage V2 having a desired frequency to the load 40 by attenuating a frequency component having a frequency higher than the frequency of the AC voltage V2 from the AC waveform generated in the power receiving coil 31. Can do. In addition, the power receiving device 30 does not perform the operation of converting the AC output of the power receiving coil 31 into direct current after converting it into direct current as in the conventional example, so that a conversion loss between direct current and alternating current does not occur. Therefore, power loss can be reduced as a whole system. In addition, the power receiving device 30 includes only the filter circuit 32 and does not include a conversion circuit that converts the AC output of the power receiving coil 31 into direct current and then converts it into the AC voltage V2 having a desired frequency. There is also an advantage that the device 30 can be miniaturized.

本実施形態の受電装置30において、フィルタ回路32は、受電コイル31とコンデンサ321とを含むLCフィルタ回路でもよい。   In the power receiving device 30 of the present embodiment, the filter circuit 32 may be an LC filter circuit including a power receiving coil 31 and a capacitor 321.

LCフィルタ回路のインダクタを受電コイル31で兼用しているので、部品数を削減でき、全体として小型化を図ることができる。   Since the inductor of the LC filter circuit is also used as the power receiving coil 31, the number of parts can be reduced and the overall size can be reduced.

また本実施形態の非接触給電システムは、上記した何れかの給電装置20と、上記した何れかの受電装置30とを備えることを特徴とし、システム全体として電力損失を低減した小型の非接触給電システムを実現できる。   The contactless power supply system of the present embodiment includes any one of the power supply devices 20 described above and any one of the power reception devices 30 described above, and is a compact contactless power supply that reduces power loss as a whole system. A system can be realized.

10 非接触給電システム
20 給電装置(非接触給電装置)
21 整流平滑回路
22 励磁回路(励磁部)
23 給電コイル
241 PWM信号発生部
30 受電装置(非接触受電装置)
31 受電コイル
32 フィルタ回路(フィルタ部)
321 コンデンサ
40 負荷
S1 正弦波信号
S2 基準信号(三角波信号)
S3 PWM信号
V2 交流電圧
10 Non-contact power supply system 20 Power supply device (Non-contact power supply device)
21 Rectification smoothing circuit 22 Excitation circuit (excitation part)
23 Power Supply Coil 241 PWM Signal Generator 30 Power Receiving Device (Non-Contact Power Receiving Device)
31 Receiving coil 32 Filter circuit (filter part)
321 Capacitor 40 Load S1 Sine wave signal S2 Reference signal (triangular wave signal)
S3 PWM signal V2 AC voltage

Claims (5)

非接触受電装置が備える受電コイルに電磁的に結合されて、前記受電コイルに電磁誘導により電力を供給する給電コイルと、
前記非接触受電装置から負荷に印加される交流電圧の周期でデューティ比が増減を繰り返すようなPWM信号に応じて、入力電圧をスイッチングすることによって前記給電コイルに印加する励磁電流を発生する励磁部とを備えた
ことを特徴とする非接触給電装置。
A power supply coil that is electromagnetically coupled to a power receiving coil included in the non-contact power receiving device and supplies power to the power receiving coil by electromagnetic induction;
An excitation unit that generates an excitation current to be applied to the power feeding coil by switching an input voltage in accordance with a PWM signal whose duty ratio repeatedly increases and decreases in a cycle of an AC voltage applied to a load from the non-contact power receiving device And a non-contact power feeding device.
前記非接触受電装置から前記負荷に印加される交流電圧と周期が同じ正弦波信号の信号レベルと、前記正弦波信号の周波数よりも高周波の三角波信号の信号レベルとの高低を比較することによって、前記PWM信号を生成するPWM信号発生部を備えた
ことを特徴とする請求項1記載の非接触給電装置。
By comparing the signal level of a sine wave signal having the same period as the AC voltage applied to the load from the non-contact power receiving device and the signal level of a triangular wave signal having a frequency higher than the frequency of the sine wave signal, The non-contact power feeding apparatus according to claim 1, further comprising a PWM signal generation unit that generates the PWM signal.
請求項1又は2に記載の非接触給電装置と、前記非接触給電装置から非接触で電力の供給を受ける前記非接触受電装置とを備えた  The non-contact power feeding device according to claim 1, and the non-contact power receiving device that receives power from the non-contact power feeding device in a non-contact manner.
ことを特徴とする非接触給電システム。  A non-contact power feeding system characterized by that.
請求項3に記載の非接触給電システムが備える前記非接触受電装置であって、  The contactless power receiving device included in the contactless power feeding system according to claim 3,
前記非接触給電装置が備える前記給電コイルに電磁的に結合されて、前記給電コイルから電磁誘導により電力を受ける前記受電コイルと、  The power receiving coil that is electromagnetically coupled to the power feeding coil provided in the non-contact power feeding device and receives power from the power feeding coil by electromagnetic induction; and
電磁誘導により前記受電コイルに発生する交流波形から、前記負荷に印加される交流電圧の周波数よりも高周波の周波数成分を減衰させるフィルタ部とを備えた  A filter unit for attenuating a frequency component having a frequency higher than the frequency of the AC voltage applied to the load from an AC waveform generated in the power receiving coil by electromagnetic induction;
ことを特徴とする非接触受電装置。  A non-contact power receiving device.
前記フィルタ部は、前記受電コイルとコンデンサとを含むLCフィルタ回路である  The filter unit is an LC filter circuit including the power receiving coil and a capacitor.
ことを特徴とする請求項4記載の非接触受電装置。  The non-contact power receiving device according to claim 4.
JP2014133029A 2014-06-27 2014-06-27 Non-contact power feeding device, non-contact power receiving device, and non-contact power feeding system Active JP6347389B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014133029A JP6347389B2 (en) 2014-06-27 2014-06-27 Non-contact power feeding device, non-contact power receiving device, and non-contact power feeding system
PCT/JP2015/003182 WO2015198602A1 (en) 2014-06-27 2015-06-24 Non-contact power supply device, non-contact power-receiving device, and non-contact power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014133029A JP6347389B2 (en) 2014-06-27 2014-06-27 Non-contact power feeding device, non-contact power receiving device, and non-contact power feeding system

Publications (2)

Publication Number Publication Date
JP2016012975A JP2016012975A (en) 2016-01-21
JP6347389B2 true JP6347389B2 (en) 2018-06-27

Family

ID=54937709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014133029A Active JP6347389B2 (en) 2014-06-27 2014-06-27 Non-contact power feeding device, non-contact power receiving device, and non-contact power feeding system

Country Status (2)

Country Link
JP (1) JP6347389B2 (en)
WO (1) WO2015198602A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019170144A (en) * 2018-03-23 2019-10-03 悠 小澤 Radio power feeding system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6772011B2 (en) * 2002-08-20 2004-08-03 Thoratec Corporation Transmission of information from an implanted medical device
JP2011211863A (en) * 2010-03-30 2011-10-20 Sharp Corp Noncontact power supply equipment
US9997291B2 (en) * 2012-09-28 2018-06-12 Denso Wave Incorporated Wireless power supply apparatus, filter unit and power supply apparatus for robot using the filter unit
US20140125139A1 (en) * 2012-11-05 2014-05-08 O2Micro Inc. Method and apparatus for wireless power transmission

Also Published As

Publication number Publication date
WO2015198602A1 (en) 2015-12-30
JP2016012975A (en) 2016-01-21

Similar Documents

Publication Publication Date Title
KR101818773B1 (en) Power conversion device for resonance wireless power transfer system
CN108173299B (en) Wireless power receiving device, and wireless power transmission device and rectifier using same
US20160099649A1 (en) Switching power supply apparatus for generating control signal for lowering switching frequency of switching devices
TWI445297B (en) Power supply
WO2012062929A2 (en) Power inverter for feeding electric energy from a dc power generator into an ac grid with two power lines
JP3173908U (en) Bisynchronous resonance switching type DC power supply device
CN101689807A (en) Multi-output switching power supply device
EP3079252A2 (en) Universal input voltage dc-dc converter employing low voltage capacitor power bank
US9570225B2 (en) Magnetoelectric device capable of storing usable electrical energy
JP2014075943A (en) Converter and bidirectional converter
KR101601549B1 (en) Method for battery charging control and apparatus therefor
JP2004358543A (en) Electric source device for arc application apparatus
JP6347389B2 (en) Non-contact power feeding device, non-contact power receiving device, and non-contact power feeding system
EP2976831B1 (en) Electronic sine wave transformer
EP0964504B1 (en) Switching power source apparatus
KR101797230B1 (en) Circuit for dc appliance
JP5992820B2 (en) Converter and bidirectional converter
EP2638627A2 (en) Power inverter for feeding electric energy from a dc power generator into an ac grid with two power lines
US9590519B2 (en) Power adapter with a step-down transformer and a voltage step-up circuit
JP5713171B2 (en) AC-DC converter
TWI553678B (en) Magnetoelectric amplifying device
JP2019106809A (en) Insulation type switching power supply
JP6930890B2 (en) Insulated switching power supply
TW201519565A (en) AC-AC voltage transformation device and voltage transformation method thereof
JP4304743B2 (en) Switching power supply that enables on / off control without auxiliary power

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180518

R151 Written notification of patent or utility model registration

Ref document number: 6347389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151