JP2019106809A - Insulation type switching power supply - Google Patents

Insulation type switching power supply Download PDF

Info

Publication number
JP2019106809A
JP2019106809A JP2017238575A JP2017238575A JP2019106809A JP 2019106809 A JP2019106809 A JP 2019106809A JP 2017238575 A JP2017238575 A JP 2017238575A JP 2017238575 A JP2017238575 A JP 2017238575A JP 2019106809 A JP2019106809 A JP 2019106809A
Authority
JP
Japan
Prior art keywords
secondary coil
capacitor
current
transformer
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017238575A
Other languages
Japanese (ja)
Other versions
JP6942040B2 (en
Inventor
羽田 正二
Shoji Haneda
正二 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2017238575A priority Critical patent/JP6942040B2/en
Priority to KR1020207017084A priority patent/KR102525753B1/en
Priority to PCT/JP2018/045850 priority patent/WO2019117240A1/en
Publication of JP2019106809A publication Critical patent/JP2019106809A/en
Application granted granted Critical
Publication of JP6942040B2 publication Critical patent/JP6942040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/08High-leakage transformers or inductances
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

To suppress a counter-electromotive force generating to a primary coil of a transformer when a switching element is off in a forward system insulation type switching power supply.SOLUTION: In a forward system switching power supply which has a transformer, a switching element, a first rectifier element and an inductor, and a second rectifier element, there are a capacitor connected between one end of a secondary coil and a negative output terminal, and a third rectifier element connected between the other end of the secondary coil and a negative output terminal. During an on period, discharge current of the capacitor flows through the secondary coil, the first rectifier element, and the inductor and is outputted; during an off period, discharge current of the capacitor flows through the second rectifier element and the inductor and is outputted, and charge current flows through the third rectifier element and the secondary coil.SELECTED DRAWING: Figure 1

Description

本発明は、サージ電圧を抑制することができるフォワード方式の絶縁型スイッチング電源に関する。   The present invention relates to a forward type isolated switching power supply capable of suppressing a surge voltage.

トランスを用いて入力側と出力側を絶縁する絶縁型スイッチング電源が知られている(特許文献1〜5)。入力が交流電圧の場合は、一般的には、AC/DC変換回路の後にDC/DCコンバータが配置されている。入力が直流電圧の場合は、直接DC/DCコンバータに入力される。DC/DCコンバータも絶縁型スイッチング電源の一つである。絶縁型スイッチング電源の代表的方式として、フライバック方式とフォワード方式がある。   DESCRIPTION OF RELATED ART The insulation type switching power supply which insulates an input side and an output side using a transformer is known (patent documents 1-5). When the input is an alternating voltage, generally, a DC / DC converter is disposed after the AC / DC conversion circuit. When the input is a DC voltage, it is directly input to the DC / DC converter. The DC / DC converter is also one of the isolated switching power supplies. There are a flyback method and a forward method as representative methods of the isolated switching power supply.

フォワード方式のスイッチング電源では、スイッチング素子のオン期間にトランスの電磁誘導により電力が伝達されて二次コイルに電流が流れてインダクタを介して出力されると共に、インダクタに磁気エネルギーが蓄積される。そして、スイッチング素子のオフ期間には、インダクタの磁気エネルギーを放出するように還流ダイオードを介して電流が流れて出力される。   In the forward switching power supply, power is transmitted by the electromagnetic induction of the transformer during the on period of the switching element, current flows in the secondary coil, and is output through the inductor, and magnetic energy is accumulated in the inductor. Then, during the off period of the switching element, a current flows and is output through the free wheeling diode so as to release the magnetic energy of the inductor.

特開平7−31150号公報JP 7-31150 A 特開平8−331860号公報JP-A-8-331860 特開2002−10632号公報JP, 2002-10632, A 特開2005−218224号公報JP, 2005-218224, A 特開2007−37297号公報JP 2007-37297 A

絶縁型スイッチング電源においては、スイッチング素子がオフになった瞬間にトランスの一次コイルに高い逆起電力(本明細書における「起電力」及び「逆起電力」は電圧の意味で用いる)すなわちサージ電圧が発生してスイッチング素子に印加される。このため、高耐圧のスイッチング素子を用いたり、逆起電力を処理するためのスナバ回路等を設けたりすることが必要であった。   In the isolated switching power supply, a high back electromotive force ("electromotive force" and "back electromotive force" in this specification are used in the meaning of voltage), ie, surge voltage, to the primary coil of the transformer at the moment when the switching element is turned off. Is generated and applied to the switching element. For this reason, it has been necessary to use a high withstand voltage switching element or to provide a snubber circuit or the like for processing a back electromotive force.

また、一般的なフォワード方式では、オフ期間にはトランスに電流が流れないため、オン期間にトランスに蓄積された磁気エネルギーをリセットしなければ磁気飽和を生じることになる。この磁気エネルギーのリセットのためにも、スナバ回路等が必要であった。スナバ回路等で処理されるエネルギーは二次側には伝達されないという点で、スイッチング電源の電力伝達の効率を低下させていた。   Further, in the general forward system, since no current flows in the transformer during the off period, magnetic saturation occurs unless the magnetic energy stored in the transformer is reset during the on period. A snubber circuit or the like was also required to reset this magnetic energy. In the point that the energy processed by the snubber circuit or the like is not transmitted to the secondary side, the power transmission efficiency of the switching power supply is reduced.

以上の問題点に鑑み本発明の目的は、フォワード方式の絶縁型スイッチング電源において、スイッチング素子のオフ時にトランスに発生する逆起電力を抑制し、かつ、オン期間にトランスに蓄積された磁気エネルギーを二次側に伝達可能とすることである。   In view of the above problems, it is an object of the present invention to suppress the back electromotive force generated in the transformer when the switching element is off and to suppress the magnetic energy stored in the transformer in the on period in the forward type insulation switching power supply. It is to be able to transmit to the secondary side.

上記の目的を達成するべく、本発明の絶縁型スイッチング電源の一態様は、以下の構成を有する。
・ 本発明の態様は、一次コイルと二次コイルを具備するトランスと、前記トランスの一次コイルに直列接続され制御信号によりオンオフ制御されるスイッチング素子と、前記二次コイルに直列接続された第1の整流要素及びインダクタと、直列接続された前記二次コイルと前記第1の整流要素に対し並列接続された第2の整流要素と、を有するフォワード方式の絶縁型スイッチング電源において、
(a)前記二次コイルと前記第2の整流要素との接続点と、負極出力端との間に接続されたコンデンサと、
(b)前記二次コイルと前記第1の整流要素との接続点と、負極出力端との間に接続された第3の整流要素と、を有し、
(c)前記スイッチング素子のオン期間に、前記コンデンサを放電する電流が前記二次コイル、前記第1の整流要素及び前記インダクタに流れて出力され、かつ、
(d)前記スイッチング素子のオフ期間に、前記コンデンサを放電する電流が前記第2の整流要素及び前記インダクタを流れて出力されると共に前記コンデンサを充電する電流が前記第3の整流要素及び前記二次コイルを流れることを特徴とする。
・ 上記態様において、前記第3の整流要素の一端が、前記二次コイルと前記第1の整流要素との接続点に接続されることに替えて、前記二次コイルの中間点に接続されることが、好適である。
In order to achieve the above object, one aspect of the isolated switching power supply of the present invention has the following configuration.
An aspect of the present invention is a transformer having a primary coil and a secondary coil, a switching element connected in series to the primary coil of the transformer and controlled on / off by a control signal, and a first connected in series to the secondary coil. A forward type isolated switching power supply comprising: a rectifying element and an inductor; and a second rectifying element connected in parallel to the secondary coil and the first rectifying element connected in series;
(A) a capacitor connected between a connection point of the secondary coil and the second rectifying element, and a negative electrode output end;
(B) A third rectifying element connected between a connection point between the secondary coil and the first rectifying element, and a negative electrode output end,
(C) During the on period of the switching element, a current that discharges the capacitor flows to and outputted from the secondary coil, the first rectifying element, and the inductor, and
(D) During the off period of the switching element, a current discharging the capacitor flows through the second rectifying element and the inductor and is output while a current charging the capacitor is the third rectifying element and the second rectifying element It is characterized by flowing through the next coil.
In the above aspect, one end of the third rectifying element is connected to an intermediate point of the secondary coil instead of being connected to a connecting point of the secondary coil and the first rectifying element. Is preferred.

本発明により、絶縁型スイッチング電源において、スイッチング素子のオフ時にトランスの一次コイルに発生する逆起電力すなわちサージ電圧を抑制し、スイッチング素子に要求される耐圧性を軽減することが実現される。また、スイッチング素子のオン時にトランスに蓄積された磁気エネルギーを二次側に伝達することができるので、電力伝達効率が向上する。   According to the present invention, in an isolated switching power supply, it is possible to suppress the back electromotive force generated in the primary coil of the transformer when the switching element is off, that is, the surge voltage, and reduce the withstand voltage required for the switching element. In addition, since the magnetic energy stored in the transformer can be transmitted to the secondary side when the switching element is turned on, the power transfer efficiency is improved.

図1は、本発明の絶縁型スイッチング電源の第1の実施形態の回路構成例を概略的に示した図である。FIG. 1 is a diagram schematically showing a circuit configuration example of a first embodiment of the isolated switching power supply of the present invention. 図2(a)(b)は、それぞれ図1に示した回路におけるオン期間及びオフ期間の電流の流れを示している。FIGS. 2 (a) and 2 (b) show the flow of current during the on period and the off period in the circuit shown in FIG. 1, respectively. 図3(a)(b)は、それぞれ図1に示した回路のトランス二次側におけるオン期間及びオフ期間の電位関係の一例を概略的に示す図である。FIGS. 3A and 3B schematically show an example of the potential relationship between the on period and the off period on the transformer secondary side of the circuit shown in FIG. 1, respectively. 図3は、本発明の絶縁型スイッチング電源の第2の実施形態の回路構成例を概略的に示した図であり、オフ期間の電流の流れを併せて示している。FIG. 3 is a diagram schematically showing a circuit configuration example of a second embodiment of the isolated switching power supply of the present invention, and also shows the flow of current during the off period.

以下、実施例を示した図面を参照しつつ、本発明による絶縁型スイッチング電源の実施形態について説明する。各実施形態の図面において、同一又は類似の構成要素については、同じ符号で示している。   Hereinafter, embodiments of the isolated switching power supply according to the present invention will be described with reference to the drawings showing the embodiments. In the drawings of each embodiment, the same or similar components are denoted by the same reference numerals.

以下では、直流電圧が入力されるDC/DCコンバータの場合を実施例として本発明の絶縁型スイッチング電源を説明する。しかしながら、本発明の絶縁型スイッチング電源は、電圧が一定の直流以外に、電圧が変動する脈流若しくは矩形波、又は交流等、どのような波形の電圧が入力されても同様に機能し、直流電圧を出力することができる電力変換装置である。   In the following, the isolated switching power supply of the present invention will be described by way of an example of a DC / DC converter to which a DC voltage is input. However, the isolated switching power supply according to the present invention functions similarly even if a voltage of any waveform is inputted, such as a pulsating current or a rectangular wave whose voltage fluctuates, or an alternating current other than a direct current having a constant voltage. It is a power converter capable of outputting a voltage.

(1)第1の実施形態
(1−1)第1の実施形態の回路構成
図1は、本発明の絶縁型スイッチング電源の第1の実施形態の回路構成例を概略的に示した図である。
(1) First Embodiment (1-1) Circuit Configuration of First Embodiment FIG. 1 is a view schematically showing a circuit configuration example of a first embodiment of the isolated switching power supply of the present invention. is there.

図1を参照して、第1の実施形態の回路構成を説明する。本回路は、トランスにより入力側と出力側を電気的に絶縁する絶縁型スイッチング電源であり、フォワード方式をベースとしている。トランスTは、一次コイルNpと二次コイルNsを具備する。トランスTは、一次コイルと二次コイルの極性(巻き始端)が同じ向きである。トランスTは、結合度をできるだけ高くする、すなわち一次コイルNpと二次コイルNsを密結合とすることが好適である。   The circuit configuration of the first embodiment will be described with reference to FIG. This circuit is an insulated switching power supply in which the input side and the output side are electrically isolated by a transformer, and is based on the forward system. The transformer T includes a primary coil Np and a secondary coil Ns. In the transformer T, the polarities (winding start ends) of the primary coil and the secondary coil are in the same direction. It is preferable that the transformer T have the coupling degree as high as possible, that is, the primary coil Np and the secondary coil Ns be closely coupled.

図中、各コイルの巻き始端を黒丸で示している。本明細書でコイルについて「一端」と「他端」という場合は、それぞれ「巻き始端」と「巻き終端」に対応する場合と、「巻き終端」と「巻き始端」に対応する場合のいずれも含むものとする。以下の説明では、各コイルについて、巻き始端を一端と称し、巻き終端を他端と称する。   In the figure, the winding start end of each coil is shown by a black circle. In the present specification, when the coil is referred to as "one end" and "the other end", the coil corresponds to the "roll start end" and the "roll end", and the coil end corresponds to the "roll end" and the "roll start end", respectively. Shall be included. In the following description, for each coil, the winding start end is referred to as one end, and the winding end is referred to as the other end.

入力電圧は、入力端1と入力端2からなる一対の端子間に印加される。トランスTの一次コイルNpの一端は、入力端1に接続されている。ここでは、入力端2が入力側基準電位端である。   An input voltage is applied between a pair of terminals consisting of an input end 1 and an input end 2. One end of the primary coil Np of the transformer T is connected to the input end 1. Here, the input end 2 is the input side reference potential end.

トランスTの一次コイルNpの他端には、スイッチング素子Qの一端が接続されている。スイッチング素子Qの他端は、入力端2に接続されている。スイッチング素子Qは制御端を具備する。制御端は、一次コイルNpを含む電流路を導通又は遮断するためにオンオフ制御される。基本的に、スイッチング素子Qは、一次コイルNpに直列接続されていればよい。   One end of a switching element Q is connected to the other end of the primary coil Np of the transformer T. The other end of the switching element Q is connected to the input end 2. The switching element Q has a control end. The control end is on / off controlled to conduct or shut off the current path including the primary coil Np. Basically, the switching element Q may be connected in series to the primary coil Np.

スイッチング素子Qの制御端は、制御信号Vgにより制御される。制御信号Vgは、例えば所定の周波数及びデューティ比のパルス波形をもつPWM信号である。図示の例では、スイッチング素子Qがnチャネル形MOSFET(以下「FETQ」と称する)であり、一端がドレイン、他端がソース、制御端がゲートである。この場合、制御信号Vgは電圧信号である。   The control end of the switching element Q is controlled by a control signal Vg. The control signal Vg is, for example, a PWM signal having a pulse waveform of a predetermined frequency and a duty ratio. In the illustrated example, the switching element Q is an n-channel MOSFET (hereinafter referred to as "FET Q"), one end is a drain, the other end is a source, and the control end is a gate. In this case, the control signal Vg is a voltage signal.

なお、FET以外のスイッチング素子として、例えばIGBT又はバイポーラトランジスタを用いることもできる。   For example, an IGBT or a bipolar transistor can be used as a switching element other than the FET.

トランスTの二次側には、直流電圧が出力される一対の出力端である正極出力端pと負極出力端nが設けられている。ここでは、負極出力端nが二次側基準電位端である。正極出力端pと負極出力端nとの間に接続された負荷(図示せず)に出力電圧が印加され、出力電流が供給される。   On the secondary side of the transformer T, a positive electrode output end p and a negative electrode output end n, which are a pair of output ends from which a DC voltage is output, are provided. Here, the negative electrode output end n is the secondary side reference potential end. An output voltage is applied to a load (not shown) connected between the positive electrode output end p and the negative electrode output end n, and an output current is supplied.

一般的なフォワード方式の回路と同様に、トランスTの二次コイルNsに対して整流ダイオードである第1のダイオードD1とインダクタLが直列接続されている。ダイオードD1のアノードが二次コイルNsの一端に接続され、ダイオードD1のカソードがインダクタLの一端に接続されている。インダクタLの他端は、正極出力端pに接続されている。さらに、還流ダイオードである第2のダイオードD2が、直列接続された二次コイルNsとダイオードD1に対し並列接続されている。ダイオードD2のアノードが二次コイルNsの他端に接続され、ダイオードD2のカソードがダイオードD1のカソードに接続されている。さらに、平滑コンデンサである第1のコンデンサC1が正極出力端pと負極出力端nとの間に接続されている。   Similar to a general forward type circuit, a first diode D1 which is a rectifying diode and an inductor L are connected in series to a secondary coil Ns of a transformer T. The anode of the diode D1 is connected to one end of the secondary coil Ns, and the cathode of the diode D1 is connected to one end of the inductor L. The other end of the inductor L is connected to the positive output terminal p. Furthermore, a second diode D2 which is a freewheeling diode is connected in parallel to the series-connected secondary coil Ns and the diode D1. The anode of the diode D2 is connected to the other end of the secondary coil Ns, and the cathode of the diode D2 is connected to the cathode of the diode D1. Furthermore, a first capacitor C1, which is a smoothing capacitor, is connected between the positive electrode output end p and the negative electrode output end n.

本発明ではさらに、第2のコンデンサC2が、二次コイルNsとダイオードD2との接続点a(二次コイルNsの他端)と、負極出力端nとの間に接続されている。またさらに、第3のダイオードD3が、二次コイルNsとダイオードD1との接続点b(二次コイルNsの一端)と、負極出力端nとの間に接続されている。ダイオードD3のアノードが負極出力端nに接続され、ダイオードD3のカソードが二次コイルNsとダイオードD1との接続点bに接続されている。   Further, in the present invention, the second capacitor C2 is connected between the connection point a (the other end of the secondary coil Ns) of the secondary coil Ns and the diode D2 and the negative output end n. Furthermore, the third diode D3 is connected between a connection point b (one end of the secondary coil Ns) of the secondary coil Ns and the diode D1 and the negative output end n. The anode of the diode D3 is connected to the negative output terminal n, and the cathode of the diode D3 is connected to the connection point b of the secondary coil Ns and the diode D1.

さらに、第4のダイオードD4が設けられ、そのアノードが負極出力端nに接続され、そのカソードが二次コイルNsの他端に接続されている。   Furthermore, a fourth diode D4 is provided, the anode of which is connected to the negative output terminal n, and the cathode of which is connected to the other end of the secondary coil Ns.

本回路におけるダイオードは、順方向電圧降下が小さくかつ高速動作を行うものが好適である。なお、ダイオードに替えて同じ機能をもつ素子又は回路からなる整流要素を用いることができる。   The diode in this circuit preferably has a small forward voltage drop and operates at high speed. Note that, instead of the diode, a rectifying element formed of an element or a circuit having the same function can be used.

図示しないが、スイッチング素子Qのための制御信号Vgを発生する制御部を有することが好ましい。一例として制御部は、入力電圧及び/又は出力電圧を検出し、検出した電圧に基づいて制御信号Vgのデューティ比を決定し、それに基づいて所定の高周波パルスの制御信号Vgを生成する。このような制御部の主要部として、PWMICを用いることができる。   Although not shown, it is preferable to have a control unit that generates a control signal Vg for the switching element Q. As an example, the control unit detects an input voltage and / or an output voltage, determines a duty ratio of the control signal Vg based on the detected voltage, and generates a control signal Vg of a predetermined high frequency pulse based thereon. PWMIC can be used as a main part of such a control part.

(1−2)第1の実施形態の動作
図2及び図3を参照して第1の実施形態の動作を説明する。図2(a)及び(b)は、それぞれオン期間及びオフ期間における電流の流れを実線又は点線にて概略的に示している(矢印は電流の向きを示す)。図3(a)及び(b)は、それぞれオン期間及びオフ期間におけるトランスTの二次側の各構成要素の電位関係の一例を模式的に示す図である。
(1-2) Operation of First Embodiment The operation of the first embodiment will be described with reference to FIGS. 2 and 3. FIGS. 2 (a) and 2 (b) schematically show the flow of current in the on and off periods, respectively, as a solid line or a dotted line (the arrow indicates the direction of the current). FIGS. 3A and 3B are diagrams schematically showing an example of the potential relationship between the components on the secondary side of the transformer T in the on period and the off period, respectively.

図3(a)(b)では、上下方向が電位の高低に対応しており、二次側基準電位(負極出力端nの電位)を太線で示している。トランスTの二次コイルNs、インダクタL、コンデンサC1及びコンデンサC2の両端電圧を両矢印で示している。また、二次コイルNsについては、巻き始端を黒丸で示している。   In FIGS. 3A and 3B, the vertical direction corresponds to the level of the potential, and the secondary side reference potential (the potential of the negative electrode output end n) is indicated by a thick line. The voltage across the secondary coil Ns of the transformer T, the inductor L, the capacitor C1 and the capacitor C2 is indicated by double arrows. Further, with regard to the secondary coil Ns, the winding start end is indicated by a black circle.

なお、本回路の始動時及び停止時の過渡的動作は例外とし、本回路が定常状態にある場合の動作について説明する。定常状態では、コンデンサC1は、リップル的な変動を除いてほぼ一定の両端電圧で充電されている。コンデンサC1における充放電電流は僅かであるので、以下の説明では無視する。コンデンサC2についても、定常状態における充放電動作を行っていると想定する。また、各ダイオードの順方向電圧降下も無視する。   The transient operation at the start and stop of the circuit is an exception, and the operation when the circuit is in the steady state will be described. In the steady state, the capacitor C1 is charged at a substantially constant voltage across it, except for ripple fluctuations. Since the charge and discharge current in the capacitor C1 is slight, it will be ignored in the following description. It is assumed that the charge / discharge operation in the steady state is performed also for the capacitor C2. Also ignore the forward voltage drop of each diode.

(1−2−1)オン期間におけるトランスTの一次側及び二次側の動作
[オン期間:一次側]
トランスTの一次側では、オン期間に制御信号Vgがオンになると、FETQがオンとなり電流路が導通する。図2(a)に示すように、トランスTの一次コイルNpには、入力電圧による入力電流i1が以下の経路で流れる。入力電流i1により励磁されることにより、トランスTに磁気エネルギーが蓄積される。
・入力電流i1:入力端1→トランスTの一次コイルNp→FETQ→入力端2
(1-2-1) Operation of the primary side and secondary side of the transformer T in the on period [on period: primary side]
On the primary side of the transformer T, when the control signal Vg is turned on in the on period, the FET Q is turned on and the current path is conducted. As shown in FIG. 2A, an input current i1 according to the input voltage flows through the primary coil Np of the transformer T in the following path. Magnetic energy is stored in the transformer T by being excited by the input current i1.
· Input current i1: input end 1 → primary coil Np of transformer T → FET Q → input end 2

[オン期間:二次側]
図2(a)に示すように、トランスTの一次コイルNpに入力電流i1が流れることにより、相互誘導による起電力が二次コイルNsに生じ、ダイオードD1が順バイアスとなり、以下の経路で電流i2が流れる。
・電流i2:負極出力端n→コンデンサC2→トランスTの二次コイルNs→ダイオードD1→インダクタL→正極出力端p
[On period: Secondary side]
As shown in FIG. 2A, when the input current i1 flows through the primary coil Np of the transformer T, an electromotive force due to mutual induction is generated in the secondary coil Ns, the diode D1 becomes forward biased, and the current flows in the following path i2 flows.
Current i2: negative electrode output terminal n → capacitor C2 → secondary coil Ns of transformer T → diode D1 → inductor L → positive electrode output terminal p

電流i2は、コンデンサC2を放電する電流として流れる。したがって、電流i2は、コンデンサC2に蓄積された電気エネルギーと、トランスTの相互誘導による電気エネルギーとを出力端pへ出力する電流である。また、電流i2がインダクタLに流れることにより、インダクタLは励磁され、磁気エネルギーが蓄積される。   The current i2 flows as a current for discharging the capacitor C2. Therefore, the current i2 is a current that outputs the electrical energy stored in the capacitor C2 and the electrical energy due to mutual induction of the transformer T to the output terminal p. Further, when the current i2 flows to the inductor L, the inductor L is excited and magnetic energy is accumulated.

図3(a)の電位関係図からも判るように、ダイオードD2及びダイオードD3は、逆バイアスとなるため遮断されている。ダイオードD4は、コンデンサC2と並列であるので、コンデンサC2の一端(二次コイルNsとの接続点)の電位が正電位である限り、遮断されている。ダイオードD4は、コンデンサC2の一端の電位を負電位としないためのクリッパであり、必須ではない。   As can be understood from the potential relationship diagram of FIG. 3A, the diode D2 and the diode D3 are blocked because they are reverse biased. Since the diode D4 is in parallel with the capacitor C2, it is cut off as long as the potential at one end of the capacitor C2 (the connection point with the secondary coil Ns) is a positive potential. The diode D4 is a clipper for preventing the potential at one end of the capacitor C2 from being a negative potential, and is not essential.

図3(a)の電位関係図に点線で示すように、コンデンサC2はオン期間に放電するため、その両端電圧は小さくなる。   As indicated by a dotted line in the potential relationship diagram of FIG. 3A, the capacitor C2 discharges during the on period, so the voltage across the capacitor C2 decreases.

また、図3(a)に示すように、コンデンサC2の両端電圧によって二次コイルNsに生じる起電力が嵩上げされている。これは、コンデンサC2が無い一般的なフォワード方式の場合に比べて、二次コイルNsに生じる起電力が小さい(抑制される)ことを意味する。   Further, as shown in FIG. 3A, the electromotive force generated in the secondary coil Ns is boosted by the voltage across the capacitor C2. This means that the electromotive force generated in the secondary coil Ns is smaller (suppressed) as compared to the general forward system without the capacitor C2.

(1−2−2)オフ期間におけるトランスTの一次側及び二次側の動作
図2(b)では、オフ期間に流れる電流のうち、コンデンサC2を放電する電流を実線で、充電する電流を点線で、概略的に示している。
(1-2-2) Operation of primary side and secondary side of the transformer T in the off period In FIG. 2 (b), of the current flowing in the off period, the current discharging the capacitor C2 is indicated by the solid line and the charging current is It is schematically shown by dotted lines.

[オフ期間:一次側]
トランスTの一次側では、制御信号Vgがオフになると、FETQもオフとなりスイッチが開く。トランスTの一次コイルNpの電流路は遮断され、電流が零となる。これによりトランスTの一次コイルNp及び二次コイルNsにそれぞれ逆起電力が生じる。
[Off period: Primary side]
On the primary side of the transformer T, when the control signal Vg is turned off, the FET Q is also turned off and the switch is opened. The current path of the primary coil Np of the transformer T is cut off, and the current becomes zero. Thereby, back electromotive force is generated in the primary coil Np and the secondary coil Ns of the transformer T, respectively.

上述した通り、オン期間の二次コイルNsの起電力がコンデンサC2の電圧により嵩上げされて実質的に抑制される結果、オフとなった瞬間に一次コイルNpに生じる逆起電力すなわちサージ電圧も小さくなる。スイッチング素子Q(FETの場合、ドレインソース間)には、入力電圧と一次コイルNpに生じる逆起電力を加算した電圧が印加される。したがって、本回路では、スイッチング素子Qに要求される耐圧性が軽減されるとともに、スナバ回路等の処理容量を低減できる。同様に、トランスTの磁気飽和の可能性も小さくなることから、トランスTのサイズを小さくすることができる。   As described above, the electromotive force of the secondary coil Ns in the on period is boosted by the voltage of the capacitor C2 and substantially suppressed, so that the back electromotive force generated in the primary coil Np at the moment it is turned off is small. Become. A voltage obtained by adding the back electromotive force generated in the input voltage and the primary coil Np is applied to the switching element Q (between the drain and the source in the case of the FET). Therefore, in the present circuit, the withstand voltage required for the switching element Q is reduced, and the processing capacity of the snubber circuit can be reduced. Similarly, since the possibility of magnetic saturation of the transformer T also decreases, the size of the transformer T can be reduced.

[オフ期間:二次側]
図3(b)の電位関係図に示すように、オフ期間になると、トランスTの二次コイルNs及びインダクタLの各々の両端の電位関係が反転する。ダイオードD1は、逆バイアスとなり遮断される。一方、ダイオードD2及びダイオードD3は、順バイアスとなるため導通する。
[Off period: Secondary side]
As shown in the potential relationship diagram of FIG. 3B, in the off period, the potential relationship between both ends of each of the secondary coil Ns of the transformer T and the inductor L is reversed. The diode D1 is reverse biased and cut off. On the other hand, the diode D2 and the diode D3 become conductive because they are forward biased.

図2(b)に示すように、ダイオードD2及びダイオードD3が導通することにより、それぞれ電流i3及び電流i4が以下の経路で流れる。
・電流i3:負極出力端n→コンデンサC2→インダクタL→正極出力端p
・電流i4:負極出力端n→ダイオードD3→二次コイルNs→コンデンサC2
As shown in FIG. 2B, the conduction of the diode D2 and the diode D3 causes the current i3 and the current i4 to flow in the following paths, respectively.
· Current i3: negative electrode output terminal n → capacitor C2 → inductor L → positive electrode output terminal p
Current i4: negative electrode output terminal n → diode D3 → secondary coil Ns → capacitor C2

電流i3は、コンデンサC2を放電する電流である。したがって、電流i3は、コンデンサC2に蓄積された電気エネルギーとインダクタLに蓄積された磁気エネルギーとを電力として出力する電流である。   The current i3 is a current for discharging the capacitor C2. Therefore, the current i3 is a current that outputs the electric energy stored in the capacitor C2 and the magnetic energy stored in the inductor L as electric power.

一方、電流i4は、コンデンサC2を充電する電流である。電流i4が二次コイルNsを通ってコンデンサC2に流れることにより、トランスTにオン期間に蓄積された磁気エネルギーが放出され、コンデンサC2の電気エネルギーとして蓄積される。これにより、トランスTの磁気リセットが促進される。この結果、トランスTの磁気飽和の可能性が小さくなることから、トランスTのサイズを小さくすることができる。   On the other hand, the current i4 is a current for charging the capacitor C2. The current i4 flows through the secondary coil Ns to the capacitor C2, so that the magnetic energy stored in the on period of the transformer T is released and stored as the electrical energy of the capacitor C2. This promotes the magnetic reset of the transformer T. As a result, since the possibility of magnetic saturation of the transformer T is reduced, the size of the transformer T can be reduced.

通常のフォワード方式では、トランスTに蓄積された磁気エネルギーが一次側のスナバ回路等で消費されるが、本発明では、トランスTの磁気エネルギーがコンデンサC2の電気エネルギーに変換される。そして、コンデンサCに蓄積された電気エネルギーは、放電電流として出力することができるので、電力の伝達効率を向上させることができる。   In the normal forward system, the magnetic energy stored in the transformer T is consumed by the snubber circuit or the like on the primary side, but in the present invention, the magnetic energy of the transformer T is converted to the electric energy of the capacitor C2. Then, since the electrical energy stored in the capacitor C can be output as a discharge current, the power transfer efficiency can be improved.

なお、電流i4が、電流i3より十分に大きければ、コンデンサC2はオフ期間に充電されることになる。その結果、図3(b)の電位関係図に点線で示すように、コンデンサC2の両端電圧が回復する。   If the current i4 is sufficiently larger than the current i3, the capacitor C2 is charged in the off period. As a result, as shown by a dotted line in the potential relationship diagram of FIG. 3B, the voltage across the capacitor C2 is recovered.

上述したように、コンデンサC2があることにより、二次コイルNsに生じる起電力が抑制されるため、二次コイルNsに生じる逆起電力も小さくなる結果、ダイオードD1に要求される耐圧性も軽減される。   As described above, the presence of the capacitor C2 suppresses the electromotive force generated in the secondary coil Ns, thereby reducing the back electromotive force generated in the secondary coil Ns, thereby reducing the withstand voltage required for the diode D1. Be done.

(2)第2の実施形態
(2−1)第2の実施形態の回路構成
第2の実施形態は、第1の実施形態の変形形態である。図4は、本発明の絶縁型スイッチング電源の第2の実施形態の回路構成例を概略的に示した図であり、オフ期間の電流の流れを併せて示している。
(2) Second Embodiment (2-1) Circuit Configuration of Second Embodiment The second embodiment is a modification of the first embodiment. FIG. 4 is a diagram schematically showing a circuit configuration example of a second embodiment of the isolated switching power supply of the present invention, and also shows the flow of current during the off period.

第2の実施形態の回路に関しては、主として第1の実施形態とは異なる点を説明する。図4の回路では、ダイオードD3の一端が、二次コイルNsとダイオードD1との接続点に接続されていない。それに替えて、ダイオードD3の一端が二次コイルNsの中間点に接続されている。ここでの中間点の意味は、二分する点の意味ではなく、その位置は必要に応じて設定される。設定された中間点にタップを設け、ダイオードD3の一端を接続する。   Regarding the circuit of the second embodiment, mainly the points different from the first embodiment will be described. In the circuit of FIG. 4, one end of the diode D3 is not connected to the connection point between the secondary coil Ns and the diode D1. Instead, one end of the diode D3 is connected to the midpoint of the secondary coil Ns. The meaning of the middle point here is not the meaning of the bisecting point, and its position is set as needed. A tap is provided at the set middle point, and one end of the diode D3 is connected.

図4の回路において、FETQのオン期間に流れる電流は、図2(a)に示した第1の実施形態と同じである。また、オフ期間に流れる電流についても、コンデンサC2を放電する電流i3については、図2(b)に示した第1の実施形態と同じである。   In the circuit of FIG. 4, the current flowing in the on period of the FET Q is the same as that of the first embodiment shown in FIG. 2 (a). Further, the current i3 which discharges the capacitor C2 is the same as that of the first embodiment shown in FIG.

図4の回路では、オフ期間に流れるコンデンサC2を充電する電流i4の経路が、第1の実施形態とは異なる。図示のように、電流i4は、二次コイルNsの一部のみを通過する。したがって、電流i4は、二次コイルNs全体を通過する場合よりも抵抗が小さくなり、より大きな電流となる。中間点の位置を適切に設定することにより、オフ期間にコンデンサC2を十分に充電できる大きさの電流i4を確保することができる。   In the circuit of FIG. 4, the path of the current i4 charging the capacitor C2 flowing in the off period is different from that of the first embodiment. As shown, the current i4 passes through only a portion of the secondary coil Ns. Therefore, the current i4 has a smaller resistance than when passing through the entire secondary coil Ns, and becomes a larger current. By appropriately setting the position of the middle point, it is possible to secure current i4 of a size that can sufficiently charge capacitor C2 in the off period.

1 入力端
2 入力端(入力側基準端)
p 正極出力端
n 負極出力端(出力側基準電位)
T トランス
Np 一次コイル
Ns 二次コイル
Q スイッチング素子(FET)
D1、D2 D3、D4 整流要素(ダイオード)
C1 第1のコンデンサ(平滑コンデンサ)
C2 第2のコンデンサ
1 input end 2 input end (input side reference end)
p Positive output terminal n Negative output terminal (Output side reference potential)
T transformer Np Primary coil Ns Secondary coil Q Switching element (FET)
D1, D2 D3, D4 Rectifying element (diode)
C1 First capacitor (smoothing capacitor)
C2 second capacitor

Claims (2)

一次コイルと二次コイルを具備するトランスと、前記トランスの一次コイルに直列接続され制御信号によりオンオフ制御されるスイッチング素子と、前記二次コイルに直列接続された第1の整流要素及びインダクタと、直列接続された前記二次コイルと前記第1の整流要素に対し並列接続された第2の整流要素と、を有するフォワード方式のスイッチング電源において、
(a)前記二次コイルと前記第2の整流要素との接続点と、負極出力端との間に接続されたコンデンサと、
(b)前記二次コイルと前記第1の整流要素との接続点と、負極出力端との間に接続された第3の整流要素と、を有し、
(c)前記スイッチング素子のオン期間に、前記コンデンサを放電する電流が前記二次コイル、前記第1の整流要素及び前記インダクタに流れて出力され、かつ、
(d)前記スイッチング素子のオフ期間に、前記コンデンサを放電する電流が前記第2の整流要素及び前記インダクタを流れて出力されると共に前記コンデンサを充電する電流が前記第3の整流要素及び前記二次コイルを流れることを特徴とする
絶縁型スイッチング電源。
A transformer having a primary coil and a secondary coil, a switching element connected in series to the primary coil of the transformer and controlled on / off by a control signal, a first rectifying element and an inductor connected in series to the secondary coil; A forward switching power supply comprising: said secondary coil connected in series; and a second rectifying element connected in parallel to said first rectifying element,
(A) a capacitor connected between a connection point of the secondary coil and the second rectifying element, and a negative electrode output end;
(B) A third rectifying element connected between a connection point between the secondary coil and the first rectifying element, and a negative electrode output end,
(C) During the on period of the switching element, a current that discharges the capacitor flows to and outputted from the secondary coil, the first rectifying element, and the inductor, and
(D) During the off period of the switching element, a current discharging the capacitor flows through the second rectifying element and the inductor and is output while a current charging the capacitor is the third rectifying element and the second rectifying element An isolated switching power supply characterized by flowing through the following coil.
前記第3の整流要素の一端が、前記二次コイルと前記第1の整流要素との接続点に接続されることに替えて、前記二次コイルの中間点に接続されることを特徴とする請求項1に記載の絶縁型スイッチング電源。   Instead of being connected to a connection point between the secondary coil and the first rectification element, one end of the third rectification element is connected to an intermediate point of the secondary coil. The isolated switching power supply according to claim 1.
JP2017238575A 2017-12-13 2017-12-13 Insulated switching power supply Active JP6942040B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017238575A JP6942040B2 (en) 2017-12-13 2017-12-13 Insulated switching power supply
KR1020207017084A KR102525753B1 (en) 2017-12-13 2018-12-13 Isolated switching power supply
PCT/JP2018/045850 WO2019117240A1 (en) 2017-12-13 2018-12-13 Insulated switching power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017238575A JP6942040B2 (en) 2017-12-13 2017-12-13 Insulated switching power supply

Publications (2)

Publication Number Publication Date
JP2019106809A true JP2019106809A (en) 2019-06-27
JP6942040B2 JP6942040B2 (en) 2021-09-29

Family

ID=66819272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017238575A Active JP6942040B2 (en) 2017-12-13 2017-12-13 Insulated switching power supply

Country Status (3)

Country Link
JP (1) JP6942040B2 (en)
KR (1) KR102525753B1 (en)
WO (1) WO2019117240A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114337213A (en) * 2020-09-29 2022-04-12 Oppo广东移动通信有限公司 Power supply device and charging control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055783A (en) * 2011-09-02 2013-03-21 Daihen Corp Rectifier circuit module
JP2015070716A (en) * 2013-09-30 2015-04-13 三菱電機株式会社 Dc/dc converter
JP2015228760A (en) * 2014-06-02 2015-12-17 京都電機器株式会社 Switching power supply

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731150A (en) 1993-07-09 1995-01-31 Shindengen Electric Mfg Co Ltd Switching power supply
JP3261010B2 (en) 1995-05-31 2002-02-25 オークマ株式会社 Power converter
JP2002010632A (en) 2000-06-16 2002-01-11 Origin Electric Co Ltd Ac/dc converter and dc-dc converter
JP4484006B2 (en) 2000-10-25 2010-06-16 Tdk株式会社 Switching power supply
JP2003033029A (en) 2001-07-13 2003-01-31 Sansha Electric Mfg Co Ltd Dc-dc converter
DE10257578A1 (en) * 2001-12-21 2003-07-03 Fuji Electric Co Ltd Switching Power Supply
JP2004166420A (en) 2002-11-14 2004-06-10 Cosel Co Ltd Multi-output switching power supply
JP4466089B2 (en) 2004-01-29 2010-05-26 サンケン電気株式会社 Power factor correction circuit
JP2007037297A (en) 2005-07-27 2007-02-08 Sanken Electric Co Ltd Power factor improvement circuit
US7944085B2 (en) * 2005-10-03 2011-05-17 Sanken Electric Co., Ltd. Multiple output switching power source apparatus including multiple series resonant circuits
KR100729835B1 (en) * 2005-11-18 2007-06-18 서울산업대학교 산학협력단 Sepic-Flyback Converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055783A (en) * 2011-09-02 2013-03-21 Daihen Corp Rectifier circuit module
JP2015070716A (en) * 2013-09-30 2015-04-13 三菱電機株式会社 Dc/dc converter
JP2015228760A (en) * 2014-06-02 2015-12-17 京都電機器株式会社 Switching power supply

Also Published As

Publication number Publication date
KR102525753B1 (en) 2023-04-25
KR20200097722A (en) 2020-08-19
WO2019117240A1 (en) 2019-06-20
JP6942040B2 (en) 2021-09-29

Similar Documents

Publication Publication Date Title
US20180041108A1 (en) Power converter
US20130301304A1 (en) Dc-dc converter
KR102449387B1 (en) switching power supply
JP6840032B2 (en) Insulated switching power supply
US20140233264A1 (en) Single stage PFC power supply
US10778095B2 (en) Switching DC/DC converter having power output during on and off periods
JP5687373B1 (en) DC / DC converter
US9490717B2 (en) Switching power supply circuit
US9564819B2 (en) Switching power supply circuit
WO2019117240A1 (en) Insulated switching power supply
US20190386574A1 (en) Power supply and power supply unit
EP2680423B1 (en) Synchronous rectification device and synchronous rectification power supply
JP6945429B2 (en) Insulated switching power supply
US10778109B2 (en) Power supply and power supply unit
JP2011061953A (en) Multi-output switching power supply device
JP6930890B2 (en) Insulated switching power supply
JP6485366B2 (en) Phase shift type full bridge type power supply circuit
JP2014138427A (en) Dc/dc converter
US20150222177A1 (en) High efficient single stage half bridge power factor correction converter
JP2008245388A (en) Switching power supply
JP6845672B2 (en) Switching power supply
Martis et al. Compact High-Efficiency Li-Ion Fast-Charger
KR20160055509A (en) Power converter and driving mehod for the same
JP2012138984A (en) Ringing choke converter
JP2020137319A (en) Switching power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210907

R150 Certificate of patent or registration of utility model

Ref document number: 6942040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150