JP6339133B2 - マルチスペクトル照明装置および撮像システム - Google Patents

マルチスペクトル照明装置および撮像システム Download PDF

Info

Publication number
JP6339133B2
JP6339133B2 JP2016139208A JP2016139208A JP6339133B2 JP 6339133 B2 JP6339133 B2 JP 6339133B2 JP 2016139208 A JP2016139208 A JP 2016139208A JP 2016139208 A JP2016139208 A JP 2016139208A JP 6339133 B2 JP6339133 B2 JP 6339133B2
Authority
JP
Japan
Prior art keywords
light
light sources
optical filter
wavelength band
multispectral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016139208A
Other languages
English (en)
Other versions
JP2017122703A (ja
Inventor
平本 政夫
政夫 平本
田中 肇
肇 田中
節子 岩田
節子 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MICROTECHNICA CO., LTD.
Original Assignee
MICROTECHNICA CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MICROTECHNICA CO., LTD. filed Critical MICROTECHNICA CO., LTD.
Publication of JP2017122703A publication Critical patent/JP2017122703A/ja
Application granted granted Critical
Publication of JP6339133B2 publication Critical patent/JP6339133B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths

Description

本願は、照明光のスペクトルを変化させることができるマルチスペクトル照明装置、および当該マルチスペクトル照明装置を備える撮像システムに関する。
照明光のスペクトルを変化させることができるマルチスペクトル照明装置が、例えば特許文献1に開示されている。特許文献1に開示されたマルチスペクトル照明装置は、互いに異なる波長の光を発光する複数の光源と、複数本の光学ファイバーを束ねることによって構成されたファイバーユニットとを有している。対象物を観察する際には、複数のLEDの全てを点灯させ、対象物の測色を行う際には、LEDの任意の1つ、または任意の2つ以上を点灯させることが開示されている。また、複数のLEDに供給する電流値を変化させて光量を制御することにより、対象物を適度な照度で観察できることが開示されている(段落0051)。
特開2008−089599号公報
本開示は、従来技術とは異なる構造を有する新規なマルチスペクトル照明装置、および当該マルチスペクトル照明装置を備えた撮像システムを提供する。
本開示のマルチスペクトル照明装置の一態様は、少なくとも第1の方向に配列された複数の光源を含む光源アレイと、前記光源アレイに対向する位置に配置され、前記複数の光源に対向する複数の位置のそれぞれにおいて、特定の波長帯域の光を選択的に透過させ、前記第1の方向に透過波長帯域が変化している光学フィルタと、前記複数の光源の各々の発光強度を制御する制御回路と、を備える。
上記の包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラム、記録媒体、またはこれらの任意の組み合わせで実現されてもよい。
本開示の実施形態におけるマルチスペクトル照明装置によれば、ある方向に透過波長帯域が変化している光学フィルタを用いて、それに対向する複数の光源の各々の発光強度を調整することにより、照明光のスペクトルを変化させることができる。これにより、例えば複雑な機械的機構を用いることなく、多様なマルチスペクトル発光を実現できる。
図1Aは、本開示の例示的な実施形態によるマルチスペクトル照明装置10の構成を模式的に示す斜視図である。 マルチスペクトル照明装置10の他の構成例を示す斜視図である。 図1Bに示すマルチスペクトル照明装置10のXZ面に平行な断面を模式的に示す図である。 光源11からの斜め光の影響をさらに低減することが可能な構成の例を示す断面図である。 複数の光源11が2次元的に配列された例を模式的に示す斜視図である。 光学フィルタ12がy方向に配列された3枚のフィルタの組み合わせである例を示している。 複数の光源11がx方向にのみ配列された構成例を示している。 複数の光源11がx方向およびy方向に2次元的に配列された構成例を示している。 複数の光源11が、第1の方向(x方向)および、第1の方向に交差する第2の方向に2次元的に配列された例を示している。 マルチスペクトル照明装置10の他の構成例を模式的に示す断面図である。 図5Aの構成における光の経路の例を示す図である。 コンデンサレンズ16およびプロジェクションレンズ17に用いられ得るレンズの一例を模式的に示す図である。 白色LEDおよびハロゲンランプのスペクトルの例を示す図である。 各LEDに供給する制御電流を調整する方法を説明するための図である。 マルチスペクトル照明装置10の他の構成例を示す斜視図である。 マルチスペクトル照明装置10のさらに他の構成例を示す斜視図である。 透過特性の異なる複数のフィルタを機械的に切り替えて光のスペクトルを変化させる例(比較例)を模式的に示す図である。 実施形態2におけるマルチスペクトル撮像システムの構成図である。 被写体からの光が結像レンズ1を透過してイメージセンサ3の撮像面3aに結像される様子を模式的に示した図である。 多層膜フィルタ12aの外観を模式的に示す図である。 多層膜フィルタ2aの分光透過特性の例を示す図である。 本実施形態における照明装置10からの光の分光特性(スペクトル)のパターンを示す第1の図である。 本実施形態における照明装置10からの光の分光特性(スペクトル)のパターンを示す第2の図である。 本実施形態におけるマルチスペクトル撮像システムの動作の流れを示すフローチャートである。 色見本の反射分光特性を示す第1の図である。 色見本の反射分光特性を示す第2の図である。 算出した被写体の分光特性を示している。 被写体であるカラーチェッカの実際の分光特性を示している。
以下、本開示の実施形態を説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。なお、発明者は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。以下の説明において、同一または類似する構成要素については、同じ参照符号を付している。
(実施形態1)
図1Aは、本開示の例示的な実施形態によるマルチスペクトル照明装置10の構成を模式的に示す斜視図である。図1Aには、互いに直交するx、y、z方向を示すxyz座標が示されている。以下、図中に示すxyz座標を用いて説明する。なお、本願の図面に示される構造物の向きは、説明のわかり易さを考慮して設定されており、本開示の実施形態が現実に実施されるときの向きをなんら制限するものではない。また、図面に示されている構造物の全体または一部分の形状および大きさも、現実の形状および大きさを制限するものではない。
マルチスペクトル照明装置10は、少なくとも第1の方向(x方向とする。)に配列された複数の光源11を含む光源アレイと、光源アレイに対向する位置に配置された光学フィルタ12と、複数の光源11の各々の発光強度を制御する制御回路13とを備えている。本実施形態における複数の光源11および制御回路13は、プリント基板15上に配置されている。図1Aでは、わかり易さのため、光源アレイと光学フィルタ12との間が極端に離れた状態を示しているが、典型的には、光源アレイと光学フィルタ12とは、接触または近接して配置される。
光学フィルタ12は、複数の光源11に対向する複数の位置のそれぞれにおいて、特定の波長帯域の光を選択的に透過させる特性を有している。より具体的には、光学フィルタ12は、第1の方向に透過波長帯域が変化している。特定の波長帯域の光を「選択的に透過させる」とは、当該波長帯域の光を、同程度の幅をもつ他の波長帯域の光よりも高い透過率で透過させる特性を有することを意味する。「特定の波長帯域」は、特定の色(例えば、赤、黄、緑、シアン、青、紫など)に関連付けられる。特定の波長帯域の光を選択的に透過させることは、特定の色の光を選択的に透過させることと同様の意義を有する。
ある例では、光学フィルタ12は、透過波長帯域が第1の方向に単調に変化(増加または減少)するように設計される。透過波長域がある方向に「単調に変化する」とは、その方向に位置がシフトするにつれて、透過波長帯域が長波長側にシフトする(増加する)、または短波長側にシフトする(減少する)ことを意味する。ある例では、光学フィルタ12の透過波長帯域は、第1の方向に、青または紫の波長帯域から赤の波長帯域に至るまで、単調に変化する。そのような光学フィルタ12においては、例えば、第1の方向に関して、一方の端部が青または紫の波長帯域(例えば、380nm〜450nmに含まれる比較的狭い帯域)の光を選択的に透過させ、中央部が緑の波長帯域(例えば500nm〜570nmに含まれる比較的狭い帯域)の光を選択的に透過させ、他方の端部が赤の波長帯域(例えば600nm〜700nmに含まれる比較的狭い帯域)の光を選択的に透過させる。そのような光学フィルタ12を用いることにより、例えば、可視光の波長域の全体をカバーすることができる。光学フィルタ12は、その少なくとも一部が、近赤外線(約700nm〜約2500nmの波長範囲に含まれる電磁波)または近紫外線(約200nm〜約380nmの波長範囲に含まれる電磁波)を透過させるように設計されていてもよい。本明細書では、可視光だけでなく、赤外線および紫外線を含めて、「光」の用語を用いる。なお、上記の波長帯域を示す数値範囲は例示であり、本開示の技術を限定するものではない。
光学フィルタ12は、典型的には、誘電体多層膜を含む多層膜フィルタであり得る。多層膜フィルタの各層の材料および膜厚を調整することにより、x方向の各位置において、特定の波長帯域の光のみを透過させ、他の波長帯域の光が吸収または反射されるようにすることができる。光学フィルタ12は、例えば、各々が異なる特定の波長帯域の光を透過させる複数の部分が第1の方向に配列されたものと考えることができる。複数の部分の各々は、例えば、y方向に長く、x方向に短い帯状色フィルタであると考えることもできる。
各光源11は、例えば発光ダイオード(LED)による光源であり得る。ただし、光源11はLEDに限定されず、他の種類の光源であってもよい。例えば、レーザー光源および有機発光素子なども光源11として利用され得る。以下の説明では、各光源11は主にLED光源であるものとする。
複数の光源11の各々は、例えば白色LEDであるが、白以外の色の光を発するLEDであってもよい。ある例では、複数の光源11は、発光色の異なる複数のLEDの組み合わせであり得る。例えば、複数の光源11は、青色光を発する複数のLED、緑色光を発する複数のLED、および赤色光を発する複数のLEDの組み合わせであり得る。
複数の光源11は、制御回路13に接続されている。各光源11がLEDである場合、制御回路13は、LED駆動回路を含む。各LEDは、制御回路13から供給される電流の大きさに応じて異なる発光強度で発光する。光源11がLED以外の光源である場合、制御回路13は、当該光源に適合した駆動回路を含む。
以上の構成により、マルチスペクトル照明装置10は、所望のスペクトルの発光を安定して行うことが可能である。例えば、複数の光源11の各々が白色LEDであり、光学フィルタ12が、青の波長帯域から赤の波長帯域に至るまで、x方向に連続的に波長帯域が単調に増加または減少する特性を有しているとする。光学フィルタ12における特定の波長の光を選択的に透過させる部分に対向するLEDのみを点灯させれば、その特定の波長に対応する単色光が得られる。例えば、所望のスペクトルの光が青の光である場合、制御回路13は、青の光を透過させる光学フィルタ12の部分に対向する1つまたは複数のLEDのみを発光させる。これにより、光学フィルタ12から、青の光を取り出すことができる。一方、所望のスペクトルの光が赤および青の混色であるマゼンタの光である場合、制御回路13は、光学フィルタ12における赤の光のみを透過させる部分、および青の光のみを透過させる部分に対向する複数のLEDのみを発光させる。これにより、光学フィルタ12からマゼンタの光を取り出すことができる。また、全てのLEDを点灯させれば、白色光が得られる。このように、発光させるLEDの組み合わせ、および各LEDの発光強度を適切に調整することにより、所望のスペクトルの発光を実現することができる。
本実施形態におけるマルチスペクトル照明装置10は、実施形態2において説明するように、直交関数展開を用いた信号処理によって被写体の反射分光特性を測定する撮像システムにも好適に用いることができる。そのような撮像システムでは、照明装置10からの光のスペクトルが波長に関して余弦関数または正弦関数などの周期関数で表される。個々の光源11の発光強度を適切に調整することにより、そのような周期関数のスペクトルを得ることができる。
図1Bは、マルチスペクトル照明装置10の他の構成例を示す斜視図である。この照明装置10は、前述の構成要素に加えて、光を拡散させる拡散フィルタ14をさらに備えている。拡散フィルタ14は、光学フィルタ12を透過した光の経路上に配置される。拡散フィルタ14を配置することにより、光が照射される範囲を広げることができる。
図2Aは、図1Bに示すマルチスペクトル照明装置10のXZ面に平行な断面を模式的に示す図である。この例では、複数の光源11と光学フィルタ12とが接触している。このような構成により、ある光源11に対向する光学フィルタ12の部分に、当該光源に隣接する他の光源からの光(斜め光)が入射する可能性を低減することができる。なお、本明細書において「対向する」ことには、直接接することも含まれる。
図2Bは、光源11からの斜め光の影響をさらに低減することが可能な構成の例を示す断面図である。この例では、複数の光源11のうちの隣接する2つの光源11の間に、光を吸収する遮光板18が設けられている。このような遮光板18は、隣接する任意の2つの光源11の間に配置され得る。このような構成により、斜め光の影響をさらに低減することができる。
以上の例では、複数の光源11が1次元的に(第1の方向のみに)配列されているが、複数の光源11は2次元的に配列されていてもよい。言い換えれば、複数の光源11は、第1の方向、および第1の方向に交差する第2の方向に配列されていてもよい。
図3Aは、複数の光源11が2次元的に配列された例を模式的に示す斜視図である。この例では、x方向に並ぶ複数の光源11の列が、y方向に3列並んでいる。この例では、x方向が第1の方向であり、これに直交するy方向が第2の方向である。このように光源11の数を増加させることにより、光量を増加させることができる。なお、各列の光源11の数および列数は、図示される例に限定されず、任意に設定してよい。光源11の数の増加に伴い、面積の大きい光学フィルタ12が用いられ得る。光学フィルタ12の面積が大きく、光源11の数が多いほど、光量を増加させることができる。光学フィルタ12は、1枚のフィルタである必要はなく、複数枚のフィルタ(例えば多層膜フィルタ)の組み合わせであってもよい。
図3Bは、光学フィルタ12がy方向に配列された3枚のフィルタの組み合わせである例を示している。3枚のフィルタは、3列の光源11のそれぞれに対向している。このような構成であっても、1枚のフィルタを用いた場合と同様の効果を実現できる。面積の大きいフィルタを作製することが困難な場合には、このような構成が適している。
以下、図4Aから図4Cを参照しながら、光源11の配置のいくつかの例と、その特徴を説明する。図4Aから図4Cにおいては、複数の光源11の配列方向(第1の方向および第2の方向)が点線で示されている。
図4Aは、複数の光源11がx方向にのみ配列された構成例を示している。この例では、発光量は小さいが、コストおよび消費電力を低く抑えられるという利点がある。この場合、使用される光学フィルタ12は、x方向に長くy方向に短い帯形状を有し得る。光学フィルタ12のサイズの一例は、50mm×10mm程度である。一列に並ぶ光源11の数は、図示されている12個に限らず、さらに少数またはさらに多数であってもよい。ある例では、第1の方向に30個以上の光源11が並ぶ構成が採用され得る。
図4Bは、複数の光源11がx方向およびy方向に2次元的に配列された構成例を示している。この例では、x方向に並ぶ12個の光源11の列が、y方向に4列並んでいる。このような構成により、図3Aおよび図3Bに示す例と同様、光学フィルタ12から出射される全体の光量を増加させることができる。この例では、前述のように、光学フィルタ12は、1枚のフィルタであってもよいし、複数枚のフィルタの組み合わせであってもよい。例えば、x方向に長くy方向に短い帯状の多層膜フィルタが、y方向に複数枚並べられ得る。各フィルタは、1つの列の光源に対向するように配置され得る。
図4Cは、複数の光源11が、第1の方向(x方向)および、第1の方向に交差する第2の方向に2次元的に配列された例を示している。第1の方向と第2の方向とがなす角度は、90度とは異なっている。この例では、x方向に並ぶ複数の光源11の列と、その列にy方向において隣接する他の列とで、光源11のx方向の位置が異なっている。例えば、図4Cに示す2列目の光源11cおよび3列目の光源11dのx方向の位置は、1列目においてx方向に隣接する2つの光源11a、11bのx方向の位置の間にある。光学フィルタ12には、y方向に透過波長域が変わらず、x方向に透過波長域が変化する1枚または複数枚の多層膜フィルタ等が使用され得る。このような構成にすることにより、発光波長の調整をより細やかに行うことができる。
光源11として、例えば大電流が流せるLEDを用いた場合、大きな光量が得られる一方で、光源11のサイズが大きくなる。その結果、隣接する2つの光源に対向する光学フィルタ12の2つの部分の距離が長くなり、発光波長を細やかに調整することが難しくなる。図4Cに示すように、列によって各光源11のx方向の位置をシフトさせることにより、この課題を解決できる。図4Cの構成では、発光波長の調整の階調(分解能とも表現する)を約3倍に向上させることができる。
図5Aは、マルチスペクトル照明装置10の他の構成例を模式的に示す断面図である。この例では、図1Bに示す拡散フィルタ14に代えて、ケーラー光学系が用いられている。ケーラー光学系は、複数の光源11から出射され光学フィルタ12を透過した光の経路上に配置されたコンデンサレンズ16と、コンデンサレンズ16を透過した光の経路上に配置されたプロジェクションレンズ17とを含む。図5Bは、図5Aの構成における光の経路の例を示している。図5Bに示すように、光学フィルタ12において複数の光源11に対向する全ての部分から出た光が照射面上の1点に向かい、光学フィルタ12の各点から出た光は、照射面上の広い範囲に亘って拡がる。このような光学系を用いることにより、光量の増加が期待できる。さらに、照明のむらが減少するため、より均一なスペクトルの照明が得られる。
図5Cは、コンデンサレンズ16およびプロジェクションレンズ17に用いられ得るレンズの一例を模式的に示す図である。図示されるレンズは、フレネルレンズである。一般に、フレネルレンズは精度が低く、画像撮影用のレンズとしては不向きであるが、照明の高輝度化および均一化には適している。コンデンサレンズ16およびプロジェクションレンズ17にフレネルレンズを用いることにより、光学系の薄型化、軽量化、およびコストダウンなどが期待できる。
次に、光源11としてLEDを用いる場合に、スペクトル分析に適した発光を実現するための構成例を説明する。
図6は、白色LEDと、スペクトル分析に適していると考えられているハロゲンランプのスペクトルの計測結果の例を示す図である。一般的な白色LEDは、青色LEDと、その補色である黄色の光を発する蛍光体との組み合わせによって実現される。このため、図6に示すように、白色LEDからの光は、長波長側の成分および500nm付近の成分が少ない。よって、ハロゲンランプに比べて、スペクトル分析には不向きであるといえる。
この課題を解決するためには、例えば以下のような方法が考えられる。
(a)各LEDに供給する電流を調整することによって補償する。
(b)発光波長帯域の異なる複数種類のLEDを用いる。
以下、方法(a)、(b)について説明する。
図7は、(a)の各LEDに供給する制御電流を調整する方法を説明するための図である。図7に示すように、LEDの発光強度が低い波長に対応する位置に配置されたLEDほど、多くの電流を供給することで、上記課題を解決できる。そのような構成では、LEDの分光特性(発光強度の波長依存性)が予め測定され、その分光特性に応じて、各LEDに供給される電流が調整される。これにより、光量が少ない波長の光が増強され、ハロゲン光またはスペクトルが均一な自然光に近い白色光を得ることができる。
図8は、上記(b)の方法を適用した構成の例を示す斜視図である。この例では、複数の光源11は、複数の赤色LED11Rと、複数の緑色LED11Gと、複数の青色LED11Bとを含む。LED11Rは、光学フィルタ12における赤色の光を透過させる領域に対向する位置に配置される。LED11Gは、光学フィルタ12における緑色の光を透過させる領域に対向する位置に配置される。LED11Bは、光学フィルタ12における青色の光を透過させる領域に対向する位置に配置される。ただし、各LEDの発光波長と、それに対向する光学フィルタ12の部分の透過波長とが厳密に一致している必要はない。各LEDおよび光学フィルタ12は、全てのLEDを点灯させたときに、全体として白色光が得られるように配置され得る。このように、発光波長の異なる複数種類のLEDを、そのLEDの発光波長の光を透過させる光学フィルタ12の部分に対向して配置することにより、幅広い帯域に亘って発光エネルギーを分布させることができる。
図9は、マルチスペクトル照明装置10の他の構成例を示す斜視図である。この例では、LED11R、11G、11Bに加えて、近赤外線を発する複数のLED11IRが設けられている。さらに、光学フィルタ12が、赤外から赤の波長帯域の光を透過させる多層膜フィルタ12Lと、緑から青の波長帯域の光を透過させる多層膜フィルタ12Sとを含んでいる。多層膜フィルタ12Lにおいて、複数の近赤外LED11IRに対向する部分は、近赤外光を主に透過させ、複数の赤色LED11Rに対向する部分は、赤色光を主に透過させる。多層膜フィルタ12Sにおいて、複数の緑色LED11Gに対向する部分は、緑色光を主に透過させ、複数の青色LED11Bに対向する部分は、青色光を主に透過させる。このような構成により、近赤外から青色に至る広帯域の発光が可能である。前述のように、発光波長の異なる複数種類のLEDを用いることで、光源のスペクトルの平均化と広帯域化が図れる。しかし、1枚のフィルタで、近赤外から青色に至る広帯域の透過特性を持たせることは一般に困難である。そこで、図9に示すように、透過波長域の異なる複数のフィルタを用いることにより、比較的容易に広帯域化を図ることができる。なお、透過特性の異なる光学フィルタ12の数は、3つ以上でもよい。
次に、本実施形態のマルチスペクトル照明装置10の効果を説明する。
マルチスペクトル照明を実現するための構成には、本実施形態の構成以外に、例えば図10に示すような構成が考えられる。図10は、透過特性の異なる複数のフィルタを機械的に切り替えて光のスペクトルを変化させる例(比較例)を模式的に示している。このような構成では、フィルタの切替のための動作に時間を要する上に、可動部の存在に起因して寿命の短縮化および故障可能性の増加などの課題がある。さらに、予め決められたスペクトルパターン(最大で10種類程度)の発光しかできないという課題もある。本実施形態では、機械的な可動部分がないため、高速での動作が可能であり、機械的な摩耗による劣化のおそれがない。さらに、複数の光源の発光強度の組み合わせは多様であるため、様々なパターンのスペクトルの発光が可能である。
また、例えば白色のバックライトと、多層膜フィルタとの間に液晶層を設け、液晶を制御して必要な部分のみ光を透過させることで発光スペクトルを制御する構成も考えられる。本実施形態では、液晶を用いていないため、液晶に起因する光の損失を回避し、光の利用効率を高めることができる。また、光源として単一のバックライトを用いるのではなく、複数のLEDなどの光源を用いるため、光源の発光スペクトルによらずに柔軟にスペクトルを補償することができる。
(実施形態2)
次に、本開示の実施形態2におけるマルチスペクトル撮像システムを説明する。
本実施形態の撮像システムは、実施形態1において説明したいずれかのマルチスペクトル照明装置と、イメージセンサ(撮像素子)と、イメージセンサの撮像面に、マルチスペクトル照明装置から出射された光による被写体の像を形成する光学系とを備える。これにより、実施形態1におけるマルチスペクトル照明装置を用いた被写体の撮像(検査など)を行うことができる。
本実施形態における撮像システムは、イメージセンサから出力された電気信号を処理する信号処理回路をさらに備える。マルチスペクトル照明装置における制御回路は、各光源およびイメージセンサを制御する。より具体的には、照明装置から出射される光のスペクトルを変化させながらイメージセンサで複数回の撮像を実行させる。信号処理回路は、当該複数回の撮像によってイメージセンサの1つの画素から順次出力された複数の画素信号を用いた演算により、被写体の一点における反射分光特性を示す関数を直交関数系で展開したときの展開係数を求める。求めた展開係数から、被写体の反射分光特性を求めることができる。なお、画素信号とは、イメージセンサが有する各光検出セル(例えばフォトダイオードを含む)から出力される電気信号(光電変換信号とも称する)を意味する。
ここで、本実施形態におけるマルチスペクトル撮像の基本原理を説明する。被写体のある1点からの反射光エネルギーを表す波長の関数が、所定の波長帯域λ1〜λ2(但しλ2−λ1=W)で存在するとして、その関数を波長λ1からのシフト波長X(0≦X≦W)を用いてF(X)で表す。すると、F(X)は、次の式1で示される有限のフーリエ級数で近似できる。なお、シフト波長Xを、以下では単に波長Xと表現することがある。
Figure 0006339133

但し、式1におけるa(i)、b(i)は下記の式2、式3で表され、iは0から予め設定された最大自然数Nまでの整数である。式1におけるΣはi=1からi=Nまでの総和を表す。また、式2、式3における積分範囲はX=0〜Wである。
Figure 0006339133

Figure 0006339133
式2および式3で示されるa(i)およびb(i)をイメージセンサの画素信号から作り出すことができれば、被写体の反射分光特性(被写体から反射される光の強度の波長依存性)を近似的に算出できる。そこで、本実施形態では、出射光の分光特性を波長変化に対して周期的に(例えば余弦関数的または正弦関数的に)変化させることのできるマルチスペクトル照明装置を用いて、発光スペクトルを変えながら撮像する。これにより、イメージセンサの画素信号に基づいて、フーリエ係数a(i)およびb(i)を算出できる。
例えば、撮像システムは、上記所定の波長帯域Wにおいて、照明装置から照射される光の強度がどの波長についても一定値になるように各光源の発光強度を調整して第1回目の撮像を行う。外部光の影響を無視すれば、画素信号Sdは、∫F(X)dXに比例した信号値となり、Sd×(2/W)の演算により、a(0)を算出できる。さらに、照明装置からの光の分光特性を(1/2)(1+cos(2πiX/W))または(1/2)(1+sin(2πiX/W)のような特性に変えて撮像すれば、画素信号Saは∫(1/2)(1+cos(2πiX/W))F(X)dXまたは∫(1/2)(1+sin(2πiX/W))F(X)dXに比例した信号値となる。この画素信号Saと1回目の撮像時に得られた画素信号Sdとを用いて、(2Sa-Sd)×(2/W)の演算を行えば、a(i)またはb(i)が算出できる。
このように、照明装置からの光の分光特性を変えて複数回撮像し、撮像した画像信号を用いてa(i)、b(i)を算出すれば、被写体の反射分光特性を画素単位で算出できる。
以上が本実施形態の基本原理である。以下、この基本原理を利用した、本実施形態の撮像システムをより詳細に説明する。
図11Aは、本実施形態におけるマルチスペクトル撮像システムの構成図である。この撮像システムは、撮像装置20と、マルチスペクトル照明装置10とを備えている。撮像装置20は、広帯域光学フィルタ9と、結像レンズ(光学系)1と、イメージセンサ(撮像素子)3と、信号発生/受信回路4と、制御回路5と、画像処理回路6と、画像メモリー7と、信号出力部8と、を備えている。
広帯域光学フィルタ9は、所定の波長帯域の光のみを透過させるフィルタである。広帯域光学フィルタ9は、本実施形態では380nm〜760nmの光のみを透過させ、他の波長域の光(紫外線および赤外線を含む。)をカットする。広帯域光学フィルタ9は、光学系1の前に配置されている。
光学系1は、少なくとも1つのレンズを含む結像光学系である。光学系1は、入射光を集光し、イメージセンサ3の撮像面に被写体の像を形成する。
イメージセンサ3は、例えばCMOS型またはCCD型等の任意のイメージセンサであり得る。イメージセンサ3は、複数の光検出セル(例えばフォトダイオードを含む。)を有している。各光検出セルは、光電変換によって受光量に応じた電気信号(画素信号)を出力する。これにより、イメージセンサ3は、光学系1を透過した光による像に応じた画像信号を出力する。
信号発生/受信回路4は、イメージセンサ3からの画像信号を受信すると共にイメージセンサ3等を駆動するための信号を発生してイメージセンサ3に送信する。信号発生/受信回路4は、例えばCMOSドライバなどのLSIから構成され得る。画像処理回路6は、信号発生/受信回路4からの画像信号を画像メモリー7に送信すると共に画像メモリー7からの画像信号を読み出して処理する。画像処理回路6は、例えば公知の信号処理プロセッサ(DSP)などの信号処理回路と、画像処理を実行するソフトウェアとの組み合わせによって実現され得る。あるいは、画像処理回路6は、専用のハードウェアから構成されていてもよい。画像メモリー7は、例えばDRAMまたはSRAM等の公知の半導体メモリーであり得る。信号出力部(出力インターフェース)8は、画像処理回路6からの信号を外部に出力する。
制御回路5は、マルチスペクトル照明装置10における制御回路13(図1等)と協働して、照明装置10における各光源の発光とイメージセンサ3による撮像とを同期させる。制御回路5は、信号発生/受信回路4に、イメージセンサ3を駆動させるための制御信号を送る。制御回路5と信号発生/受信回路4とは、1つの回路によって実現されていてもよい。制御回路5、13は、例えば、メモリーとCPUとを備えるマイクロコントローラユニット(MCU)によって実現され得る。制御回路5、13が1つの回路によって実現されていてもよい。
図11Bは、被写体からの光が結像レンズ1を透過してイメージセンサ3の撮像面3aに結像される様子を模式的に示した図である。結像された画像はイメージセンサ3で光電変換され電気信号になり、信号発生/受信回路4および画像処理回路6を介して画像メモリーに記録される。
再び図11Aを参照する。マルチスペクトル照明装置10は、実施形態1におけるいずれかの構成を備えている。本実施形態では、マルチスペクトル照明装置10における光学フィルタ12は、多層膜フィルタであり、複数の光源11の各々は、LED光源であるものとする。
本実施形態における多層膜フィルタは、可視光に含まれる複数の色(レインボー色と表現する。)の光をそれぞれ透過させる複数の部分を有する。多層膜フィルタは、一方向に透過波長が虹のように変化する特性を有している。多層膜フィルタと、複数のLEDとの組み合わせにより、多層膜フィルタを透過する光の分光分布(光強度の波長依存性)を自由に変化させることができる。
図12は、多層膜フィルタ12aの外観を模式的に示す図である。レインボー色の多層膜フィルタ2aが、複数のLEDに対向して配置されている。本実施形態における多層膜フィルタ2aはy方向(画像の垂直方向に相当)には分光特性が変化しないが、x方向(画像の水平方向に相当)にはその位置に応じて透過波長が連続的に変化する。
図13は、多層膜フィルタ2aの分光透過特性の例を示す図である。図13では、14個の透過波長帯域のみを例示しているが、実際の多層膜フィルタ2aは、さらに多数の透過波長帯域の部分を含み得る。多層膜フィルタ2aは、水平方向(x方向)のある位置では狭帯域の細長い光学フィルタであるといえる。その位置が水平方向に連続的に変わると当該位置の透過波長帯域も連続的に変化する。なお、実際にはこの変化は離散的であるが、透過波長帯域の変化量を小さくすることにより、連続的であるとみなせる。本実施形態では、少なくとも波長帯域380nm〜760nmでは各々の位置で当該透過波長のピーク透過率はほぼ100%(図では1.0の値)である。多層膜フィルタ2aの透過波長帯域は、x座標に対して単調に増加または減少するように設計してもよいし、各々が特定の透過波長帯域を有する複数のストライプ状の部分がx方向にランダムに配列されていてもよい。後者の場合も、全体として上記の波長帯域の全域がほぼ連続的にカバーされるように設計され得る。一次元に限らず、2次元的に透過波長帯域が変化する多層膜フィルタを利用してもよい。
多層膜フィルタ2aとして、例えば、エドモンド・オプティクス社のリニア可変バンドパスフィルタや、ニコン社のリニアバリアブルフィルタ等を好適に用いることができる。
このような多層膜フィルタ2aに密接させて複数のLEDのアレイを配置することにより、照明装置10は、所望のスペクトルの発光が可能である。
図14Aおよび図14Bは、本実施形態における照明装置10からの光の分光特性(スペクトル)のパターンを示す。図14Aは波長帯域0.38μm〜0.76μm(380nm〜760nm)において、余弦関数に従った1周期から8周期の8つのスペクトルのパターンを示している。図14Bは同波長帯域において、正弦関数に従った1周期から8周期の8つのスペクトルのパターンを示している。なお、図14Aおよび図14Bに示す16のスペクトルのパターン以外に、上記波長帯域において波長によらず強度が一定のパターンもある。よって、照明装置10からの発光パターンは総計17パターンである。ここで、上記波長帯域において波長によらず強度が一定のパターンをPTN0と呼び、図14Aに示すパターンを長周期から短周期の順にPTN1、PTN2、・・・、PTN8と呼び、図14Bに示すパターンを長周期から短周期の順にPTN9、PTN10、・・・、PTN16と呼ぶことにする。
ここで、PTNn(n=0,1,・・・16)の発光スペクトルを表す波長の関数をPn(X)と表現する。Xは、前述のように、基準波長(本実施形態では0.38μm)からのシフト波長を表す。各パターンにおけるPn(X)は、近似的に以下のように表される。なお、Wは、広帯域光学フィルタ9が透過させる光の波長帯域を示し、本実施形態では0.38(=0.76−0.38)μmである。
PTN0: P0(X)=1
PTN1: P1(X)=(1/2)(1+cos(2πX/W))
PTN2: P2(X)=(1/2)(1+cos(4πX/W))
PTN3: P3(X)=(1/2)(1+cos(6πX/W))
PTN4: P4(X)=(1/2)(1+cos(8πX/W))
PTN5: P5(X)=(1/2)(1+cos(10πX/W))
PTN6: P6(X)=(1/2)(1+cos(12πX/W))
PTN7: P7(X)=(1/2)(1+cos(14πX/W))
PTN8: P8(X)=(1/2)(1+cos(16πX/W))
PTN9: P9(X)=(1/2)(1+sin(2πX/W))
PTN10: P11(X)=(1/2)(1+sin(4πX/W))
PTN11: P12(X)=(1/2)(1+sin(6πX/W))
PTN12: P13(X)=(1/2)(1+sin(8πX/W))
PTN13: P14(X)=(1/2)(1+sin(10πX/W))
PTN14: P15(X)=(1/2)(1+sin(12πX/W))
PTN15: P16(X)=(1/2)(1+sin(14πX/W))
PTN16: P17(X)=(1/2)(1+sin(16πX/W))
本実施形態では、発光スペクトルをPTN0からPTN16まで変化させながら、その都度被写体を撮影する。これにより、取得した画素信号から、式1に示す関数F(X)のフーリエ係数(式2、3)を推定できる。それらのフーリエ係数を用いて式1の右辺に示すフーリエ級数展開を計算することにより、F(X)を推定できる。外部光が存在しない場合はF(X)そのものが被写体の反射分光特性を示す。しかし、一般には外部光が存在し得るため、外部光の影響を除去する必要がある。求めたF(X)を、外部光の分光特性を示す関数O(X)で波長毎に除算することにより、被写体の反射分光特性を示す関数を求めることができる。
次に、本実施形態のマルチスペクトル撮像システムの動作を説明する。
図15は、本実施形態におけるマルチスペクトル撮像システムの動作の流れを示すフローチャートである。ここでは、複数の色見本を用いたシミュレーションを例に、本実施形態の動作を説明する。予め、外部光、レンズを含む光学系、およびイメージセンサ3の分光感度を合わせた分光特性を計測しておき、それをO(X)とする。
被写体はX−Rite社製のマクベスカラーチェッカーNo13〜No18の色見本である。これらの反射分光特性をF(X)で表す。これらの色見本No13〜No18は、番号順に青(B)、緑(G)、赤(R)、黄(Ye)、マゼンタ(Mg)、シアン(Cy)である。図16Aおよび図16Bは、それらの色見本の反射分光特性を示している。図16AはNo13〜No15の反射分光特性を示し、番号順に実線、破線、一点鎖線で表している。図16BはNo16〜No18の反射分光特性を示し、番号順に実線、破線、一点鎖線で表している。
図11Aに示す制御回路5および照明装置10における制御回路13(図1)は、照明装置10からの光のスペクトルをPTN0からPTN16まで順次変えてイメージセンサ3によってそれぞれ撮像する。それらの画像信号値をE(0)〜E(16)とする。
まず第1ステップとして、No13〜No18の6個の色見本を撮像したとして、それらの分光特性と、O(X)およびPTN0〜PTN16の分光特性との離散的な積分演算を行う。これにより、各色見本に関して相対的な画素信号値E(0)〜E(16)を算出する(ステップS1)。実際の計算では、例えば10nm毎の数値データを用いて離散的な積分を行い、1つの色見本につき17個の信号値を算出する。従って、総計6×17=102個の信号値を算出する。
次に第2のステップとして、以下の式4、5、6を用いて画素信号値E(0)〜E(16)から各色見本のフーリエ係数a(0)〜a(8)とb(1)〜b(8)とを算出する(ステップS2)。但し、式5および式6において、iは1以上8以下の整数である。なお、以下の計算では波長帯域Wの1/2をπとして計算している。
(式4)a(0)=E(0)/π
(式5)a(i)=(2E(i)−E(0))/π
(式6)b(i)=(2E(i+8)−E(0))/π
次に第3ステップとして、算出したフーリエ係数a(0)〜a(8)とb(1)〜b(8)を用いて、被写体の反射分光特性F(X)を式1に示すフーリエ級数で表す(ステップS3)。ただし、本計算ではW/2をπとして計算しているため、以下のフーリエ級数を用いる。
Figure 0006339133
算出されたF(X)は撮像画像のスペクトルであるが、これには上述した分光特性O(X)の影響が含まれている。そこで、第4ステップとして、F(X)をさらにO(X)で除算し、被写体の分光特性を算出する(ステップS4)。この除算は、例えば10nm毎の数値データのそれぞれについて行われる。
図17Aは、算出した被写体の分光特性を示している。図17Bは、被写体であるカラーチェッカの実際の分光特性を示している。図17Aおよび図17Bの中で、太い実線は青(算出結果:Cal_No13、実際の特性:No13)、太い破線は緑(算出結果:Cal_No14、実際の特性:No14)、太い一点鎖線は赤(算出結果:Cal_No15、実際の特性:No15)、細い実線は黄(算出結果:Cal_No16、実際の特性:No16)、細い破線はマゼンタ(算出結果:Cal_No17、実際の特性:No17)、細い一点鎖線はシアン(算出結果:Cal_No18、実際の特性:No18)のカラーチェッカの分光特性を表している。図17Aおよび図17Bにおいて波長範囲は400nm〜700nmである。算出した被写体の分光特性はカラーチェッカの実際の分光特性と概ね同じであることがわかる。
最後に、算出した被写体の分光特性から、予め指定された特定の波長における分光特性値を取り出し、それらのデータを画素信号とした特定波長画像と、画素信号の平均値を算出し、それらを画素信号とした白黒画像とを信号出力部8から外部に出力する(ステップS5)。なお、特定波長画像および白黒画像の一方のみを生成・出力してもよい。白黒画像は、画素信号の平均値ではなく、合算値またはPTN0の画素信号のみから生成してもよい。
このように、画像処理回路6から信号出力部8を介して特定波長画像と白黒画像とが出力される。指定波長を変えることにより、設定された計測波長帯域内の任意の波長についての画像を得ることができる。また、照明装置10からの光のスペクトル(図14Aおよび図14B)は、発光強度のピークを複数有しているため、ピークを1つしか有していない従来のRGBフィルタを用いた構成よりも光利用率が高い。それ故、出力される白黒画像の明度を高くすることができる。
以上のように、本実施形態のマルチスペクトル撮像システムは、照明装置10からの光のスペクトルのパターンを変えながら撮像し、撮像によって取得した画素信号を用いて被写体画像の各点における反射分光特性をフーリエ級数で表現することにより、画素単位で被写体画像の分光特性を算出できる。また、撮像システムから得られる撮像画像の明度が高いという長所も有する。
なお、本実施形態では、発光スペクトルのパターンを余弦的なパターンPTN1〜PTN8と正弦的なパターンPTN9〜PTN16にしたが、これに限定されるものではない。例えば、余弦的なパターンだけでも良く、またパターン数も16に限定するものではない。余弦的なパターンだけを利用する場合は、式1〜式3に代えて、フーリエ余弦級数展開が利用され得る。さらに、被写体の分光特性の波形(交流成分)だけを計測するのであれば、PTN0のパターンを用いる必要はない。加えて、分光特性のパターンに関して、PTN1〜PTN16では発光強度のアンダーピークを0(0%透過)と変調性の高い特性にしたが、これに限るものではない。ピークとアンダーピークとの差が小さい変調性の低い特性でも問題はない。さらに、本実施形態では、計測対象の波長帯域を380nm〜760nmに設計したが、これに限るものではなく、さらに範囲の広い波長帯域またはさらに範囲の狭い波長帯域であっても構わない。可視光に限らず、近赤外線または近紫外線などの波長帯域を用いてもよい。
本実施形態では、被写体の反射分光特性F(X)を式1に示すフーリエ級数展開で表したが、フーリエ級数展開に限らず、他の直交関数系を用いてF(X)を展開してもよい。その場合でも、出力された複数の画素信号を用いた演算処理によって展開係数を算出することができる場合には、被写体の反射分光特性を求めることができる。
なお、マルチスペクトル照明装置10の構成は、図1Aから図9を参照して説明した構成に限定されない。例えば、複数の光源11の数は任意であり、数十から数千、場合によってはそれ以上であってもよい。そのような多数の光源11を用いる場合には、それらに対向する光学フィルタ12も、多数のフィルタによって実現され得る。
以上のように、本開示は、以下の項目に記載のマルチスペクトル照明装置および撮像システムを含む。
[項目1]
少なくとも第1の方向に配列された複数の光源を含む光源アレイと、
前記光源アレイに対向する位置に配置され、前記複数の光源に対向する複数の位置のそれぞれにおいて、特定の波長帯域の光を選択的に透過させ、前記第1の方向に透過波長帯域が変化している光学フィルタと、
前記複数の光源の各々の発光強度を制御する制御回路と、
を備えるマルチスペクトル照明装置。
[項目2]
前記複数の光源は、前記第1の方向、および前記第1の方向に交差する第2の方向に2次元的に配列されている、項目1に記載のマルチスペクトル照明装置。
[項目3]
前記複数の光源の各々は、LED光源である、項目1または2に記載のマルチスペクトル照明装置。
[項目4]
前記複数の光源の各々は、白、赤、緑、および青のいずれかの光を発する光源である、項目3に記載のマルチスペクトル照明装置。
[項目5]
前記光学フィルタは、各々が異なる特定の波長帯域の光を透過させる複数の部分が前記第1の方向に配列された多層膜フィルタである、項目1から4のいずれかに記載のマルチスペクトル照明装置。
[項目6]
前記光学フィルタの透過波長帯域は、前記第1の方向に単調に変化している、項目1から5のいずれかに記載のマルチスペクトル照明装置。
[項目7]
前記光学フィルタの透過波長帯域は、前記第1の方向に、青の波長帯域から赤の波長帯域に至るまで、単調に変化している、項目1から6のいずれかに記載のマルチスペクトル照明装置。
[項目8]
前記光学フィルタにおいて、前記複数の光源の少なくとも1つに対向する部分は、近赤外線を透過させる、項目1から6のいずれかに記載のマルチスペクトル照明装置。
[項目9]
前記光学フィルタは、前記光源アレイに接している、項目1から8のいずれかに記載のマルチスペクトル照明装置。
[項目10]
前記複数の光源から出射され前記光学フィルタを透過した光の経路上に配置された光拡散フィルタをさらに備える、項目1から9のいずれかに記載のマルチスペクトル照明装置。
[項目11]
前記複数の光源から出射され前記光学フィルタを透過した光の経路上に配置されたコンデンサレンズと、
前記コンデンサレンズを透過した前記光の経路上に配置されたプロジェクションレンズと、
をさらに備える、項目1から9のいずれかに記載のマルチスペクトル照明装置。
[項目12]
項目1から11のいずれかに記載のマルチスペクトル照明装置と、
イメージセンサと、
前記イメージセンサの撮像面に、前記マルチスペクトル照明装置から出射された光による被写体の像を形成する光学系と、
を備える撮像システム。
[項目13]
前記イメージセンサから出力された電気信号を処理する信号処理回路をさらに備え、
前記制御回路は、前記マルチスペクトル照明装置における前記複数の光源および前記イメージセンサを制御して、前記マルチスペクトル照明装置から出射される光のスペクトルを変化させながら前記イメージセンサで複数回の撮像を実行させ、
前記信号処理回路は、前記複数回の撮像によって前記イメージセンサの1つの画素から順次出力された複数の画素信号を用いた演算により、前記被写体の一点における反射分光特性を示す関数を直交関数系で展開したときの展開係数を求める、
項目12に記載の撮像システム。
[項目14]
各回の撮像時における前記マルチスペクトル照明装置から出射される光のスペクトルは、所定の波長帯域に関して波長の周期関数で表される、項目13に記載の撮像システム。
[項目15]
前記所定の波長帯域の幅をWとするとき、前記周期関数の周期の逆数は、1/Wの整数倍である、項目14に記載の撮像システム。
[項目16]
前記周期関数は、独立変数を波長とする余弦関数または正弦関数を用いて表される、項目14または15に記載の撮像システム。
本発明のマルチスペクトル照明装置およびマルチスペクトル撮像装置は、例えば薬品、食品、生体、製造物などの被検体の組成、構造、外観、記載されている文字などの検査の用途に好適に利用され得る。検査の用途に限定されず、一般の照明装置またはカメラとしても利用され得る。
1 結像レンズ
3 イメージセンサ
3a 撮像部
4 信号発生/受信回路
5 液晶コントローラ
6 画像処理回路
7 画像メモリー
8 信号出力部
9 広帯域光学フィルタ
10 マルチスペクトル照明装置
11 光源(LED)
12 光学フィルタ(多層膜フィルタ)
13 制御回路
14 光拡散フィルタ
15 プリント基板
16 コンデンサレンズ
17 プロジェクションレンズ
18 遮光板
20 撮像装置

Claims (19)

  1. 少なくとも第1の方向に配列された複数の光源を含む光源アレイと、
    前記光源アレイに対向する位置に配置され、前記複数の光源に対向する複数の位置のそれぞれにおいて、特定の波長帯域の光を選択的に透過させ、前記第1の方向に透過波長帯域が変化している光学フィルタと、
    前記複数の光源の各々に制御電流を供給することによって前記複数の光源の各々の発光強度を制御する制御回路と、
    を備え
    前記複数の光源の各々の発光強度は、前記透過波長帯域において波長依存性を有し、
    前記制御回路は、前記光学フィルタのうち、前記発光強度が相対的に低い波長の光を透過させる部分に対向する光源に供給する前記制御電流を相対的に高くし、前記光学フィルタのうち、前記発光強度が相対的に高い波長の光を透過させる部分に対向する光源に供給する前記制御電流を相対的に低くすることにより、前記光学フィルタを透過する光のスペクトルを所望のスペクトルに近づける、
    マルチスペクトル照明装置。
  2. 前記複数の光源は、前記第1の方向、および前記第1の方向に交差する第2の方向に2次元的に配列されている、請求項1に記載のマルチスペクトル照明装置。
  3. 前記複数の光源の各々は、LED光源である、請求項1または2に記載のマルチスペクトル照明装置。
  4. 前記複数の光源の各々は、白、赤、緑、および青のいずれかの光を発する光源である、請求項3に記載のマルチスペクトル照明装置。
  5. 前記光学フィルタは、各々が異なる特定の波長帯域の光を透過させる複数の部分が前記第1の方向に配列された多層膜フィルタである、請求項1から4のいずれかに記載のマルチスペクトル照明装置。
  6. 前記光学フィルタの透過波長帯域は、前記第1の方向に単調に変化している、請求項1から5のいずれかに記載のマルチスペクトル照明装置。
  7. 前記光学フィルタの透過波長帯域は、前記第1の方向に、青の波長帯域から赤の波長帯域に至るまで、単調に変化している、請求項1から6のいずれかに記載のマルチスペクトル照明装置。
  8. 前記光学フィルタにおいて、前記複数の光源の少なくとも1つに対向する部分は、近赤外線を透過させる、請求項1から6のいずれかに記載のマルチスペクトル照明装置。
  9. 前記光学フィルタは、前記光源アレイに接している、請求項1から8のいずれかに記載のマルチスペクトル照明装置。
  10. 前記複数の光源から出射され前記光学フィルタを透過した光の経路上に配置された光拡散フィルタをさらに備える、請求項1から9のいずれかに記載のマルチスペクトル照明装置。
  11. 前記複数の光源から出射され前記光学フィルタを透過した光の経路上に配置されたコンデンサレンズと、
    前記コンデンサレンズを透過した前記光の経路上に配置されたプロジェクションレンズと、
    をさらに備える、請求項1から9のいずれかに記載のマルチスペクトル照明装置。
  12. 第1の方向、および前記第1の方向に交差する第2の方向に、2次元的に配列された複数の光源を含む光源アレイと、
    前記光源アレイに対向し、前記第2の方向に配列された複数の光学フィルタと、
    前記複数の光源の各々の発光強度を制御する制御回路と、
    を備え、
    前記複数の光学フィルタの各々は、前記光源アレイのうち、前記第1の方向に並ぶ複数の光源に対向し、前記複数の光源に対向する複数の位置のそれぞれにおいて、特定の波長帯域の光を選択的に透過させ、前記第1の方向に透過波長帯域が変化している、
    マルチスペクトル照明装置。
  13. 第1の方向に配列された複数の光源を含む光源アレイと、
    前記光源アレイに対向する位置に配置され、前記複数の光源に対向する複数の位置のそれぞれにおいて、特定の波長帯域の光を選択的に透過させ、前記第1の方向に透過波長帯域が変化している光学フィルタと、
    前記複数の光源の各々の発光強度を制御する制御回路と、
    を備え、
    前記複数の光源は、複数の赤色光源と、複数の緑色光源と、複数の青色光源とを含み、
    前記光学フィルタにおける前記複数の赤色光源に対向する部分は、赤色光を透過させ、
    前記光学フィルタにおける前記複数の緑色光源に対向する部分は、緑色光を透過させ、
    前記光学フィルタにおける前記複数の青色光源に対向する部分は、青色光を透過させる、
    マルチスペクトル照明装置。
  14. 第1の方向に配列された複数の光源を含む光源アレイと、
    前記光源アレイに対向する位置に配置され、前記第1の方向に並ぶ2つの光学フィルタと、
    前記複数の光源の各々の発光強度を制御する制御回路と、
    を備え、
    前記複数の光源は、複数の近赤外光源と、複数の赤色光源と、複数の緑色光源と、複数の青色光源とを含み、
    前記複数の近赤外光源は、前記複数の赤色光源に隣り合い、
    前記複数の緑色光源は、前記複数の青色光源に隣り合い、
    前記2つの光学フィルタの一方は、前記複数の近赤外光源および前記複数の赤色光源に対向し、前記複数の近赤外光源に対向する部分においては近赤外光を透過させ、前記赤色光源に対向する部分においては赤色光を透過させ、
    前記2つの光学フィルタの他方は、前記複数の緑色光源および前記複数の青色光源に対向し、前記複数の緑色光源に対向する部分においては緑色光を透過させ、前記青色光源に対向する部分においては青色光を透過させる、
    マルチスペクトル照明装置。
  15. 請求項1から1のいずれかに記載のマルチスペクトル照明装置と、
    イメージセンサと、
    前記イメージセンサの撮像面に、前記マルチスペクトル照明装置から出射された光による被写体の像を形成する光学系と、
    を備える撮像システム。
  16. 前記イメージセンサから出力された電気信号を処理する信号処理回路をさらに備え、
    前記制御回路は、前記マルチスペクトル照明装置における前記複数の光源および前記イメージセンサを制御して、前記マルチスペクトル照明装置から出射される光のスペクトルを変化させながら前記イメージセンサで複数回の撮像を実行させ、
    前記信号処理回路は、前記複数回の撮像によって前記イメージセンサの1つの画素から順次出力された複数の画素信号を用いた演算により、前記被写体の一点における反射分光特性を示す関数を直交関数系で展開したときの展開係数を求める、
    請求項1に記載の撮像システム。
  17. 各回の撮像時における前記マルチスペクトル照明装置から出射される光のスペクトルは、所定の波長帯域に関して波長の周期関数で表される、請求項1に記載の撮像システム。
  18. 前記所定の波長帯域の幅をWとするとき、前記周期関数の周期の逆数は、1/Wの整数倍である、請求項1に記載の撮像システム。
  19. 前記周期関数は、独立変数を波長とする余弦関数または正弦関数を用いて表される、請求項1または1に記載の撮像システム。
JP2016139208A 2015-01-07 2016-07-14 マルチスペクトル照明装置および撮像システム Active JP6339133B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015001538 2015-01-07
PCT/JP2016/050219 WO2016111308A1 (ja) 2015-01-07 2016-01-06 マルチスペクトル撮像装置
WOPCT/JP2016/050219 2016-01-06

Publications (2)

Publication Number Publication Date
JP2017122703A JP2017122703A (ja) 2017-07-13
JP6339133B2 true JP6339133B2 (ja) 2018-06-06

Family

ID=56355994

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016568734A Active JP6224275B2 (ja) 2015-01-07 2016-01-06 マルチスペクトル撮像装置
JP2016139208A Active JP6339133B2 (ja) 2015-01-07 2016-07-14 マルチスペクトル照明装置および撮像システム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016568734A Active JP6224275B2 (ja) 2015-01-07 2016-01-06 マルチスペクトル撮像装置

Country Status (2)

Country Link
JP (2) JP6224275B2 (ja)
WO (1) WO2016111308A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6862229B2 (ja) * 2017-03-15 2021-04-21 キヤノン株式会社 解析装置、撮像装置、解析方法、および、プログラム
US10962478B2 (en) 2017-03-24 2021-03-30 Axon Dx, Llc Spectral imaging apparatus and methods
JP6917824B2 (ja) * 2017-08-09 2021-08-11 シチズン時計株式会社 分光測定装置及び分光測定方法
DE102018118079A1 (de) 2017-10-09 2019-04-11 Osram Opto Semiconductors Gmbh Halbleiterlichtquelle, betriebsverfahren und spektrometer
US10962822B2 (en) * 2018-06-06 2021-03-30 Viavi Solutions Inc. Liquid-crystal selectable bandpass filter
JPWO2020179628A1 (ja) * 2019-03-04 2020-09-10
CN114041085B (zh) * 2019-06-11 2023-04-04 富士胶片株式会社 摄像装置
CN113008368A (zh) * 2020-05-25 2021-06-22 中国科学院长春光学精密机械与物理研究所 多光谱信息获取装置及获取方法
CA3130367A1 (en) 2020-09-10 2022-03-10 Saco Technologies Inc. Lens and prism combination for directing light toward a projector lens
CN116222779B (zh) * 2023-03-09 2023-09-15 重庆大学 一种可调谐高光谱重构成像方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4379233A (en) * 1981-05-27 1983-04-05 Trebor Industries, Inc. Optical arrangement for quantitative analysis instrument utilizing pulsed radiation emitting diodes
JPH0785034B2 (ja) * 1986-05-15 1995-09-13 ミノルタ株式会社 分光測定センサ
JP3930164B2 (ja) * 1998-11-05 2007-06-13 日本放送協会 波長選択型液晶カメラ装置
US6373568B1 (en) * 1999-08-06 2002-04-16 Cambridge Research & Instrumentation, Inc. Spectral imaging system
JP3819187B2 (ja) * 1999-09-28 2006-09-06 富士写真フイルム株式会社 マルチバンド画像の分光反射率のスペクトル推定方法およびスペクトル推定システム
US7084972B2 (en) * 2003-07-18 2006-08-01 Chemimage Corporation Method and apparatus for compact dispersive imaging spectrometer
US7202955B2 (en) * 2004-06-30 2007-04-10 Digital Optics Corporation Spectrally diverse spectrometer and associated methods
JP5050665B2 (ja) * 2007-06-04 2012-10-17 凸版印刷株式会社 分光反射率取得方法、分光反射率取得装置、および分光反射率取得プログラム
JP2010286291A (ja) * 2009-06-10 2010-12-24 Hioki Ee Corp 赤外線分光器および赤外線分光測定装置
JP2012181086A (ja) * 2011-03-01 2012-09-20 21 Aomori Sangyo Sogo Shien Center スペクトル測定装置およびスペクトル測定方法
JP6003248B2 (ja) * 2012-06-05 2016-10-05 株式会社ニコン 分光装置および分光感度解析装置
US9766382B2 (en) * 2012-06-05 2017-09-19 Hypermed Imaging, Inc. Single-sensor hyperspectral imaging device

Also Published As

Publication number Publication date
WO2016111308A1 (ja) 2016-07-14
JP2017122703A (ja) 2017-07-13
JP6224275B2 (ja) 2017-11-01
JPWO2016111308A1 (ja) 2017-05-25

Similar Documents

Publication Publication Date Title
JP6339133B2 (ja) マルチスペクトル照明装置および撮像システム
TWI382543B (zh) 具有強度監視系統之led照明系統
JP4098237B2 (ja) カラーフォトセンサ
US11045081B2 (en) Endoscope system
JP6796602B2 (ja) 歯科用オブジェクトの3d測定のためのカメラおよび手法
JP2005244953A (ja) 移動中の印刷物の所定部分の画像を撮影する装置
US10342417B2 (en) Image-capturing element
JP5246395B2 (ja) 光学特性測定装置
US11324385B2 (en) Endoscope system for processing second illumination image using image information other than image information about outermost surface side of subject among three image information from at least four images of first illumination images
JP4669889B2 (ja) 分光測色装置及び分光測色方法
JP2002013981A (ja) 測光装置
JP3944693B2 (ja) 膜厚測定装置
JP5890953B2 (ja) 検査装置
JP2012058091A (ja) 表面検査装置
JP2012189342A (ja) 顕微分光測定装置
JP2007208908A (ja) スキャナー装置
WO2019117802A1 (en) A system for obtaining 3d images of objects and a process thereof
JP2018200211A (ja) 光学測定装置
JP2016534337A (ja) 発光体を製造する方法
US11070722B2 (en) Image capturing device and control method
JP5541646B2 (ja) ライン照明装置
JP6592279B2 (ja) 発光装置の色度検査方法および検査装置
JP2024047253A (ja) 撮像装置及び方法
JP2003141442A (ja) バーコード読取装置
CN117214121A (zh) 使用空间上分离的光谱阵列的成像系统

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180509

R150 Certificate of patent or registration of utility model

Ref document number: 6339133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250