WO2015198602A1 - Non-contact power supply device, non-contact power-receiving device, and non-contact power supply system - Google Patents

Non-contact power supply device, non-contact power-receiving device, and non-contact power supply system Download PDF

Info

Publication number
WO2015198602A1
WO2015198602A1 PCT/JP2015/003182 JP2015003182W WO2015198602A1 WO 2015198602 A1 WO2015198602 A1 WO 2015198602A1 JP 2015003182 W JP2015003182 W JP 2015003182W WO 2015198602 A1 WO2015198602 A1 WO 2015198602A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
circuit
contact power
power
coil
Prior art date
Application number
PCT/JP2015/003182
Other languages
French (fr)
Japanese (ja)
Inventor
稔博 秋山
豊彦 辻本
弘士 小原
秀明 安倍
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015198602A1 publication Critical patent/WO2015198602A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling

Definitions

  • the present invention relates to a noncontact power feeding device, a noncontact power receiving device, and a noncontact power feeding system, and more particularly, to a noncontact power feeding device, a noncontact power receiving device, and a noncontact power feeding device each configured to transmit power in a noncontact manner.
  • the present invention relates to a noncontact power feeding system.
  • the secondary side unit included in the non-contact power supply device includes a rectifying and smoothing circuit configured to rectify and smooth an induced current flowing through a secondary winding of the coupling transformer, and a sine wave output voltage of the rectifying and smoothing circuit. And an inverter circuit configured to convert into an alternating voltage and to supply the load.
  • a rectifying and smoothing circuit converts an induced current flowing through a secondary winding of a coupling transformer into a DC voltage. Therefore, in order to supply an AC voltage to the load, an inverter circuit is required to convert the DC voltage output from the rectifying and smoothing circuit into an AC voltage, and the size of the device is increased by the provision of the inverter circuit. Also, in the secondary side unit, after the rectifying and smoothing circuit converts the alternating current output of the secondary side of the coupling transformer into direct current, the inverter circuit converts the direct current output of the rectifying and smoothing circuit into alternating current, so conversion between direct current and alternating current The loss occurs twice, which causes the power loss in the entire apparatus to increase.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a noncontact power feeding apparatus, a noncontact power receiving apparatus, and a noncontact power feeding system in which downsizing is achieved while suppressing power loss in the whole noncontact power feeding system. Do.
  • the non-contact power feeding device (20) of the present invention is electromagnetically coupled to the power receiving coil (31) of the non-contact power receiving device (30) to supply power to the power receiving coil (31) by electromagnetic induction.
  • a PWM Pulse (Pulse)
  • T1 a cycle of an AC voltage (V2) to be applied from the non-contact power reception device (30) to the load (40).
  • an excitation circuit (22) configured to generate an excitation current to be applied to the feeding coil (23) by inverting the polarity of the input voltage according to a Width Modulation) signal (S3).
  • the non-contact power reception device (30) of the present invention is electromagnetically coupled to the feeding coil (23) included in the non-contact power feeding device (20), and configured to receive power from the feeding coil (23) by electromagnetic induction.
  • a filter circuit (32) configured as follows.
  • the non-contact power feeding system of the present invention includes the above-described non-contact power feeding device (20) and the above-described non-contact power receiving device (30).
  • the present invention it is possible to realize a non-contact power feeding device, a non-contact power reception device, and a non-contact power feeding system in which miniaturization is achieved while suppressing power loss in the entire non-contact power feeding system.
  • FIG. 1 It is a block diagram of this embodiment. It is a circuit diagram of this embodiment. It is a wave form diagram of the sine wave signal in the PWM signal generation circuit of this embodiment, a reference signal, and a PWM signal. It is a wave form diagram of the voltage impressed to the feed coil of this embodiment, and the exchange voltage outputted from a power receiving device. It is a circuit diagram showing another circuit composition of this embodiment.
  • FIG. 1 is a block diagram of the non-contact power feeding system 10 of the present embodiment
  • FIG. 2 is a schematic circuit diagram of the non-contact power feeding system 10 of the present embodiment.
  • the non-contact power feeding system 10 of the present embodiment includes a non-contact power feeding device 20 and a non-contact power receiving device 30.
  • the non-contact power feeding device and the non-contact power receiving device will be referred to as “power feeding device” and “power receiving device”, respectively.
  • the power feeding device 20 is disposed on the back side of a building material such as a floor or a wall, and the power receiving device 30 is disposed on the front side of the building material.
  • the power feeding device 20 is disposed inside the window, and the power receiving device 30 is disposed outside the window.
  • the power feeding device 20 is configured to contactlessly supply the power supplied from the AC power supply 100 to the power receiving device 30.
  • the power receiving device 30 includes an outlet 33 to which the power plug 41 of the load 40 is detachably connected.
  • the load 40 is configured to operate with a commercial AC power supply that supplies AC power of a predetermined voltage having a predetermined frequency.
  • the load 40 is configured to operate with the AC power of a commercial AC power supply.
  • the load 40 is a general electric device such as a vacuum cleaner or a television receiver.
  • the power receiving device 30 is configured to supply the power supplied contactlessly from the power feeding device 20 to the load 40 connected to the outlet 33.
  • the power reception device 30 is disposed on the front side of the construction material at a position where power can be received from the power supply device 20 near the load 40. Power can be supplied from the power receiving device 30 to the load 40.
  • the feeding device 20 includes a DC power supply, an excitation circuit 22 (excitation unit), a feeding coil (transmission coil) 23, and a control circuit 24 (see FIG. 2).
  • the DC power supply is a rectifying and smoothing circuit 21
  • the control circuit 24 includes a PWM signal generating circuit (PWM signal generating unit) 241.
  • the rectifying and smoothing circuit 21 rectifies an AC voltage input from an AC power supply 100 such as a commercial AC power supply with a full-wave rectifier 211, smoothes the rectified voltage with a capacitor 212, and has a substantially constant voltage value. Configured to convert to a DC voltage V.sub.DC.
  • Excitation circuit 22 receives DC voltage V input from rectifying and smoothing circuit 21 in accordance with a PWM signal whose duty ratio changes in the cycle of AC voltage (second AC voltage) V2 to be supplied from load receiving device 30 to load 40. By inverting (switching) the polarity of DC , an excitation current to be applied to the feed coil 23 is generated.
  • the power feeding coil 23 is electromagnetically coupled (inductive coupling) to a power receiving coil (receiving coil) 31 included in the power receiving device 30, and configured to supply power to the power receiving coil 31 by electromagnetic induction.
  • the control circuit 24 is configured to control the operation of the excitation circuit 22.
  • the power receiving device 30 includes a power receiving coil 31 and a capacitor 321 as a filter element that constitutes the filter circuit 32 together with the power receiving coil 31. Further, the power receiving device 30 of the present embodiment further includes the outlet 33.
  • the power receiving coil 31 is electromagnetically coupled (inductively coupled) to the power feeding coil 23 included in the power feeding device 20, and configured to receive power from the power feeding coil 23 by electromagnetic induction.
  • the filter circuit 32 is configured to attenuate the frequency component of a higher frequency than the frequency of the AC voltage V2 to be supplied to the load 40 from the AC waveform generated in the power receiving coil 31 by electromagnetic induction.
  • the output voltage (second AC voltage V 2) of the filter circuit 32 is applied to the load 40 connected to the outlet 33 through the outlet 33.
  • the excitation circuit 22 includes four switching elements 221-224.
  • the switching elements 221 to 224 are, for example, field effect transistors, and the switching elements 221 to 224 are controlled by the control circuit 24 to be turned on / off.
  • the series circuit of the switching elements 221 and 222 and the series circuit of the switching elements 223 and 224 are connected in parallel between the output terminals of the rectifying and smoothing circuit 21. That is, the excitation circuit 22 is configured by an inverter circuit of a full bridge configuration.
  • the feeding coil 23 is electrically connected between a connection point P1 of the switching elements 221 and 222 and a connection point P2 of the switching elements 223 and 224.
  • the control circuit 24 includes a PWM signal generation circuit 241 and a NOT gate 242.
  • the PWM signal generation circuit 241 is configured to generate a PWM signal S3 whose duty ratio repeatedly increases and decreases in the cycle of the AC voltage V2 to be supplied from the power reception device 30 to the load 40.
  • the duty ratio of the PWM signal S3 periodically repeats increase and decrease in a cycle of the AC voltage V2 in accordance with a fixed change pattern.
  • the PWM signal generation circuit 241 includes a sine wave generation circuit 243, a triangular wave generation circuit 244, and a comparator 245.
  • the sine wave generation circuit 243 is configured to generate a sine wave signal S1 having substantially the same frequency as the AC voltage V2.
  • the frequency of the sine wave signal S1 is 50 Hz or 60 Hz, which is the frequency of a commercial AC power supply.
  • the triangular wave generation circuit 244 is configured to generate a reference signal S2 which is a triangular wave signal whose frequency is higher than that of the sine wave signal S1 and whose peak value is slightly larger than that of the sine wave signal S1.
  • the frequency of the reference signal S2 may be at least twice the frequency of the sine wave signal S1, and is set to about five times in the present embodiment.
  • the comparator 245 compares the signal level of the sine wave signal S1 with the signal level of the reference signal S2 that is a triangular wave signal, and outputs a PWM signal S3 whose level changes according to the comparison result.
  • the sine wave signal S1 is input to the negative input terminal (inverting input terminal) of the comparator 245, and the reference signal S2 is input to the positive input terminal (non-inverting input terminal) of the comparator 245. Therefore, as shown in FIG. 3, the signal level of the PWM signal S3 output from the comparator 245 is low during the period in which the signal level of the sine wave signal S1 is higher than the signal level of the reference signal S2.
  • the PWM signal S3 is a duty signal whose duty ratio repeatedly increases and decreases at the cycle T1 of the sine wave signal S1, and the ratio of the on period is larger as the difference between the reference signal S2 and the sine wave signal S1 is larger.
  • the PWM signal S3 output from the comparator 245 is input to control electrodes of the switching elements 221 and 224, respectively.
  • the PWM signal S3 is input to the NOT gate 242, and the output signal of the NOT gate 242 is input to control electrodes of the switching elements 222 and 223, respectively. That is, a signal obtained by inverting high / low of the PWM signal S3 is input to the control electrodes of the switching elements 222 and 223 via the NOT gate 242.
  • the filter circuit 32 included in the power receiving device 30 is configured by an LC filter circuit, and includes a power receiving coil 31 and a capacitor 321 connected between both ends of the power receiving coil 31.
  • the LC filter circuit using the power receiving coil 31 and the capacitor 321 is a low pass filter circuit, and is configured to attenuate frequency components higher in frequency than the frequency of the AC voltage V2 to be applied to the load 40.
  • the inductor of the LC filter circuit is also used as the power receiving coil 31.
  • the LC filter circuit may be configured with an inductor and a capacitor 321 provided separately from the power receiving coil 31.
  • the filter circuit 32 is not limited to the LC filter circuit, but may be an RC series circuit using a resistor and a capacitor, as long as it is a filter circuit that attenuates frequency components higher than the frequency of the AC voltage V2. Other filter circuits may be used.
  • the terminals on both sides of the capacitor 321 are electrically connected to both terminals of the outlet 33, and the voltage across the capacitor 321 (that is, the output voltage of the filter circuit 32) is applied to the load 40 via the outlet 33. .
  • the power receiving device 30 is disposed at a position where the power receiving coil 31 is magnetically coupled (inductively coupled) to the power feeding coil 23 and can receive power supply from the power feeding device 20 in a noncontact manner.
  • the rectifying and smoothing circuit 21 rectifies and smoothes an AC voltage (input voltage) input from the AC power supply 100, thereby converting the input voltage into a DC voltage V DC having a substantially constant voltage value and exciting the DC voltage V DC It outputs to the circuit 22.
  • the sine wave signal S1 is input to the negative input terminal of the comparator 245, and the reference signal S2 is input to the positive input terminal of the comparator 245.
  • the comparator 245 periodically changes the duty ratio in the cycle of the AC voltage V2 by switching the signal level of the output to high or low according to the comparison result of the level of the sine wave signal S1 and the level of the reference signal S2. To generate a PWM signal S3 that repeats.
  • the PWM signal S3 is input to control electrodes of the switching elements 221 and 224, and a signal (output signal of the NOT gate 242) obtained by inverting the high / low of the PWM signal S3 is input to the switching elements 222 and 223.
  • the PWM signal S3 is a signal that repeats increase and decrease in the same cycle T1 as the cycle of the AC voltage V2 and in accordance with the change pattern of the same duty ratio. Therefore, as shown in FIG.
  • the voltage (first alternating voltage) V1 applied from the excitation circuit 22 to the feeding coil 23 becomes a constant positive voltage while the PWM signal S3 is high, and the PWM signal S3 is low. During this period, the pulse voltage of the rectangular wave becomes a negative constant voltage. At this time, the current flowing through the feeding coil 23 changes in accordance with the voltage V1, and a magnetic flux corresponding to the change in current is generated around the feeding coil 23.
  • the power receiving coil 31 of the power receiving device 30 is present in the vicinity of the power feeding coil 23, a magnetic flux is generated around the power feeding coil 23, and a current flows in the power receiving coil 31 by electromagnetic induction.
  • the AC waveform generated in the power receiving coil 31 has a frequency component (frequency component of the PWM signal S3) having a frequency higher than that of the AC voltage V2.
  • This high frequency component is constituted by the power receiving coil 31 and the capacitor 321. Attenuated by a low pass filter. Therefore, as shown in FIG. 4, the AC voltage V 2 output from the filter circuit 32 becomes a sine wave AC voltage after the high frequency component is attenuated, and this AC voltage V 2 is applied to the load 40. That is, since the AC voltage V2 similar to the power supply voltage of the commercial AC power supply is applied to the load 40, it is possible to operate the load 40 that operates by receiving the supply of the commercial AC power.
  • the exciting circuit 22 is comprised by the full bridge inverter circuit in the non-contact electric power feeding system of the said embodiment, as shown in FIG. 5, the exciting circuit 22 may be comprised with a half bridge inverter circuit.
  • the power supply apparatus 20 shown in FIG. 5 includes a battery 25 and a smoothing circuit 26 instead of the rectifying and smoothing circuit 21 for converting an alternating voltage input from the alternating current power supply 100 into a direct voltage.
  • the configuration other than the excitation circuit 22, the battery 25, and the smoothing circuit 26 is the same as that of the non-contact power feeding system 10 shown in FIG. 2, so the same components are denoted by the same reference numerals and the description thereof is omitted. .
  • the power supply device 20 shown in FIGS. 1 and 2 obtains power from the external AC power supply 100, but the power supply device 20 shown in FIG. 5 obtains power from the built-in battery 25.
  • the battery 25 may be a primary battery or a secondary battery such as a lead storage battery, a nickel hydrogen battery, or a lithium ion battery, and a battery having a storage amount corresponding to the amount of power supplied to the load 40 may be used.
  • the output voltage of the battery 25 smoothes and generates a DC voltage V DC, configured to apply a DC voltage V DC to the excitation circuit 22. That is, in the example of FIG. 5, the battery 25 and the smoothing circuit 26 constitute a DC power supply, and the smoothing circuit 26 is optional (not a requirement).
  • the excitation circuit 22 is a half bridge inverter circuit including two switching elements 225 and 226 and two capacitors 227 and 228. A series circuit of two switching elements 225 and 226 and a series circuit of two capacitors 227 and 228 are connected in parallel between the output terminals of the smoothing circuit 26 (DC power supply).
  • the feed coil 23 is connected between a connection point P3 of the switching elements 225 and 226 and a connection point P4 of the capacitors 227 and 228.
  • the switching elements 225 and 226 are, for example, field effect transistors, and the switching elements 225 and 226 are controlled by the control circuit 24 to be on / off.
  • the PWM signal S3 generated by the PWM signal generation circuit 241 is input to the control electrode of the switching element 225 on the high potential side.
  • a signal obtained by inverting high / low of the PWM signal S3 by the NOT gate 242 is input to the control electrode of the switching element 226 on the low potential side.
  • alternating current due to alternating voltage V1 flows through feeding coil 23 by switching elements 225 and 226 alternately turned on / off according to the high / low of PWM signal S3, and excitation current around feeding coil 23 Magnetic flux is generated according to the time change of Thereby, power is supplied from the feeding coil 23 to the power receiving coil 31 by electromagnetic induction, and power is supplied from the power receiving device 30 to the load 40.
  • the feed device 20 is characterized by including the feed coil 23 and the excitation circuit 22.
  • the power feeding coil 23 is electromagnetically coupled (inductively coupled) to the power receiving coil 31 included in the power receiving device 30, and supplies power to the power receiving coil 31 by electromagnetic induction.
  • the exciting circuit 22 reverses (switches) the polarity of the DC voltage V DC in accordance with the PWM signal S 3 whose duty ratio repeatedly increases and decreases in a cycle of the AC voltage V 2 to be applied from the power receiving device 30 to the load 40.
  • the excitation current is generated by the AC voltage V1 to supply the excitation current to the feeding coil 23.
  • the excitation circuit 22 performs excitation by the AC voltage V1 by inverting (switching) the polarity of the DC voltage V DC according to the PWM signal S3 whose duty ratio repeatedly increases and decreases in the cycle of the AC voltage V2. It is generating current.
  • an excitation current whose polarity is reversed according to the high / low state of the PWM signal S3 flows through the feeding coil 23, and an alternating current according to the excitation current flows through the power receiving coil 31 by electromagnetic induction. become.
  • the frequency component corresponding to the frequency of the sine wave signal S1 is obtained by attenuating the frequency component higher than the frequency of the AC voltage V2 from the AC component generated in the power receiving coil 31 by the filter circuit 32.
  • AC voltage V2 can be obtained, and power can be supplied contactlessly. Therefore, as in the conventional power receiving device, there is no need to perform the operation of converting the AC output of the power receiving coil 31 into DC once and then converting it into AC voltage V2 of a desired frequency. Power loss can be reduced as a whole system. Further, since it is not necessary to provide the power receiving device 30 with a conversion circuit for converting the AC output of the power receiving coil 31 into DC once and then converting it into an AC voltage V2 of a desired frequency, There is also the advantage of being able to
  • the power supply device 20 of the present embodiment may include the PWM signal generation circuit 241 for generating the PWM signal S3.
  • the PWM signal generation circuit 241 has a signal level of the sine wave signal S1 having the same cycle as the AC voltage V2 to be applied from the power receiving device 30 to the load 40, and a signal level of the reference signal S2 whose frequency is higher than that of the sine wave signal S1. And generate a PWM signal S3 whose level changes in accordance with the comparison result.
  • the PWM signal generation circuit 241 can generate the PWM signal S3 whose duty ratio repeatedly increases and decreases in the cycle of the AC voltage V2 to be applied to the load 40.
  • the exciting circuit 22 inverts (switches) the polarity of the DC voltage V DC in accordance with the PWM signal S 3 to supply an exciting current whose polarity is inverted in accordance with high / low of the PWM signal S 3 to the feeding coil 23 be able to.
  • the power receiving device 30 of the present embodiment is characterized by including a power receiving coil 31 and a filter circuit 32 (filter unit).
  • the power receiving coil 31 functions as part of the filter circuit 32.
  • the power receiving device 30 includes the power receiving coil 31 and the capacitor 321 as a filter element that constitutes the filter circuit 32 together with the power receiving coil 31.
  • the power receiving coil 31 is electromagnetically coupled (inductively coupled) to the power feeding coil 23 included in the power feeding device 20, and configured to receive power from the power feeding coil 23 by electromagnetic induction.
  • the filter circuit 32 attenuates the frequency component of a higher frequency than the frequency of the AC voltage V2 to be applied to the load 40 from the AC waveform generated in the power receiving coil 31 by electromagnetic induction.
  • the filter circuit 32 attenuates the frequency component of a frequency higher than the frequency of the AC voltage V2 from the AC waveform generated in the power receiving coil 31, thereby obtaining an AC voltage having a frequency corresponding to the frequency of the sine wave signal S1.
  • V2 can be applied to the load 40.
  • the power receiving device 30 does not perform the operation of converting the AC output of the power receiving coil 31 into DC once after converting the AC output of the power receiving coil 31 into DC as in the conventional example, conversion loss of DC and AC occurs. As a result, power loss can be reduced as a whole system.
  • the filter circuit 32 may be an LC filter circuit including the power receiving coil 31 and the capacitor 321.
  • the power receiving device 30 includes only the filter circuit 32 including the power receiving coil 31, and converts the AC output of the power receiving coil 31 into DC once and then converts it into AC voltage V2 of a desired frequency. Since it is not provided, there is also an advantage that the power receiving device 30 can be made smaller by the amount of conversion circuit.
  • the inductor of the LC filter circuit is shared by the power receiving coil 31, the number of parts can be reduced, and the overall size can be reduced.
  • the non-contact power feeding system of the present embodiment is characterized by including any of the above-described power feeding devices 20 and any of the above-described power receiving devices 30, and a compact non-contact power feeding with reduced power loss as a whole system.
  • the system can be realized.
  • the non-contact power feeding system includes the non-contact power feeding device 20 and the non-contact power receiving device 30 physically separated from the non-contact power feeding device 20.
  • the non-contact power feeding apparatus 20 converts a DC voltage V DC into a first AC voltage V 1 by converting a DC power supply (21 or 25 and 26) configured to generate the DC voltage V DC , the transmission coil 23, and the first AC voltage V 1.
  • an excitation circuit 22 configured to apply an AC voltage V1 to the transmission coil 23.
  • the non-contact power reception device 30 is configured such that the power supply plug 41 of the load 40 is detachably mounted, and the reception coil 31 that is inductively coupled to the transmission coil 23 to form a transformer.
  • a circuit (32) including The circuit (32) is configured to obtain the second AC voltage V 2 from the receiving coil 31 and apply the second AC voltage V 2 to the load 40 via the outlet 33.
  • the non-contact power feeding device 20 is configured to generate the PWM signal S3 obtained from the sine wave signal S1 having a period T1 equal to the period of the second AC voltage V2 to be applied to the load 40
  • the circuit further includes a PWM signal generation circuit 241.
  • the excitation circuit 22 includes an inverter, which includes a plurality of switching elements (221 to 224 or 225 and 226), and inverts the polarity of the DC voltage V DC in accordance with the PWM signal S 3 to generate the first DC voltage V DC It is configured to convert into an alternating voltage V1.
  • the filter circuit 32 configured to obtain the second AC voltage V2 by removing or reducing a frequency component higher than the frequency of the second AC voltage V2 from the induction voltage of the receiving coil 31. including.
  • the PWM signal generation circuit 241 is configured to generate a sine wave generation circuit 243 configured to generate a sine wave signal S1, and generate a triangular wave signal S2 having a frequency higher than that of the sine wave signal S1.
  • a comparator (245) is configured to generate the PWM signal S3 by receiving the sine wave signal S1 and the triangular wave signal S2.
  • the filter circuit 32 includes a capacitor 321 that constitutes an LC circuit together with the receiving coil 31.

Abstract

 A power supply device (20), provided with an excitation circuit (22) and a power supply coil (23). The excitation circuit (22) inverts the polarity of an input voltage from a rectifying and smoothing circuit (21) in response to a PWM signal in which the duty ratio repeatedly increases and decreases at a period of an AC voltage to be applied from a power-receiving device (30) to a load (40), thereby generating an excitation current applied to the power supply coil (23). The power-receiving device (30) is provided with a power-receiving coil (31) and a filter circuit (32). The filter circuit (32) attenuates, from an AC waveform generated by electromagnetic induction in the power-receiving coil (31), frequency components corresponding to a frequency higher than that of the AC voltage to be applied to the load (40).

Description

非接触給電装置、非接触受電装置及び非接触給電システムNon-contact power feeding device, non-contact power receiving device and non-contact power feeding system
 本発明は、非接触給電装置、非接触受電装置及び非接触給電システムに関し、より詳細には、各々が非接触で電力を伝達するように構成される、非接触給電装置、非接触受電装置及び非接触給電システムに関する。 The present invention relates to a noncontact power feeding device, a noncontact power receiving device, and a noncontact power feeding system, and more particularly, to a noncontact power feeding device, a noncontact power receiving device, and a noncontact power feeding device each configured to transmit power in a noncontact manner. The present invention relates to a noncontact power feeding system.
 従来、1次側ユニットから2次側ユニットに非接触で電力を供給するように構成される非接触電源装置が提案されている(例えば日本国特許出願公開番号2004-96853(以下「文献1」という)参照)。 Conventionally, a non-contact power supply configured to non-contactly supply power from the primary side unit to the secondary side unit has been proposed (for example, Japanese Patent Application Publication No. 2004-96853 (hereinafter "Document 1"). ))).
 この非接触電源装置が備える2次側ユニットは、結合トランスの2次側巻線に流れる誘起電流を整流及び平滑するように構成される整流平滑回路と、整流平滑回路の出力電圧を正弦波の交流電圧に変換して負荷に供給するように構成されるインバータ回路とを備えていた。 The secondary side unit included in the non-contact power supply device includes a rectifying and smoothing circuit configured to rectify and smooth an induced current flowing through a secondary winding of the coupling transformer, and a sine wave output voltage of the rectifying and smoothing circuit. And an inverter circuit configured to convert into an alternating voltage and to supply the load.
 文献1に記載の非接触電源装置では、結合トランスの2次側巻線に流れる誘起電流を整流平滑回路が直流電圧に変換している。したがって、負荷に交流電圧を供給するために、整流平滑回路から出力される直流電圧を交流電圧に変換するためのインバータ回路が必要であり、インバータ回路を備える分だけ装置が大型になっていた。また2次側ユニットでは、整流平滑回路が結合トランスの2次側の交流出力を直流に変換した後、インバータ回路が整流平滑回路の直流出力を交流に変換しているため、直流と交流の変換ロスが2回分発生し、装置全体での電力損失が増大する要因となっていた。 In the non-contact power supply described in Document 1, a rectifying and smoothing circuit converts an induced current flowing through a secondary winding of a coupling transformer into a DC voltage. Therefore, in order to supply an AC voltage to the load, an inverter circuit is required to convert the DC voltage output from the rectifying and smoothing circuit into an AC voltage, and the size of the device is increased by the provision of the inverter circuit. Also, in the secondary side unit, after the rectifying and smoothing circuit converts the alternating current output of the secondary side of the coupling transformer into direct current, the inverter circuit converts the direct current output of the rectifying and smoothing circuit into alternating current, so conversion between direct current and alternating current The loss occurs twice, which causes the power loss in the entire apparatus to increase.
 本発明は上記課題に鑑みて為され、非接触給電システム全体で、電力損失を抑制しつつ小型化を図った非接触給電装置、非接触受電装置及び非接触給電システムを提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a noncontact power feeding apparatus, a noncontact power receiving apparatus, and a noncontact power feeding system in which downsizing is achieved while suppressing power loss in the whole noncontact power feeding system. Do.
 本発明の非接触給電装置(20)は、非接触受電装置(30)が備える受電コイル(31)に電磁的に結合されて、前記受電コイル(31)に電磁誘導により電力を供給するように構成される給電コイル(23)と、前記非接触受電装置(30)から負荷(40)に印加されるべき交流電圧(V2)の周期(T1)でデューティ比が増減を繰り返すようなPWM(Pulse Width Modulation)信号(S3)に応じて、入力電圧の極性を反転することによって前記給電コイル(23)に印加する励磁電流を発生するように構成される励磁回路(22)とを備えた。 The non-contact power feeding device (20) of the present invention is electromagnetically coupled to the power receiving coil (31) of the non-contact power receiving device (30) to supply power to the power receiving coil (31) by electromagnetic induction. And a PWM (Pulse (Pulse)) in which the duty ratio is repeatedly increased and decreased at a cycle (T1) of an AC voltage (V2) to be applied from the non-contact power reception device (30) to the load (40). And an excitation circuit (22) configured to generate an excitation current to be applied to the feeding coil (23) by inverting the polarity of the input voltage according to a Width Modulation) signal (S3).
 本発明の非接触受電装置(30)は、非接触給電装置(20)が備える給電コイル(23)に電磁的に結合されて、前記給電コイル(23)から電磁誘導により電力を受けるように構成される受電コイル(31)と、電磁誘導により前記受電コイル(31)に発生する交流波形から、負荷(40)に印加されるべき交流電圧(V2)の周波数よりも高周波の周波数成分を減衰させるように構成されるフィルタ回路(32)とを備えた。 The non-contact power reception device (30) of the present invention is electromagnetically coupled to the feeding coil (23) included in the non-contact power feeding device (20), and configured to receive power from the feeding coil (23) by electromagnetic induction. The frequency component of a higher frequency than the frequency of the alternating voltage (V2) to be applied to the load (40) from the receiving coil (31) to be received and the alternating current waveform generated in the receiving coil (31) by electromagnetic induction And a filter circuit (32) configured as follows.
 本発明の非接触給電システムは、上記の非接触給電装置(20)と、上記の非接触受電装置(30)とを備えた。 The non-contact power feeding system of the present invention includes the above-described non-contact power feeding device (20) and the above-described non-contact power receiving device (30).
 本発明によれば、非接触給電システム全体で、電力損失を抑制しつつ小型化を図った非接触給電装置、非接触受電装置及び非接触給電システムを実現できる。 According to the present invention, it is possible to realize a non-contact power feeding device, a non-contact power reception device, and a non-contact power feeding system in which miniaturization is achieved while suppressing power loss in the entire non-contact power feeding system.
 図面は本教示に従って一又は複数の実施例を示すが、限定するものではなく例に過ぎない。図面において、同様の符号は同じか類似の要素を指す。
本実施形態のブロック図である。 本実施形態の回路図である。 本実施形態のPWM信号発生回路における正弦波信号、基準信号及びPWM信号の波形図である。 本実施形態の給電コイルに印加される電圧及び受電装置から出力される交流電圧の波形図である。 本実施形態の別の回路構成を示す回路図である。
Although the drawings show one or more embodiments in accordance with the present teachings, they are not limiting and are merely exemplary. In the drawings, like numerals refer to like or similar elements.
It is a block diagram of this embodiment. It is a circuit diagram of this embodiment. It is a wave form diagram of the sine wave signal in the PWM signal generation circuit of this embodiment, a reference signal, and a PWM signal. It is a wave form diagram of the voltage impressed to the feed coil of this embodiment, and the exchange voltage outputted from a power receiving device. It is a circuit diagram showing another circuit composition of this embodiment.
 以下、本実施形態に係る非接触給電システムについて図面を参照して説明する。 Hereinafter, the non-contact power feeding system according to the present embodiment will be described with reference to the drawings.
 図1は本実施形態の非接触給電システム10のブロック図であり、図2は本実施形態の非接触給電システム10の概略的な回路図である。 FIG. 1 is a block diagram of the non-contact power feeding system 10 of the present embodiment, and FIG. 2 is a schematic circuit diagram of the non-contact power feeding system 10 of the present embodiment.
 本実施形態の非接触給電システム10は、図1に示すように、非接触給電装置20と、非接触受電装置30とを備える。以下、非接触給電装置及び非接触受電装置を、それぞれ「給電装置」及び「受電装置」という。本実施形態の非接触給電システム10では、例えば、給電装置20が床や壁などの造営材の裏側に設置され、受電装置30は造営材の表側に配置される。別例において、給電装置20は、窓の内側に配置され、受電装置30は窓の外側に配置される。給電装置20は、交流電源100から供給された電力を、受電装置30に非接触で供給するように構成される。受電装置30は、負荷40の電源プラグ41が着脱自在に接続されるコンセント部33を備えている。負荷40は、所定周波数を持つ所定電圧の交流電力を供給する商用交流電源で動作するように構成される。負荷40は、商用交流電源の交流電力で動作するように構成される。例えば、負荷40は、掃除機やテレビ受像機などの一般的な電気機器である。受電装置30は、給電装置20から非接触で供給された電力を、コンセント部33に接続された負荷40に供給するように構成される。したがって、造営材の裏側において複数箇所に給電装置20を設置しておけば、造営材の表側において、負荷40の近くにある給電装置20から受電可能な位置に受電装置30を配置して、この受電装置30から負荷40に電力を供給させることができる。 As shown in FIG. 1, the non-contact power feeding system 10 of the present embodiment includes a non-contact power feeding device 20 and a non-contact power receiving device 30. Hereinafter, the non-contact power feeding device and the non-contact power receiving device will be referred to as “power feeding device” and “power receiving device”, respectively. In the non-contact power feeding system 10 of the present embodiment, for example, the power feeding device 20 is disposed on the back side of a building material such as a floor or a wall, and the power receiving device 30 is disposed on the front side of the building material. In another example, the power feeding device 20 is disposed inside the window, and the power receiving device 30 is disposed outside the window. The power feeding device 20 is configured to contactlessly supply the power supplied from the AC power supply 100 to the power receiving device 30. The power receiving device 30 includes an outlet 33 to which the power plug 41 of the load 40 is detachably connected. The load 40 is configured to operate with a commercial AC power supply that supplies AC power of a predetermined voltage having a predetermined frequency. The load 40 is configured to operate with the AC power of a commercial AC power supply. For example, the load 40 is a general electric device such as a vacuum cleaner or a television receiver. The power receiving device 30 is configured to supply the power supplied contactlessly from the power feeding device 20 to the load 40 connected to the outlet 33. Therefore, if the power supply devices 20 are installed at a plurality of locations on the back side of the construction material, the power reception device 30 is disposed on the front side of the construction material at a position where power can be received from the power supply device 20 near the load 40. Power can be supplied from the power receiving device 30 to the load 40.
 給電装置20は、直流電源と、励磁回路22(励磁部)と、給電コイル(発信コイル)23と、制御回路24とを備える(図2参照)。図1及び2の例では、直流電源は、整流平滑回路21であり、制御回路24は、PWM信号発生回路(PWM信号発生部)241を含む。 The feeding device 20 includes a DC power supply, an excitation circuit 22 (excitation unit), a feeding coil (transmission coil) 23, and a control circuit 24 (see FIG. 2). In the examples of FIGS. 1 and 2, the DC power supply is a rectifying and smoothing circuit 21, and the control circuit 24 includes a PWM signal generating circuit (PWM signal generating unit) 241.
 整流平滑回路21は、例えば商用交流電源のような交流電源100から入力される交流電圧を全波整流器211で整流した後、その整流した電圧を、コンデンサ212で平滑して、電圧値がほぼ一定の直流電圧VDCに変換するように構成される。 For example, the rectifying and smoothing circuit 21 rectifies an AC voltage input from an AC power supply 100 such as a commercial AC power supply with a full-wave rectifier 211, smoothes the rectified voltage with a capacitor 212, and has a substantially constant voltage value. Configured to convert to a DC voltage V.sub.DC.
 励磁回路22は、受電装置30から負荷40に供給されるべき交流電圧(第2交流電圧)V2の周期でデューティ比が変化するPWM信号に応じて、整流平滑回路21から入力される直流電圧VDCの極性を反転(スイッチング)することによって、給電コイル23に印加する励磁電流を発生するように構成される。 Excitation circuit 22 receives DC voltage V input from rectifying and smoothing circuit 21 in accordance with a PWM signal whose duty ratio changes in the cycle of AC voltage (second AC voltage) V2 to be supplied from load receiving device 30 to load 40. By inverting (switching) the polarity of DC , an excitation current to be applied to the feed coil 23 is generated.
 給電コイル23は、受電装置30が備える受電コイル(受信コイル)31に電磁的に結合(誘導結合)されて、受電コイル31に電磁誘導により電力を供給するように構成される。 The power feeding coil 23 is electromagnetically coupled (inductive coupling) to a power receiving coil (receiving coil) 31 included in the power receiving device 30, and configured to supply power to the power receiving coil 31 by electromagnetic induction.
 制御回路24は、励磁回路22の動作を制御するように構成される。 The control circuit 24 is configured to control the operation of the excitation circuit 22.
 受電装置30は、受電コイル31と、この受電コイル31とともにフィルタ回路32を構成するフィルタ素子としてのコンデンサ321とを備える。また本実施形態の受電装置30はコンセント部33をさらに備えている。 The power receiving device 30 includes a power receiving coil 31 and a capacitor 321 as a filter element that constitutes the filter circuit 32 together with the power receiving coil 31. Further, the power receiving device 30 of the present embodiment further includes the outlet 33.
 受電コイル31は、給電装置20が備える給電コイル23に電磁的に結合(誘導結合)されて、給電コイル23から電磁誘導により電力を受けるように構成される。 The power receiving coil 31 is electromagnetically coupled (inductively coupled) to the power feeding coil 23 included in the power feeding device 20, and configured to receive power from the power feeding coil 23 by electromagnetic induction.
 フィルタ回路32は、電磁誘導により受電コイル31に発生する交流波形から、負荷40に供給するべき交流電圧V2の周波数よりも高周波の周波数成分を減衰させるように構成される。フィルタ回路32の出力電圧(第2交流電圧V2)は、コンセント部33に接続された負荷40に、コンセント部33を介して印加される。 The filter circuit 32 is configured to attenuate the frequency component of a higher frequency than the frequency of the AC voltage V2 to be supplied to the load 40 from the AC waveform generated in the power receiving coil 31 by electromagnetic induction. The output voltage (second AC voltage V 2) of the filter circuit 32 is applied to the load 40 connected to the outlet 33 through the outlet 33.
 次に、図2の回路図を参照して、励磁回路22、制御回路24及びフィルタ回路32の具体構成を説明する。 Next, specific configurations of the excitation circuit 22, the control circuit 24, and the filter circuit 32 will be described with reference to the circuit diagram of FIG.
 励磁回路22は4つのスイッチング素子221~224を備えている。スイッチング素子221~224は例えば電界効果トランジスタからなり、スイッチング素子221~224は制御回路24によってオン/オフが制御される。図2の例では、スイッチング素子221,222の直列回路と、スイッチング素子223,224の直列回路とが、整流平滑回路21の出力端子間に並列に接続されている。つまり、励磁回路22はフルブリッジ構成のインバータ回路で構成されている。スイッチング素子221,222の接続点P1と、スイッチング素子223,224の接続点P2の間に給電コイル23が電気的に接続されている。 The excitation circuit 22 includes four switching elements 221-224. The switching elements 221 to 224 are, for example, field effect transistors, and the switching elements 221 to 224 are controlled by the control circuit 24 to be turned on / off. In the example of FIG. 2, the series circuit of the switching elements 221 and 222 and the series circuit of the switching elements 223 and 224 are connected in parallel between the output terminals of the rectifying and smoothing circuit 21. That is, the excitation circuit 22 is configured by an inverter circuit of a full bridge configuration. The feeding coil 23 is electrically connected between a connection point P1 of the switching elements 221 and 222 and a connection point P2 of the switching elements 223 and 224.
 制御回路24は、PWM信号発生回路241と、NOTゲート242とを備える。 The control circuit 24 includes a PWM signal generation circuit 241 and a NOT gate 242.
 PWM信号発生回路241は、受電装置30から負荷40に供給されるべき交流電圧V2の周期で、デューティ比が増減を繰り返すようなPWM信号S3を発生するように構成される。このPWM信号S3のデューティ比は、交流電圧V2の周期で、一定の変化パターンにしたがって増減を周期的に繰り返している。 The PWM signal generation circuit 241 is configured to generate a PWM signal S3 whose duty ratio repeatedly increases and decreases in the cycle of the AC voltage V2 to be supplied from the power reception device 30 to the load 40. The duty ratio of the PWM signal S3 periodically repeats increase and decrease in a cycle of the AC voltage V2 in accordance with a fixed change pattern.
 このPWM信号発生回路241は、正弦波発生回路243と、三角波発生回路244と、コンパレータ245とを備えている。 The PWM signal generation circuit 241 includes a sine wave generation circuit 243, a triangular wave generation circuit 244, and a comparator 245.
 正弦波発生回路243は、交流電圧V2と周波数がほぼ同じ周波数である正弦波信号S1を発生するように構成される。例えば、正弦波信号S1の周波数は、商用交流電源の周波数であって、50Hz又は60Hzである。 The sine wave generation circuit 243 is configured to generate a sine wave signal S1 having substantially the same frequency as the AC voltage V2. For example, the frequency of the sine wave signal S1 is 50 Hz or 60 Hz, which is the frequency of a commercial AC power supply.
 三角波発生回路244は、正弦波信号S1よりも周波数が高く、且つ、信号のピーク値が正弦波信号S1よりもやや大きい三角波信号である基準信号S2を発生するように構成される。なお、基準信号S2の周波数は正弦波信号S1の周波数の2倍以上であればよく、本実施形態では約5倍に設定されている。 The triangular wave generation circuit 244 is configured to generate a reference signal S2 which is a triangular wave signal whose frequency is higher than that of the sine wave signal S1 and whose peak value is slightly larger than that of the sine wave signal S1. The frequency of the reference signal S2 may be at least twice the frequency of the sine wave signal S1, and is set to about five times in the present embodiment.
 コンパレータ245は、正弦波信号S1の信号レベルと、三角波信号である基準信号S2の信号レベルとを比較し、その比較結果に応じてレベルが変化するPWM信号S3を出力するように構成される。図2の例では、コンパレータ245のマイナス入力端子(反転入力端子)には正弦波信号S1が入力され、コンパレータ245のプラス入力端子(非反転入力端子)には基準信号S2が入力されている。したがって、図3に示すように、正弦波信号S1の信号レベルが基準信号S2の信号レベルよりも高い期間では、コンパレータ245から出力されるPWM信号S3の信号レベルはローレベルとなる。正弦波信号S1の信号レベルが基準信号S2の信号レベルよりも低い期間では、PWM信号S3の信号レベルはハイレベルとなる。よって、PWM信号S3は、正弦波信号S1の周期T1で、デューティ比が増減を繰り返すようなデューティ信号であって、基準信号S2と正弦波信号S1との差分が大きいほどオン期間の割合が大きくなるようなデューティ信号となる。 The comparator 245 compares the signal level of the sine wave signal S1 with the signal level of the reference signal S2 that is a triangular wave signal, and outputs a PWM signal S3 whose level changes according to the comparison result. In the example of FIG. 2, the sine wave signal S1 is input to the negative input terminal (inverting input terminal) of the comparator 245, and the reference signal S2 is input to the positive input terminal (non-inverting input terminal) of the comparator 245. Therefore, as shown in FIG. 3, the signal level of the PWM signal S3 output from the comparator 245 is low during the period in which the signal level of the sine wave signal S1 is higher than the signal level of the reference signal S2. During a period in which the signal level of the sine wave signal S1 is lower than the signal level of the reference signal S2, the signal level of the PWM signal S3 is high. Therefore, the PWM signal S3 is a duty signal whose duty ratio repeatedly increases and decreases at the cycle T1 of the sine wave signal S1, and the ratio of the on period is larger as the difference between the reference signal S2 and the sine wave signal S1 is larger. Becomes a duty signal that
 コンパレータ245から出力されるPWM信号S3は、スイッチング素子221,224の制御電極にそれぞれ入力される。またPWM信号S3はNOTゲート242に入力され、NOTゲート242の出力信号はスイッチング素子222,223の制御電極にそれぞれ入力される。すなわち、スイッチング素子222,223の制御電極には、NOTゲート242を介してPWM信号S3のハイ/ローを反転させた信号が入力される。 The PWM signal S3 output from the comparator 245 is input to control electrodes of the switching elements 221 and 224, respectively. The PWM signal S3 is input to the NOT gate 242, and the output signal of the NOT gate 242 is input to control electrodes of the switching elements 222 and 223, respectively. That is, a signal obtained by inverting high / low of the PWM signal S3 is input to the control electrodes of the switching elements 222 and 223 via the NOT gate 242.
 PWM信号S3の信号レベルがハイの期間では、スイッチング素子221,224がオンになり、スイッチング素子222,223がオフになる。その結果、整流平滑回路21の正端子からスイッチング素子221、給電コイル23及びスイッチング素子224の経路を介して整流平滑回路21の負端子に電流が流れる。一方、PWM信号S3の信号レベルがローの期間では、スイッチング素子221,224がオフになり、スイッチング素子222,223がオンになる。その結果、整流平滑回路21の正端子からスイッチング素子223、給電コイル23及びスイッチング素子222の経路を介して整流平滑回路21の負端子に電流が流れる。したがって、スイッチング素子221,224の組と、スイッチング素子222,223の組とが交互にオン/オフされることによって、給電コイル23には交流電圧V1による交流電流が流れ、給電コイル23の周りには励磁電流の時間変化に応じた磁束が発生する。 While the signal level of the PWM signal S3 is high, the switching elements 221 and 224 are turned on, and the switching elements 222 and 223 are turned off. As a result, current flows from the positive terminal of the rectifying and smoothing circuit 21 to the negative terminal of the rectifying and smoothing circuit 21 through the path of the switching element 221, the feeding coil 23, and the switching element 224. On the other hand, while the signal level of the PWM signal S3 is low, the switching elements 221 and 224 are turned off, and the switching elements 222 and 223 are turned on. As a result, current flows from the positive terminal of the rectifying and smoothing circuit 21 to the negative terminal of the rectifying and smoothing circuit 21 via the path of the switching element 223, the feeding coil 23, and the switching element 222. Therefore, by alternately turning on / off the pair of switching elements 221 and 224 and the pair of switching elements 222 and 223, an alternating current by the alternating voltage V1 flows through the feeding coil 23, and around the feeding coil 23. Generates a magnetic flux corresponding to the time change of the excitation current.
 一方、受電装置30が備えるフィルタ回路32は、LCフィルタ回路で構成され、これは、受電コイル31と、受電コイル31の両端間に接続されたコンデンサ321とを含む。受電コイル31とコンデンサ321とを用いたLCフィルタ回路はローパスフィルタ回路であり、負荷40に印加するべき交流電圧V2の周波数よりも高周波の周波数成分を減衰させるように構成される。なお、本実施形態ではLCフィルタ回路のインダクタを受電コイル31が兼用しているが、受電コイル31とは別に設けたインダクタとコンデンサ321とでLCフィルタ回路を構成してもよい。また、フィルタ回路32はLCフィルタ回路に限定されず、交流電圧V2の周波数よりも高周波の周波数成分を減衰させるフィルタ回路であれば、抵抗器とコンデンサとを用いたRC直列回路でもよいし、それ以外のフィルタ回路でもよい。 On the other hand, the filter circuit 32 included in the power receiving device 30 is configured by an LC filter circuit, and includes a power receiving coil 31 and a capacitor 321 connected between both ends of the power receiving coil 31. The LC filter circuit using the power receiving coil 31 and the capacitor 321 is a low pass filter circuit, and is configured to attenuate frequency components higher in frequency than the frequency of the AC voltage V2 to be applied to the load 40. In the present embodiment, the inductor of the LC filter circuit is also used as the power receiving coil 31. However, the LC filter circuit may be configured with an inductor and a capacitor 321 provided separately from the power receiving coil 31. Further, the filter circuit 32 is not limited to the LC filter circuit, but may be an RC series circuit using a resistor and a capacitor, as long as it is a filter circuit that attenuates frequency components higher than the frequency of the AC voltage V2. Other filter circuits may be used.
 コンデンサ321の両側の端子がコンセント部33の両端子に電気的に接続されており、コンデンサ321の両端電圧(すなわちフィルタ回路32の出力電圧)が、コンセント部33を介して負荷40に印加される。 The terminals on both sides of the capacitor 321 are electrically connected to both terminals of the outlet 33, and the voltage across the capacitor 321 (that is, the output voltage of the filter circuit 32) is applied to the load 40 via the outlet 33. .
 次に、本実施形態の非接触給電システム10の動作を説明する。なお、受電装置30は、受電コイル31が給電コイル23と磁気的に結合(誘導結合)され、給電装置20から非接触で電力の供給を受けることができる位置に配置されている。 Next, the operation of the non-contact power feeding system 10 of the present embodiment will be described. The power receiving device 30 is disposed at a position where the power receiving coil 31 is magnetically coupled (inductively coupled) to the power feeding coil 23 and can receive power supply from the power feeding device 20 in a noncontact manner.
 整流平滑回路21は、交流電源100から入力される交流電圧(入力電圧)を整流及び平滑することにより、入力電圧を電圧値がほぼ一定の直流電圧VDCに変換し、直流電圧VDCを励磁回路22に出力する。PWM信号発生回路241では、コンパレータ245のマイナス入力端子に正弦波信号S1が入力され、コンパレータ245のプラス入力端子に基準信号S2が入力されている。コンパレータ245は、正弦波信号S1のレベルと基準信号S2のレベルとの比較結果に応じて、出力の信号レベルをハイ又はローに切り替えることによって、交流電圧V2の周期でデューティ比が周期的に変動を繰り返すようなPWM信号S3を発生する。このPWM信号S3はスイッチング素子221,224の制御電極に入力され、PWM信号S3のハイ/ローを反転させた信号(NOTゲート242の出力信号)がスイッチング素子222,223に入力される。 The rectifying and smoothing circuit 21 rectifies and smoothes an AC voltage (input voltage) input from the AC power supply 100, thereby converting the input voltage into a DC voltage V DC having a substantially constant voltage value and exciting the DC voltage V DC It outputs to the circuit 22. In the PWM signal generation circuit 241, the sine wave signal S1 is input to the negative input terminal of the comparator 245, and the reference signal S2 is input to the positive input terminal of the comparator 245. The comparator 245 periodically changes the duty ratio in the cycle of the AC voltage V2 by switching the signal level of the output to high or low according to the comparison result of the level of the sine wave signal S1 and the level of the reference signal S2. To generate a PWM signal S3 that repeats. The PWM signal S3 is input to control electrodes of the switching elements 221 and 224, and a signal (output signal of the NOT gate 242) obtained by inverting the high / low of the PWM signal S3 is input to the switching elements 222 and 223.
 PWM信号S3の信号レベルがハイの期間には、スイッチング素子221,224がオンになり、スイッチング素子222,223がオフになる。その結果、給電コイル23には接続点P1から接続点P2に向かって電流が流れる。一方、PWM信号S3の信号レベルがローの期間には、スイッチング素子221,224がオフになり、スイッチング素子222,223がオンになる。その結果、給電コイル23には接続点P2から接続点P1に向かって電流が流れる。PWM信号S3は、図3に示すように、交流電圧V2の周期と同じ周期T1で、デューティ比が同一の変化パターンにしたがって増減を繰り返すような信号となっている。そのため、励磁回路22から給電コイル23に印加される電圧(第1交流電圧)V1は、図4に示すように、PWM信号S3がハイの期間には正の一定電圧となり、PWM信号S3がローの期間には負の一定電圧となるような矩形波のパルス電圧となる。このとき、給電コイル23に流れる電流は電圧V1に応じて変化し、電流変化に応じた磁束が給電コイル23の周囲に発生する。 While the signal level of the PWM signal S3 is high, the switching elements 221 and 224 are turned on and the switching elements 222 and 223 are turned off. As a result, current flows from the connection point P1 to the connection point P2 in the feed coil 23. On the other hand, while the signal level of the PWM signal S3 is low, the switching elements 221 and 224 are turned off and the switching elements 222 and 223 are turned on. As a result, current flows from the connection point P2 to the connection point P1 in the feed coil 23. As shown in FIG. 3, the PWM signal S3 is a signal that repeats increase and decrease in the same cycle T1 as the cycle of the AC voltage V2 and in accordance with the change pattern of the same duty ratio. Therefore, as shown in FIG. 4, the voltage (first alternating voltage) V1 applied from the excitation circuit 22 to the feeding coil 23 becomes a constant positive voltage while the PWM signal S3 is high, and the PWM signal S3 is low. During this period, the pulse voltage of the rectangular wave becomes a negative constant voltage. At this time, the current flowing through the feeding coil 23 changes in accordance with the voltage V1, and a magnetic flux corresponding to the change in current is generated around the feeding coil 23.
 ここで、給電コイル23の近傍に、受電装置30の受電コイル31が存在していれば、給電コイル23の周囲に磁束が発生することによって、電磁誘導により受電コイル31に電流が流れる。受電コイル31に発生する交流波形には、交流電圧V2の周波数よりも高周波の周波数成分(PWM信号S3の周波数成分)が存在するが、この高周波成分は受電コイル31とコンデンサ321とで構成されるローパスフィルタによって減衰させられる。したがって、フィルタ回路32から出力される交流電圧V2は、図4に示すように、高周波成分が減衰させられた後の正弦波交流電圧となり、この交流電圧V2が負荷40に印加される。すなわち、負荷40には、商用交流電源の電源電圧と同様の交流電圧V2が印加されるから、商用交流電源の供給を受けて動作する負荷40を動作させることができる。 Here, if the power receiving coil 31 of the power receiving device 30 is present in the vicinity of the power feeding coil 23, a magnetic flux is generated around the power feeding coil 23, and a current flows in the power receiving coil 31 by electromagnetic induction. The AC waveform generated in the power receiving coil 31 has a frequency component (frequency component of the PWM signal S3) having a frequency higher than that of the AC voltage V2. This high frequency component is constituted by the power receiving coil 31 and the capacitor 321. Attenuated by a low pass filter. Therefore, as shown in FIG. 4, the AC voltage V 2 output from the filter circuit 32 becomes a sine wave AC voltage after the high frequency component is attenuated, and this AC voltage V 2 is applied to the load 40. That is, since the AC voltage V2 similar to the power supply voltage of the commercial AC power supply is applied to the load 40, it is possible to operate the load 40 that operates by receiving the supply of the commercial AC power.
 ところで、上記実施形態の非接触給電システムでは、励磁回路22がフルブリッジインバータ回路で構成されているが、図5に示すように励磁回路22がハーフブリッジインバータ回路で構成されていてもよい。また、図5に示す給電装置20では、交流電源100から入力される交流電圧を直流電圧に変換する整流平滑回路21の代わりに、電池25と平滑回路26とを備えている。なお、励磁回路22、電池25及び平滑回路26以外の構成は図2に示す非接触給電システム10と同様であるので、共通する構成要素には同一の符号を付して、その説明は省略する。 By the way, although the exciting circuit 22 is comprised by the full bridge inverter circuit in the non-contact electric power feeding system of the said embodiment, as shown in FIG. 5, the exciting circuit 22 may be comprised with a half bridge inverter circuit. Further, the power supply apparatus 20 shown in FIG. 5 includes a battery 25 and a smoothing circuit 26 instead of the rectifying and smoothing circuit 21 for converting an alternating voltage input from the alternating current power supply 100 into a direct voltage. The configuration other than the excitation circuit 22, the battery 25, and the smoothing circuit 26 is the same as that of the non-contact power feeding system 10 shown in FIG. 2, so the same components are denoted by the same reference numerals and the description thereof is omitted. .
 図1及び図2に示す給電装置20は外部の交流電源100から電力を得ているが、図5に示す給電装置20は内蔵の電池25から電力を得ている。電池25は1次電池でも良いし、鉛蓄電池やニッケル水素電池やリチウムイオン電池のような2次電池でもよく、負荷40に供給する電力量に応じた蓄電量の電池を使用すればよい。 The power supply device 20 shown in FIGS. 1 and 2 obtains power from the external AC power supply 100, but the power supply device 20 shown in FIG. 5 obtains power from the built-in battery 25. The battery 25 may be a primary battery or a secondary battery such as a lead storage battery, a nickel hydrogen battery, or a lithium ion battery, and a battery having a storage amount corresponding to the amount of power supplied to the load 40 may be used.
 平滑回路26は、電池25の出力電圧を平滑して直流電圧VDCを生成し、直流電圧VDCを励磁回路22に印加するように構成される。つまり、図5の例では、電池25及び平滑回路26が直流電源を構成し、平滑回路26はオプションである(必須要件ではない)。 Smoothing circuit 26, the output voltage of the battery 25 smoothes and generates a DC voltage V DC, configured to apply a DC voltage V DC to the excitation circuit 22. That is, in the example of FIG. 5, the battery 25 and the smoothing circuit 26 constitute a DC power supply, and the smoothing circuit 26 is optional (not a requirement).
 励磁回路22は、2個のスイッチング素子225,226と2個のコンデンサ227,228を備えたハーフブリッジインバータ回路である。平滑回路26(直流電源)の出力端子間に、2個のスイッチング素子225,226の直列回路と、2個のコンデンサ227,228の直列回路が並列に接続されている。スイッチング素子225,226の接続点P3と、コンデンサ227,228の接続点P4との間に給電コイル23が接続されている。スイッチング素子225,226は例えば電界効果トランジスタからなり、スイッチング素子225,226は制御回路24によってオン/オフが制御される。高電位側のスイッチング素子225の制御電極には、PWM信号発生回路241が発生したPWM信号S3が入力される。低電位側のスイッチング素子226の制御電極には、PWM信号S3のハイ/ローをNOTゲート242で反転させた信号が入力される。 The excitation circuit 22 is a half bridge inverter circuit including two switching elements 225 and 226 and two capacitors 227 and 228. A series circuit of two switching elements 225 and 226 and a series circuit of two capacitors 227 and 228 are connected in parallel between the output terminals of the smoothing circuit 26 (DC power supply). The feed coil 23 is connected between a connection point P3 of the switching elements 225 and 226 and a connection point P4 of the capacitors 227 and 228. The switching elements 225 and 226 are, for example, field effect transistors, and the switching elements 225 and 226 are controlled by the control circuit 24 to be on / off. The PWM signal S3 generated by the PWM signal generation circuit 241 is input to the control electrode of the switching element 225 on the high potential side. A signal obtained by inverting high / low of the PWM signal S3 by the NOT gate 242 is input to the control electrode of the switching element 226 on the low potential side.
 PWM信号S3がハイの期間には、スイッチング素子225がオンになり、スイッチング素子226がオフになる。その結果、平滑回路26の正端子からスイッチング素子225、給電コイル23及びコンデンサ228の経路を介して平滑回路26の負端子に電流が流れる。この間、給電コイル23に電流が流れ、コンデンサ228が充電される。PWM信号S3がローの期間には、スイッチング素子225がオフになり、スイッチング素子226がオンになる。その結果、コンデンサ228が放電して、コンデンサ228の高電位側から給電コイル23及びスイッチング素子226の経路を介してコンデンサ228の低電位側に電流が流れる。この間、給電コイル23に電流が流れる。 While the PWM signal S3 is high, the switching element 225 is turned on and the switching element 226 is turned off. As a result, current flows from the positive terminal of the smoothing circuit 26 to the negative terminal of the smoothing circuit 26 through the path of the switching element 225, the feeding coil 23 and the capacitor 228. During this time, a current flows in the feeding coil 23, and the capacitor 228 is charged. While the PWM signal S3 is low, the switching element 225 is turned off and the switching element 226 is turned on. As a result, the capacitor 228 is discharged, and a current flows from the high potential side of the capacitor 228 to the low potential side of the capacitor 228 through the path of the feeding coil 23 and the switching element 226. During this time, current flows in the feeding coil 23.
 したがって、PWM信号S3のハイ/ローに応じてスイッチング素子225,226が交互にオン/オフすることによって、給電コイル23には交流電圧V1による交流電流が流れ、給電コイル23の周りには励磁電流の時間変化に応じた磁束が発生する。これにより、給電コイル23から電磁誘導により受電コイル31に電力が供給され、受電装置30から負荷40に電力が供給される。 Therefore, alternating current due to alternating voltage V1 flows through feeding coil 23 by switching elements 225 and 226 alternately turned on / off according to the high / low of PWM signal S3, and excitation current around feeding coil 23 Magnetic flux is generated according to the time change of Thereby, power is supplied from the feeding coil 23 to the power receiving coil 31 by electromagnetic induction, and power is supplied from the power receiving device 30 to the load 40.
 以上説明したように、本実施形態の給電装置20は給電コイル23と励磁回路22とを備えたことを特徴とする。給電コイル23は、受電装置30が備える受電コイル31に電磁的に結合(誘導結合)されて、受電コイル31に電磁誘導により電力を供給する。励磁回路22は、受電装置30から負荷40に印加されるべき交流電圧V2の周期でデューティ比が増減を繰り返すようなPWM信号S3に応じて、直流電圧VDCの極性を反転(スイッチング)することによって交流電圧V1による励磁電流を発生して、励磁電流を給電コイル23に供給する。 As described above, the feed device 20 according to the present embodiment is characterized by including the feed coil 23 and the excitation circuit 22. The power feeding coil 23 is electromagnetically coupled (inductively coupled) to the power receiving coil 31 included in the power receiving device 30, and supplies power to the power receiving coil 31 by electromagnetic induction. The exciting circuit 22 reverses (switches) the polarity of the DC voltage V DC in accordance with the PWM signal S 3 whose duty ratio repeatedly increases and decreases in a cycle of the AC voltage V 2 to be applied from the power receiving device 30 to the load 40. The excitation current is generated by the AC voltage V1 to supply the excitation current to the feeding coil 23.
 このように、励磁回路22は、交流電圧V2の周期でデューティ比が増減を繰り返すようなPWM信号S3に応じて、直流電圧VDCの極性を反転(スイッチング)することによって、交流電圧V1による励磁電流を発生している。その結果、給電コイル23には、PWM信号S3のハイ/ローに応じて正負が反転するような励磁電流が流れることになり、電磁誘導によって受電コイル31に励磁電流に応じた交流電流が流れることになる。したがって、受電装置30では、受電コイル31に発生する交流成分から、交流電圧V2の周波数よりも高周波の周波数成分をフィルタ回路32で減衰させることで、正弦波信号S1の周波数に対応する周波数を持つ交流電圧V2を得ることができ、非接触で電力の供給を受けることができる。よって、従来の受電装置のように受電コイル31の交流出力を一旦直流に変換した後に所望の周波数の交流電圧V2に変換する動作を行わなくて済むから、直流と交流の変換ロスが発生せず、システム全体として電力損失を低減できる。また、受電装置30に、受電コイル31の交流出力を一旦直流に変換した後に所望の周波数の交流電圧V2に変換する変換回路を備える必要が無いから、変換回路の分だけ受電装置30を小型にできるという利点もある。 As described above, the excitation circuit 22 performs excitation by the AC voltage V1 by inverting (switching) the polarity of the DC voltage V DC according to the PWM signal S3 whose duty ratio repeatedly increases and decreases in the cycle of the AC voltage V2. It is generating current. As a result, an excitation current whose polarity is reversed according to the high / low state of the PWM signal S3 flows through the feeding coil 23, and an alternating current according to the excitation current flows through the power receiving coil 31 by electromagnetic induction. become. Therefore, in the power receiving device 30, the frequency component corresponding to the frequency of the sine wave signal S1 is obtained by attenuating the frequency component higher than the frequency of the AC voltage V2 from the AC component generated in the power receiving coil 31 by the filter circuit 32. AC voltage V2 can be obtained, and power can be supplied contactlessly. Therefore, as in the conventional power receiving device, there is no need to perform the operation of converting the AC output of the power receiving coil 31 into DC once and then converting it into AC voltage V2 of a desired frequency. Power loss can be reduced as a whole system. Further, since it is not necessary to provide the power receiving device 30 with a conversion circuit for converting the AC output of the power receiving coil 31 into DC once and then converting it into an AC voltage V2 of a desired frequency, There is also the advantage of being able to
 また、本実施形態の給電装置20において、PWM信号S3を生成するためのPWM信号発生回路241を備えてもよい。PWM信号発生回路241は、受電装置30から負荷40に印加されるべき交流電圧V2と周期が同じ正弦波信号S1の信号レベルと、正弦波信号S1よりも周波数が高い基準信号S2の信号レベルとを比較し、その比較結果に応じてレベルが変化するPWM信号S3を生成する。これにより、PWM信号発生回路241は、負荷40に印加されるべき交流電圧V2の周期でデューティ比が増減を繰り返すようなPWM信号S3を生成することができる。このPWM信号S3に応じて励磁回路22が直流電圧VDCの極性を反転(スイッチング)することによって、PWM信号S3のハイ/ローに応じて正負が反転するような励磁電流を給電コイル23に流すことができる。 Further, the power supply device 20 of the present embodiment may include the PWM signal generation circuit 241 for generating the PWM signal S3. The PWM signal generation circuit 241 has a signal level of the sine wave signal S1 having the same cycle as the AC voltage V2 to be applied from the power receiving device 30 to the load 40, and a signal level of the reference signal S2 whose frequency is higher than that of the sine wave signal S1. And generate a PWM signal S3 whose level changes in accordance with the comparison result. Thus, the PWM signal generation circuit 241 can generate the PWM signal S3 whose duty ratio repeatedly increases and decreases in the cycle of the AC voltage V2 to be applied to the load 40. The exciting circuit 22 inverts (switches) the polarity of the DC voltage V DC in accordance with the PWM signal S 3 to supply an exciting current whose polarity is inverted in accordance with high / low of the PWM signal S 3 to the feeding coil 23 be able to.
 本実施形態の受電装置30は受電コイル31とフィルタ回路32(フィルタ部)とを備えたことを特徴とする。図2及び5の例では、受電コイル31は、フィルタ回路32の一部として機能する。換言すると、受電装置30は、受電コイル31と、この受電コイル31とともにフィルタ回路32を構成するフィルタ素子としてのコンデンサ321とを備える。受電コイル31は、給電装置20が備える給電コイル23に電磁的に結合(誘導結合)されて、給電コイル23から電磁誘導により電力を受けるように構成される。フィルタ回路32は、電磁誘導により受電コイル31に発生する交流波形から、負荷40に印加するべき交流電圧V2の周波数よりも高周波の周波数成分を減衰させている。 The power receiving device 30 of the present embodiment is characterized by including a power receiving coil 31 and a filter circuit 32 (filter unit). In the examples of FIGS. 2 and 5, the power receiving coil 31 functions as part of the filter circuit 32. In other words, the power receiving device 30 includes the power receiving coil 31 and the capacitor 321 as a filter element that constitutes the filter circuit 32 together with the power receiving coil 31. The power receiving coil 31 is electromagnetically coupled (inductively coupled) to the power feeding coil 23 included in the power feeding device 20, and configured to receive power from the power feeding coil 23 by electromagnetic induction. The filter circuit 32 attenuates the frequency component of a higher frequency than the frequency of the AC voltage V2 to be applied to the load 40 from the AC waveform generated in the power receiving coil 31 by electromagnetic induction.
 このように、フィルタ回路32が、受電コイル31に発生する交流波形から、交流電圧V2の周波数よりも高周波の周波数成分を減衰させることで、正弦波信号S1の周波数に対応する周波数を持つ交流電圧V2を負荷40に印加することができる。また、受電装置30は、従来例のように受電コイル31の交流出力を一旦直流に変換した後に所望の周波数の交流電圧に変換する動作を行っていないので、直流と交流の変換ロスが発生せず、システム全体として電力損失を低減できる。 In this manner, the filter circuit 32 attenuates the frequency component of a frequency higher than the frequency of the AC voltage V2 from the AC waveform generated in the power receiving coil 31, thereby obtaining an AC voltage having a frequency corresponding to the frequency of the sine wave signal S1. V2 can be applied to the load 40. Further, since the power receiving device 30 does not perform the operation of converting the AC output of the power receiving coil 31 into DC once after converting the AC output of the power receiving coil 31 into DC as in the conventional example, conversion loss of DC and AC occurs. As a result, power loss can be reduced as a whole system.
 本実施形態の受電装置30において、フィルタ回路32は、受電コイル31とコンデンサ321とを含むLCフィルタ回路でもよい。図2及び5の例では、受電装置30は受電コイル31を含むフィルタ回路32のみを備え、受電コイル31の交流出力を一旦直流に変換した後に所望の周波数の交流電圧V2に変換する変換回路を備えていないから、変換回路の分だけ受電装置30を小型にできるという利点もある。 In the power receiving device 30 of the present embodiment, the filter circuit 32 may be an LC filter circuit including the power receiving coil 31 and the capacitor 321. In the examples of FIGS. 2 and 5, the power receiving device 30 includes only the filter circuit 32 including the power receiving coil 31, and converts the AC output of the power receiving coil 31 into DC once and then converts it into AC voltage V2 of a desired frequency. Since it is not provided, there is also an advantage that the power receiving device 30 can be made smaller by the amount of conversion circuit.
 また、LCフィルタ回路のインダクタを受電コイル31で兼用しているので、部品数を削減でき、全体として小型化を図ることができる。 Further, since the inductor of the LC filter circuit is shared by the power receiving coil 31, the number of parts can be reduced, and the overall size can be reduced.
 また本実施形態の非接触給電システムは、上記した何れかの給電装置20と、上記した何れかの受電装置30とを備えることを特徴とし、システム全体として電力損失を低減した小型の非接触給電システムを実現できる。 Moreover, the non-contact power feeding system of the present embodiment is characterized by including any of the above-described power feeding devices 20 and any of the above-described power receiving devices 30, and a compact non-contact power feeding with reduced power loss as a whole system. The system can be realized.
 一例において、非接触給電システムは、非接触給電装置20と、非接触給電装置20とは物理的に分離された非接触受電装置30とを備える。非接触給電装置20は、直流電圧VDCを発生するように構成される直流電源(21または25及び26)と、発信コイル23と、直流電圧VDCを第1交流電圧V1に変換して第1交流電圧V1を発信コイル23に印加するように構成される励磁回路22とを備える。非接触受電装置30は、負荷40の電源プラグ41が着脱自在に装着されるように構成されるコンセント部33と、発信コイル23と誘導結合されてトランスを形成するように構成される受信コイル31を含む回路(32)とを備える。その回路(32)は、受信コイル31から第2交流電圧V2を得て、コンセント部33を介して負荷40に第2交流電圧V2を印加するように構成される。 In one example, the non-contact power feeding system includes the non-contact power feeding device 20 and the non-contact power receiving device 30 physically separated from the non-contact power feeding device 20. The non-contact power feeding apparatus 20 converts a DC voltage V DC into a first AC voltage V 1 by converting a DC power supply (21 or 25 and 26) configured to generate the DC voltage V DC , the transmission coil 23, and the first AC voltage V 1. And an excitation circuit 22 configured to apply an AC voltage V1 to the transmission coil 23. The non-contact power reception device 30 is configured such that the power supply plug 41 of the load 40 is detachably mounted, and the reception coil 31 that is inductively coupled to the transmission coil 23 to form a transformer. And a circuit (32) including The circuit (32) is configured to obtain the second AC voltage V 2 from the receiving coil 31 and apply the second AC voltage V 2 to the load 40 via the outlet 33.
 上記の例において、非接触給電装置20は、負荷40に印加されるべき第2交流電圧V2の周期と等しい周期T1を持つ正弦波信号S1から得られるPWM信号S3を発生するように構成されるPWM信号発生回路241を更に備える。励磁回路22は、インバータを備え、これは、複数のスイッチング素子(221~224又は225及び226)を含み、PWM信号S3に従って直流電圧VDCの極性を反転することにより直流電圧VDCを第1交流電圧V1に変換するように構成される。上記回路(32)は、第2交流電圧V2の周波数よりも高い周波数成分を、受信コイル31の誘導電圧から除去ないし低減することにより、第2交流電圧V2を得るように構成されるフィルタ回路32を含む。 In the above example, the non-contact power feeding device 20 is configured to generate the PWM signal S3 obtained from the sine wave signal S1 having a period T1 equal to the period of the second AC voltage V2 to be applied to the load 40 The circuit further includes a PWM signal generation circuit 241. The excitation circuit 22 includes an inverter, which includes a plurality of switching elements (221 to 224 or 225 and 226), and inverts the polarity of the DC voltage V DC in accordance with the PWM signal S 3 to generate the first DC voltage V DC It is configured to convert into an alternating voltage V1. The filter circuit 32 configured to obtain the second AC voltage V2 by removing or reducing a frequency component higher than the frequency of the second AC voltage V2 from the induction voltage of the receiving coil 31. including.
 例えば、PWM信号発生回路241は、正弦波信号S1を発生するように構成される正弦波発生回路243と、正弦波信号S1の周波数よりも高い周波数を持つ三角波信号S2を発生するように構成される三角波発生回路244と、コンパレータ(245)とを備える。コンパレータ245は、正弦波信号S1及び三角波信号S2を入力してPWM信号S3を発生するように構成される。 For example, the PWM signal generation circuit 241 is configured to generate a sine wave generation circuit 243 configured to generate a sine wave signal S1, and generate a triangular wave signal S2 having a frequency higher than that of the sine wave signal S1. And a comparator (245). The comparator 245 is configured to generate the PWM signal S3 by receiving the sine wave signal S1 and the triangular wave signal S2.
 例えば、フィルタ回路32は、受信コイル31とともにLC回路を構成するコンデンサ321を含む。 For example, the filter circuit 32 includes a capacitor 321 that constitutes an LC circuit together with the receiving coil 31.
 上記の最良の形態および/または他の実施例であると考えられるものについて説明したが、種々の改変がなされてもよく、本明細書で開示される主題は種々の形態および実施例で実施されてもよく、そしてそれらは多数のアプリケーションに適用されてもよいものであり、その最適の幾つかが本明細書に記載されている。以下の特許請求の範囲によって、本教示の真の範囲内に入る任意およびすべての修正および変形を請求するものである。 Having described what is believed to be the best mode and / or other embodiments described above, various modifications may be made and the subject matter disclosed herein may be practiced in various forms and embodiments. And they may be applied to a large number of applications, some of which are described herein. The following claims are to claim any and all modifications and variations that fall within the true scope of the present teachings.

Claims (8)

  1.  非接触受電装置が備える受電コイルに電磁的に結合されて、前記受電コイルに電磁誘導により電力を供給するように構成される給電コイルと、
     前記非接触受電装置から負荷に印加されるべき交流電圧の周期でデューティ比が増減を繰り返すようなPWM信号に応じて、入力電圧の極性を反転することによって前記給電コイルに印加する励磁電流を発生するように構成される励磁回路と
     を備えたことを特徴とする非接触給電装置。
    A feeding coil that is electromagnetically coupled to a receiving coil included in the non-contact power receiving apparatus and configured to supply power to the receiving coil by electromagnetic induction;
    An excitation current to be applied to the feeding coil is generated by reversing the polarity of the input voltage in accordance with a PWM signal whose duty ratio repeatedly increases and decreases in a cycle of AC voltage to be applied to the load from the non-contact power reception device. A non-contact power supply device comprising: an excitation circuit configured to:
  2.  前記非接触受電装置から前記負荷に印加されるべき交流電圧と周期が同じ正弦波信号の信号レベルと、前記正弦波信号の周波数よりも高周波の三角波信号の信号レベルとを比較し、比較結果に応じてレベルが変化する前記PWM信号を生成するように構成されるPWM信号発生回路を備えたことを特徴とする請求項1記載の非接触給電装置。 The signal level of the sine wave signal having the same cycle as the AC voltage to be applied to the load from the non-contact power reception device is compared with the signal level of the triangular wave signal having a frequency higher than that of the sine wave signal. The non-contact power feeding device according to claim 1, further comprising a PWM signal generation circuit configured to generate the PWM signal whose level changes in response.
  3.  非接触給電装置が備える給電コイルに電磁的に結合されて、前記給電コイルから電磁誘導により電力を受けるように構成される受電コイルと、
     電磁誘導により前記受電コイルに発生する交流波形から、負荷に印加されるべき交流電圧の周波数よりも高周波の周波数成分を減衰させるように構成されるフィルタ回路と
     を備えたことを特徴とする非接触受電装置。
    A power receiving coil that is electromagnetically coupled to a power feeding coil included in the non-contact power feeding device, and configured to receive power from the power feeding coil by electromagnetic induction;
    And a filter circuit configured to attenuate a frequency component higher than the frequency of the AC voltage to be applied to the load from the AC waveform generated in the power receiving coil by electromagnetic induction. Power receiving device.
  4.  前記受電コイルは前記フィルタ回路の一部を兼ね、
     前記フィルタ回路は、LCフィルタ回路であり、これは前記受電コイルとコンデンサとを含む
     ことを特徴とする請求項3記載の非接触受電装置。
    The receiving coil also serves as part of the filter circuit.
    The non-contact power reception device according to claim 3, wherein the filter circuit is an LC filter circuit, and the filter circuit includes the power receiving coil and a capacitor.
  5.  請求項1又は2の何れかに記載の非接触給電装置と、請求項3又は4の何れかに記載の非接触受電装置とを備えたことを特徴とする非接触給電システム。 A non-contact power supply system comprising the non-contact power supply device according to any one of claims 1 and 2 and the non-contact power reception device according to any one of claims 3 and 4.
  6.  直流電圧を発生するように構成される直流電源と、発信コイルと、前記直流電圧を第1交流電圧に変換して前記第1交流電圧を前記発信コイルに印加するように構成される励磁回路とを備える非接触給電装置と、
     負荷の電源プラグが着脱自在に装着されるように構成されるコンセント部と、前記発信コイルと誘導結合されてトランスを形成するように構成される受信コイルを含み、前記受信コイルから第2交流電圧を得て、前記コンセント部を介して前記負荷に前記第2交流電圧を印加するように構成される回路とを備える非接触受電装置と
     を備える非接触給電システムであって、
     前記非接触給電装置は、前記負荷に印加されるべき前記第2交流電圧の周期と等しい周期を持つ正弦波信号から得られるPWM信号を発生するように構成されるPWM信号発生回路を更に備え、
     前記励磁回路は、インバータを備え、これは、複数のスイッチング素子を含み、前記PWM信号に従って前記直流電圧の極性を反転することにより前記直流電圧を前記第1交流電圧に変換するように構成され、
     前記受信コイルを含む前記回路は、前記第2交流電圧の周波数よりも高い周波数成分を、前記受信コイルの誘導電圧から除去ないし低減することにより、前記第2交流電圧を得るように構成されるフィルタ回路を含む
     ことを特徴とする非接触給電システム。
    A DC power supply configured to generate a DC voltage, a transmission coil, and an excitation circuit configured to convert the DC voltage into a first AC voltage and apply the first AC voltage to the transmission coil. A non-contact power feeding device comprising
    And a receiving coil configured to be detachably mounted to a power plug of a load, and a receiving coil configured to be inductively coupled to the transmitting coil to form a transformer, the second AC voltage from the receiving coil A non-contact power reception device comprising: a circuit configured to apply the second alternating voltage to the load via the outlet unit;
    The non-contact power feeding device further comprises a PWM signal generating circuit configured to generate a PWM signal obtained from a sine wave signal having a period equal to the period of the second alternating voltage to be applied to the load;
    The excitation circuit includes an inverter, which is configured to convert the DC voltage to the first AC voltage by inverting a polarity of the DC voltage according to the PWM signal, and including a plurality of switching elements.
    A filter configured to obtain the second alternating voltage by removing or reducing a frequency component higher than the frequency of the second alternating voltage from an induced voltage of the receiving coil, the circuit including the receiving coil being removed A contactless power supply system characterized by including a circuit.
  7.  前記PWM信号発生回路は、
     前記正弦波信号を発生するように構成される正弦波発生回路と、
     前記正弦波信号の周波数よりも高い周波数を持つ三角波信号を発生するように構成される三角波発生回路と、
     前記正弦波信号及び前記三角波信号を入力して前記PWM信号を発生するように構成されるコンパレータと
     を備えることを特徴とする請求項6記載の非接触給電システム。
    The PWM signal generation circuit
    A sine wave generator circuit configured to generate the sine wave signal;
    A triangular wave generation circuit configured to generate a triangular wave signal having a frequency higher than that of the sine wave signal;
    The contactless power supply system according to claim 6, further comprising: a comparator configured to receive the sine wave signal and the triangular wave signal to generate the PWM signal.
  8.  前記フィルタ回路は、前記受信コイルとともにLC回路を構成するコンデンサを含むことを特徴とする請求項6記載の非接触給電システム。 The non-contact power feeding system according to claim 6, wherein the filter circuit includes a capacitor which constitutes an LC circuit together with the receiving coil.
PCT/JP2015/003182 2014-06-27 2015-06-24 Non-contact power supply device, non-contact power-receiving device, and non-contact power supply system WO2015198602A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014133029A JP6347389B2 (en) 2014-06-27 2014-06-27 Non-contact power feeding device, non-contact power receiving device, and non-contact power feeding system
JP2014-133029 2014-06-27

Publications (1)

Publication Number Publication Date
WO2015198602A1 true WO2015198602A1 (en) 2015-12-30

Family

ID=54937709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003182 WO2015198602A1 (en) 2014-06-27 2015-06-24 Non-contact power supply device, non-contact power-receiving device, and non-contact power supply system

Country Status (2)

Country Link
JP (1) JP6347389B2 (en)
WO (1) WO2015198602A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019170144A (en) * 2018-03-23 2019-10-03 悠 小澤 Radio power feeding system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536286A (en) * 2002-08-20 2005-12-02 ソラテク コーポレーション Information transmission from transplanted medical device
US20140091635A1 (en) * 2012-09-28 2014-04-03 Denso Corporation Wireless power supply apparatus, filter unit and power supply apparatus for robot using the filter unit
JP2014093938A (en) * 2012-11-05 2014-05-19 O2 Micro Inc Method and apparatus for non-contact power transmission

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011211863A (en) * 2010-03-30 2011-10-20 Sharp Corp Noncontact power supply equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536286A (en) * 2002-08-20 2005-12-02 ソラテク コーポレーション Information transmission from transplanted medical device
US20140091635A1 (en) * 2012-09-28 2014-04-03 Denso Corporation Wireless power supply apparatus, filter unit and power supply apparatus for robot using the filter unit
JP2014093938A (en) * 2012-11-05 2014-05-19 O2 Micro Inc Method and apparatus for non-contact power transmission

Also Published As

Publication number Publication date
JP6347389B2 (en) 2018-06-27
JP2016012975A (en) 2016-01-21

Similar Documents

Publication Publication Date Title
TWI515994B (en) Resonance coupling type power transmission system, resonance power transmission apparatus, and resonance power receiving apparatus
CN108173299B (en) Wireless power receiving device, and wireless power transmission device and rectifier using same
TW507414B (en) Switching power circuit with secondary side parallel and series resonance
JP2016167977A (en) Electronic device
WO2014199691A1 (en) Power supply device and non-contact power supply system
JP2014075963A (en) Wired-wireless power transmission apparatus and wired-wireless power transmission method using the same
JP2016540479A (en) Wireless transmission of line frequency and line voltage AC
WO2015053246A1 (en) Wireless power transmission system
CN104734541A (en) Power Supply Apparatus And Image Forming Apparatus
US9570225B2 (en) Magnetoelectric device capable of storing usable electrical energy
JPWO2018216734A1 (en) Two-way wireless power transfer system
KR20170109929A (en) Control apparatus for transmiting power wirelessly and apparatus for transmiting power wirelessly
US20160036335A1 (en) Rectifying and smoothing circuit, power supply device and image forming apparatus
WO2015198602A1 (en) Non-contact power supply device, non-contact power-receiving device, and non-contact power supply system
JP6183243B2 (en) Power transmission system, power receiving device, and power transmitting device
CN210431250U (en) AC-DC power module
JP5992820B2 (en) Converter and bidirectional converter
JP2020156218A (en) Non-contact power supply device
JP2021035266A (en) Non-contact power supply device and power transmission device
JP2016059252A (en) Non-contact power transmission device
JP2014150690A (en) Current resonance type switching power source
JP2012191720A (en) Contactless power transmission apparatus
TWI553678B (en) Magnetoelectric amplifying device
US11108273B2 (en) Contactless power transmission apparatus with stable bidirectional power transmission
CN106961146B (en) Uninterruptible power supply and control power supply circuit thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15811760

Country of ref document: EP

Kind code of ref document: A1