JP6339160B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP6339160B2
JP6339160B2 JP2016217977A JP2016217977A JP6339160B2 JP 6339160 B2 JP6339160 B2 JP 6339160B2 JP 2016217977 A JP2016217977 A JP 2016217977A JP 2016217977 A JP2016217977 A JP 2016217977A JP 6339160 B2 JP6339160 B2 JP 6339160B2
Authority
JP
Japan
Prior art keywords
heat
pipe
partition plate
temperature
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016217977A
Other languages
Japanese (ja)
Other versions
JP2017096617A (en
Inventor
姚正信
Original Assignee
宜諾工程股▲分▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宜諾工程股▲分▼有限公司 filed Critical 宜諾工程股▲分▼有限公司
Publication of JP2017096617A publication Critical patent/JP2017096617A/en
Application granted granted Critical
Publication of JP6339160B2 publication Critical patent/JP6339160B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • F28D21/001Recuperative heat exchangers the heat being recuperated from exhaust gases for thermal power plants or industrial processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、熱交換器に関し、より詳しくは、高温管路の高温のガスが低温管路に漏れるのを防止させる熱交換器に関する。   The present invention relates to a heat exchanger, and more particularly, to a heat exchanger that prevents high-temperature gas in a high-temperature line from leaking into a low-temperature line.

工業分野では高温が応用される機会が多くある。高温の排気の問題について言えば、排出されるガスの温度が非常に高く、大気中に直接排気されると大気中の炭素濃度が上昇するのみならず、環境に悪影響のあるヒートアイランド現象を引き起こし、空気が汚染され、視界も悪くなった。また、高温の熱エネルギーが大気中に直接排出されることは、資源の浪費でもあった。このため、現在の高温の排気の慣習的な処理方式として、高温の排気を排出する前に熱交換器を利用して冷却処理を施し、同時に熱源を採取して再利用する方式がある。   There are many opportunities for high temperature applications in the industrial field. Speaking of the problem of high temperature exhaust, the temperature of the exhausted gas is very high, and if exhausted directly into the atmosphere, not only will the carbon concentration in the atmosphere rise, but it will also cause a heat island phenomenon that has a negative impact on the environment, The air was polluted and the visibility was bad. Moreover, it was a waste of resources that high-temperature heat energy was directly discharged into the atmosphere. For this reason, there is a conventional method of treating high-temperature exhaust gas that uses a heat exchanger for cooling before discharging the high-temperature exhaust gas, and simultaneously collects and reuses the heat source.

従来の廃熱ガスの処理に応用される熱交換器は、流体回路が利用され、且つ前記回路内には液体媒体が添加され、前記回路は高温管路及び低温管路に跨設され、2つの管路の間は仕切り板により分割され、独立した2つのガス経路が形成される。   A conventional heat exchanger applied to waste heat gas treatment uses a fluid circuit, and a liquid medium is added to the circuit, and the circuit is straddled across a high temperature line and a low temperature line. The two pipe lines are divided by a partition plate to form two independent gas paths.

上述の熱交換器は通常工業分野における煙道から排気される廃熱の回収に応用され、その操作において、煙道の高温の排気は高温管路に流通され、熱伝導及び対流作用により流体回路に輸送され、流体回路中の液体媒体により熱源が吸収された後に気化され、回路の低温管路まで上昇してゆく。回路の管壁内は低温であるため凝固されて液体状態を回復させて、回路の下方の高温管路まで再度流される。   The above heat exchanger is usually applied to the recovery of waste heat exhausted from the flue in the industrial field, and in its operation, the hot exhaust of the flue is circulated through the high temperature pipe, and the fluid circuit is formed by heat conduction and convection action. And is vaporized after the heat source is absorbed by the liquid medium in the fluid circuit, and rises to the cold line of the circuit. Since the inside of the tube wall of the circuit is low temperature, it is solidified to restore the liquid state, and is reflowed to the high temperature pipeline below the circuit.

しかしながら、前述した従来の熱交換器では、即ち、従来の仕切り板は共に中実な仕切り板として設計されており、2つの管路の間の冷風及び熱風が、ヒートパイプにより貫通される仕切り板の箇所の隙間から流れ出し、高温管路と低温管路との間の温度に影響を及ぼした。   However, in the above-described conventional heat exchanger, that is, both of the conventional partition plates are designed as solid partition plates, and the partition plate through which the cold air and hot air between the two pipes are penetrated by the heat pipes. It flowed out of the gap at the point and affected the temperature between the hot and cold pipes.

そこで、本発明者は上記の欠点が改善可能と考え、鋭意検討を重ねた結果、合理的設計で上記の課題を効果的に改善する本発明の熱交換器の提案に到った。   Therefore, the present inventor considered that the above-described drawbacks can be improved, and as a result of intensive studies, the present inventor has arrived at a proposal for a heat exchanger according to the present invention that effectively improves the above-described problems with a rational design.

本発明は、このような従来の問題に鑑みてなされたものである。上記課題解決のため、本発明は、熱交換器の中間部に設置される仕切り板が中空構造を有し、中空構造は高温管路及び低温管路の気圧より高い気圧の入力に用いられ、これにより、中空構造の気圧が高温管路及び低温管路の気圧より高くなり、高温管路及び低温管路のガスがヒートパイプにより貫通される仕切り板の箇所の隙間から流れ出さなくなり、高温管路及び低温管路の温度が互いに作用し合うことがなくなる、熱交換器を提供することを主目的とする。   The present invention has been made in view of such conventional problems. In order to solve the above problems, the present invention is a partition plate installed in the middle part of the heat exchanger has a hollow structure, the hollow structure is used for the input of atmospheric pressure higher than the atmospheric pressure of the high temperature line and the low temperature line, As a result, the air pressure of the hollow structure becomes higher than the air pressure of the high-temperature pipe and the low-temperature pipe, and the gas of the high-temperature pipe and the low-temperature pipe does not flow out from the gap of the partition plate penetrated by the heat pipe. It is a main object to provide a heat exchanger in which the temperature of the passage and the cold pipe does not interact with each other.

上述した課題を解決し、目的を達成するための本発明に係る熱交換器は、フレームと、中空構造であり、前記フレームに内設され、フレームが低温管路及び高温管路に分けられる仕切り板と、前記フレーム内に並んで配列されると共に前記仕切り板を貫通させることにより、蒸発区及び凝固区に分けられ、前記蒸発区は前記フレームの高温管路に位置され、前記凝固区は前記フレームの低温管路に位置される複数のヒートパイプとを備え、前記仕切り板の中空構造内は気圧の入力に用いられ、前記気圧が前記低温管路及び前記高温管路の気圧より高いことを特徴とする。   A heat exchanger according to the present invention for solving the above-described problems and achieving the object is a frame and a partition having a hollow structure, and is provided in the frame, and the frame is divided into a low temperature line and a high temperature line. A plate, and arranged in the frame and penetrating the partition plate, thereby being divided into an evaporating zone and a coagulating zone, the evaporating zone is located in a high-temperature pipe line of the frame, and the coagulating zone is A plurality of heat pipes located in the low temperature pipeline of the frame, the hollow structure of the partition plate is used for input of atmospheric pressure, and the atmospheric pressure is higher than the atmospheric pressure of the low temperature pipeline and the high temperature pipeline Features.

本発明の熱交換器は、フレームに設置される仕切り板が中空構造を有し、中空構造が高温管路及び低温管路の気圧より高い気圧の入力に用いられ、高温管路及び低温管路のガスがヒートパイプにより貫通される仕切り板の箇所の隙間から流れ出さなくなり、高温管路及び低温管路の温度が安定的に制御され、熱交換効率が向上する。   In the heat exchanger of the present invention, the partition plate installed in the frame has a hollow structure, and the hollow structure is used for input of atmospheric pressure higher than the atmospheric pressure of the high-temperature pipe and the low-temperature pipe, and the high-temperature pipe and the low-temperature pipe Gas no longer flows out from the gaps in the partition plate through which the heat pipe penetrates, the temperature of the high-temperature pipe and the low-temperature pipe is stably controlled, and the heat exchange efficiency is improved.

本発明の一実施形態に係る熱交換器を示す外観斜視図である。It is an appearance perspective view showing a heat exchanger concerning one embodiment of the present invention. 本発明の仕切り板を示す断面図である。It is sectional drawing which shows the partition plate of this invention. 本発明の熱交換器を使用する概略図である。1 is a schematic diagram using a heat exchanger of the present invention.

本発明における好適な実施の形態について、添付図面を参照して説明する。尚、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を限定するものではない。また、以下に説明される構成の全てが、本発明の必須要件であるとは限らない。さらに、これら前記図面においては本発明に係る部材のみを図示し、且つ図示する部材は実施における数量、形状、サイズの比率等に基づいて描写しているわけではなく、実際の実施においては規格やサイズは任意で設計可能であることを先に明記する。   Preferred embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below do not limit the contents of the present invention described in the claims. In addition, all of the configurations described below are not necessarily essential requirements of the present invention. Further, in these drawings, only the members according to the present invention are shown, and the illustrated members are not drawn based on the quantity, shape, size ratio, etc. in the implementation. First, it is clearly stated that the size can be arbitrarily designed.

図1は本発明の一実施形態に係る熱交換器を示す外観斜視図であり、図2は本発明の仕切り板を示す断面図である。
熱交換器100は、フレーム110と、仕切り板120と、複数のヒートパイプ130とを備える。仕切り板120はフレーム110内に設置され、フレーム110が低温管路111及び高温管路112に分けられる。低温管路111は冷気910を通過させるために用いられる。高温管路112は熱風920を通過させるために用いられる。これら前記ヒートパイプ130は閉鎖される金属管であり、且つ内部には適量の液体の水140を有する。これら前記ヒートパイプ130は前記フレーム110内に並んで配列され、且つ前記仕切り板120を貫通し、各前記ヒートパイプ130が蒸発区131及び凝固区132に分けられる。
蒸発区131はフレーム110の高温管路112に位置される。凝固区132は前記フレーム110の低温管路111に位置される。上述の低温管路111及び高温管路112は独立した2つの流体経路であり、低温管路111は仕切り板120より上のフレーム110及びヒートパイプ130の凝固区132の部分を含み、高温管路112は仕切り板120より下のフレーム110及びヒートパイプ130の蒸発区131の部分を含む。
FIG. 1 is an external perspective view showing a heat exchanger according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing a partition plate of the present invention.
The heat exchanger 100 includes a frame 110, a partition plate 120, and a plurality of heat pipes 130. The partition plate 120 is installed in the frame 110, and the frame 110 is divided into a low temperature pipeline 111 and a high temperature pipeline 112. The low temperature line 111 is used for passing the cold air 910. The hot pipe 112 is used for passing hot air 920. These heat pipes 130 are metal pipes to be closed, and have an appropriate amount of liquid water 140 inside. The heat pipes 130 are arranged side by side in the frame 110 and penetrate the partition plate 120, and the heat pipes 130 are divided into an evaporation zone 131 and a solidification zone 132.
The evaporation zone 131 is located in the high temperature pipe 112 of the frame 110. The coagulation zone 132 is located in the low temperature line 111 of the frame 110. The low-temperature pipe 111 and the high-temperature pipe 112 described above are two independent fluid paths. The low-temperature pipe 111 includes the frame 110 above the partition plate 120 and the solidification zone 132 of the heat pipe 130, and the high-temperature pipe Reference numeral 112 includes a frame 110 below the partition plate 120 and a portion of the evaporation zone 131 of the heat pipe 130.

仕切り板120は中空構造であり、中空構造内は気圧121の入力に用いられ、気圧121は低温管路111及び高温管路112の気圧より高い。気圧121が高温管路及び低温管路の気圧より高いため、高温管路及び低温管路の間のガスがヒートパイプにより貫通される仕切り板の箇所の隙間から流れ出さなくなる。   The partition plate 120 has a hollow structure, and the inside of the hollow structure is used for input of the atmospheric pressure 121, and the atmospheric pressure 121 is higher than the atmospheric pressure of the low temperature pipeline 111 and the high temperature pipeline 112. Since the atmospheric pressure 121 is higher than the atmospheric pressure of the high-temperature pipeline and the low-temperature pipeline, the gas between the high-temperature pipeline and the low-temperature pipeline does not flow out from the gap of the partition plate that is penetrated by the heat pipe.

より詳しくは、ヒートパイプ130が仕切り板120を貫通させる際に、貫通された箇所には微小な隙間が形成され、仕切り板120の中空構造内に入力される気圧が高温管路111及び低温管路112の気圧より高い場合、高温管路及び低温管路のガスは気圧121により阻害され、隙間を流通させて相互に影響を与えることがなくなる。   More specifically, when the heat pipe 130 penetrates the partition plate 120, a minute gap is formed at the penetrated portion, and the atmospheric pressure input into the hollow structure of the partition plate 120 is the high temperature pipe 111 and the low temperature pipe. When the pressure is higher than the pressure in the path 112, the gas in the high-temperature pipe and the low-temperature pipe is inhibited by the pressure 121 and does not affect each other through the gap.

さらに、前記隙間を密封させるため、前記仕切り板120の箇所を貫通させるこれら前記ヒートパイプ130が高分子材料160により密封される。高分子材料160はテトラフルオロエチレンであり、且つ高分子材料160により仕切り板120の箇所を貫通させるヒートパイプ130がより緊密に密封される。
前記仕切り板120の箇所を貫通させるこれら前記ヒートパイプ130のヒートパイプ外表面133及び仕切り板表面123は共に粗造表面を有し、前記仕切り板の箇所を貫通させる前記ヒートパイプを密封させる高分子材料の密封強度が粗造表面により強化される。高分子材料により隙間が更に密封され、これにより、気圧により仕切り板の中空構造内に流れ込むガスの量が効果的に減少され、気圧の流入コストの消耗が抑えられ、且つ中空構造内の気圧が安定的に維持される。
Further, in order to seal the gap, the heat pipes 130 penetrating the part of the partition plate 120 are sealed with the polymer material 160. The polymer material 160 is tetrafluoroethylene, and the heat pipe 130 penetrating the part of the partition plate 120 is tightly sealed by the polymer material 160.
The heat pipe outer surface 133 and the partition plate surface 123 of the heat pipe 130 that penetrate through the partition plate 120 both have a rough surface, and the polymer that seals the heat pipe that penetrates through the partition plate portion. The sealing strength of the material is enhanced by the rough surface. The gap is further sealed by the polymer material, so that the amount of gas flowing into the hollow structure of the partition plate by the atmospheric pressure is effectively reduced, the exhaustion cost of the atmospheric pressure is suppressed, and the atmospheric pressure in the hollow structure is reduced. Maintained stably.

また、ヒートパイプ130は等距離で配列され、且つ内部は真空状態になる。各ヒートパイプ130の表面には複数のフィン150が設置され、且つ放射状に配列される。各ヒートパイプ130の表面のこれら前記フィン150は隣接するこれら前記ヒートパイプ130の表面のこれら前記フィン150と交錯される。フィン150の設置によりヒートパイプ130の温度の伝導効率が補助され、且つ交錯されるように設置されるフィン150により空間の使用効率が向上する。   Further, the heat pipes 130 are arranged at an equal distance, and the inside is in a vacuum state. A plurality of fins 150 are installed on the surface of each heat pipe 130 and arranged radially. The fins 150 on the surface of each heat pipe 130 are crossed with the fins 150 on the surface of the adjacent heat pipes 130. The installation efficiency of the heat is improved by the installation of the fins 150, and the use efficiency of the space is improved by the fins 150 installed so as to be crossed.

図3は本発明の熱交換器を使用する概略図である。
上述の構造により本発明に係る熱交換器100が構成される。前記熱風920が前記フレーム110の高温管路112を流れる場合、仕切り板120の中空構造の気圧が高温管路112の気圧より高いため、熱風920は隙間を通って低温管路111の箇所に進入できなくなる。
反対に、冷気910が前記フレーム110の低温管路111を流れる場合、仕切り板120の中空構造の気圧が低温管路111の気圧より高いため、冷気910は隙間を通って高温管路112の箇所に進入できなくなる。これにより、高温管路及び低温管路の温度が効果的に安定化する。
FIG. 3 is a schematic diagram using the heat exchanger of the present invention.
The heat exchanger 100 which concerns on this invention is comprised by the above-mentioned structure. When the hot air 920 flows through the high temperature pipe 112 of the frame 110, the air pressure of the hollow structure of the partition plate 120 is higher than the pressure of the high temperature pipe 112, so the hot air 920 enters the location of the low temperature pipe 111 through the gap. become unable.
On the other hand, when the cold air 910 flows through the low temperature pipe 111 of the frame 110, the air pressure of the hollow structure of the partition plate 120 is higher than the pressure of the low temperature pipe 111. Cannot enter. Thereby, the temperature of a high-temperature pipe line and a low-temperature pipe line is stabilized effectively.

なお、熱交換フローチャートにおいて、ヒートパイプ130の蒸発区131内の液体の水140により水蒸気141が形成され、且つ蒸発されてこれら前記ヒートパイプ130の凝固区132に流される。前記低温910が前記フレーム110の低温管路111を流れると、これら前記ヒートパイプ130の凝固区132の水蒸気141により液体の水142が形成され、且つこれら前記ヒートパイプ130の蒸発区131に流される。   In the heat exchange flowchart, the water vapor 141 is formed by the liquid water 140 in the evaporation section 131 of the heat pipe 130, is evaporated, and flows to the solidification section 132 of the heat pipe 130. When the low temperature 910 flows through the low temperature pipe 111 of the frame 110, liquid water 142 is formed by the water vapor 141 in the solidified zone 132 of the heat pipe 130 and flows into the evaporation zone 131 of the heat pipe 130. .

更に詳しくは、本発明に係る熱交換器100が操作されると、前述の冷却を待つ熱風920が高温管路112に流され、且つヒートパイプ130の蒸発区131に流される。低温管路111には冷気910が入力されてヒートパイプ130の凝固区132に流される。これにより、冷却を待つ熱風920が高温管路112を流れると、ヒートパイプ130の蒸発区131が熱気の高温の影響を受けて、熱エネルギーが熱伝導作用によりヒートパイプ130内に輸送される。
ヒートパイプ130中の液体の水140により熱エネルギーが吸収された後に気化作用が発生して水蒸気141に変換され、水蒸気141がヒートパイプ130の凝固区132(即ち、低温管路111中)まで上昇する。低温管路111中のヒートパイプ130の管壁の外のガスが低温の冷気910である場合、前記低温の作用により凝固区132まで上昇した水蒸気141が、凝固されて液体の水142状態を回復させ、前記液体の水142がヒートパイプ130の管壁に沿って下方の蒸発区131まで回流される (即ち、高温管路112中)。
More specifically, when the heat exchanger 100 according to the present invention is operated, the hot air 920 that waits for the cooling described above is caused to flow through the high-temperature pipe 112 and to the evaporation section 131 of the heat pipe 130. Cold air 910 is input to the low-temperature pipe 111 and flows into the solidified section 132 of the heat pipe 130. As a result, when the hot air 920 waiting for cooling flows through the high temperature pipe 112, the evaporation section 131 of the heat pipe 130 is affected by the high temperature of the hot air, and the heat energy is transported into the heat pipe 130 by the heat conduction action.
After heat energy is absorbed by the liquid water 140 in the heat pipe 130, a vaporization action is generated and converted into the water vapor 141, and the water vapor 141 rises to the solidification zone 132 of the heat pipe 130 (that is, in the low temperature pipe 111). To do. When the gas outside the pipe wall of the heat pipe 130 in the low-temperature pipe 111 is low-temperature cold air 910, the water vapor 141 that has risen to the solidification zone 132 due to the low-temperature action is solidified to recover the liquid water 142 state. The liquid water 142 is circulated along the pipe wall of the heat pipe 130 to the lower evaporation section 131 (that is, in the high-temperature pipe 112).

高温管路112の蒸発区131及びヒートパイプ130が熱交換を行うことで冷却作用が達成され、ヒートパイプ130内の液体の水140が蒸発して水蒸気141となって凝固区132まで上昇した後、冷卻されて凝固されて液体の水142状態を回復させ、ヒートパイプ130の管壁に沿って蒸発区131まで流される。その後、熱気により加熱されて熱交換が反復されることで循環が構成される。
熱伝導の原理から分かるように、熱伝導のメカニズムは、主に相変化(二相)の熱伝導によるものであり、二相の熱伝導によりヒートパイプ130内の液体の水140が吸熱されて蒸発し、高速で圧力の低い凝固区132に向けて流れ、且つ熱エネルギーが放出されることで凝固されて液体の水142となり、前記液体の水142が毛管力及び重力により元の蒸発区131に流されることで1回の循環が完成する。ヒートパイプ130内の液体の水140の循環が反復することにより熱伝導の目的が達成される。ちなみに、ヒートパイプ130内部は真空状態を呈すると共に水を作動液とし、水は真空状態では熱伝導効率が有効的に高まる。
After the evaporating section 131 and the heat pipe 130 of the high-temperature pipe 112 exchange heat, the cooling action is achieved, and the liquid water 140 in the heat pipe 130 evaporates to become the water vapor 141 and rises to the coagulating section 132. Then, it is cooled and solidified to recover the state of liquid water 142 and flows along the tube wall of the heat pipe 130 to the evaporation zone 131. Then, circulation is comprised by heating with hot air and repeating heat exchange.
As can be seen from the principle of heat conduction, the heat conduction mechanism is mainly due to the heat conduction of the phase change (two phases), and the liquid water 140 in the heat pipe 130 is absorbed by the heat conduction of the two phases. It evaporates and flows toward the coagulation zone 132 at a high speed and a low pressure, and is solidified by releasing heat energy to become liquid water 142. The liquid water 142 is converted into the original evaporation zone 131 by capillary force and gravity. The circulation of one time is completed. The purpose of heat conduction is achieved by repeated circulation of liquid water 140 in the heat pipe 130. Incidentally, the inside of the heat pipe 130 is in a vacuum state and water is used as a working fluid, and the heat conduction efficiency is effectively increased in the vacuum state of water.

本発明に係る熱交換器100の構造において、仕切り板120は中空構造であり、中空構造内は気圧121の入力に用いられ、且つ気圧121は前記低温管路及び前記高温管路の気圧より高く、冷熱管路の間のガスがヒートパイプにより貫通される仕切り板の箇所の隙間から流れ出さず、高温管路の温度が低温管路の温度に影響を与えない。
また、高分子材料160により前記仕切り板の箇所を貫通させるこれら前記ヒートパイプの隙間が密封され、前記仕切り板の箇所を貫通させるヒートパイプの密封性が高まり、仕切り板の中空構造内に流れ込む気圧が有効的に低下され、気圧の流入コストの消耗が減少され、且つ中空構造内の気圧が安定的に維持される。
In the structure of the heat exchanger 100 according to the present invention, the partition plate 120 has a hollow structure, the inside of the hollow structure is used for input of the atmospheric pressure 121, and the atmospheric pressure 121 is higher than the atmospheric pressure of the low temperature line and the high temperature line. The gas between the cold and hot pipes does not flow out from the gaps of the partition plate through which the heat pipe penetrates, and the temperature of the hot pipe does not affect the temperature of the cold pipe.
Further, the gap between the heat pipes penetrating the part of the partition plate is sealed by the polymer material 160, the sealing performance of the heat pipe penetrating the part of the partition plate is enhanced, and the air pressure flowing into the hollow structure of the partition plate Is effectively reduced, the exhaustion cost of atmospheric pressure is reduced, and the atmospheric pressure in the hollow structure is stably maintained.

以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。   As mentioned above, although embodiment of this invention was explained in full detail with reference to drawings, the concrete structure is not restricted to this embodiment, The design change etc. of the range which does not deviate from the summary of this invention are included.

100 熱交換器
110 フレーム
111 低温管路
112 高温管路
120 仕切り板
121 気圧
123 仕切り板表面
130 ヒートパイプ
131 蒸発区
132 凝固区
133 ヒートパイプ外表面
140 液体の水
142 液体の水
141 水蒸気
150 フィン
160 高分子材料
910 冷気
920 熱風
DESCRIPTION OF SYMBOLS 100 Heat exchanger 110 Frame 111 Low temperature pipe 112 High temperature pipe 120 Partition plate 121 Atmospheric pressure 123 Partition plate surface 130 Heat pipe 131 Evaporation zone 132 Solidification zone 133 Outer surface of heat pipe
140 Liquid Water 142 Liquid Water 141 Water Vapor 150 Fin 160 Polymer Material 910 Cold Air 920 Hot Air

Claims (7)

フレームと、
中空構造であり、前記フレームに内設され、フレームを低温管路及び高温管路に分ける仕切り板と、
前記フレーム内に並んで配列されると共に前記仕切り板を貫通することにより、蒸発区及び凝固区に分け、前記蒸発区は前記フレームの高温管路に位置され、前記凝固区は前記フレームの低温管路に位置される複数のヒートパイプとを備え、
前記仕切り板の中空構造内は気圧の入力に用いられ、前記気圧が前記低温管路及び前記高温管路の気圧より高く、
高分子材料により前記仕切り板の箇所を貫通する複数の前記ヒートパイプが密封され、
前記仕切り板の箇所を貫通する複数の前記ヒートパイプのヒートパイプ外表面及び仕切り板表面は共に粗造表面を有することを特徴とする、
熱交換器。
Frame,
A partition plate that is hollow and is provided in the frame, and divides the frame into a low-temperature pipe line and a high-temperature pipe line,
By being arranged side by side in the frame and passing through the partition plate, it is divided into an evaporating zone and a coagulating zone, the evaporating zone is located in a high-temperature pipe line of the frame, and the coagulating zone is a cold pipe of the frame A plurality of heat pipes located on the road,
Said hollow structure of the partition plate is used to input pressure, the pressure is rather high than the pressure of the low-temperature pipe and the hot pipe,
A plurality of the heat pipes penetrating the part of the partition plate is sealed with a polymer material,
The heat pipe outer surface and the partition plate surface of the plurality of heat pipes penetrating through the partition plate locations both have a rough surface ,
Heat exchanger.
前記高分子材料はテトラフルオロエチレン(tetrafluoroethylene)であることを特徴とする、請求項に記載の熱交換器。 The heat exchanger according to claim 1 , wherein the polymer material is tetrafluoroethylene. 複数の前記ヒートパイプ内部は真空状態であることを特徴とする、請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the inside of the plurality of heat pipes is in a vacuum state. 各前記ヒートパイプの表面には複数のフィンが設置されることを特徴とする、請求項1に記載の熱交換器。   The heat exchanger according to claim 1, wherein a plurality of fins are installed on a surface of each of the heat pipes. 各前記ヒートパイプの表面複数の前記フィンは放射状に配列されることを特徴とする、請求項に記載の熱交換器。 The heat exchanger according to claim 4 , wherein the plurality of fins on the surface of each heat pipe are arranged radially. 各前記ヒートパイプの表面複数の前記フィンは隣接する複数の前記ヒートパイプの表面の複数の前記フィンと交錯されることを特徴とする、請求項に記載の熱交換器。 A plurality of said fins on the surface of each said heat pipe characterized in that it is interlaced with a plurality of the fin surfaces of the plurality of heat pipes adjacent heat exchanger according to claim 4. 複数の前記ヒートパイプは等距離で配列されることを特徴とする、請求項1に記載の熱交換器。   The heat exchanger according to claim 1, wherein the plurality of heat pipes are arranged at equal distances.
JP2016217977A 2015-11-20 2016-11-08 Heat exchanger Expired - Fee Related JP6339160B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW104138488A TWI595207B (en) 2015-11-20 2015-11-20 Heat exchanger
TW104138488 2015-11-20

Publications (2)

Publication Number Publication Date
JP2017096617A JP2017096617A (en) 2017-06-01
JP6339160B2 true JP6339160B2 (en) 2018-06-06

Family

ID=58818074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016217977A Expired - Fee Related JP6339160B2 (en) 2015-11-20 2016-11-08 Heat exchanger

Country Status (4)

Country Link
JP (1) JP6339160B2 (en)
KR (1) KR20170059399A (en)
CN (1) CN106959031A (en)
TW (1) TWI595207B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI663371B (en) * 2018-09-21 2019-06-21 龍大昌精密工業有限公司 Evaporator structure
CN111780602B (en) * 2020-07-06 2023-06-30 武汉海华石油化工设备制造有限公司 Heat pipe type heat exchanger

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166084A (en) * 1984-09-10 1986-04-04 Toshiba Corp Heat exchanger using heat pipe
US4884628A (en) * 1988-10-19 1989-12-05 En Jian Chen Heat pipe employing hydrogen oxidation means
JP2811600B2 (en) * 1990-05-15 1998-10-15 須賀工業株式会社 Heat pipe heat exchanger
JP3001386B2 (en) * 1994-12-26 2000-01-24 三菱電機株式会社 Heat exchange equipment
JPH09208929A (en) * 1995-12-08 1997-08-12 Parker Hannifin Corp Seal ring and composition for molding the ring
JPH09229576A (en) * 1996-02-19 1997-09-05 Fujikura Ltd Heat pipe type heat exchanger
JPH10132124A (en) * 1996-10-28 1998-05-22 Mitsubishi Electric Corp Motor operated valve
DE19756155C5 (en) * 1997-12-17 2007-04-19 Babcock Borsig Service Gmbh Arrangement for heat exchange
JP4950569B2 (en) * 2006-06-20 2012-06-13 大陽日酸株式会社 Sealing material
TW200942760A (en) * 2008-04-03 2009-10-16 Foxconn Tech Co Ltd Heat pipe and method of manufacture the same
CN201490807U (en) * 2009-06-05 2010-05-26 中国原子能科学研究院 Sealing device used between motor and structural component
WO2012008148A1 (en) * 2010-07-13 2012-01-19 ダイキン工業株式会社 Refrigerant flow path switching unit
CN201828176U (en) * 2010-08-25 2011-05-11 中国石油化工股份有限公司 Heat pipe and heat pipe air preheater
TWM423819U (en) * 2011-08-08 2012-03-01 Kuettner Asia Company Ltd Heat-pipe type heat exchanger structure
WO2013088967A1 (en) * 2011-12-13 2013-06-20 ダイキン工業株式会社 Seal ring
CN102543365B (en) * 2012-02-23 2014-12-03 中国科学院电工研究所 Heat-tube type oil cooler
JP3191103U (en) * 2014-03-27 2014-06-05 宜諾工程股 ▲ふん▼有限公司 Heat exchanger

Also Published As

Publication number Publication date
TWI595207B (en) 2017-08-11
JP2017096617A (en) 2017-06-01
CN106959031A (en) 2017-07-18
KR20170059399A (en) 2017-05-30
TW201719100A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
US11002469B2 (en) Integral heat superconducting plate heat exchanger and fabrication method therefor
JP6611142B2 (en) Energy storage system by coupling phase change material and heat pipe
WO2017113571A1 (en) Integrated phase-change inhibition heat transfer and heat exchange plate structure and manufacturing method thereof
JP6339160B2 (en) Heat exchanger
CN101270961A (en) Loop circuit heat pipe condenser
KR20130064936A (en) Heat exchanger for vehicle
CN104457345A (en) Fin plate heat exchanger for condensing waste heat recovery
CN106017139A (en) Heat exchange device capable of being applied to various places
JP2017194261A (en) Heat exchanger
JP2010133686A (en) Heat pipe and cooler
US8434308B2 (en) Heat pipes for transferring heat to an organic rankine cycle evaporator
JP3191103U (en) Heat exchanger
CN108770281A (en) A kind of high heat flux density electronic device radiating device and application method
KR20150003652U (en) Heat exchanger
CN203053289U (en) Heat pipe heat exchanger structure
TWM482103U (en) Liquid gas shunt type heat exchange chamber
JP2008202824A (en) Absorption type refrigerating device
JP3173270U (en) heat pipe
CN111207612A (en) Composite loop heat pipe and heat exchange assembly thereof
CN104812206A (en) Self-powered circulating type uniform-temperature radiating device
JP6011499B2 (en) Adsorber
Zhang et al. Entransy of water vapor and its balance equation for heat and mass transfer process in the absorber
CN204165434U (en) Heat pipe
WO2017082127A1 (en) Electronic equipment cooling device
CN107525425A (en) Improve the heat-exchanger rig of service life

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180509

R150 Certificate of patent or registration of utility model

Ref document number: 6339160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees