JP6343575B2 - 硬化性エポキシ樹脂組成物 - Google Patents

硬化性エポキシ樹脂組成物 Download PDF

Info

Publication number
JP6343575B2
JP6343575B2 JP2015038991A JP2015038991A JP6343575B2 JP 6343575 B2 JP6343575 B2 JP 6343575B2 JP 2015038991 A JP2015038991 A JP 2015038991A JP 2015038991 A JP2015038991 A JP 2015038991A JP 6343575 B2 JP6343575 B2 JP 6343575B2
Authority
JP
Japan
Prior art keywords
group
resin composition
epoxy resin
curable epoxy
optical semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015038991A
Other languages
English (en)
Other versions
JP2016160316A (ja
Inventor
弘世 鈴木
弘世 鈴木
尚史 ▲高▼林
尚史 ▲高▼林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp filed Critical Daicel Corp
Priority to JP2015038991A priority Critical patent/JP6343575B2/ja
Publication of JP2016160316A publication Critical patent/JP2016160316A/ja
Application granted granted Critical
Publication of JP6343575B2 publication Critical patent/JP6343575B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、硬化性エポキシ樹脂組成物、該硬化性エポキシ樹脂組成物を硬化させて得られる硬化物、及び該硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置に関する。
近年、光半導体装置の高出力化が進んでおり、このような光半導体装置において光半導体素子を被覆する樹脂(封止材)には、高い耐熱性や耐光性が求められている。従来、耐熱性が高い封止材を形成するための封止剤として、例えば、モノアリルジグリシジルイソシアヌレートとビスフェノールA型エポキシ樹脂を含む組成物が知られている(特許文献1参照)。しかしながら、上記組成物を高出力の青色・白色光半導体用の封止剤として用いた場合には、光半導体素子から発せられる光及び熱によって封止材の着色が進行し、本来出力されるべき光が吸収されてしまい、その結果、光半導体装置から出力される光の光度が経時で低下するという問題が生じていた。
高い耐熱性及び耐光性を有し、黄変しにくい硬化物(封止材)を形成する封止剤として、3,4−エポキシシクロヘキシルメチル(3,4−エポキシ)シクロヘキサンカルボキシレート、3,4−エポキシシクロヘキシルメチル(3,4−エポキシ)シクロヘキサンカルボキシレートとε−カプロラクトンの付加物、1,2,8,9−ジエポキシリモネン等の脂環骨格を有する液状の脂環式エポキシ樹脂が知られている。しかし、これらの脂環式エポキシ樹脂の硬化物は各種応力に弱く、冷熱サイクル(加熱と冷却を周期的に繰り返すこと)のような熱衝撃が加えられた場合に、クラック(ひび割れ)が発生する等の問題が生じていた。
また、光半導体装置(例えば、表面実装型の光半導体装置)は、はんだ付けにより光半導体装置の電極を配線基板に接合するためのリフロー工程を経るのが一般的である。近年、接合材としてのはんだとして、融点の高い無鉛はんだが使用されるようになってきており、リフロー工程での加熱処理がより高温(例えば、ピーク温度が240〜260℃)になってきている。このような状況下、従来の光半導体装置においては、リフロー工程での加熱処理により封止材が光半導体装置のリードフレームから剥離したり、封止材にクラックが生じたりする等の劣化の問題が生じていた。
このため、光半導体装置における封止材には、高い耐熱性、耐光性に加え、熱衝撃が加えられた場合にもクラックが生じにくい特性(「耐熱衝撃性」と称する場合がある)、及び、リフロー工程において加熱処理された際にもクラックや剥離が生じにくい特性が求められている。特に、近年、封止材のより高い信頼性確保の観点から、光半導体装置を高湿条件下で一定時間(例えば、30℃、60%RHの条件下で192時間;60℃、60%RHの条件下で52時間等)置いて吸湿させた後にリフロー工程で加熱処理した場合にもなお上述のクラックや剥離が生じにくいこと(このような特性を「耐吸湿リフロー性」と称する場合がある)も求められている。
特開2000−344867号公報
従って、本発明の目的は、高い耐熱性、耐光性、及び耐熱衝撃性を有し、特に、光半導体装置の耐吸湿リフロー性を向上させることが可能な硬化物を形成できる硬化性エポキシ樹脂組成物を提供することにある。
また、本発明の他の目的は、高い耐熱性、耐光性、及び耐熱衝撃性を有し、特に、光半導体装置の耐吸湿リフロー性を向上させることが可能な硬化物を提供することにある。
また、本発明の他の目的は、高温における通電特性に優れ、さらに高湿条件下で保管された後にリフロー工程で加熱処理した場合の光度低下等の劣化が抑制された、耐久性及び品質の高い光半導体装置を提供することにある。
本発明者らは、上記課題を解決するため鋭意検討した結果、脂環式エポキシ化合物と、分子内に1個以上のオキシラン環を有するイソシアヌル酸誘導体と、ポリロタキサンとを含む硬化性エポキシ樹脂組成物が、高い耐熱性、耐光性、及び耐熱衝撃性を有し、特に、光半導体装置の耐吸湿リフロー性を向上させることが可能な硬化物を形成できることを見出し、本発明を完成させた。
すなわち、本発明は、脂環式エポキシ化合物(A)と、分子内に1個以上のオキシラン環を有するイソシアヌル酸誘導体(B)と、ポリロタキサン(C)とを含むことを特徴とする硬化性エポキシ樹脂組成物を提供する。
さらに、前記イソシアヌル酸誘導体(B)が、下記式(1a)
Figure 0006343575
[式中、R1及びR2は、同一又は異なって、水素原子又は炭素数1〜8のアルキル基を示す。]
で表される化合物である前記の硬化性エポキシ樹脂組成物を提供する。
さらに、脂環式エポキシ化合物(A)が、シクロヘキセンオキシド基を有する化合物である前記の硬化性エポキシ樹脂組成物を提供する。
さらに、脂環式エポキシ化合物(A)が、下記式(I−1)
Figure 0006343575
で表される化合物である前記の硬化性エポキシ樹脂組成物を提供する。
さらに、前記ポリロタキサン(C)が、複数の環状分子と、前記複数の環状分子を串刺し状に包接する直鎖状分子と、前記直鎖状分子の両末端に配置され前記複数の環状分子の脱離を防止する封鎖基とを有し、前記複数の環状分子のうちの少なくとも1つが、ヒドロキシ基の水素原子が炭素数6以上の有機基に置換された基を少なくとも有するシクロデキストリンである前記の硬化性エポキシ樹脂組成物を提供する。
さらに、ゴム粒子を含む前記の硬化性エポキシ樹脂組成物を提供する。
さらに、硬化剤(D)及び硬化促進剤(E)を含む前記の硬化性エポキシ樹脂組成物を提供する。
さらに、硬化触媒(F)を含む前記の硬化性エポキシ樹脂組成物を提供する。
また、本発明は、前記の硬化性エポキシ樹脂組成物を硬化させて得られる硬化物を提供する。
さらに、光半導体封止用樹脂組成物である前記の硬化性エポキシ樹脂組成物を提供する。
また、本発明は、前記の硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置を提供する。
本発明の硬化性エポキシ樹脂組成物は上記構成を有するため、該樹脂組成物を硬化させることにより、高い耐熱性、耐光性、及び耐熱衝撃性を有し、特に、光半導体装置の耐吸湿リフロー性を向上させることが可能な硬化物を形成することができる。このため、本発明の硬化性エポキシ樹脂組成物を光半導体封止用樹脂組成物として使用した場合には、特に、高温の過酷な条件下において光度低下等の劣化が生じにくく、さらに、高湿条件下で保管した後にリフロー工程で加熱処理した場合でも光度低下等の劣化が生じにくい、耐久性及び品質の高い光半導体装置を得ることができる。
本発明の硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置の一実施形態を示す概略図である。左側の図(a)は斜視図であり、右側の図(b)は断面図である。 実施例のはんだ耐熱性試験における光半導体装置の表面温度プロファイル(二度の加熱処理のうち一方の加熱処理における温度プロファイル)の一例である。
<硬化性エポキシ樹脂組成物>
本発明の硬化性エポキシ樹脂組成物は、脂環式エポキシ化合物(A)と、分子内に1個以上のオキシラン環を有するイソシアヌル酸誘導体(B)(以下、単に「イソシアヌル酸誘導体(B)」と称する場合がある)と、ポリロタキサン(C)とを必須成分として含む組成物(硬化性組成物)である。
[脂環式エポキシ化合物(A)]
本発明の硬化性エポキシ樹脂組成物における脂環式エポキシ化合物(A)は、分子内(一分子中)に脂環(脂肪族環)構造とエポキシ基(オキシラニル基)とを少なくとも有する化合物である。脂環式エポキシ化合物(A)としては、具体的には、(i)脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(脂環エポキシ基)を有する化合物、(ii)脂環に直接単結合で結合しているエポキシ基を有する化合物等が挙げられる。
上述の(i)脂環エポキシ基を有する化合物としては、公知乃至慣用のものの中から任意に選択して使用することができる。中でも、上記脂環エポキシ基としては、シクロヘキセンオキシド基が好ましい。
上述の(i)脂環エポキシ基を有する化合物としては、硬化物の透明性、耐熱性の観点で、シクロヘキセンオキシド基を有する化合物が好ましく、特に、下記式(I)で表される化合物(脂環式エポキシ化合物)が好ましい。
Figure 0006343575
上記式(I)中、Xは単結合又は連結基(1以上の原子を有する二価の基)を示す。上記連結基としては、例えば、二価の炭化水素基、炭素−炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基、カルボニル基、エーテル結合、エステル結合、カーボネート基、アミド基、これらが複数個連結した基等が挙げられる。なお、式(I)におけるシクロヘキサン環(シクロヘキセンオキシド基)を構成する炭素原子の1以上には、アルキル基等の置換基が結合していてもよい。
上記式(I)中のXが単結合である化合物としては、3,4,3’,4’−ジエポキシビシクロヘキサン等が挙げられる。
上記二価の炭化水素基としては、炭素数が1〜18の直鎖又は分岐鎖状のアルキレン基、二価の脂環式炭化水素基等が挙げられる。炭素数が1〜18の直鎖又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基等が挙げられる。上記二価の脂環式炭化水素基としては、例えば、1,2−シクロペンチレン基、1,3−シクロペンチレン基、シクロペンチリデン基、1,2−シクロヘキシレン基、1,3−シクロヘキシレン基、1,4−シクロヘキシレン基、シクロヘキシリデン基等の二価のシクロアルキレン基(シクロアルキリデン基を含む)等が挙げられる。
上記炭素−炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基(「エポキシ化アルケニレン基」と称する場合がある)におけるアルケニレン基としては、例えば、ビニレン基、プロペニレン基、1−ブテニレン基、2−ブテニレン基、ブタジエニレン基、ペンテニレン基、ヘキセニレン基、ヘプテニレン基、オクテニレン基等の炭素数2〜8の直鎖又は分岐鎖状のアルケニレン基等が挙げられる。特に、上記エポキシ化アルケニレン基としては、炭素−炭素二重結合の全部がエポキシ化されたアルケニレン基が好ましく、より好ましくは炭素−炭素二重結合の全部がエポキシ化された炭素数2〜4のアルケニレン基である。
上記連結基Xとしては、特に、酸素原子を含有する連結基が好ましく、具体的には、−CO−、−O−CO−O−、−COO−、−O−、−CONH−、エポキシ化アルケニレン基;これらの基が複数個連結した基;これらの基の1又は2以上と二価の炭化水素基の1又は2以上とが連結した基等が挙げられる。二価の炭化水素基としては上記で例示したものが挙げられる。
上記式(I)で表される化合物の代表的な例としては、下記式(I−1)〜(I−10)で表される化合物、ビス(3,4−エポキシシクロヘキシルメチル)エーテル、1,2−ビス(3,4−エポキシシクロヘキサン−1−イル)エタン、1,2−エポキシ−1,2−ビス(3,4−エポキシシクロヘキサン−1−イル)エタン、2,2−ビス(3,4−エポキシシクロヘキサン−1−イル)プロパン等が挙げられる。なお、下記式(I−5)、(I−7)中のl、mは、それぞれ1〜30の整数を表す。下記式(I−5)中のRは炭素数1〜8のアルキレン基であり、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、s−ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基等の直鎖又は分岐鎖状のアルキレン基が挙げられる。これらの中でも、メチレン基、エチレン基、プロピレン基、イソプロピレン基等の炭素数1〜3の直鎖又は分岐鎖状のアルキレン基が好ましい。下記式(I−9)、(I−10)中のn1〜n6は、それぞれ1〜30の整数を示す。
Figure 0006343575
Figure 0006343575
上述の(ii)脂環に直接単結合で結合しているエポキシ基を有する化合物としては、例えば、下記式(II)で表される化合物等が挙げられる。
Figure 0006343575
式(II)中、R’は、構造式上、p価のアルコールからp個の水酸基(−OH)を除いた基(p価の有機基)であり、p、nはそれぞれ自然数を表す。p価のアルコール[R’(OH)p]としては、例えば、2,2−ビス(ヒドロキシメチル)−1−ブタノール等の多価アルコール(炭素数1〜15のアルコール等)等が挙げられる。pは1〜6が好ましく、nは1〜30が好ましい。pが2以上の場合、それぞれの( )内(外側の括弧内)の基におけるnは同一でもよいし、異なっていてもよい。上記式(II)で表される化合物としては、具体的には、2,2−ビス(ヒドロキシメチル)−1−ブタノールの1,2−エポキシ−4−(2−オキシラニル)シクロヘキサン付加物[例えば、商品名「EHPE3150」((株)ダイセル製)等]等が挙げられる。
本発明の硬化性エポキシ樹脂組成物において脂環式エポキシ化合物(A)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。また、脂環式エポキシ化合物(A)は、公知乃至慣用の方法により製造することもできるし、例えば、商品名「セロキサイド2021P」、「セロキサイド2081」(以上、(株)ダイセル製)等の市販品を入手することもできる。
脂環式エポキシ化合物(A)としては、上記式(I−1)で表される化合物[3,4−エポキシシクロヘキシルメチル(3,4−エポキシ)シクロヘキサンカルボキシレート;例えば、商品名「セロキサイド2021P」((株)ダイセル製)等]が特に好ましい。
本発明の硬化性エポキシ樹脂組成物における脂環式エポキシ化合物(A)の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物(100重量%)に対して、10〜95重量%が好ましく、より好ましくは15〜93重量%、さらに好ましくは20〜90重量%である。脂環式エポキシ化合物(A)の含有量を上記範囲に制御することにより、硬化性エポキシ樹脂組成物の硬化性がより向上したり、硬化物の耐熱性や機械強度がより向上する傾向がある。
本発明の硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物の全量(全エポキシ化合物;100重量%)に対する脂環式エポキシ化合物(A)の割合は、特に限定されないが、30〜99重量%が好ましく、より好ましくは50〜95重量%、さらに好ましくは60〜90重量%である。脂環式エポキシ化合物(A)の割合を30重量%以上とすることにより、硬化性エポキシ樹脂組成物の硬化性がより向上したり、硬化物の耐熱性がより向上する傾向がある。一方、脂環式エポキシ化合物(A)の割合を99重量%以下とすることにより、硬化物の耐熱衝撃性や耐吸湿リフロー性がより向上する傾向がある。
[オキシラン環含有イソシアヌル酸誘導体(B)]
本発明の硬化性エポキシ樹脂組成物は、イソシアヌル酸誘導体(B)を必須成分として含む。イソシアヌル酸誘導体(B)は、イソシアヌル酸の誘導体であって、分子内に1個以上のオキシラン環を少なくとも有する化合物である。本発明の硬化性エポキシ樹脂組成物がイソシアヌル酸誘導体(B)を含むことにより、硬化物の電極に対する密着性、耐熱性、耐吸湿リフロー性が向上する。
イソシアヌル酸誘導体(B)が分子内に有するオキシラン環の数は、1個以上であればよく、特に限定されないが、1〜6個が好ましく、より好ましくは1〜3個である。
イソシアヌル酸誘導体(B)としては、例えば、下記式(1)で表される化合物が挙げられる。
Figure 0006343575
式(1)中、RX、RY、及びRZ(RX〜RZ)は、同一又は異なって、水素原子又は一価の有機基を示す。但し、RX〜RZの少なくとも1個は、オキシラン環を含む一価の有機基である。上記一価の有機基としては、例えば、一価の脂肪族炭化水素基(例えば、アルキル基、アルケニル基等);一価の芳香族炭化水素基(例えば、アリール基等);一価の複素環式基;脂肪族炭化水素基、脂環式炭化水素基、及び芳香族炭化水素基の2以上が結合して形成された一価の基等が挙げられる。なお、一価の有機基は置換基(例えば、ヒドロキシ基、カルボキシ基、ハロゲン原子等の置換基)を有するものであってもよい。より具体的には、後述のポリロタキサン(C)における疎水性を有する修飾基として例示する有機基等が挙げられる。オキシラン環を含む一価の有機基としては、例えば、エポキシ基、グリシジル基、2−メチルエポキシプロピル基、シクロヘキセンオキシド基等のオキシラン環を有する基が挙げられる。
より具体的には、イソシアヌル酸誘導体(B)としては、下記式(1a)で表される化合物、下記式(1b)で表される化合物、下記式(1c)で表される化合物等が挙げられる。
Figure 0006343575
Figure 0006343575
Figure 0006343575
上記式(1a)、式(1b)、及び式(1c)(式(1a)〜(1c))中、R1、R2は、同一又は異なって、水素原子又は炭素数1〜8のアルキル基を示す。炭素数1〜8のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の直鎖又は分岐鎖状のアルキル基が挙げられる。中でも、メチル基、エチル基、プロピル基、イソプロピル基等の炭素数1〜3の直鎖又は分岐鎖状のアルキル基が好ましい。上記式(1a)〜(1c)中のR1及びR2は、水素原子であることが特に好ましい。
上記式(1a)で表される化合物の代表的な例としては、モノアリルジグリシジルイソシアヌレート、1−アリル−3,5−ビス(2−メチルエポキシプロピル)イソシアヌレート、1−(2−メチルプロペニル)−3,5−ジグリシジルイソシアヌレート、1−(2−メチルプロペニル)−3,5−ビス(2−メチルエポキシプロピル)イソシアヌレート等が挙げられる。
上記式(1b)で表される化合物の代表的な例としては、ジアリルモノグリシジルイソシアヌレート、1,3−ジアリル−5−(2−メチルエポキシプロピル)イソシアヌレート、1,3−ビス(2−メチルプロペニル)−5−グリシジルイソシアヌレート、1,3−ビス(2−メチルプロペニル)−5−(2−メチルエポキシプロピル)イソシアヌレート等が挙げられる。
上記式(1c)で表される化合物の代表的な例としては、トリグリシジルイソシアヌレート、トリス(2−メチルエポキシプロピル)イソシアヌレート等が挙げられる。
なお、イソシアヌル酸誘導体(B)は、アルコールや酸無水物等のオキシラン環と反応する化合物を加えてあらかじめ変性して用いてもよい。
中でも、イソシアヌル酸誘導体(B)としては、硬化物の耐熱性及び耐熱衝撃性の観点で、上記式(1a)〜(1c)で表される化合物が好ましく、より好ましくは上記式(1a)で表される化合物である。なお、本発明の硬化性エポキシ樹脂組成物においてイソシアヌル酸誘導体(B)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。なお、イソシアヌル酸誘導体(B)としては、例えば、商品名「TEPIC」(日産化学工業(株)製);商品名「MA−DGIC」、「DA−MGIC」(以上、四国化成工業(株)製)等の市販品を使用することもできる。
本発明の硬化性エポキシ樹脂組成物におけるイソシアヌル酸誘導体(B)の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物の全量(全エポキシ化合物;100重量%)に対して、1〜80重量%が好ましく、より好ましくは5〜50重量%、さらに好ましくは10〜40重量%である。イソシアヌル酸誘導体(B)の含有量を1重量%以上とすることにより、硬化物の電極に対する密着性、耐熱性、耐熱衝撃性が向上する。一方、イソシアヌル酸誘導体(B)の含有量が80重量%を超えると、硬化性エポキシ樹脂組成物における溶解性が低下し、硬化物の物性に悪影響が及ぶ場合がある。
[ポリロタキサン(C)]
本発明の硬化性エポキシ樹脂組成物は、ポリロタキサン(C)を必須成分として含む。ポリロタキサン(C)は、複数(2以上)の環状分子と、当該複数の環状分子を串刺し状に包接する直鎖状分子と、当該直鎖状分子の両末端に配置され上記複数の環状分子の脱離を防止する封鎖基とを有する複合体である。つまり、ポリロタキサン(C)は、複数の環状分子と、直鎖状分子と、封鎖基とを有する複合体であり、上記直鎖状分子は上記複数の環状分子を貫通するように有し、上記複数の環状分子が上記直鎖状分子から抜け落ちないように、上記直鎖状分子の末端が封鎖基により封鎖されている構造を有する。本発明の硬化性エポキシ樹脂組成物がポリロタキサン(C)を含むことにより、硬化物の耐熱性、耐吸湿リフロー性が向上する。
なお、本明細書において、ポリロタキサン(C)には、上記複合体に加えて、上記複合体同士が環状分子部分で架橋された架橋体、及び、上記複合体と他のモノマーやポリマーとが重合した重合体も含まれる。
上記直鎖状分子は、実質的に直鎖であればよく、回転子である環状分子が回動可能で滑車効果を発揮できるように包接できる限り、分岐鎖を有していてもよい。また、環状分子の大きさにも影響を受けるが、直鎖状分子の長さも、環状分子が滑車効果を発揮できる限り特に限定されない。
上記直鎖状分子としては、公知乃至慣用の直鎖状のポリマーを使用することができる。上記ポリマーとしては、特に限定されないが、例えば、ポリオレフィン、ポリエーテル、ポリエステル、ポリアミド、アクリル系樹脂、ポリシロキサン、ポリエン、ポリスチレン、ポリ塩化ビニル、ポリカーボネート系樹脂、ポリウレタン系樹脂、塩化ビニル−酢酸ビニル共重合系樹脂、ポリビニルアルコール、ポリビニルピロリドン、セルロース系樹脂、ポリアクリルアミド、ポリビニルアセタール系樹脂、ポリアミン等が挙げられる。
上記ポリオレフィンとしては、α−オレフィンの単独共重合体や2種以上の共重合体等が挙げられ、例えば、ポリエチレン、ポリプロピレン、ポリイソプレン、ポリブタジエン等が挙げられる。上記ポリエーテルとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラヒドロフラン等が挙げられる。上記ポリエステルとしては、例えば、ε−カプロラクトン等のラクトンを開環重合させたポリエステル、多価カルボン酸(特にジカルボン酸)とポリオール(特にジオール)を必須成分とするポリエステル、ポリ乳酸等が挙げられる。上記ポリシロキサンとしては、例えば、ポリジメチルシロキサン等が挙げられる。上記ポリエンとしては、例えば、ポリブタジエン、ポリイソプレン等の共役ポリエンが挙げられる。また、上記直鎖状分子は、分子内にベンゼン環等の芳香環を有していてもよい。
上記直鎖状分子を構成するポリマーとしては、中でも、ポリエーテル、ポリエステルが好ましく、特にポリエチレングリコール、ラクトンを開環重合させたポリエステル(特に、ポリカプロラクトン)が好ましい。
上記直鎖状分子の分子量は、特に限定されないが、1,000〜10万が好ましく、より好ましくは5,000〜7,5000、さらに好ましくは1万〜6万である。分子量を1,000以上とすることにより、滑車効果が向上し耐熱性や耐吸湿リフロー性がより向上する傾向がある。分子量を10万以下とすることにより、ポリロタキサン(B)の硬化性エポキシ樹脂組成物における溶解性が向上し、硬化性エポキシ樹脂組成物の取り扱い性が向上する傾向がある。なお、上記分子量は、ゲル・パーミエーション・クロマトグラフィーによる標準ポリスチレン換算の分子量として測定される。
上記直鎖状分子の末端(特に、両末端)は、封鎖基により封鎖されている。このため、封鎖基により封鎖される前の、上記直鎖状分子を形成する化合物(「直鎖状分子前駆体」と称する場合がある)は、両末端に、封鎖基を形成する化合物(「封鎖基前駆体」と称する場合がある)と反応性を有する基を有することが好ましい。上記反応性を有する基としては、封鎖基前駆体の反応性を有する基の種類等に応じて適宜選択することができるが、例えば、ヒドロキシ基、アミノ基、カルボキシ基、チオール基等が挙げられる。
上記環状分子としては、直鎖状分子に包接されて滑車効果を奏するものであればよく、公知乃至慣用の環状物質が使用できる。また、上記環状分子には、環が閉じている分子に加えて、「C」字状のように完全に環が閉じていない分子も含まれる。
上記環状分子としては、例えば、シクロデキストリン、クラウンエーテル(ベンゾクラウンエーテル、ジベンゾクラウンエーテル、ジシクロヘキサノクラウンエーテルも含まれる)、これらの誘導体若しくは変性体等が挙げられる。上記シクロデキストリンとしては、例えば、α−シクロデキストリン、β−シクロデキストリン、γ−シクロデキストリン、ジメチルシクロデキストリン、グルコシルシクロデキストリン等が挙げられる。中でも、α−シクロデキストリン、β−シクロデキストリン、γ−シクロデキストリンが好ましく、特に、α−シクロデキストリンが好ましい。上記環状分子は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。
上記環状分子は、反応性を有する基を有していてもよい。この場合、ポリロタキサン(C)と他のポリマーとの架橋が進行しやすくなる傾向がある。上記反応性を有する基としては、架橋するポリマーの種類等により適宜選択することができるが、例えば、ヒドロキシ基、アミノ基、カルボキシル基、チオール基、アルデヒド基等が挙げられる。なお、上記反応性を有する基としては、封鎖基前駆体と反応しない基が好ましい。また、後述の疎水性の修飾基が上記反応性を有する基を有していてもよい。
ポリロタキサン(C)が有する環状分子の数は、2個以上であれば特に限定されない。上記直鎖状分子に包接され得る環状分子の個数の最大値に対する環状分子の個数の割合(包接割合)は、環状分子の数が2個以上となる範囲内であれば特に限定されないが、0.06〜0.61が好ましく、より好ましくは0.11〜0.48、さらに好ましくは0.24〜0.41である。上記割合を0.06以上とすることにより滑車効果がより向上する傾向がある。上記割合を0.61以下とすることにより、環状分子が密に配置され過ぎて環状分子の可動性が低下することを抑制できる傾向がある。上記包接割合は、公知乃至慣用の方法で適宜調節することができる。
ポリロタキサン(C)は、特に限定されないが、上記直鎖状分子及び上記複数の環状分子のうちの少なくとも1つが疎水性の修飾基を有することが好ましく、上記複数の環状分子の少なくとも1つが疎水性の修飾基を有することがより好ましい。上記疎水性の修飾基を有することにより、ポリロタキサン(C)の硬化性エポキシ樹脂組成物中の溶解性が向上する傾向がある。
上記疎水性の修飾基としては、有機基が挙げられる。上記有機基としては、例えば、アルキル基[例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等]、シクロアルキル基[例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロドデシル基等]、アリール基[例えば、フェニル基、トリル基、キシリル基、ナフチル基等]、シクロアルキル−アルキル基[例えば、シクロへキシルメチル基、メチルシクロヘキシル基等]、アラルキル基[例えば、ベンジル基、フェネチル基等]、炭化水素基における1以上の水素原子がハロゲン原子で置換されたハロゲン化炭化水素基[例えば、クロロメチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基等のハロゲン化アルキル基等]等の一価の置換又は無置換炭化水素基等が挙げられる。また、上記有機基は、上記一価の置換又は無置換炭化水素基の2以上が、エーテル結合(−O−)、チオエーテル結合(−S−)、エステル結合(−CO−O−)、アミド結合(−CO−NH−)、カルボニル基(−CO−)等の連結基を介して結合した基も挙げられる。また、上記疎水性の修飾基としては、シリル基、硝酸エステル基、トシル基等が挙げられる。
上記疎水性の修飾基としては、中でも、有機基が好ましく、さらに好ましくは炭素数が6以上(より好ましくは9以上)の有機基である。上記有機基が炭素数6以上の有機基であると、ポリロタキサン(C)の親油性がより向上する傾向がある。
上記疎水性の有機基としては、特に、プロポキシ基を介してカプロラクトン由来のポリエステルが結合した基[−C36O−{CO−(CH25−O}q−H]が好ましい。なお、qは、1以上の整数を示す。上記プロポキシ基としては、n−プロピルオキシ基、イソプロピルオキシ基が挙げられる。
また、ポリロタキサン(C)は、上記直鎖状分子及び上記複数の環状分子のうちの少なくとも1つが親水性の修飾基を有していてもよい。上記親水性の修飾基としては、例えば、カルボキシ基、スルホン酸基、硫酸エステル基、リン酸エステル基、アミノ基(一級〜三級)、四級アンモニウム塩基、ヒドロキシ基を有する炭素数1〜4の有機基等が挙げられる。
上記環状分子がシクロデキストリンである場合、シクロデキストリン中のヒドロキシ基の水素原子が上記疎水性の修飾基に置換されていることが好ましい。即ち、上記環状分子は、ヒドロキシ基の水素原子が疎水性の修飾基に置換された基を少なくとも有するシクロデキストリンであることが好ましい。この場合、ポリロタキサン(C)の硬化性エポキシ樹脂組成物中の溶解性がより向上する傾向がある。
上記環状分子は、環状分子1つ当たり、1つの疎水性の修飾基を有していてもよく、2以上の疎水性の修飾基を有していてもよい。従って、上記環状分子がシクロデキストリンである場合、シクロデキストリン中の1箇所のヒドロキシ基の水素原子が疎水性の修飾基に置換されていてもよく、2箇所以上のヒドロキシ基の水素原子が疎水性の修飾基に置換されていてもよい。なお、環状分子1つ当たり2以上の疎水性の修飾基を有している場合、上記2以上の疎水性の修飾基は、一種のみであってもよく、異なる二種以上であってもよい。また、複数の環状分子における疎水性の修飾基は、同一であってもよく、異なっていてもよい。
上記環状分子が、ヒドロキシ基の水素原子が疎水性の修飾基に置換された基を少なくとも有するシクロデキストリンである場合、上記疎水性の修飾基による修飾度は、特に限定されないが、シクロデキストリンのヒドロキシ基が修飾され得る最大数を1とすると、0.02以上が好ましく、より好ましくは0.04以上、さらに好ましくは0.06以上である。上記修飾度を0.02以上とすることにより、ポリロタキサン(C)の硬化性エポキシ樹脂組成物中への溶解性がより向上する傾向がある。なお、上記シクロデキストリンのヒドロキシ基が修飾され得る最大数とは、修飾する前にシクロデキストリンが有していた全ヒドロキシ基の数を言う。また、上記修飾度とは、置換された修飾基の数の全ヒドロキシ基の数に対する割合を言う。また、上記修飾度は、ポリロタキサン(C)中の全てのシクロデキストリンにおける修飾度である。
上記疎水性の修飾基は、ポリロタキサンを作製する前の環状分子や直鎖状分子前駆体に導入してもよいし、ポリロタキサンを作製した後に導入してもよい。例えば、上記環状分子が、ヒドロキシ基の水素原子が上記プロポキシ基を介してカプロラクトン由来のポリエステルが結合した基[−C36O−{CO−(CH25−O}q−H]に置換された基を有するシクロデキストリンである場合、ポリロタキサンを作製する前又は後のシクロデキストリンのヒドロキシ基を、プロピレンオキシドを用いてヒドロキシプロピル化し、その後、ε−カプロラクトンを添加し、2−エチルへキサン酸スズを添加して導入することができる。このときのε−カプロラクトンの添加量を変更することで修飾度を任意に制御できる。
上記封鎖基は、上述のように、上記直鎖状分子の末端(両末端)に配置され、上記複数の環状分子が抜け落ちるのを防止する役割を有する。上記封鎖基は、上記複数の環状分子が上記直鎖状分子により串刺し状に貫通された状態を保持できる基であれば特に限定されず、例えば、嵩高さを有する基、イオン性を有する基等が挙げられる。上記嵩高さを有する基としては、例えば、球形の基や側壁状の基等が挙げられる。また、上記封鎖基が上記イオン性を有する基である場合、当該イオン性を有する基のイオン性と、環状分子の有するイオン性とが相互に影響を及ぼし合い、例えば反発し合うことにより、環状分子が直鎖状分子に串刺しにされた状態を保持することができる。
上記封鎖基としては、具体的には、例えば、2,4−ジニトロフェニル基、3,5−ジニトロフェニル基等のジニトロフェニル基;シクロデキストリニル基;アダマンチル基;トリチル基;フルオレセイン基;ピレン等の多環芳香族炭化水素基;及びこれらの誘導体又は変性体等が挙げられる。
上記封鎖基は、上記直鎖状分子の末端を封鎖する役割を有する必要がある。このため、封鎖基前駆体は、上記直鎖状分子前駆体の両末端と反応性を有する基を有することが好ましい。上記反応性を有する基としては、直鎖状分子前駆体の反応性を有する基の種類等に応じて適宜選択することができる。
ポリロタキサン(C)は、公知乃至慣用の方法で製造することができる。例えば、複数の環状分子と直鎖状分子前駆体とを混合し、環状分子の開口部を直鎖状分子前駆体で串刺し状に貫通して直鎖状分子前駆体に環状分子を包接させ、次いで、直鎖状分子前駆体の反応性を有する基と封鎖基前駆体の反応性を有する基とを反応させて直鎖状分子の両末端を封鎖基で封鎖して得られる。なお、本発明の硬化性エポキシ樹脂組成物においてポリロタキサン(C)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。なお、ポリロタキサン(C)としては、例えば、商品名「セルムスーパーポリマー」シリーズ(アドバンスト・ソフトマテリアルズ(株)製)等の市販品を使用することもできる。
本発明の硬化性エポキシ樹脂組成物におけるポリロタキサン(C)の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物の全量100重量部に対して、0.5〜200重量部が好ましく、より好ましくは1〜100重量部、さらに好ましくは5〜60重量部である。ポリロタキサン(C)の含有量を0.5重量部以上とすることにより、硬化物の耐熱性及び耐吸湿リフロー性がより向上する傾向がある。一方、ポリロタキサン(C)の含有量を200重量部以下とすることにより、硬化性エポキシ樹脂組成物の硬化性がより向上したり、硬化物の耐熱性がより向上する傾向がある。
本発明の硬化性エポキシ樹脂組成物は、上述の必須成分の他にも、例えば、さらに硬化剤(D)及び硬化促進剤(E)を含んでいてもよい。また、本発明の硬化性エポキシ樹脂組成物は、上述の必須成分の他にも、例えば、さらに硬化触媒(F)を含んでいてもよい。
[硬化剤(D)]
本発明の硬化性エポキシ樹脂組成物における硬化剤(D)は、脂環式エポキシ化合物(A)、イソシアヌル酸誘導体(B)等のエポキシ基を有する化合物と反応することにより、硬化性エポキシ樹脂組成物を硬化させる働きを有する化合物である。硬化剤(D)としては、エポキシ樹脂用硬化剤として公知乃至慣用の硬化剤を使用することができ、特に限定されないが、例えば、酸無水物類(酸無水物系硬化剤)、アミン類(アミン系硬化剤)、ポリアミド樹脂、イミダゾール類(イミダゾール系硬化剤)、ポリメルカプタン類(ポリメルカプタン系硬化剤)、フェノール類(フェノール系硬化剤)、ポリカルボン酸類、ジシアンジアミド類、有機酸ヒドラジド等が挙げられる。
硬化剤(D)としての酸無水物類(酸無水物系硬化剤)としては、公知乃至慣用の酸無水物系硬化剤を使用でき、特に限定されないが、例えば、メチルテトラヒドロ無水フタル酸(4−メチルテトラヒドロ無水フタル酸、3−メチルテトラヒドロ無水フタル酸等)、メチルヘキサヒドロ無水フタル酸(4−メチルヘキサヒドロ無水フタル酸、3−メチルヘキサヒドロ無水フタル酸等)、ドデセニル無水コハク酸、メチルエンドメチレンテトラヒドロ無水フタル酸、無水フタル酸、無水マレイン酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物、無水ピロメリット酸、無水トリメリット酸、ベンゾフェノンテトラカルボン酸無水物、無水ナジック酸、無水メチルナジック酸、水素化メチルナジック酸無水物、4−(4−メチル−3−ペンテニル)テトラヒドロ無水フタル酸、無水コハク酸、無水アジピン酸、無水セバシン酸、無水ドデカン二酸、メチルシクロヘキセンテトラカルボン酸無水物、ビニルエーテル−無水マレイン酸共重合体、アルキルスチレン−無水マレイン酸共重合体等が挙げられる。中でも、取り扱い性の観点で、25℃で液状の酸無水物[例えば、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ドデセニル無水コハク酸、メチルエンドメチレンテトラヒドロ無水フタル酸等]が好ましい。一方、25℃で固体状の酸無水物については、例えば、25℃で液状の酸無水物に溶解させて液状の混合物とすることで、本発明の硬化性エポキシ樹脂組成物における硬化剤(D)としての取り扱い性が向上する傾向がある。酸無水物系硬化剤としては、硬化物の耐熱性、透明性の観点で、飽和単環炭化水素ジカルボン酸の無水物(環にアルキル基等の置換基が結合したものも含む)が好ましい。
硬化剤(D)としてのアミン類(アミン系硬化剤)としては、公知乃至慣用のアミン系硬化剤を使用でき、特に限定されないが、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジプロピレンジアミン、ジエチルアミノプロピルアミン、ポリプロピレントリアミン等の脂肪族ポリアミン;メンセンジアミン、イソホロンジアミン、ビス(4−アミノ−3−メチルジシクロヘキシル)メタン、ジアミノジシクロヘキシルメタン、ビス(アミノメチル)シクロヘキサン、N−アミノエチルピペラジン、3,9−ビス(3−アミノプロピル)−3,4,8,10−テトラオキサスピロ[5,5]ウンデカン等の脂環式ポリアミン;m−フェニレンジアミン、p−フェニレンジアミン、トリレン−2,4−ジアミン、トリレン−2,6−ジアミン、メシチレン−2,4−ジアミン、3,5−ジエチルトリレン−2,4−ジアミン、3,5−ジエチルトリレン−2,6−ジアミン等の単核ポリアミン、ビフェニレンジアミン、4,4−ジアミノジフェニルメタン、2,5−ナフチレンジアミン、2,6−ナフチレンジアミン等の芳香族ポリアミン等が挙げられる。
硬化剤(D)としてのフェノール類(フェノール系硬化剤)としては、公知乃至慣用のフェノール系硬化剤を使用でき、特に限定されないが、例えば、ノボラック型フェノール樹脂、ノボラック型クレゾール樹脂、パラキシリレン変性フェノール樹脂、パラキシリレン・メタキシリレン変性フェノール樹脂等のアラルキル樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、トリフェノールプロパン等が挙げられる。
硬化剤(D)としてのポリアミド樹脂としては、例えば、分子内に第1級アミノ基及び第2級アミノ基のいずれか一方又は両方を有するポリアミド樹脂等が挙げられる。
硬化剤(D)としてのイミダゾール類(イミダゾール系硬化剤)としては、公知乃至慣用のイミダゾール系硬化剤を使用でき、特に限定されないが、例えば、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテート、1−シアノエチル−2−フェニルイミダゾリウムトリメリテート、2−メチルイミダゾリウムイソシアヌレート、2−フェニルイミダゾリウムイソシアヌレート、2,4−ジアミノ−6−[2−メチルイミダゾリル−(1)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2−エチル−4−メチルイミダゾリル−(1)]−エチル−s−トリアジン等が挙げられる。
硬化剤(D)としてのポリメルカプタン類(ポリメルカプタン系硬化剤)としては、例えば、液状のポリメルカプタン、ポリスルフィド樹脂等が挙げられる。
硬化剤(D)としてのポリカルボン酸類としては、例えば、アジピン酸、セバシン酸、テレフタル酸、トリメリット酸、カルボキシ基含有ポリエステル等が挙げられる。
中でも、硬化剤(D)としては、硬化物の耐熱性、透明性の観点で、酸無水物類(酸無水物系硬化剤)が好ましい。なお、本発明の硬化性エポキシ樹脂組成物において硬化剤(D)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。また、硬化剤(D)としては、市販品を使用することもできる。例えば、酸無水物類の市販品としては、商品名「リカシッド MH−700」、「リカシッド MH−700F」(以上、新日本理化(株)製);商品名「HN−5500」(日立化成工業(株)製)等が挙げられる。
本発明の硬化性エポキシ樹脂組成物における硬化剤(D)の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物(例えば、脂環式エポキシ化合物(A)、イソシアヌル酸誘導体(B))の全量100重量部に対して、50〜200重量部が好ましく、より好ましくは80〜150重量部である。より具体的には、硬化剤(D)として酸無水物類を使用する場合、本発明の硬化性エポキシ樹脂組成物に含まれる全てのエポキシ基を有する化合物におけるエポキシ基1当量当たり、0.5〜1.5当量となる割合で使用することが好ましい。硬化剤(D)の含有量を50重量部以上とすることにより、硬化を十分に進行させることができ、硬化物の強靭性がより向上する傾向がある。一方、硬化剤(D)の含有量を200重量部以下とすることにより、より着色が抑制され、色相に優れた硬化物が得られる傾向がある。
[硬化促進剤(E)]
本発明の硬化性エポキシ樹脂組成物における硬化促進剤(E)は、エポキシ基を有する化合物が硬化剤(D)と反応する際に、その反応速度を促進する機能を有する化合物である。硬化促進剤(E)としては、公知乃至慣用の硬化促進剤を使用でき、特に限定されないが、例えば、1,8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)又はその塩(例えば、フェノール塩、オクチル酸塩、p−トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩等);1,5−ジアザビシクロ[4.3.0]ノネン−5(DBN)又はその塩(例えば、フェノール塩、オクチル酸塩、p−トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩等);ベンジルジメチルアミン、2,4,6−トリス(ジメチルアミノメチル)フェノール、N,N−ジメチルシクロヘキシルアミン等の3級アミン;2−エチル−4−メチルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール等のイミダゾール;リン酸エステル;トリフェニルホスフィン、トリス(ジメトキシ)ホスフィン等のホスフィン類;テトラフェニルホスホニウムテトラ(p−トリル)ボレート等のホスホニウム化合物;オクチル酸亜鉛、オクチル酸スズ、ステアリン酸亜鉛等の有機金属塩;アルミニウムアセチルアセトン錯体等の金属キレート等が挙げられる。
なお、本発明の硬化性エポキシ樹脂組成物において硬化促進剤(E)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。また、硬化促進剤(E)としては、商品名「U−CAT SA 506」、「U−CAT SA 102」、「U−CAT 5003」、「U−CAT 18X」、「U−CAT 12XD」(開発品)(以上、サンアプロ(株)製);商品名「TPP−K」、「TPP−MK」(以上、北興化学工業(株)製);商品名「PX−4ET」(日本化学工業(株)製)等の市販品を使用することもできる。
本発明の硬化性エポキシ樹脂組成物における硬化促進剤(E)の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物の全量100重量部に対して、0.01〜5重量部が好ましく、より好ましくは0.03〜3重量部、さらに好ましくは0.03〜2重量部である。硬化促進剤(E)の含有量を0.01重量部以上とすることにより、いっそう効率的な硬化促進効果が得られる傾向がある。一方、硬化促進剤(E)の含有量を5重量部以下とすることにより、より着色が抑制され、色相に優れた硬化物が得られる傾向がある。
[硬化触媒(F)]
本発明の硬化性エポキシ樹脂組成物における硬化触媒(F)は、脂環式エポキシ化合物(A)、イソシアヌル酸誘導体(B)等のカチオン重合性化合物の硬化反応(重合反応)を開始及び/又は促進させることにより、硬化性エポキシ樹脂組成物を硬化させる働きを有する化合物である。硬化触媒(F)としては、特に限定されないが、例えば、光照射や加熱処理等を施すことによりカチオン種を発生して、重合を開始させるカチオン重合開始剤(光カチオン重合開始剤、熱カチオン重合開始剤等)や、ルイス酸・アミン錯体、ブレンステッド酸塩類、イミダゾール類等が挙げられる。
硬化触媒(F)としての光カチオン重合開始剤としては、例えば、ヘキサフルオロアンチモネート塩、ペンタフルオロヒドロキシアンチモネート塩、ヘキサフルオロホスフェート塩、ヘキサフルオロアルセネート塩等が挙げられ、より具体的には、例えば、トリアリールスルホニウムヘキサフルオロホスフェート(例えば、p−フェニルチオフェニルジフェニルスルホニウムヘキサフルオロホスフェート等)、トリアリールスルホニウムヘキサフルオロアンチモネート等のスルホニウム塩(特に、トリアリールスルホニウム塩);ジアリールヨードニウムヘキサフルオロホスフェート、ジアリールヨードニウムヘキサフルオロアンチモネート、ビス(ドデシルフェニル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ヨードニウム[4−(4−メチルフェニル−2−メチルプロピル)フェニル]ヘキサフルオロホスフェート等のヨードニウム塩;テトラフルオロホスホニウムヘキサフルオロホスフェート等のホスホニウム塩;N−ヘキシルピリジニウムテトラフルオロボレート等のピリジニウム塩等が挙げられる。また、光カチオン重合開始剤としては、例えば、商品名「UVACURE1590」(ダイセル・サイテック(株)製);商品名「CD−1010」、「CD−1011」、「CD−1012」(以上、米国サートマー製);商品名「イルガキュア264」(BASF社製);商品名「CIT−1682」(日本曹達(株)製)等の市販品を好ましく使用することもできる。
硬化触媒(F)としての熱カチオン重合開始剤としては、例えば、アリールジアゾニウム塩、アリールヨードニウム塩、アリールスルホニウム塩、アレン−イオン錯体等が挙げられ、商品名「PP−33」、「CP−66」、「CP−77」(以上(株)ADEKA製);商品名「FC−509」(スリーエム製);商品名「UVE1014」(G.E.製);商品名「サンエイドSI−60L」、「サンエイドSI−80L」、「サンエイドSI−100L」、「サンエイドSI−110L」、「サンエイドSI−150L」(以上、三新化学工業(株)製);商品名「CG−24−61」(BASF社製)等の市販品を好ましく使用することができる。さらに、熱カチオン重合開始剤としては、アルミニウムやチタン等の金属とアセト酢酸若しくはジケトン類とのキレート化合物とトリフェニルシラノール等のシラノールとの化合物、又は、アルミニウムやチタン等の金属とアセト酢酸若しくはジケトン類とのキレート化合物とビスフェノールS等のフェノール類との化合物等も挙げられる。
硬化触媒(F)としてのルイス酸・アミン錯体としては、公知乃至慣用のルイス酸・アミン錯体系硬化触媒を使用することができ、特に限定されないが、例えば、BF3・n−ヘキシルアミン、BF3・モノエチルアミン、BF3・ベンジルアミン、BF3・ジエチルアミン、BF3・ピペリジン、BF3・トリエチルアミン、BF3・アニリン、BF4・n−ヘキシルアミン、BF4・モノエチルアミン、BF4・ベンジルアミン、BF4・ジエチルアミン、BF4・ピペリジン、BF4・トリエチルアミン、BF4・アニリン、PF5・エチルアミン、PF5・イソプロピルアミン、PF5・ブチルアミン、PF5・ラウリルアミン、PF5・ベンジルアミン、AsF5・ラウリルアミン等が挙げられる。
硬化触媒(F)としてのブレンステッド酸塩類としては、公知乃至慣用のブレンステッド酸塩類を使用することができ、特に限定されないが、例えば、脂肪族スルホニウム塩、芳香族スルホニウム塩、ヨードニウム塩、ホスホニウム塩等が挙げられる。
硬化触媒(F)としてのイミダゾール類としては、公知乃至慣用のイミダゾール類を使用することができ、特に限定されないが、例えば、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテート、1−シアノエチル−2−フェニルイミダゾリウムトリメリテート、2−メチルイミダゾリウムイソシアヌレート、2−フェニルイミダゾリウムイソシアヌレート、2,4−ジアミノ−6−[2−メチルイミダゾリル−(1)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2−エチル−4−メチルイミダゾリル−(1)]−エチル−s−トリアジン等が挙げられる。
本発明の硬化性エポキシ樹脂組成物において硬化触媒(F)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。なお、上述のように、硬化触媒(F)としては市販品を使用することもできる。
本発明の硬化性エポキシ樹脂組成物における硬化触媒(F)の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるカチオン重合性化合物の全量100重量部に対して、0.01〜15重量部が好ましく、より好ましくは0.01〜12重量部、さらに好ましくは0.05〜10重量部、特に好ましくは0.05〜8重量部である。硬化触媒(F)を上記範囲内で使用することにより、硬化性エポキシ樹脂組成物の硬化速度が速くなり、硬化物の耐熱性及び透明性がバランスよく向上する傾向がある。
[ゴム粒子]
本発明の硬化性エポキシ樹脂組成物は、さらに、ゴム粒子を含んでいてもよい。上記ゴム粒子としては、例えば、粒子状NBR(アクリロニトリル−ブタジエンゴム)、反応性末端カルボキシ基NBR(CTBN)、メタルフリーNBR、粒子状SBR(スチレン−ブタジエンゴム)等のゴム粒子が挙げられる。上記ゴム粒子としては、ゴム弾性を有するコア部分と、該コア部分を被覆する少なくとも1層のシェル層とからなる多層構造(コアシェル構造)を有するゴム粒子が好ましい。上記ゴム粒子は、特に、(メタ)アクリル酸エステルを必須モノマー成分とするポリマー(重合体)で構成され、表面に脂環式エポキシ化合物(A)等のエポキシ基を有する化合物と反応し得る官能基としてヒドロキシ基及び/又はカルボキシ基(ヒドロキシ基及びカルボキシ基のいずれか一方又は両方)を有するゴム粒子が好ましい。上記ゴム粒子の表面にヒドロキシ基及びカルボキシ基のいずれもが存在しない場合、冷熱サイクル等の熱衝撃により硬化物が白濁して透明性が低下しやすくなるため好ましくない。
上記ゴム粒子におけるゴム弾性を有するコア部分を構成するポリマーは、特に限定されないが、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸エステルを必須のモノマー成分として含むポリマーであることが好ましい。上記ゴム弾性を有するコア部分を構成するポリマーは、その他、例えば、スチレン、α−メチルスチレン等の芳香族ビニル;アクリロニトリル、メタクリロニトリル等のニトリル;ブタジエン、イソプレン等の共役ジエン;エチレン、プロピレン、イソブテン等のα−オレフィン等をモノマー成分として含んでいてもよい。
中でも、上記ゴム弾性を有するコア部分を構成するポリマーは、モノマー成分として、(メタ)アクリル酸エステルと共に、芳香族ビニル、ニトリル、及び共役ジエンからなる群より選択された一種又は二種以上を組み合わせて含むことが好ましい。即ち、上記コア部分を構成するポリマーとしては、例えば、(メタ)アクリル酸エステル/芳香族ビニル、(メタ)アクリル酸エステル/共役ジエン等の二元共重合体;(メタ)アクリル酸エステル/芳香族ビニル/共役ジエン等の三元共重合体等が挙げられる。なお、上記コア部分を構成するポリマーには、ポリジメチルシロキサンやポリフェニルメチルシロキサン等のシリコーンやポリウレタン等が含まれていてもよい。
上記コア部分を構成するポリマーは、その他のモノマー成分として、ジビニルベンゼン、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジアリルマレエート、トリアリルシアヌレート、ジアリルフタレート、ブチレングリコールジアクリレート等の分子内に2個以上の反応性官能基を有する反応性架橋モノマーを含有していてもよい。
上記ゴム粒子のコア部分は、中でも、(メタ)アクリル酸エステル/芳香族ビニルの二元共重合体(特に、アクリル酸ブチル/スチレン)より構成されたコア部分であることが、ゴム粒子の屈折率を容易に調整できる点で好ましい。
上記ゴム粒子のコア部分を構成するポリマーのガラス転移温度は、特に限定されないが、60℃未満(例えば、−150℃以上、60℃未満)が好ましく、より好ましくは−150〜15℃、さらに好ましくは−100〜0℃である。上記ポリマーのガラス転移温度を60℃未満とすることにより硬化物の耐クラック性(各種応力に対してクラックを生じにくい特性)がより向上する傾向がある。なお、上記コア部分を構成するポリマーのガラス転移温度は、下記Foxの式により算出される計算値を意味する(Bull.Am.Phys.Soc.,1(3)123(1956)参照)。下記Foxの式中、Tgはコア部分を構成するポリマーのガラス転移温度(単位:K)を示し、Wiはコア部分を構成するポリマーを構成する単量体全量に対する単量体iの重量分率を示す。また、Tgiは単量体iの単独重合体のガラス転移温度(単位:K)を示す。下記Foxの式は、コアを構成するポリマーが単量体1、単量体2、・・・・、及び単量体nの共重合体である場合の式を示す。
1/Tg=W1/Tg1+W2/Tg2+・・・・+Wn/Tgn
上記単独重合体のガラス転移温度は、各種文献に記載の値を採用することができ、例えば、「POLYMER HANDBOOK 第3版」(John Wiley & Sons,Inc.発行)に記載の値を採用できる。なお、文献に記載のないものについては、単量体を常法により重合して得られる単独重合体の、DSC法により測定されるガラス転移温度の値を採用することができる。
上記ゴム粒子のコア部分は、通常用いられる方法で製造することができ、例えば、上記モノマーを乳化重合法により重合する方法等により製造することができる。乳化重合法においては、上記モノマーの全量を一括して仕込んで重合してもよいし、上記モノマーの一部を重合した後、残りを連続的に又は断続的に添加して重合してもよいし、さらに、シード粒子を使用する重合方法を使用してもよい。
上記ゴム粒子のシェル層を構成するポリマーは、上記コア部分を構成するポリマーとは異種のポリマー(異なるモノマー組成を有するポリマー)であることが好ましい。また、上述のように、上記シェル層は、脂環式エポキシ化合物(A)等のエポキシ基を有する化合物と反応し得る官能基としてヒドロキシ基及び/又はカルボキシ基を有することが好ましい。これにより、特に、脂環式エポキシ化合物(A)との界面で接着性を向上させることができ、該シェル層を有するゴム粒子を含む硬化性エポキシ樹脂組成物を硬化させた硬化物に対して、優れた耐クラック性を発揮させることができる。また、硬化物のガラス転移温度の低下を防止することもできる。
上記シェル層を構成するポリマーは、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸エステルを必須のモノマー成分として含むポリマーであることが好ましい。例えば、上記コア部分における(メタ)アクリル酸エステルとしてアクリル酸ブチルを用いた場合、シェル層を構成するポリマーのモノマー成分としては、例えば、アクリル酸ブチル以外の(メタ)アクリル酸エステル(例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、メタクリル酸ブチル等)を使用することが好ましい。(メタ)アクリル酸エステル以外に含んでいてもよいモノマー成分としては、例えば、スチレン、α−メチルスチレン等の芳香族ビニル;アクリロニトリル、メタクリロニトリル等のニトリル等が挙げられる。上記ゴム粒子においては、シェル層を構成するモノマー成分として、(メタ)アクリル酸エステルと共に、上記モノマーを単独で、又は二種以上を組み合わせて含むことが好ましく、特に、少なくとも芳香族ビニルを含むことが、上記ゴム粒子の屈折率を容易に調整できる点で好ましい。
さらに、上記シェル層を構成するポリマーは、モノマー成分として、脂環式エポキシ化合物(A)等のエポキシ基を有する化合物と反応し得る官能基としてのヒドロキシ基及び/又はカルボキシ基を形成するために、ヒドロキシ基含有モノマー(例えば、2−ヒドロキシエチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート等)や、カルボキシ基含有モノマー(例えば、(メタ)アクリル酸等のα,β−不飽和酸;マレイン酸無水物等のα,β−不飽和酸無水物等)を含有することが好ましい。
上記ゴム粒子におけるシェル層を構成するポリマーは、モノマー成分として、(メタ)アクリル酸エステルと共に、上記モノマーから選択された一種又は二種以上を組み合わせて含むことが好ましい。即ち、上記シェル層は、例えば、(メタ)アクリル酸エステル/芳香族ビニル/ヒドロキシアルキル(メタ)アクリレート、(メタ)アクリル酸エステル/芳香族ビニル/α,β−不飽和酸等の三元共重合体等から構成されたシェル層であることが好ましい。
また、上記シェル層を構成するポリマーは、その他のモノマー成分として、コア部分と同様に、上記モノマーの他にジビニルベンゼン、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジアリルマレエート、トリアリルシアヌレート、ジアリルフタレート、ブチレングリコールジアクリレート等の分子内に2個以上の反応性官能基を有する反応性架橋モノマーを含有していてもよい。
上記ゴム粒子のシェル層を構成するポリマーのガラス転移温度は、特に限定されないが、60〜120℃が好ましく、より好ましくは70〜115℃である。上記ポリマーのガラス転移温度を60℃以上とすることにより、硬化物の耐熱性がより向上する傾向がある。一方、上記ポリマーのガラス転移温度を120℃以下とすることにより、硬化物の耐クラック性がより向上する傾向がある。なお、上記シェル層を構成するポリマーのガラス転移温度は、上記Foxの式により算出される計算値を意味し、例えば、上述のコアを構成するポリマーのガラス転移温度と同様にして測定できる。
上記ゴム粒子(コアシェル構造を有するゴム粒子)は、上記コア部分をシェル層により被覆することで得られる。上記コア部分をシェル層で被覆する方法としては、例えば、上記方法により得られたゴム弾性を有するコア部分の表面に、シェル層を構成するポリマーを塗布することにより被覆する方法;上記方法により得られたゴム弾性を有するコア部分を幹成分とし、シェル層を構成する各成分を枝成分としてグラフト重合する方法等が挙げられる。
上記ゴム粒子の平均粒子径は、特に限定されないが、10〜500nmが好ましく、より好ましくは20〜400nmである。また、上記ゴム粒子の最大粒子径は、特に限定されないが、50〜1000nmが好ましく、より好ましくは100〜800nmである。平均粒子径を500nm以下(又は、最大粒子径を1000nm以下)とすることにより、硬化物におけるゴム粒子の分散性が向上し、耐クラック性がより向上する傾向がある。一方、平均粒子径を10nm以上(又は、最大粒子径を50nm以上)とすることにより、硬化物の耐クラック性がより向上する傾向がある。
上記ゴム粒子の屈折率は、特に限定されないが、1.40〜1.60が好ましく、より好ましくは1.42〜1.58である。また、ゴム粒子の屈折率と、該ゴム粒子を含む硬化性エポキシ樹脂組成物(本発明の硬化性エポキシ樹脂組成物)を硬化させて得られる硬化物の屈折率との差は±0.03以内であることが好ましい。屈折率の差を±0.03以内とすることにより、硬化物の優れた透明性が確保され、光半導体装置の光度が高く保持される傾向がある。
ゴム粒子の屈折率は、例えば、ゴム粒子1gを型に注型して210℃、4MPaで圧縮成形し、厚さ1mmの平板を得、得られた平板から、縦20mm×横6mmの試験片を切り出し、中間液としてモノブロモナフタレンを使用してプリズムと該試験片とを密着させた状態で、多波長アッベ屈折計(商品名「DR−M2」、(株)アタゴ製)を使用し、20℃、ナトリウムD線での屈折率を測定することにより求めることができる。
本発明の硬化性エポキシ樹脂組成物の硬化物の屈折率は、例えば、下記硬化物の項に記載の加熱硬化方法により得られた硬化物から、縦20mm×横6mm×厚さ1mmの試験片を切り出し、中間液としてモノブロモナフタレンを使用してプリズムと該試験片とを密着させた状態で、多波長アッベ屈折計(商品名「DR−M2」、(株)アタゴ製)を使用し、20℃、ナトリウムD線での屈折率を測定することにより求めることができる。
本発明の硬化性エポキシ樹脂組成物における上記ゴム粒子の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物の全量100重量部に対して、0.5〜30重量部が好ましく、より好ましくは1〜20重量部である。ゴム粒子の含有量を0.5重量部以上とすることにより、硬化物の耐クラック性がより向上する傾向がある。一方、ゴム粒子の含有量を30重量部以下とすることにより、硬化物の耐熱性がより向上する傾向がある。
[添加剤]
本発明の硬化性エポキシ樹脂組成物は、上記以外にも、本発明の効果を損なわない範囲内で各種添加剤を含んでいてもよい。上記添加剤として、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン等のヒドロキシ基を有する化合物を含有させると、反応を緩やかに進行させることができる。その他にも、粘度や透明性を損なわない範囲内で、シリコーン系やフッ素系消泡剤、レベリング剤、γ−グリシドキシプロピルトリメトキシシランや3−メルカプトプロピルトリメトキシシラン等のシランカップリング剤、界面活性剤、シリカ、アルミナ等の無機充填剤、難燃剤、着色剤、酸化防止剤、紫外線吸収剤、イオン吸着体、顔料、蛍光体(例えば、YAG系の蛍光体微粒子、シリケート系蛍光体微粒子等の無機蛍光体微粒子等)、離型剤等の慣用の添加剤を使用することができる。
本発明の硬化性エポキシ樹脂組成物は、特に限定されないが、上記の各成分を、必要に応じて加熱した状態で撹拌・混合することにより調製することができる。なお、本発明の硬化性エポキシ樹脂組成物は、各成分があらかじめ混合されたものをそのまま使用する1液系の組成物として使用することもできるし、例えば、別々に保管しておいた2以上の成分を使用前に所定の割合で混合して使用する多液系(例えば、2液系)の組成物として使用することもできる。上記撹拌・混合の方法は、特に限定されず、例えば、ディゾルバー、ホモジナイザー等の各種ミキサー、ニーダー、ロール、ビーズミル、自公転式撹拌装置等の公知乃至慣用の撹拌・混合手段を使用できる。また、撹拌・混合後、真空下にて脱泡してもよい。
特に限定されないが、本発明の硬化性エポキシ樹脂組成物にゴム粒子を配合する場合、当該ゴム粒子は、あらかじめ脂環式エポキシ化合物(A)中に分散させた組成物(当該組成物を「ゴム粒子分散エポキシ化合物」と称する場合がある)の状態で配合することが好ましい。即ち、本発明の硬化性エポキシ樹脂組成物にゴム粒子を配合する場合、本発明の硬化性エポキシ樹脂組成物は、上記ゴム粒子分散エポキシ化合物と、イソシアヌル酸誘導体(B)と、必要に応じてその他の成分とを混合することにより調製することが好ましい。このような調製方法により、特に、硬化性エポキシ樹脂組成物におけるゴム粒子の分散性を向上させることができる。ただし、ゴム粒子の配合方法は、上記方法に限定されず、それ単独で配合する方法であってもよい。
(ゴム粒子分散エポキシ化合物)
上記ゴム粒子分散エポキシ化合物は、上記ゴム粒子を脂環式エポキシ化合物(A)に分散させることによって得られる。なお、上記ゴム粒子分散エポキシ化合物における脂環式エポキシ化合物(A)は、硬化性エポキシ樹脂組成物を構成する脂環式エポキシ化合物(A)の全量であってもよいし、一部の量であってもよい。同様に、上記ゴム粒子分散エポキシ化合物におけるゴム粒子は、硬化性エポキシ樹脂組成物を構成するゴム粒子の全量であってもよいし、一部の量であってもよい。
上記ゴム粒子分散エポキシ化合物の粘度は、例えば、反応性希釈剤を併用することにより調整することができる(即ち、ゴム粒子分散エポキシ化合物は、さらに反応性希釈剤を含んでいてもよい)。上記反応性希釈剤としては、例えば、常温(25℃)における粘度が200mPa・s以下の脂肪族ポリグリシジルエーテルを好ましく使用できる。粘度(25℃)が200mPa・s以下の脂肪族ポリグリシジルエーテルとしては、例えば、シクロヘキサンジメタノールジグリシジルエーテル、シクロヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等が挙げられる。上記反応性希釈剤の使用量は、適宜調整することができ、特に限定されない。
上記ゴム粒子分散エポキシ化合物の製造方法は、特に限定されず、周知慣用の方法を使用することができる。例えば、ゴム粒子を脱水乾燥して粉体とした後に、脂環式エポキシ化合物(A)に混合し、分散させる方法や、ゴム粒子のエマルジョンと脂環式エポキシ化合物(A)とを直接混合し、続いて脱水する方法等が挙げられる。
本発明の硬化性エポキシ樹脂組成物は、25℃において液体(液状)であることが好ましい。本発明の硬化性エポキシ樹脂組成物の25℃における粘度は、特に限定されないが、100〜10000mPa・sが好ましく、より好ましくは200〜9000mPa・s、さらに好ましくは300〜8000mPa・sである。25℃における粘度を100mPa・s以上とすることにより、注型時の作業性が向上したり、硬化物の耐熱性がより向上する傾向がある。一方、25℃における粘度を10000mPa・s以下とすることにより、注型時の作業性が向上したり、硬化物に注型不良に由来する不具合が生じにくくなる傾向がある。なお、硬化性エポキシ樹脂組成物の25℃における粘度は、例えば、デジタル粘度計(型番「DVU−EII型」、(株)トキメック製)を用いて、ローター:標準1°34′×R24、温度:25℃、回転数:0.5〜10rpmの条件で測定することができる。
<硬化物>
本発明の硬化性エポキシ樹脂組成物を硬化させることにより、耐熱性、耐光性、耐熱衝撃性、及び耐吸湿リフロー性に優れた硬化物(本発明の硬化性エポキシ樹脂組成物を硬化させて得られる硬化物を「本発明の硬化物」と称する場合がある)を得ることができる。硬化の手段としては、加熱処理や光照射処理等の公知乃至慣用の手段を利用できる。加熱により硬化させる際の温度(硬化温度)は、特に限定されないが、45〜200℃が好ましく、より好ましくは50〜190℃、さらに好ましくは55〜180℃である。また、硬化の際に加熱する時間(硬化時間)は、特に限定されないが、30〜600分が好ましく、より好ましくは45〜540分、さらに好ましくは60〜480分である。硬化温度と硬化時間が上記範囲の下限値より低い場合は硬化が不十分となり、逆に上記範囲の上限値より高い場合は樹脂成分の分解が起きる場合があるので、いずれも好ましくない。硬化条件は種々の条件に依存するが、例えば、硬化温度を高くした場合は硬化時間を短く、硬化温度を低くした場合は硬化時間を長くする等により、適宜調整することができる。また、硬化は、一段階で行うこともできるし、二段階以上の多段階で行うこともできる。
<光半導体封止用樹脂組成物>
本発明の硬化性エポキシ樹脂組成物は、光半導体装置における光半導体素子を封止するための樹脂組成物、即ち、光半導体封止用樹脂組成物(光半導体装置における光半導体素子の封止剤)として好ましく使用できる。本発明の硬化性エポキシ樹脂組成物を光半導体封止用樹脂組成物として用いることにより、耐熱性、耐光性、耐熱衝撃性、及び耐吸湿リフロー性に優れた硬化物により光半導体素子が封止された光半導体装置が得られる。上記光半導体装置は、熱衝撃や高温の熱が加えられた場合でも光度低下が生じにくく、耐久性が高い。
<光半導体装置>
本発明の光半導体装置は、本発明の硬化性エポキシ樹脂組成物(光半導体封止用樹脂組成物)の硬化物により光半導体素子が封止された光半導体装置である。光半導体素子の封止は、例えば、上述の方法で調製した硬化性エポキシ樹脂組成物を所定の成形型内に注入し、所定の条件で加熱硬化して行うことができる。これにより、硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置が得られる。硬化温度と硬化時間は、硬化物の調製時と同様の範囲で適宜設定することができる。
本発明の硬化性エポキシ樹脂組成物は、上述の光半導体素子の封止用途に限定されず、例えば、接着剤、電気絶縁材、積層板、コーティング、インク、塗料、シーラント、レジスト、複合材料、透明基材、透明シート、透明フィルム、光学素子、光学レンズ、光学部材、光造形、電子ペーパー、タッチパネル、太陽電池基板、光導波路、導光板、ホログラフィックメモリ等の各種用途に使用することができる。
以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。なお、表1、2における「−」は、当該成分の配合を行わなかったことを意味する。
製造例1
(ゴム粒子の製造)
還流冷却器付きの1L重合容器に、イオン交換水500g、及びジオクチルスルホコハク酸ナトリウム0.68gを仕込み、窒素気流下に撹拌しながら、80℃に昇温した。ここに、ゴム粒子のコア部分を形成するために必要とする量の約5重量%分に該当するアクリル酸ブチル9.5g、スチレン2.57g、及びジビニルベンゼン0.39gからなる単量体混合物を一括添加し、20分間撹拌して乳化させた後、ペルオキソ二硫酸カリウム9.5mgを添加し、1時間撹拌して最初のシード重合を行った。続いて、ペルオキソ二硫酸カリウム180.5mgを添加し、5分間撹拌した。ここに、コア部分を形成するために必要とする量の残り(約95重量%分)のアクリル酸ブチル180.5g、スチレン48.89g、及びジビニルベンゼン7.33gにジオクチルスルホコハク酸ナトリウム0.95gを溶解させてなる単量体混合物を2時間かけて連続的に添加し、2度目のシード重合を行い、その後、1時間熟成してコア部分を得た。
次いで、ペルオキソ二硫酸カリウム60mgを添加して5分間撹拌し、ここに、メタクリル酸メチル60g、アクリル酸1.5g、及びアリルメタクリレート0.3gにジオクチルスルホコハク酸ナトリウム0.3gを溶解させてなる単量体混合物を30分かけて連続的に添加し、シード重合を行った。その後、1時間熟成し、コア部分を被覆するシェル層を形成した。
次いで、室温(25℃)まで冷却し、目開き120μmのプラスチック製網で濾過することにより、コアシェル構造を有するゴム粒子を含むラテックスを得た。得られたラテックスをマイナス30℃で凍結し、吸引濾過器で脱水洗浄した後、60℃で一昼夜送風乾燥してゴム粒子を得た。得られたゴム粒子の平均粒子径は254nm、最大粒子径は486nmであった。
なお、ゴム粒子の平均粒子径、最大粒子径は、動的光散乱法を測定原理とした「NanotracTM」形式のナノトラック粒度分布測定装置(商品名「UPA−EX150」、日機装(株)製)を使用して試料を測定し、得られた粒度分布曲線において、累積カーブが50%となる時点の粒子径である累積平均径を平均粒子径、粒度分布測定結果の頻度(%)が0.00%を超えた時点の最大の粒子径を最大粒子径とした。なお、上記試料としては、下記製造例2で得られたゴム粒子分散エポキシ化合物1重量部をテトラヒドロフラン20重量部に分散させたものを用いた。
製造例2
(ゴム粒子分散エポキシ化合物の製造)
製造例1で得られたゴム粒子10重量部を、窒素気流下、60℃に加温した状態でディゾルバーを使用して、商品名「セロキサイド2021P」(3,4−エポキシシクロヘキシルメチル(3,4−エポキシ)シクロヘキサンカルボキシレート、(株)ダイセル製)80重量部に分散させ(1000rpm、60分間)、真空脱泡して、ゴム粒子分散エポキシ化合物(25℃での粘度:1356mPa・s)を得た。
なお、製造例2で得られたゴム粒子分散エポキシ化合物(10重量部のゴム粒子を80重量部のセロキサイド2021Pに分散させたもの)の25℃での粘度は、デジタル粘度計(商品名「DVU−EII型」、(株)トキメック製)を使用して測定した。
製造例3
表1に示す配合割合(単位:重量部)で、商品名「リカシッドMH−700」(新日本理化(株)製)、商品名「U−CAT 18X」(サンアプロ(株)製)、及びエチレングリコール(和光純薬工業(株)製)を、自公転式撹拌装置(商品名「あわとり練太郎 AR−250」、(株)シンキー製)を使用して均一に混合し、脱泡してエポキシ硬化剤(「K剤」と称する場合がある)を得た。
実施例1
まず、表1に示す配合割合(単位:重量部)で、商品名「セロキサイド2021P」((株)ダイセル製)、商品名「MA−DGIC」(四国化成工業(株)製)、及び商品名「セルムスーパーポリマーSH3400P」(アドバンスト・ソフトマテリアルズ(株)製)を、自公転式撹拌装置(商品名「あわとり練太郎AR−250」、(株)シンキー製)を使用して均一に混合し、脱泡して、混合物を作製した。
次に、表1に示す配合割合(単位:重量部)となるように上記で得た混合物と、製造例3で得たエポキシ硬化剤とを自公転式撹拌装置(商品名「あわとり練太郎AR−250」、(株)シンキー製)を使用して均一に混合し、脱泡して、硬化性エポキシ樹脂組成物を得た。なお、上記混合は、80℃で1時間撹拌して実施した。
さらに、上記で得た硬化性エポキシ樹脂組成物を図1に示す光半導体のリードフレーム(InGaN素子、3.5mm×2.8mm)に注型した後、120℃のオーブン(樹脂硬化オーブン)で5時間加熱することで、上記硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置を得た。なお、図1において、100はリフレクター(光反射用樹脂組成物)、101は金属配線、102は光半導体素子、103はボンディングワイヤ、104は硬化物(封止材)を示す。
実施例2〜7、比較例1〜4
硬化性エポキシ樹脂組成物の組成を表1に示す組成に変更したこと以外は実施例1と同様にして、硬化性エポキシ樹脂組成物を調製した。なお、実施例7においては、エポキシ樹脂の構成成分として、製造例2で得たゴム粒子分散エポキシ化合物を使用した。
また、実施例1と同様にして光半導体装置を作製した。
実施例8
まず、表2に示す配合割合(単位:重量部)で、商品名「セロキサイド2021P」((株)ダイセル製)、商品名「MA−DGIC」(四国化成工業(株)製)、及び商品名「セルムスーパーポリマーSH3400P」(アドバンスト・ソフトマテリアルズ(株)製)を、自公転式撹拌装置(商品名「あわとり練太郎AR−250」、(株)シンキー製)を使用して均一に混合し、脱泡して、混合物を作製した。なお、上記混合は、80℃で1時間撹拌して実施した。
次に、表2に示す配合割合(単位:重量部)となるように、上記で得た混合物と、商品名「サンエイドSI−100L」(三新化学工業(株)製)とを自公転式撹拌装置(商品名「あわとり練太郎AR−250」、(株)シンキー製)を使用して均一に混合し、脱泡して、硬化性エポキシ樹脂組成物を得た。
さらに、上記で得た硬化性エポキシ樹脂組成物を図1に示す光半導体のリードフレーム(InGaN素子、3.5mm×2.8mm)に注型した後、120℃のオーブン(樹脂硬化オーブン)で5時間加熱することで、上記硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置を得た。
実施例9〜14、比較例5〜8
硬化性エポキシ樹脂組成物の組成を表2に示す組成に変更したこと以外は実施例8と同様にして、硬化性エポキシ樹脂組成物を調製した。なお、実施例14においては、上記混合物の構成成分として、製造例2で得たゴム粒子分散エポキシ化合物を使用した。
また、実施例8と同様にして光半導体装置を作製した。
<評価>
実施例及び比較例で得られた光半導体装置について、下記の評価試験を実施した。
[通電試験]
実施例1〜14及び比較例1〜8で得られた光半導体装置の全光束を、全光束測定機を用いて測定し、これを「0時間の全光束」とした。さらに、85℃の恒温槽内で100時間、光半導体装置に40mAの電流を流した後の全光束を測定し、これを「100時間後の全光束」とした。そして、次式から光度保持率を算出した。結果を表1及び2の「光度保持率[%]」の欄に示す。
{光度保持率(%)}
={100時間後の全光束(lm)}/{0時間の全光束(lm)}×100
[はんだ耐熱性試験]
実施例及び比較例で得られた光半導体装置(各硬化性エポキシ樹脂組成物につき2個ずつ用いた)を、30℃、60%RHの条件下で192時間静置して吸湿処理した。次いで、上記光半導体装置をリフロー炉に入れ、下記加熱条件にて加熱処理した。その後、上記光半導体装置を室温環境下に取り出して放冷した後、再度リフロー炉に入れて同条件で加熱処理した。即ち、当該はんだ耐熱性試験においては、光半導体装置に対して下記加熱条件による熱履歴を二度与えた。
〔加熱条件(光半導体装置の表面温度基準)〕
(1)予備加熱:150〜190℃で60〜120秒
(2)予備加熱後の本加熱:217℃以上で60〜150秒、最高温度260℃
ただし、予備加熱から本加熱に移行する際の昇温速度は最大で3℃/秒に制御した。
図2には、リフロー炉による加熱の際の光半導体装置の表面温度プロファイル(二度の加熱処理のうち一方の加熱処理における温度プロファイル)の一例を示す。
その後、デジタルマイクロスコープ(商品名「VHX−900」、(株)キーエンス製)を使用して光半導体装置を観察し、硬化物に長さが90μm以上のクラックが発生したか否か、及び、電極剥離(電極表面からの硬化物の剥離)が発生したか否かを評価した。光半導体装置2個のうち、硬化物に長さが90μm以上のクラックが発生した光半導体装置の個数を表1及び2の「はんだ耐熱性試験[クラック数]」の欄に示し、電極剥離が発生した光半導体装置の個数を表1及び2の「はんだ耐熱性試験[電極剥離数]」の欄に示した。
[熱衝撃試験]
実施例及び比較例で得られた光半導体装置(各硬化性エポキシ樹脂組成物につき2個ずつ用いた)に対し、−40℃の雰囲気下に30分曝露し、続いて、120℃の雰囲気下に30分曝露することを1サイクルとした熱衝撃を、熱衝撃試験機を用いて200サイクル分与えた。その後、光半導体装置における硬化物に生じたクラックの長さを、デジタルマイクロスコープ(商品名「VHX−900」、(株)キーエンス製)を使用して観察し、光半導体装置2個のうち、硬化物に長さが90μm以上のクラックが発生した光半導体装置の個数を計測した。結果を表1及び2の「熱衝撃試験[クラック数]」の欄に示す。
[総合判定]
各試験の結果、下記(1)〜(4)をいずれも満たすものを○(良好)と判定した。一方、下記(1)〜(4)のいずれかを満たさない場合には×(不良)と判定した。
(1)通電試験:光度保持率が90%以上
(2)はんだ耐熱性試験:硬化物に長さが90μm以上のクラックが発生した光半導体装置の個数が0個
(3)はんだ耐熱性試験:電極剥離が発生した光半導体装置の個数が0個
(4)熱衝撃試験:硬化物に長さが90μm以上のクラックが発生した光半導体装置の個数が0個
結果を表1及び2の「総合判定」の欄に示す。
Figure 0006343575
Figure 0006343575
なお、実施例、比較例で使用した成分は、以下の通りである。
(エポキシ樹脂)
セロキサイド2021P:商品名「セロキサイド2021P」[3,4−エポキシシクロヘキシルメチル(3,4−エポキシ)シクロヘキサンカルボキシレート]、(株)ダイセル製
TEPIC:商品名「TEPIC」[トリグリシジルイソシアヌレート]、日産化学工業(株)製
MA−DGIC:商品名「MA−DGIC」[モノアリルジグリシジルイソシアヌレート]、四国化成工業(株)製
DA−MGIC:商品名「DA−MGIC」[ジアリルモノグリシジルイソシアヌレート]、四国化成工業(株)製
YD−128:商品名「YD−128」[ビスフェノールA型エポキシ樹脂]、新日鐵化学(株)製
(ポリロタキサン)
SH3400P:商品名「セルムスーパーポリマーSH3400P」、アドバンスト・ソフトマテリアルズ(株)製
SH3400S:商品名「セルムスーパーポリマーSH3400S」、アドバンスト・ソフトマテリアルズ(株)製
SH3400M:商品名「セルムスーパーポリマーSH3400M」、アドバンスト・ソフトマテリアルズ(株)製
(エポキシ硬化剤)
MH−700:商品名「リカシッド MH−700」[4−メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸=70/30]、新日本理化(株)製
U−CAT 18X:商品名「U−CAT 18X」[硬化促進剤]、サンアプロ(株)製
エチレングリコール:和光純薬工業(株)製
(硬化触媒)
サンエイドSI−100L:商品名「サンエイドSI−100L」[硬化触媒]、三新化学工業(株)製
試験機器
・樹脂硬化オーブン
エスペック(株)製 GPHH−201
・恒温槽
エスペック(株)製 小型高温チャンバー ST−120B1
・全光束測定機
オプトロニックラボラトリーズ社製 マルチ分光放射測定システム OL771
・熱衝撃試験機
エスペック(株)製 小型冷熱衝撃装置 TSE−11−A
・リフロー炉
日本アントム(株)製、UNI−5016F
100:リフレクター(光反射用樹脂組成物)
101:金属配線(電極)
102:光半導体素子
103:ボンディングワイヤ
104:硬化物(封止材)

Claims (11)

  1. 脂環式エポキシ化合物(A)と、分子内に1個以上のオキシラン環を有するイソシアヌル酸誘導体(B)と、ポリロタキサン(C)とを含むことを特徴とする硬化性エポキシ樹脂組成物。
  2. 前記イソシアヌル酸誘導体(B)が、下記式(1a)
    Figure 0006343575
    [式中、R1及びR2は、同一又は異なって、水素原子又は炭素数1〜8のアルキル基を示す。]
    で表される化合物である請求項1に記載の硬化性エポキシ樹脂組成物。
  3. 脂環式エポキシ化合物(A)が、シクロヘキセンオキシド基を有する化合物である請求項1又は2に記載の硬化性エポキシ樹脂組成物。
  4. 脂環式エポキシ化合物(A)が、下記式(I−1)
    Figure 0006343575
    で表される化合物である請求項1〜3のいずれか1項に記載の硬化性エポキシ樹脂組成物。
  5. 前記ポリロタキサン(C)が、複数の環状分子と、前記複数の環状分子を串刺し状に包接する直鎖状分子と、前記直鎖状分子の両末端に配置され前記複数の環状分子の脱離を防止する封鎖基とを有し、
    前記複数の環状分子のうちの少なくとも1つが、ヒドロキシ基の水素原子が炭素数6以上の有機基に置換された基を少なくとも有するシクロデキストリンである請求項1〜4のいずれか1項に記載の硬化性エポキシ樹脂組成物。
  6. さらに、ゴム粒子を含む請求項1〜5のいずれか1項に記載の硬化性エポキシ樹脂組成物。
  7. さらに、硬化剤(D)及び硬化促進剤(E)を含む請求項1〜6のいずれか1項に記載の硬化性エポキシ樹脂組成物。
  8. さらに、硬化触媒(F)を含む請求項1〜7のいずれか1項に記載の硬化性エポキシ樹脂組成物。
  9. 請求項1〜8のいずれか1項に記載の硬化性エポキシ樹脂組成物を硬化させて得られる硬化物。
  10. 光半導体封止用樹脂組成物である請求項1〜8のいずれか1項に記載の硬化性エポキシ樹脂組成物。
  11. 請求項10に記載の硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置。
JP2015038991A 2015-02-27 2015-02-27 硬化性エポキシ樹脂組成物 Expired - Fee Related JP6343575B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015038991A JP6343575B2 (ja) 2015-02-27 2015-02-27 硬化性エポキシ樹脂組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015038991A JP6343575B2 (ja) 2015-02-27 2015-02-27 硬化性エポキシ樹脂組成物

Publications (2)

Publication Number Publication Date
JP2016160316A JP2016160316A (ja) 2016-09-05
JP6343575B2 true JP6343575B2 (ja) 2018-06-13

Family

ID=56844424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015038991A Expired - Fee Related JP6343575B2 (ja) 2015-02-27 2015-02-27 硬化性エポキシ樹脂組成物

Country Status (1)

Country Link
JP (1) JP6343575B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6931829B2 (ja) * 2017-07-05 2021-09-08 パナソニックIpマネジメント株式会社 熱硬化性樹脂組成物及びそれを用いたフィルム
JP6904221B2 (ja) * 2017-11-07 2021-07-14 味の素株式会社 樹脂組成物
JP2020013920A (ja) * 2018-07-19 2020-01-23 三菱電機株式会社 半導体装置及び電力変換装置
CN112470551A (zh) * 2018-09-26 2021-03-09 电化株式会社 有机电致发光显示元件用密封剂
WO2020095928A1 (ja) * 2018-11-09 2020-05-14 パナソニックIpマネジメント株式会社 樹脂組成物、並びに、それを用いた樹脂フィルム、樹脂付金属箔、金属張積層板、配線基板及び回路実装品
JP7135970B2 (ja) * 2019-03-27 2022-09-13 味の素株式会社 樹脂組成物
WO2023219145A1 (ja) * 2022-05-12 2023-11-16 国立大学法人 東京大学 ポリロタキサン添加によるビトリマーの改良

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316089A (ja) * 2005-05-10 2006-11-24 Jsr Corp 樹脂組成物
KR101914320B1 (ko) * 2011-07-20 2018-11-01 주식회사 다이셀 경화성 에폭시 수지 조성물
JP2013213147A (ja) * 2012-04-03 2013-10-17 Daicel Corp 硬化性エポキシ樹脂組成物
WO2014196636A1 (ja) * 2013-06-07 2014-12-11 アドバンスト・ソフトマテリアルズ株式会社 ポリロタキサン、並びにオキシラン基及び/又はオキセタン基を2以上有する化合物を有する架橋用組成物
CN105579499B (zh) * 2013-10-10 2018-11-13 松下知识产权经营株式会社 树脂组合物及使用该树脂组合物的薄膜
JP6369788B2 (ja) * 2014-11-27 2018-08-08 パナソニックIpマネジメント株式会社 エレクトロニクス用構造体

Also Published As

Publication number Publication date
JP2016160316A (ja) 2016-09-05

Similar Documents

Publication Publication Date Title
JP6343575B2 (ja) 硬化性エポキシ樹脂組成物
JP5154340B2 (ja) 光半導体封止用樹脂組成物
JP5695269B2 (ja) 硬化性エポキシ樹脂組成物
WO2012086463A1 (ja) 硬化性エポキシ樹脂組成物及びこれを使用した光半導体装置
WO2018135557A1 (ja) 硬化性エポキシ樹脂組成物
JP5852014B2 (ja) 硬化性エポキシ樹脂組成物
JP6460985B2 (ja) 硬化性エポキシ樹脂組成物
JP2015096602A (ja) 硬化性エポキシ樹脂組成物
JP6014134B2 (ja) 硬化性エポキシ樹脂組成物
JP2015110772A (ja) 硬化性エポキシ樹脂組成物
JP2015086374A (ja) 硬化性エポキシ樹脂組成物
JP2017141415A (ja) 光反射用硬化性樹脂組成物及びその硬化物、並びに光半導体装置
JP2016160352A (ja) 硬化性エポキシ樹脂組成物
JP5899025B2 (ja) 硬化性エポキシ樹脂組成物
JP2015098586A (ja) 硬化性エポキシ樹脂組成物
JP6306483B2 (ja) 硬化性エポキシ樹脂組成物
JP2015086375A (ja) 硬化性エポキシ樹脂組成物
JP7329320B2 (ja) 硬化性エポキシ樹脂組成物
JP2016050221A (ja) 硬化性エポキシ樹脂組成物
JP2017115006A (ja) 硬化性エポキシ樹脂組成物
JP2020070392A (ja) 硬化性エポキシ樹脂組成物
JP2019112477A (ja) 硬化性エポキシ樹脂組成物
JP2015086376A (ja) 硬化性エポキシ樹脂組成物
JP6472754B2 (ja) 硬化性エポキシ樹脂組成物
JP2016088980A (ja) レーザー光照射による硬化物の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180521

R150 Certificate of patent or registration of utility model

Ref document number: 6343575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees