JP6332407B2 - 照明装置 - Google Patents

照明装置 Download PDF

Info

Publication number
JP6332407B2
JP6332407B2 JP2016212071A JP2016212071A JP6332407B2 JP 6332407 B2 JP6332407 B2 JP 6332407B2 JP 2016212071 A JP2016212071 A JP 2016212071A JP 2016212071 A JP2016212071 A JP 2016212071A JP 6332407 B2 JP6332407 B2 JP 6332407B2
Authority
JP
Japan
Prior art keywords
light
incident
divided lights
coherent
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016212071A
Other languages
English (en)
Other versions
JP2017040934A (ja
Inventor
重 牧 夫 倉
重 牧 夫 倉
田 一 敏 石
田 一 敏 石
知 枝 高野倉
知 枝 高野倉
大八木 康 之
康 之 大八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Publication of JP2017040934A publication Critical patent/JP2017040934A/ja
Application granted granted Critical
Publication of JP6332407B2 publication Critical patent/JP6332407B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/103Scanning systems having movable or deformable optical fibres, light guides or waveguides as scanning elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/123Multibeam scanners, e.g. using multiple light sources or beam splitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/124Details of the optical system between the light source and the polygonal mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1066Beam splitting or combining systems for enhancing image performance, like resolution, pixel numbers, dual magnifications or dynamic range, by tiling, slicing or overlapping fields of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0252Diffusing elements; Afocal elements characterised by the diffusing properties using holographic or diffractive means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2046Positional adjustment of light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2286Particular reconstruction light ; Beam properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/32Systems for obtaining speckle elimination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3147Multi-projection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/36Scanning light beam

Description

本発明は、コヒーレント光を用いて複数の映像を表示する投射装置および投射型映像表示装置に係り、とりわけ、スペックルの発生を目立たなくさせることができる照明装置に関する。
スクリーンと、スクリーン上に映像光を投射する投射装置と、を有した投射型映像表示装置が、広く使用されている。典型的な投射型映像表示装置では、液晶マイクロディスプレイやDMD(デジタルマイクロミラーデバイス:Digital Micromirror Device)といった空間光変調器を用いて元になる二次元画像を生成し、この二次元画像を投射光学系を利用してスクリーン上に拡大投影することにより、スクリーン上に映像を表示している。
投射装置としては、いわゆる「光学式プロジェクタ」と呼ばれている市販品を含めて、様々な方式のものが提案されている。一般的な光学式プロジェクタでは、高圧水銀ランプなどの白色光源からなる照明装置を用いて液晶ディスプレイ等の空間光変調器を照明し、得られた変調画像をレンズでスクリーン上に拡大投影する方式を採っている。たとえば、下記の特許文献1には、超高圧水銀ランプで発生させた白色光を、ダイクロイックミラーによってR,G,Bの三原色成分に分け、これらの光を各原色ごとの空間光変調器へ導き、生成された各原色ごとの変調画像をクロスダイクロイックプリズムによって合成してスクリーン上に投影する技術が開示されている。
このような投射装置および投射型映像表示装置を応用したものとして、複数のスクリーンに、各スクリーンに対応する映像光を投射する投射装置が知られている。また、1台の情報処理端末から互いに異なる画像を表す信号を出力可能な技術も知られており、この技術と上記投射装置とを用いて、複数のスクリーンに映像を表示している。
複数のスクリーンに、各スクリーンに対応する映像光を投射するためには、複数の投射装置が必要となる。このとき、空間光変調器および投射光学系は複数必要であるが、各空間光変調器を照明する照明装置を共通化することで、投射装置を小型化できると考えられる。
ところで、従来の照明装置は、高圧水銀ランプやLEDなどを光源として用い、光源からの光を拡げて搬送している。このような従来の照明装置では、光を拡げるため、光量のロスがあり、また、光学系が大型化するという難点がある。
さらに、高圧水銀ランプなどの高輝度放電ランプは、寿命が比較的短く、光学式プロジェクタなどに利用した場合、頻繁にランプ交換を行う必要がある。また、各原色成分の光を取り出すために、ダイクロイックミラーなどの比較的大型な光学系を利用する必要があるため、上述のように装置全体が大型化するという難点がある。
このような問題に対処するため、レーザなどのコヒーレント光源を用いる方式も提案されている。たとえば、産業上で広く利用されている半導体レーザは、高圧水銀ランプなどの高輝度放電ランプに比べて極めて長寿命である。また、単一波長の光を生成可能な光源であるため、ダイクロイックミラーなどの分光装置が不要になり、装置全体を小型化できるという利点も有する。さらに、レーザはビーム径の制御が容易であるため、光のロスが起こり難い。
その一方で、レーザ光などのコヒーレント光源を用いる方式には、スペックルの発生といった新たな問題が生じている。スペックル(speckle)は、レーザ光などのコヒーレント光を散乱面に照射したときに現れる斑点状の模様であり、スクリーン上に発生すると斑点状の輝度ムラ(明るさのムラ)として観察され、観察者に対して生理的な悪影響を及ぼす要因になる。コヒーレント光を用いた場合にスペックルが発生する理由は、スクリーンなどの散乱反射面の各部で反射したコヒーレント光が、その極めて高い可干渉性ゆえに、互いに干渉し合うことによって生じるものとされている。たとえば、下記の非特許文献1には、スペックルの発生についての詳細な理論的考察がなされている。
このように、コヒーレント光源を用いる方式では、スペックルの発生という固有の問題が生じるため、スペックルの発生を抑制するための技術が提案されている。たとえば、下記の特許文献2には、レーザ光を散乱板に照射し、そこから得られる散乱光を空間光変調器に導くとともに、散乱板をモータによって回転駆動することにより、スペックルを低減する技術が開示されている。
特開2004−264512号公報 特開平6−208089号公報
Speckle Phenomena in Optics, Joseph W. Goodman, Roberts & Co., 2006
上述したとおり、コヒーレント光源を用いた投射装置および投射型映像表示装置において、スペックルを低減する技術が提案されているが、これまでに提案された手法では、スペックルを効率的かつ十分に抑制することはできていない。たとえば、前掲の特許文献2に開示されている方法では、レーザ光を散乱板に照射して散乱させてしまうため、一部のレーザ光は映像表示に全く貢献することなく浪費されてしまう。また、スペックル低減のために散乱板を回転させる必要があるが、そのような機械的な回転機構は比較的大型の装置となり、また、電力消費も大きくなる。更に、散乱板を回転させたとしても、照明光の光軸の位置は変わらないため、スクリーン上での拡散に起因して発生するスペックルを十分に抑制することはできない。
本件発明者らは、以上の点を踏まえて鋭意研究を重ね、その結果として、コヒーレント光を用いて複数の映像を表示する投射装置および投射型映像表示装置であって、スペックルを目立たなくさせることができ且つ光学系を小型化できる投射装置および投射型映像表示装置を発明するに至った。すなわち、本発明は、複数の映像を表示でき、スペックルを目立たなくさせることができ且つ光学系を小型化できる照明装置を提供することを目的とする。
本発明による第1の投射装置は、複数のスクリーンに、各スクリーンに対応する映像を表示する投射装置であって、
光を拡散し得る複数の光拡散素子を、含む光学素子と、
前記光学素子に複数の再生照明光を照射し、各再生照明光が対応する光拡散素子上を走査する照射装置と、
前記照射装置から前記各光拡散素子に入射して拡散された再生照明光によってそれぞれ照明される空間光変調器と、
前記各空間光変調器上に得られる変調画像を、対応するスクリーン上にそれぞれ投射する投射光学系と、を備え、
前記各光拡散素子の各位置に入射して拡散された前記再生照明光は、それぞれ、対応する空間光変調器を重ねて照明し、
前記照射装置は、
コヒーレント光を生成する光源と、
前記光源からの前記コヒーレント光を分割して複数の分割光を生成する光分割部と、
前記光分割部からの前記各分割光をそれぞれ伝送する光ファイバと、
前記光ファイバにより伝送された前記各分割光の進行方向をそれぞれ変化させて、当該各分割光が、前記各再生照明光として、対応する光拡散素子上を走査するようにする走査デバイスと、を有する。
本発明による第2の投射装置は、複数のスクリーンに、各スクリーンに対応する映像を表示する投射装置であって、
対応する被照明領域に散乱板の像を再生し得る複数の光拡散素子を、含む光学素子と、 前記光学素子に複数の再生照明光を照射し、各再生照明光が対応する光拡散素子上を走査する照射装置と、
前記各被照明領域と重なる位置にそれぞれ配置される空間光変調器と、
前記各空間光変調器上に得られる変調画像を、対応するスクリーン上にそれぞれ投射する投射光学系と、を備え、
前記照射装置から前記各光拡散素子の各位置に入射した前記再生照明光が、それぞれ、前記各光拡散素子に対応する散乱板の像を、対応する被照明領域に再生させ、
前記照射装置は、
コヒーレント光を生成する光源と、
前記光源からの前記コヒーレント光を分割して複数の分割光を生成する光分割部と、
前記光分割部からの前記各分割光をそれぞれ伝送する光ファイバと、
前記光ファイバにより伝送された前記各分割光の進行方向をそれぞれ変化させて、当該各分割光が、前記各再生照明光として、対応する光拡散素子上を走査するようにする走査デバイスと、を有する。
本発明による第1又は第2の投射装置において、
前記走査デバイスは、前記各分割光をそれぞれ反射するミラーを含み、前記各ミラーの向きを変化させることによって、前記各分割光の進行方向を変化させても良い。
本発明による第1又は第2の投射装置において、
前記走査デバイスは、前記各光ファイバの出射端の向きを変化させることによって、前記各分割光の進行方向を変化させても良い。
本発明による第1又は第2の投射装置において、
前記各分割光は、対応するミラー上の一点に照射され、前記各ミラー上の一点で反射された各分割光は、対応する一点からの発散光束を構成し、当該各発散光束は対応する光拡散素子に入射されても良い。
本発明による第1又は第2の投射装置において、
前記各分割光は、対応するミラー上の一点に照射され、前記各ミラー上の一点で反射された各分割光は、対応する一点からの発散光束を構成し、
前記各発散光束を構成する各光をそれぞれ一定の方向に進ませて平行光束を構成し、当該各平行光束を対応する光拡散素子に入射させる平行光生成手段をさらに有しても良い。
本発明による第3の投射装置は、
複数のスクリーンに、各スクリーンに対応する映像を表示する投射装置であって、
光を拡散し得る複数の光拡散素子を、含む光学素子と、
前記光学素子に複数の再生照明光を照射し、各再生照明光が対応する光拡散素子上を走査する照射装置と、
前記照射装置から前記各光拡散素子に入射して拡散された再生照明光によってそれぞれ照明される空間光変調器と、
前記各空間光変調器上に得られる変調画像を、対応するスクリーン上にそれぞれ投射する投射光学系と、を備え、
前記各光拡散素子の各位置に入射して拡散された前記再生照明光は、それぞれ、対応する空間光変調器を重ねて照明し、
前記照射装置は、
コヒーレント光を生成する光源と、
前記光源からの前記コヒーレント光を分割して複数の分割光を生成する光分割部と、
前記光分割部からの前記各分割光の進行方向をそれぞれ変化させる走査デバイスと、
前記走査デバイスから入射した前記各分割光をそれぞれ伝送して、前記各再生照明光として前記光学素子に照射する光ファイバと、を有し、
前記走査デバイスは、前記各再生照明光が対応する光拡散素子上を走査するようにする。
本発明による第4の投射装置は、
複数のスクリーンに、各スクリーンに対応する映像を表示する投射装置であって、
対応する被照明領域に散乱板の像を再生し得る複数の光拡散素子を、含む光学素子と、 前記光学素子に複数の再生照明光を照射し、各再生照明光が対応する光拡散素子上を走査する照射装置と、
前記各被照明領域と重なる位置にそれぞれ配置される空間光変調器と、
前記各空間光変調器上に得られる変調画像を、対応するスクリーン上にそれぞれ投射する投射光学系と、を備え、
前記照射装置から前記各光拡散素子の各位置に入射した前記再生照明光が、それぞれ、前記各光拡散素子に対応する散乱板の像を、対応する被照明領域に再生させ、
前記照射装置は、
コヒーレント光を生成する光源と、
前記光源からの前記コヒーレント光を分割して複数の分割光を生成する光分割部と、
前記光分割部からの前記各分割光の進行方向をそれぞれ変化させる走査デバイスと、
前記走査デバイスから入射した前記各分割光をそれぞれ伝送して、前記各再生照明光として前記光学素子に照射する光ファイバと、を有し、
前記走査デバイスは、前記各再生照明光が対応する光拡散素子上を走査するようにする。
本発明による第3又は第4の投射装置において、
前記各再生照明光はそれぞれ対応する光ファイバの出射端からの発散光束を構成し、当該各発散光束は対応する光拡散素子に入射されても良い。
本発明による第5の投射装置は、
複数のスクリーンに、各スクリーンに対応する映像を表示する投射装置であって、
光を拡散し得る複数の光拡散素子を、含む光学素子と、
前記光学素子に複数の再生照明光を照射し、各再生照明光が対応する光拡散素子上を走査する照射装置と、
前記照射装置から前記各光拡散素子に入射して拡散された再生照明光によってそれぞれ照明される空間光変調器と、
前記各空間光変調器上に得られる変調画像を、対応するスクリーン上にそれぞれ投射する投射光学系と、を備え、
前記各光拡散素子の各位置に入射して拡散された前記再生照明光は、それぞれ、対応する空間光変調器を重ねて照明し、
前記照射装置は、
コヒーレント光を生成する光源と、
前記光源からの前記コヒーレント光を分割して複数の分割光を生成する光分割部と、
前記光分割部からの前記各分割光をそれぞれ伝送するミラー光学系と、
前記ミラー光学系から入射した前記各分割光の進行方向をそれぞれ変化させて、当該各分割光が、前記各再生照明光として、対応する光拡散素子上を走査するようにする走査デバイスと、を有する。
本発明による第6の投射装置は、
複数のスクリーンに、各スクリーンに対応する映像を表示する投射装置であって、
対応する被照明領域に散乱板の像を再生し得る複数の光拡散素子を、含む光学素子と、 前記光学素子に複数の再生照明光を照射し、各再生照明光が対応する光拡散素子上を走査する照射装置と、
前記各被照明領域と重なる位置にそれぞれ配置される空間光変調器と、
前記各空間光変調器上に得られる変調画像を、対応するスクリーン上にそれぞれ投射する投射光学系と、を備え、
前記照射装置から前記各光拡散素子の各位置に入射した前記再生照明光が、それぞれ、前記各光拡散素子に対応する散乱板の像を、対応する被照明領域に再生させ、
前記照射装置は、
コヒーレント光を生成する光源と、
前記光源からの前記コヒーレント光を分割して複数の分割光を生成する光分割部と、
前記光分割部からの前記各分割光をそれぞれ伝送するミラー光学系と、
前記ミラー光学系から入射した前記各分割光の進行方向をそれぞれ変化させて、当該各分割光が、前記各再生照明光として、対応する光拡散素子上を走査するようにする走査デバイスと、を有する。
本発明による第5又は第6の投射装置において、
前記走査デバイスは、前記各分割光をそれぞれ反射するミラーを含み、前記各ミラーの向きを変化させることによって、前記各分割光の進行方向を変化させ、
前記各分割光は、対応するミラー上の一点に照射され、前記各ミラー上の一点で反射された各分割光は、対応する一点からの発散光束を構成し、当該各発散光束は対応する光拡散素子に入射されても良い。
本発明による第5又は第6の投射装置において、
前記走査デバイスは、前記各分割光をそれぞれ反射するミラーを含み、前記各ミラーの向きを変化させることによって、前記各分割光の進行方向を変化させ、
前記各分割光は、対応するミラー上の一点に照射され、前記各ミラー上の一点で反射された各分割光は、対応する一点からの発散光束を構成し、
前記各発散光束を構成する各光をそれぞれ一定の方向に進ませて平行光束を構成し、当該各平行光束を対応する光拡散素子に入射させる平行光生成手段をさらに有しても良い。
本発明による第7の投射装置は、
複数のスクリーンに、各スクリーンに対応する映像を表示する投射装置であって、
光を拡散し得る複数の光拡散素子を、含む光学素子と、
前記光学素子に複数の再生照明光を照射し、各再生照明光が対応する光拡散素子上を走査する照射装置と、
前記照射装置から前記各光拡散素子に入射して拡散された再生照明光によってそれぞれ照明される空間光変調器と、
前記各空間光変調器上に得られる変調画像を、対応するスクリーン上にそれぞれ投射する投射光学系と、を備え、
前記各光拡散素子の各位置に入射して拡散された前記再生照明光は、それぞれ、対応する空間光変調器を重ねて照明し、
前記照射装置は、
コヒーレント光を生成する光源と、
前記光源からの前記コヒーレント光の進行方向を変化させる走査デバイスと、
前記走査デバイスからの前記コヒーレント光をコリメートするコリメート光学系と、
コリメートされた前記コヒーレント光を分割して複数の分割光を生成する光分割部と、 前記光分割部からの前記各分割光をそれぞれ伝送して、前記各再生照明光として前記光学素子に照射するミラー光学系と、を有し、
前記走査デバイスは、前記各再生照明光が、対応する光拡散素子上を走査するようにする。
本発明による第8の投射装置は、
複数のスクリーンに、各スクリーンに対応する映像を表示する投射装置であって、
対応する被照明領域に散乱板の像を再生し得る複数の光拡散素子を、含む光学素子と、 前記光学素子に複数の再生照明光を照射し、各再生照明光が対応する光拡散素子上を走査する照射装置と、
前記各被照明領域と重なる位置にそれぞれ配置される空間光変調器と、
前記各空間光変調器上に得られる変調画像を、対応するスクリーン上にそれぞれ投射する投射光学系と、を備え、
前記照射装置から前記各光拡散素子の各位置に入射した前記再生照明光が、それぞれ、前記各光拡散素子に対応する散乱板の像を、対応する被照明領域に再生させ、
前記照射装置は、
コヒーレント光を生成する光源と、
前記光源からの前記コヒーレント光の進行方向を変化させる走査デバイスと、
前記走査デバイスからの前記コヒーレント光をコリメートするコリメート光学系と、
コリメートされた前記コヒーレント光を分割して複数の分割光を生成する光分割部と、 前記光分割部からの前記各分割光をそれぞれ伝送して、前記各再生照明光として前記光学素子に照射するミラー光学系と、を有し、
前記走査デバイスは、前記各再生照明光が、対応する光拡散素子上を走査するようにする。
本発明による第7又は第8の投射装置において、
前記各再生照明光はそれぞれ平行光束を構成し、当該各平行光束は対応する光拡散素子に入射されても良い。
本発明による投射型映像表示装置は、
上述した本発明による第1〜第8の投射装置のいずれかと、
前記各空間光変調器上に得られる変調画像をそれぞれ投射されるスクリーンと、を備える。
本発明による第1〜第8の投射装置のいずれかにおいて、
前記光拡散素子は、ホログラム記録媒体であってもよい。
本発明による第1、第3、第5および第7の投射装置のいずれかにおいて、
前記光拡散素子は、レンズアレイであってもよい。
本発明によれば、複数の映像を表示でき、スペックルを目立たなくさせることができ且つ光学系を小型化できる。
図1は、本発明による一実施の形態のうちの基本形態を説明するための図であって、基本形態の一具体例としての照明装置、投射装置および投射型映像表示装置の概略構成を示す図である。 図2は、図1に示された照明装置を示す図である。 図3は、図2の照明装置の光学素子をなすホログラム記録媒体を作製するための露光方法を説明するための図である。 図4は、図3の露光方法を経て作製されたホログラム記録媒体の作用を説明するための図である。 図5は、図1に示された照明装置の作用を説明するための斜視図である。 図6は、図1に対応する図であって、基本形態の第1の変形例に係る照明装置、投射装置および投射型映像表示装置の概略構成を示す図である。 図7は、図1に対応する図であって、基本形態の第2の変形例に係る照明装置、投射装置および投射型映像表示装置の概略構成を示す図である。 図8は、図1に対応する図であって、基本形態の第3の変形例に係る照明装置、投射装置および投射型映像表示装置の概略構成を示す図である。 図9は、図5に対応する図であって、照射装置の一変形例およびその作用を説明するための斜視図である。 図10は、図2に対応する図であって、照射装置の他の変形例およびその作用を説明するための斜視図である。
以下、図面を参照して本発明の一実施の形態について説明する。なお、本件明細書に添付する図面においては、図示と理解のしやすさの便宜上、適宜縮尺および縦横の寸法比等を、実物のそれらから変更し誇張してある。
本発明の一実施の形態に係る投射装置および投射型映像表示装置は、基本的な構成として、スペックルを効果的に防止することを可能にする構成を有している。
以下の説明では、まず、図1〜図5に例示した投射装置を含む投射型映像表示装置を参照して、スペックルを目立たなくさせた上で複数の映像を表示するための構成、および、当該構成に基づいて奏され得る作用効果を、基本形態として説明する。次に、この構成の変形態様を説明する。
<基本形態>
〔基本形態の構成〕
まず、コヒーレント光を投射する照明装置および投射装置を含み且つスペックルを目立たなくさせた上で複数の映像を表示できる投射型映像表示装置の構成を、主として図1〜図5を参照して説明する。
図1に示す投射型映像表示装置10は、3つのスクリーン15−1,15−2,15−3と、各スクリーン15−1,15−2,15−3の各々に対応するコヒーレント光からなる映像光を投射する投射装置20と、を有している。このうち投射装置20は、仮想面上に位置する3つの被照明領域LZ1、LZ2,LZ3をコヒーレント光で同時に照明する照明装置40と、各被照明領域LZ1〜LZ3と重なる位置にそれぞれ配置され照明装置40によってコヒーレント光で照明される3つの空間光変調器30−1,30−2,30−3と、各空間光変調器30−1〜30−3上に得られる各変調画像を、対応するスクリーン15−1〜15−3にそれぞれ投射する3つの投射光学系25−1,25−2,25−3と、を有している。
空間光変調器30−1〜30−3としては、例えば、透過型の液晶マイクロディスプレイを用いることができる。この場合、照明装置40によって面状に照明される各空間光変調器30−1〜30−3が、画素毎にコヒーレント光を選択して透過させることにより、各空間光変調器30−1〜30−3をなす各ディスプレイの画面上に変調画像が形成されるようになる。こうして得られた各変調画像(映像光)は、それぞれ投射光学系25−1〜25−3によって、変倍されて対応するスクリーン15−1〜15−3へ投射される。
これにより、各変調画像がスクリーン15−1〜15−3上に変倍(通常、拡大)されて表示され、観察者は当該3つの画像を観察することができる。
なお、空間光変調器30−1〜30−3としては、反射型のマイクロディスプレイを用いることも可能である。この場合、空間光変調器30−1〜30−3での反射光によって変調画像が形成され、空間光変調器30−1〜30−3へ照明装置40からコヒーレント光が照射される面と、空間光変調器30−1〜30−3から変調画像をなす映像光が進みでる面が同一の面となる。このような反射光を利用する場合、空間光変調器30−1〜30−3としてDMD(Digital Micromirror Device)などのMEMS素子を用いることも可能である。上述した特許文献2に開示された装置では、DMDが空間光変調器として利用されている。
また、各空間光変調器30−1〜30−3の入射面は、照明装置40によってコヒーレント光を照射される各被照明領域LZ1〜LZ3と同一の形状および大きさであることが好ましい。この場合、照明装置40からのコヒーレント光を、各スクリーン15−1〜15−3への映像の表示に高い利用効率で利用することができるからである。
スクリーン15−1〜15−3は、透過型スクリーンとして構成されていてもよいし、反射型スクリーンとして構成されていてもよい。スクリーン15−1〜15−3が反射型スクリーンとして構成されている場合には、観察者は、スクリーン15−1〜15−3に関して投射装置20と同じ側から、スクリーン15−1〜15−3で反射されるコヒーレント光によって表示される映像を観察することになる。一方、スクリーン15−1〜15−3が透過型スクリーンとして構成されている場合、観察者は、スクリーン15−1〜15−3に関して投射装置20とは反対の側から、スクリーン15−1〜15−3を透過したコヒーレント光によって表示される映像を観察することになる。
ところで、スクリーン15−1〜15−3に投射された各コヒーレント光は、拡散され、観察者に映像として認識されるようになる。この際、スクリーン上に投射されたコヒーレント光は拡散によって干渉し、スペックルを生じさせることになる。ただし、ここで説明する投射型映像表示装置10では、以下に説明する照明装置40が、時間的に角度変化するコヒーレント光で、空間光変調器30−1〜30−3が重ねられている被照明領域LZ1〜LZ3を照明するようになっている。より具体的には、以下に説明する照明装置40は、コヒーレント光からなる拡散光で各被照明領域LZ1〜LZ3を照明するが、この拡散光の入射角度が経時的に変化していく。この結果、スクリーン15−1〜15−3上でのコヒーレント光の拡散パターンも時間的に変化するようになり、コヒーレント光の拡散で生じるスペックルが時間的に重畳されて目立たなくなる。以下、このような照明装置40について、さらに詳細に説明する。
図1および図2に示された照明装置40は、再生照明光La1,La2,La3としてのコヒーレント光の進行方向をそれぞれ対応する被照明領域LZ1〜LZ3へ向ける光学素子50と、光学素子50へ再生照明光La1〜La3としてのコヒーレント光を照射する照射装置60と、を有している。光学素子50は、散乱板6の像5−1を再生し得るホログラム記録媒体(光拡散素子)55−1と、散乱板6の像5−2を再生し得るホログラム記録媒体(光拡散素子)55−2と、散乱板6の像5−3を再生し得るホログラム記録媒体(光拡散素子)55−3と、を含んでいる。つまり、光学素子50は、対応する被照明領域に散乱板の像を再生し得る3つのホログラム記録媒体55−1〜55−3を含む。
図示する例では、光学素子50はホログラム記録媒体55−1〜55−3から形成されている。
図示する例で光学素子50をなしているホログラム記録媒体55−1〜55−3は、照射装置60から照射される対応する再生照明光La1〜La3を受けて、当該再生照明光を高効率で回折することができる。とりわけ、ホログラム記録媒体55−1は、その各位置、言い換えると、その各点とも呼ばれるべき各微小領域に入射する再生照明光La1を回折することによって、散乱板6の像5−1を再生することができるようになっている。
ホログラム記録媒体55−2,55−3についても同様である。
一方、照射装置60は、光学素子50へ再生照明光La1〜La3を照射し、各再生照明光La1〜La3が、光学素子50の対応するホログラム記録媒体55−1〜55−3上を走査するようにする。したがって、ある瞬間に、照射装置60によって再生照明光La1を照射されているホログラム記録媒体55−1上の領域は、ホログラム記録媒体55−1の表面の一部分であって、とりわけ図示する例では、点と呼ばれるべき微小領域となっている。
そして、照射装置60から照射されてホログラム記録媒体55−1上を走査する再生照明光La1は、ホログラム記録媒体55−1上の各位置(各点または各領域(以下、同じ))に、当該ホログラム記録媒体55−1の回折条件を満たすような入射角度で、入射するようになっている。とりわけ、図2に示すように、照射装置60からホログラム記録媒体55−1の各位置に入射した再生照明光La1が、それぞれ、被照明領域LZ1に重ねて散乱板6の像5−1を再生するようになっている。すなわち、照射装置60からホログラム記録媒体55−1の各位置に入射した再生照明光La1は、それぞれ、光学素子50で拡散されて(拡げられて)、被照明領域LZ1に入射するようになる。
このことは、ホログラム記録媒体55−2,55−3についても同様である。つまり、照射装置60から各ホログラム記録媒体55−1〜55−3の各位置に入射した再生照明光La1〜La3が、それぞれ、各ホログラム記録媒体55−1〜55−3に対応する散乱板の像を、対応する被照明領域に再生させる。即ち、空間光変調器30−1〜30−3は、照射装置60から各ホログラム記録媒体55−1〜55−3に入射して拡散された再生照明光によってそれぞれ照明される。
このような再生照明光La1〜La3の回折作用を可能にするホログラム記録媒体55−1〜55−3として、図示する例では、フォトポリマーを用いた反射型の体積型ホログラムが用いられている。ここでは、一例としてホログラム記録媒体55−2の作成方法について説明する。このホログラム記録媒体55−2は、図3に示すように、実物の散乱板6からの散乱光を物体光Loとして用いて作製されている。図3には、ホログラム記録媒体55−2をなすようになる感光性を有したホログラム感光材料58に、互いに干渉性を有したコヒーレント光からなる参照光Lrと物体光Loとが露光されている状態が、示されている。
参照光Lrは、例えば、特定波長域のレーザ光を発振するレーザ光源からのレーザ光が用いられており、レンズからなる集光素子7を透過してホログラム感光材料58に入射する。図3に示す例では、参照光Lrをなすようになるレーザ光が、集光素子7の光軸と平行な平行光束として、集光素子7へ入射する。参照光Lrは、集光素子7を透過することによって、それまでの平行光束から収束光束に整形(変換)され、ホログラム感光材料58へ入射する。この際、収束光束Lrの焦点位置FPは、ホログラム感光材料58を越えた位置にある。すなわち、ホログラム感光材料58は、集光素子7と、集光素子7によって集光された収束光束Lrの焦点位置FPと、の間に配置されている。
次に、物体光Loは、照明光Lが入射された、たとえばオパールガラスからなる散乱板6からの散乱光として、ホログラム感光材料58に入射する。ここでは作製されるべきホログラム記録媒体55が透過型なので、物体光Loは、参照光Lrと同一面からホログラム感光材料58へ入射する。物体光Loは、参照光Lrと干渉性を有している必要がある。したがって、例えば、同一のレーザ光源から発振されたレーザ光を分割して、分割された一方を上述の参照光Lrとして利用し、他方を物体光Loとして使用することができる。
図3に示す例では、散乱板6の板面への法線方向と平行な平行光束が、散乱板6へ入射して散乱され、そして、散乱板6を透過した散乱光が物体光Loとしてホログラム感光材料58へ入射している。この方法によれば、通常安価に入手可能な等方散乱板を散乱板6として用いた場合に、散乱板6からの物体光Loが、ホログラム感光材料58に概ね均一な光量分布で入射することが可能となる。またこの方法によれば、散乱板6による散乱の度合いにも依存するが、ホログラム感光材料58の各位置に、散乱板6の出射面6aの全域から概ね均一な光量で参照光Lrが入射しやすくなる。このような場合には、得られたホログラム記録媒体55−2の各位置に入射した光が、それぞれ、散乱板6の像5−2を同様の明るさで再生すること、および、再生された散乱板6の像5−2が概ね均一な明るさで観察されることが実現され得る。
以上のようにして、参照光Lrおよび物体光Loがホログラム記録材料58に露光されると、参照光Lrおよび物体光Loが干渉してなる干渉縞が生成され、この光の干渉縞が、何らかのパターン(体積型ホログラムでは、一例として、屈折率変調パターン)として、ホログラム記録材料58に記録される。その後、ホログラム記録材料58の種類に対応した適切な後処理が施され、ホログラム記録媒体55−2が得られる。
同様にして、ホログラム記録媒体55−1,55−3も作成できる。
図4には、図3の露光工程を経て得られたホログラム記録媒体55−2の回折作用(再生作用)が示されている。図4に示すように、図3のホログラム感光材料58から形成されたホログラム記録媒体55−2は、露光工程で用いられたレーザ光と同一波長の光であって、露光工程における参照光Lrの光路を逆向きに進む光によって、そのブラッグ条件が満たされるようになる。すなわち、図4に示すように、露光工程時におけるホログラム感光材料58に対する焦点FPの相対位置(図3参照)と同一の位置関係をなすようにしてホログラム記録媒体55−2に対して位置する基準点SPから発散し、露光工程時における参照光Lrと同一の波長を有する発散光束は、再生照明光La2として、ホログラム記録媒体55−2に回折され、露光工程時におけるホログラム感光材料58に対する散乱板6の相対位置(図3参照)と同一の位置関係をなすようになるホログラム記録媒体55−2に対する特定の位置に、散乱板6の再生像5−2を生成する。
この際、散乱板6の再生像5−2を生成する再生光(再生照明光La2をホログラム記録媒体55−2で回折してなる光)Lb2は、露光工程時に散乱板6からホログラム感光材料58へ向かって進んでいた物体光Loの光路を逆向きに進む光として散乱板6の像5−2の各点を再生する。そして、上述したように、また図3に示すように、露光工程時に散乱板6の出射面6aの各位置から出射する散乱光Loが、それぞれ、ホログラム感光材料58の概ね全領域に入射するように拡散している(広がっている)。すなわち、ホログラム感光材料58上の各位置には、散乱板6の出射面6aの全領域からの物体光Loが入射し、結果として、出射面6a全体の情報がホログラム記録媒体55−2の各位置にそれぞれ記録されている。このため、図4に示された、再生照明光La2として機能する基準点SPからの発散光束をなす各光は、それぞれ単独で、ホログラム記録媒体55−2の各位置に入射して互いに同一の輪郭を有した散乱板6の像5−2を、互いに同一の位置(被照明領域LZ2)に再生することができる。
これらのことは、ホログラム記録媒体55−1,55−3についても同様である。
一方、このようなホログラム記録媒体55−1〜55−3からなる光学素子50に再生照明光La1〜La3としてコヒーレント光を照射する照射装置60は、次のように構成され得る。図1および図2に示された例において、照射装置60は、コヒーレント光を生成するレーザ光源61aと、レーザ光源61aからのコヒーレント光を分割して3つの分割光を生成する光分割部62と、光分割部62からの各分割光をそれぞれカップリングして伝送する光ファイバ64−1〜64−3と、光ファイバ64−1〜64−3から出射される各分割光の進行方向をそれぞれ変化させる走査デバイス65と、を有している。光分割部62は3つのハーフミラーを有し、これらによってレーザ光源61からのコヒーレント光を3つに分割する。光ファイバ64−1〜64−3は、入射端に光カップリング部CIを有し、出射端に光カップリング部COを有する。走査デバイス65は、各分割光の進行方向を経時的に変化させ、各分割光の進行方向が一定とはならないよう種々の方向へ向ける。この結果、走査デバイス65で進行方向を変化させられる各分割光が、各再生照明光La1〜La3として、光学素子50の対応するホログラム記録媒体55−1〜55−3の入射面上を走査するようになる。
とりわけ、図2に示された例では、走査デバイス65は、一つの軸線RA1を中心として回動可能な反射面66aを有した3つの反射デバイス66−1〜66−3を含んでいる。より具体的に説明すると、各反射デバイス66−1〜66−3は、一つの軸線RA1を中心として回動可能な反射面66aとしてのミラーを有したミラーデバイスとして、構成されている。ここでは、ミラーデバイス66−2について説明する。図2および図5に示すように、ミラーデバイス66−2は、ミラー66aの配向を変化させることによって、光ファイバ64−2の出射端(光カップリング部CO)からの分割光の進行方向を変化させるようになっている。この際、図2に示すように、ミラーデバイス66−2は、概ね、基準点SPにおいて光ファイバ64−2の出射端から分割光を受けるようになっている。
このため、ミラーデバイス66−2で進行方向を最終調整された分割光は、基準点SPからの発散光束の一光線をなし得る再生照明光La2(図4参照)として、光学素子50のホログラム記録媒体55−2へ入射し得る。結果として、照射装置60からの分割光がホログラム記録媒体55−2上を走査するようになり、且つ、ホログラム記録媒体55−2上の各位置に入射した分割光が同一の輪郭を有した散乱板6の像5−2を同一の位置(被照明領域LZ2)に再生するようになる。
なお、図2に示されたミラーデバイス66−2は、一つの軸線RA1に沿ってミラー66aを回動させるように、構成されている。図5は、図2に示された照明装置40の構成を斜視図として示している。図5に示された例では、ミラー66aの回動軸線RA1は、ホログラム記録媒体55−2の板面上に定義されたXY座標系(つまり、XY平面がホログラム記録媒体55−2の板面と平行となるXY座標系)のY軸と、平行に延びている。
そして、ミラー66aが、ホログラム記録媒体55−2の板面上に定義されたXY座標系のY軸と平行な軸線RA1を中心として回動するため、照射装置60からの分割光の光学素子50への入射点IPは、ホログラム記録媒体55−2の板面上に定義されたXY座標系のX軸と平行な方向に往復動するようになる。すなわち、図5に示された例では、照射装置60は、分割光がホログラム記録媒体55−2上を直線経路に沿って走査するように、光学素子50に分割光を照射する。
これらのことは、ミラーデバイス66−1,66−3についても同様である。
なお、実際上の問題として、ホログラム記録媒体55−1〜55−3を作成する際、ホログラム記録材料58が収縮する場合がある。このような場合、ホログラム記録材料58の収縮を考慮して、照射装置60から光学素子50に照射されるコヒーレント光の波長が調整されることが好ましい。したがって、コヒーレント光源61aで生成するコヒーレント光の波長は、図3の露光工程(記録工程)で用いた光の波長と厳密に一致させる必要はなく、ほぼ同一となっていてもよい。
また、同様の理由から、光学素子50のホログラム記録媒体55−1〜55−3へ入射する光の進行方向も、基準点SPからの発散光束に含まれる一光線と厳密に同一の経路を取っていなくとも、被照明領域LZ1〜LZ3に像5−1〜5−3を再生することができる。実際に、図2および図5に示す例では、走査デバイス65をなすミラーデバイス66−2のミラー(反射面)66aは、必然的に、その回動軸線RA1からずれる。したがって、基準点SPを通過しない回動軸線RA1を中心としてミラー66aを回動させた場合、ホログラム記録媒体55−2へ入射する光は、基準点SPからの発散光束をなす一光線とはならないことがある。しかしながら、実際には、図示された構成の照射装置60からの再生照明光La2としてのコヒーレント光によって、被照明領域LZ2に重ねて像5−2を実質的に再生することができる。このことは、ホログラム記録媒体55−1,55−3についても同様である。
〔基本形態の作用効果〕
次に、以上の構成からなる照明装置40、投射装置20および投射型映像表示装置10の作用について説明する。
まず、照射装置60は、再生照明光La1〜La3としてのコヒーレント光が光学素子50の対応するホログラム記録媒体55−1〜55−3上を走査するようにして、光学素子50へ再生照明光La1〜La3としてのコヒーレント光を照射する。具体的には、レーザ光源61aで一定方向に沿って進む特定波長のコヒーレント光が生成され、このコヒーレント光が分割部62で3つに分割され、分割された各分割光が対応する光ファイバ64−1〜64−3で伝送される。光ファイバ64−1〜64−3から出射した各分割光は、それぞれ走査デバイス65で進行方向を変えられる。ホログラム記録媒体55−1について説明すると、走査デバイス65は、ホログラム記録媒体55−1上の各位置に、当該位置でのブラッグ条件を満たす入射角度で特定波長のコヒーレント光である分割光を再生照明光La1として入射させる。この結果、各位置に入射したコヒーレント光は、それぞれ、ホログラム記録媒体55−1での回折により、被照明領域LZ1に重ねて散乱板6の像5−1を再生する。すなわち、照射装置60からホログラム記録媒体55−1の各位置に入射したコヒーレント光は、それぞれ、光学素子50で拡散されて(拡げられて)、被照明領域LZ1の全域に入射するようになる。このことは、ホログラム記録媒体55−2,55−3についても同様である。このようにして、照射装置60は、被照明領域LZ1〜LZ3を対応する再生照明光La1〜La3としてのコヒーレント光で照明するようになる。
図1に示すように、投射装置20においては、照明装置40の被照明領域LZ1〜LZ3と重なる位置に空間光変調器30−1〜30−3がそれぞれ配置されている。このため、空間光変調器30−1〜30−3は、それぞれ照明装置40によって面状に照明され、画素毎にコヒーレント光を選択して透過させることにより、3つの映像を形成するようになる。これらの各映像は、対応する投射光学系25−1〜25−3によって対応するスクリーン15−1〜15−3に投射される。スクリーン15−1〜15−3に投射されたコヒーレント光は、拡散され、観察者に映像として認識されるようになる。ただし、この際、スクリーン上に投射されたコヒーレント光は拡散によって干渉し、スペックルを生じさせることになる。
しかしながら、ここで説明してきた基本形態における照明装置40によれば、次に説明するように、スペックルを極めて効果的に目立たなくさせることができる。被照明領域LZ1〜LZ3のそれぞれについて同様の原理でスペックルを目立たなくさせることができるので、以下、被照明領域LZ1のみについて説明する。
前掲の非特許文献1によれば、スペックルを目立たなくさせるには、偏光・位相・角度・時間といったパラメータを多重化し、モードを増やすことが有効であるとされている。
ここでいうモードとは、互いに無相関なスペックルパターンのことである。例えば、複数のレーザ光源から同一のスクリーンに異なる方向からコヒーレント光を投射した場合、レーザ光源の数だけ、モードが存在することになる。また、同一のレーザ光源からのコヒーレント光を、時間を区切って異なる方向から、スクリーンに投射した場合、人間の目で分解不可能な時間の間にコヒーレント光の入射方向が変化した回数だけ、モードが存在することになる。そして、このモードが多数存在する場合には、光の干渉パターンが無相関に重ねられ平均化され、結果として、観察者の目によって観察されるスペックルが目立たなくなるものと考えられている。
上述した照射装置60では、コヒーレント光が、ホログラム記録媒体55−1上を走査するようにして、光学素子50に照射される。また、照射装置60からホログラム記録媒体55−1の各位置に入射したコヒーレント光は、それぞれ、同一の被照明領域LZ1の全域をコヒーレント光で照明するが、当該被照明領域LZ1を照明するコヒーレント光の照明方向は互いに異なる。そして、コヒーレント光が入射するホログラム記録媒体55−1上の位置が経時的に変化するため、被照明領域LZ1へのコヒーレント光の入射方向も経時的に変化する。
被照明領域LZ1を基準にして考えると、被照明領域LZ1内の各位置には絶えずコヒーレント光が入射してくるが、その入射方向は、図1に矢印A1で示すように、常に変化し続けることになる。結果として、空間光変調器30−1の透過光によって形成された映像の各画素をなす光が、図1に矢印A2で示すように経時的に光路を変化させながら、スクリーン15−1の特定の位置に投射されるようになる。
なお、コヒーレント光はホログラム記録媒体55−1上を連続的に走査する。これにともなって、照射装置60から被照明領域LZ1へのコヒーレント光の入射方向も連続的に変化するとともに、投射装置20からスクリーン15−1へのコヒーレント光の入射方向も連続的に変化する。ここで、投射装置20からスクリーン15−1へのコヒーレント光の入射方向が僅か(例えば0.数°)だけ変化すれば、スクリーン15−1上に生じるスペックルのパターンも大きく変化し、無相関なスペックルパターンが重畳されることになる。加えて、実際に市販されているMEMSミラーやポリゴンミラー等の走査デバイス65の周波数は通常数百Hz以上であり、数万Hzにも達する走査デバイス65も珍しくない。
以上のことから、上述してきた基本形態によれば、映像を表示している各スクリーン15−1〜15−3上の各位置において時間的にコヒーレント光の入射方向が変化していき、且つ、この変化は、人間の目で分解不可能な速さであり、結果として、人間の目には、相関の無いコヒーレント光の散乱パターンが多重化されて観察されることになる。したがって、各散乱パターンに対応して生成されたスペックルが重ねられ平均化されて、観察者に観察されることになる。これにより、スクリーン15−1〜15−3に表示されている映像を観察する観察者に対して、スペックルを極めて効果的に目立たなくさせることができる。
なお、人間によって観察される従来のスペックルには、スクリーン15−1〜15−3上でのコヒーレント光の散乱を原因とするスクリーン側でのスペックルだけでなく、スクリーンに投射される前におけるコヒーレント光の散乱を原因とする投射装置側でのスペックルも発生し得る。この投射装置側で発生したスペックルパターンは、空間光変調器30−1〜30−3を介してスクリーン15−1〜15−3上に投射されることによって、観察者に認識され得るようにもなる。しかしながら、上述してきた基本形態によれば、ホログラム記録媒体55−1について考えると、コヒーレント光がホログラム記録媒体55−1上を連続的に走査し、そしてホログラム記録媒体55−1の各位置に入射したコヒーレント光が、それぞれ、空間光変調器30−1が重ねられた被照明領域LZ1の全域を照明するようになる。すなわち、ホログラム記録媒体55−1が、スペックルパターンを形成していたそれまでの波面とは別途の新たな波面を形成し、複雑且つ均一に、被照明領域LZ1、さらには、空間光変調器30−1を介してスクリーン15−1を照明するようになる。このようなホログラム記録媒体55−1での新たな波面の形成により、投射装置側で発生するスペックルパターンは不可視化されることになる。このことは、ホログラム記録媒体55−1,55−3についても同様である。
ところで、前掲の非特許文献1には、スクリーン上に生じたスペックルの程度を示すパラメータとして、スペックルコントラスト(単位%)という数値を用いる方法が提案されている。このスペックルコントラストは、本来は均一の輝度分布をとるべきテストパターン映像を表示した際に、スクリーン上に実際に生じる輝度のばらつきの標準偏差を、輝度の平均値で除した値として定義される量である。このスペックルコントラストの値が大きければ大きいほど、スクリーン上のスペックル発生程度が大きいことを意味し、観察者に対して、斑点状の輝度ムラ模様がより顕著に提示されていることを示す。
以下、スクリーン15−1上のスペックルコントラストについて説明する。図1〜図5を参照しながら説明してきた基本形態の投射型映像表示装置10について、スクリーン15−1上のスペックルコントラストを測定したところ、3.0%となった(条件1)。また、上述の光学素子50として、反射型の体積型ホログラムに代えて、特定の再生照明光を受けた場合に散乱板6−1の像5−1を再生し得るように計算機を用いて設計された凹凸形状を有する計算機合成ホログラム(CGH)としてのレリーフ型ホログラムを用いた場合についてのスペックルコントラストは3.7%となった(条件2)。HDTV(高精細テレビ)の映像表示用途にて、観察者が肉眼観察した場合に輝度ムラ模様がほとんど認識できないレベルとして、スペックルコントラスト6.0%以下という基準(たとえば、WO/2001/081996号公報参照)が示されているが、上述してきた基本形態はこの基準を十分に満たしている。また、実際に肉眼観察したところ、視認され得る程度の輝度ムラ(明るさのムラ)は発生していなかった。
一方、レーザ光源からのレーザ光を平行光束に整形して空間光変調器30−1に入射させた場合、すなわち、図1に示された投射型映像表示装置10の空間光変調器30−1に、走査デバイス65や光学素子50を介さず、レーザ光源61aからのコヒーレント光を平行光束として入射させた場合、スペックルコントラストは20.7%となった(条件3)。この条件下では、肉眼観察により、斑点状の輝度ムラ模様がかなり顕著に観察された。
また、光源61aを緑色のLED(非コヒーレント光源)に交換し、このLED光源からの光を空間光変調器30−1に入射させた場合、すなわち、図1に示された投射型映像表示装置10の空間光変調器30−1に、走査デバイス65や光学素子50を介さず、LED光源からの非コヒーレント光を平行光束として入射させた場合、スペックルコントラストは4.0%となった(条件4)。この条件下では、肉眼観察で視認され得る程度の輝度ムラ(明るさのムラ)は発生していなかった。
条件1および条件2の結果が、条件3の結果よりも極めて良好であり、さらに、条件4の測定結果と比較しても良好となった。既に述べたとおり、スペックルの発生という問題は、実用上、レーザ光などのコヒーレント光源を用いた場合に生じる固有の問題であり、LEDなどの非コヒーレント光源を用いた装置では、考慮する必要のない問題である。加えて、条件1および条件2では、条件4と比較して、スペックル発生の原因となり得る光学素子50が追加されている。これらの点から、条件1および条件2によれば、スペックル不良に十分に対処することができたと言える。
加えて、上述してきた基本形態によれば、次の利点を享受することもできる。
上述してきた基本形態によれば、スペックルを目立たなくさせるための光学素子50が、照射装置60から照射されるコヒーレント光のビーム形態を整形および調整するための光学部材としても機能し得る。したがって、光学系を小型且つ簡易化することができる。
また、上述してきた基本形態によれば、レーザ光源61aからのコヒーレント光を用いて分割光を生成すると共に、光ファイバ64−1〜64−3を用いてコヒーレント光である各分割光を伝送するようにしたので、光量のロスを少なくできると共に、光学系の配置の制約を少なくできる。
また、上述してきた基本形態によれば、3つのスクリーン15−1〜15−3に、各スクリーンに対応する映像を同時に表示できるので、映像を1つのスクリーンのみに表示する投射型映像表示装置よりも、表示する情報量を増やすことができる。さらに、1つの映像を3つのスクリーン15−1〜15−3にわたってシームレスに表示するパノラマ表示も可能となる。これにより、本基本形態の投射型映像表示装置を、高臨場感を有するディスプレイとして利用できる。
また、上述してきた基本形態によれば、ホログラム記録媒体55−1の各位置に入射する再生照明光La1としてのコヒーレント光が、互いに同一の位置に、散乱板6の像5−1を生成するとともに、当該像5−1に重ねて空間光変調器30−1が配置されている。
ホログラム記録媒体55−2,55−3についても同様である。このため、ホログラム記録媒体55−1〜55−3で回折された光を、高効率で、映像形成のために利用することが可能となり、光源61aからの光の利用効率の面においても優れる。
なお、走査デバイス65は、各光ファイバ64−1〜64−3の出射端(光カップリング部CO)の向きを変化させることによって、各分割光の進行方向を変化させるようにしても良い。この場合、ミラーデバイス66−1〜66−3は不要となる。
〔基本形態への変形〕
図1〜5に例示された一具体例に基づいて説明してきた基本形態に対して、種々の変更を加えることが可能である。以下、図面を参照しながら、変形の一例について説明する。
以下の説明で用いる図面では、上述した基本形態における対応する部分に対して用いた符号と同一の符号を用いており、重複する説明を省略する。
(投射装置)
基本形態では、各空間光変調器30−1〜30−3が対応する被照明領域LZ−1〜LZ−3と重なる位置に配置される一例について説明したが、各空間光変調器30−1〜30−3は対応する被照明領域LZ−1〜LZ−3と厳密に重なる位置に配置されていなくてもよい。例えば、図1の構成において、空間光変調器30−1は、被照明領域LZ−1より光学素子50側に配置されてもよく、被照明領域LZ−1より投射光学系25−1側に配置されてもよい。空間光変調器30−2,30−3についても同様である。つまり、各ホログラム記録媒体55−1〜55−3の各位置に入射して拡散された再生照明光が、それぞれ、対応する空間光変調器30−1〜30−3を重ねて照明するように、ホログラム記録媒体55−1〜55−3と空間光変調器30−1〜30−3が配置されていればよい。
(照射装置の第1の変形例)
この変形例において、照射装置60の構成のみが前述の基本形態とは異なる。
図6は、図1に対応する図であって、基本形態の第1の変形例に係る照明装置、投射装置および投射型映像表示装置の概略構成を示す図である。
図6に示すように、照射装置60は、コヒーレント光を生成するレーザ光源61aと、レーザ光源61からのコヒーレント光を分割して3つの分割光を生成する光分割部62と、光分割部62からの各分割光の進行方向をそれぞれ変化させる走査デバイス65と、走査デバイス65からの各分割光をそれぞれ収束させる収束レンズ63−1〜63−3と、収束された各分割光をそれぞれカップリングして伝送して、各再生照明光La1〜La3として光学素子50に照射する光ファイバ64−1〜64−3と、を有している。
光ファイバ64−1〜64−3は、入射端に光カップリング部CIを有し、出射端に光カップリング部COを有する。収束レンズ63−1は、進行方向を変化させられた分割光を、対応する光ファイバ64−1の光カップリング部CIに収束させる。収束レンズ63−2,63−3についても同様に機能する。走査デバイス65は、各分割光の進行方向を経時的に変化させ、各分割光の進行方向が一定とはならないよう種々の方向へ向ける。この結果、走査デバイス65で進行方向を変化させられる各分割光が、各再生照明光La1〜La3として、光学素子50の対応するホログラム記録媒体55−1〜55−3の入射面上を走査するようになる。つまり、各再生照明光La1〜La3はそれぞれ対応する光ファイバ64−1〜64−3の出射端からの発散光束を構成し、当該各発散光束は対応するホログラム記録媒体55−1〜55−3に入射される。
本変形例によれば、前述の基本形態と同様な効果が得られる。
(照射装置の第2の変形例)
この変形例においても、照射装置60の構成のみが前述の基本形態とは異なる。
図7は、図1に対応する図であって、基本形態の第2の変形例に係る照明装置、投射装置および投射型映像表示装置の概略構成を示す図である。
図7に示すように、照射装置60は、コヒーレント光を生成するレーザ光源61aと、レーザ光源61aからのコヒーレント光を分割して3つの分割光を生成する光分割部62と、光分割部62からの各分割光をそれぞれ伝送するミラー光学系68−1〜68−3と、ミラー光学系68−1〜68−3から入射した各分割光の進行方向をそれぞれ変化させる走査デバイス65と、を有している。
ミラー光学系68−1〜68−3は、複数のミラーにより構成されており、これらのミラーによる反射で、入射した光を伝送するように構成されている。走査デバイス65は、各分割光の進行方向を経時的に変化させ、各分割光の進行方向が一定とはならないよう種々の方向へ向ける。この結果、走査デバイス65で進行方向を変化させられる各分割光が、各再生照明光La1〜La3として、光学素子50の対応するホログラム記録媒体55−1〜55−3の入射面上を走査するようになる。
本変形例によれば、前述の基本形態と同様な効果が得られる。
(照射装置の第3の変形例)
この変形例においても、照射装置60の構成のみが前述の基本形態とは異なる。
図8は、図1に対応する図であって、基本形態の第3の変形例に係る照明装置、投射装置および投射型映像表示装置の概略構成を示す図である。
図8に示すように、照射装置60は、コヒーレント光を生成するレーザ光源61aと、レーザ光源61aからのコヒーレント光の進行方向を変化させる走査デバイス65と、走査デバイス65からのコヒーレント光を平行光にコリメートするコリメート光学系69と、平行光にコリメートされたコヒーレント光を分割して3つの分割光を生成する光分割部62と、光分割部62からの各分割光をそれぞれ伝送して、各再生照明光La1〜La3として光学素子50に照射するミラー光学系68−1〜68−3と、を有している。
走査デバイス65は、コヒーレント光の進行方向を経時的に変化させ、コヒーレント光の進行方向が一定とはならないよう種々の方向へ向ける。進行方向を経時的に変化させられるコヒーレント光はコリメートされ、コリメートされた光が光分割部62を構成するハーフミラーに入射する位置は経時的に変化する。これにより、光分割部62で分割された3つの分割光がミラー光学系68−1〜68−3に入射する位置が経時的に変化する。この結果、ミラー光学系68−1〜68−3からの各分割光が、各再生照明光La1〜La3として、光学素子50の対応するホログラム記録媒体55−1〜55−3の入射面上を走査するようになる。つまり、各再生照明光La1〜La3はそれぞれ平行光束を構成し、当該各平行光束は対応するホログラム記録媒体に入射される。
本変形例によれば、前述の基本形態と同様な効果が得られる。
(空間光変調器、投射光学系、スクリーン)
上述した形態によれば、スペックルを効果的に目立たなくさせることができる。ただし、この作用効果は、主として照明装置40に起因したものである。そして、この照明装置40を、種々の既知な空間光変調器、投射光学系、スクリーン等と組み合わせても、スペックルを効果的に目立たなくさせることができる。この点から、空間光変調器、投射光学系、スクリーンは、例示したものに限られず、種々の既知な部材、部品、装置等を用いることができる。
(投射型映像表示装置)
また、ホログラム記録媒体55−1〜55−3が、空間光変調器30−1〜30−3の入射面に対応した形状を有した平面状の散乱板6を用いて、干渉露光法により作製される例を示したが、これに限られず、ホログラム記録媒体55−1〜55−3が、何らかのパターンを有した散乱板を用いて、干渉露光法により作製されてもよい。この場合、ホログラム記録媒体55−1〜55−3によって、何らかのパターンを持った散乱板の像が再生されるようになる。言い換えると、光学素子50(ホログラム記録媒体55−1〜55−3)は、何らかのパターンを持った被照明領域LZ1〜LZ3を照明するようになる。この光学素子50を用いる場合、空間光変調器30−1〜30−3を、さらには投射光学系25−1〜25−3をも上述の基本形態から省き、スクリーン15−1〜15−3を被照明領域LZ1〜LZ3と重なる位置に配置することによって、スクリーン15−1〜15−3上にホログラム記録媒体55−1〜55−3に記録された何らかのパターンを表示することが可能となる。この表示装置においても、コヒーレント光がホログラム記録媒体55−1〜55−3上を走査するように、照射装置60が光学素子50にコヒーレント光を照射することによって、スクリーン15−1〜15−3上でのスペックルを目立たなくさせることができる。
(照射装置)
上述した形態では、照射装置60が、レーザ光源61aと、走査デバイス65と、を有する例を示した。走査デバイス65は、コヒーレント光の進行方向を反射によって変化させる一軸回動型のミラーデバイス66−1〜66−3からなる例を示したが、これに限られない。ここではミラーデバイス66−2について説明する。走査デバイス65は、図9に示すように、ミラーデバイス66−2のミラー(反射面66a)が、第1の回動軸線RA1だけでなく、第1の回動軸線RA1と交差する第2の回動軸線RA2を中心としても回動可能となっていてもよい。図9に示された例では、ミラー66aの第2の回動軸線RA2は、ホログラム記録媒体55−2の板面上に定義されたXY座標系のY軸と平行に延びる第1回動軸線RA1と、直交している。そして、ミラー66aが、第1軸線RA1および第2軸線RA2の両方を中心として回動可能なため、照射装置60からのコヒーレント光の光学素子50への入射点IPは、ホログラム記録媒体55−2の板面上で二次元方向に移動可能となる。このため、一例として図9に示されているように、コヒーレント光の光学素子50への入射点IPが円周上を移動するようにすることもできる。ミラーデバイス66−1,66−3についても同様に構成できる。
また、走査デバイス65が、4つ以上のミラーデバイスを含んでいてもよい。この場合、例えば、ミラーデバイス66−2のミラー66aが、単一の軸線を中心としてのみ回動可能であっても、別のミラーデバイスにより、照射装置60からのコヒーレント光の光学素子50への入射点IPを、ホログラム記録媒体55−2の板面上で二次元方向に移動させることができる。ミラーデバイス66−1,66−3についても同様に構成できる。
なお、走査デバイス65に含まれるミラーデバイス66−1〜66−3の具体例としては、MEMSミラー、ポリゴンミラー等を挙げることができる。
また、走査デバイス65は、反射によってコヒーレント光の進行方向を変化させる反射デバイス(一例として、上述してきたミラーデバイス66−1〜66−3)以外のデバイスを含んで構成されていてもよい。例えば、走査デバイス65が、屈折プリズムやレンズ等を含んでいていてもよい。
そもそも、走査デバイス65は必須ではなく、照射装置60の光源61aが、光学素子50に対して変位可能(移動、揺動、回転)に構成され、光源61aの光学素子に対する変位によって、光源61aから照射されたコヒーレント光に基づく再生照明光La1〜La3が、対応するホログラム記録媒体55−1〜55−3上を走査するようにしてもよい。
さらに、照射装置60の光源61aが、線状光線として整形されたレーザ光を発振する前提で説明してきたが、これに限られない。とりわけ、上述した形態では、光学素子50の各位置に照射された再生照明光La1としてのコヒーレント光は、光学素子50によって、被照明領域LZ1の全域に入射するようになる光束に整形される。再生照明光La2,La3についても同様である。したがって、照射装置60の光源61aから光学素子50に照射される各再生照明光La1〜La3としてのコヒーレント光は精確に整形されていなくとも不都合は生じない。このため、光源61aから発生されるコヒーレント光は、発散光であってもよい。また、光源61aから発生されるコヒーレント光の断面形状は、円でなく、楕円等であってもよい。さらには、光源61aから発生されるコヒーレント光の横モードがマルチモードであってもよい。
なお、光源61aが発散光束を発生させる場合、各再生照明光La1〜La3としてのコヒーレント光は、光学素子50のホログラム記録媒体55−1〜55−3に入射する際に、点ではなくある程度の面積を持った領域に入射することになる。この場合、ホログラム記録媒体55−1〜55−3で回折されて対応する被照明領域LZ1〜LZ3の各位置に入射する光は、角度を多重化されることになる。言い換えると、各瞬間において、被照明領域LZ1〜LZ3の各位置には、或る程度の角度範囲の方向からコヒーレント光が入射する。このような角度の多重化によって、スペックルをさらに効果的に目立たなくさせることができる。
さらに、上述した形態において、照射装置60が、発散光束に含まれる一光線の光路をたどるようにして、コヒーレント光を光学素子50へ入射させる例を示したが、これに限られない。例えば、上述した形態において、図10に示す様に、走査デバイス65が、コヒーレント光の光路に沿ってミラーデバイス66−2の下流側に配置された集光レンズ(平行光生成手段)67を、さらに含むようにしてもよい。この場合、発散光束を構成する光線の光路を進むミラーデバイス66−2からの光が、集光レンズ67によって、一定の方向に進む光となる。すなわち、照射装置60は、平行光束を構成する光線の光路をたどるようにして、再生照明光La2としてのコヒーレント光を光学素子50へ入射させるようになる。このような例では、ホログラム記録媒体55−2を作製する際の露光工程において、参照光Lrとして、上述した収束光束に代えて、平行光束を用いることになる。このようなホログラム記録媒体55−2は、より簡単に作製および複製することができる。
ミラーデバイス66−1,66−3についても同様に、下流側に集光レンズ67を配置できる。
図7に示した照射装置の第2の変形例についても同様に、走査デバイス65が、コヒーレント光の光路に沿ってミラーデバイス66−1〜66−3の下流側にそれぞれ配置された集光レンズを、さらに含むようにしてもよい。
上述した形態では、照射装置60が単一のレーザ光源61aのみを有する例を示したが、これに限られない。例えば、照射装置60が、同一波長域の光を発振する複数の光源を含んでいても良い。この場合、照明装置40は、被照明領域LZ1〜LZ3をより明るく照明することが可能となる。また、異なる固体のレーザ光源からのコヒーレント光は、互いに干渉性を有しない。したがって、散乱パターンの多重化がさらに進み、スペックルをさらに目立たなくさせることができる。
また、照射装置60が、異なる波長域のコヒーレント光を発生させる複数の光源を含んでいてもよい。この例によれば、単一レーザ光では表示することが困難な色を加法混色によって生成し、当該色で被照明領域LZ1〜LZ3を照明することができる。また、この場合、投射装置20または透過型映像表示装置10において、空間光変調器30−1〜30−3が、例えばカラーフィルタを含んでおり、各波長域のコヒーレント光毎に変調画像の形成が可能である場合には、複数色で映像を表示することが可能となる。あるいは、空間光変調器30−1〜30−3がカラーフィルタを含んでいなくとも、照射装置60が各波長域のコヒーレント光を時分割的に照射し、且つ、空間光変調器30−1〜30−3が、照射されている波長域のコヒーレント光に対応した変調画像を形成するように時分割的に作動する場合にも、複数色で映像を表示することが可能となる。とりわけ、投射装置20または透過型映像表示装置10において、照射装置60が、赤色光に対応する波長域のコヒーレント光を発生する光源と、緑色光に対応する波長域のコヒーレント光を発生する光源と、青色光に対応する波長域のコヒーレント光を発生する光源と、を含んでいる場合には、フルカラーで映像を表示することが可能となる。
なお、光学素子50に含まれるホログラム記録媒体55−1〜55−3は、波長選択性を有している。したがって、照射装置60が異なる波長域の光源を含んでいる場合には、ホログラム記録媒体55−1〜55−3が、各光源で発生されるコヒーレント光の波長域にそれぞれ対応したホログラム要素を、積層した状態で、含むようにしてもよい。各波長域のコヒーレント光用のホログラム要素は、例えば、図3および図4を参照しながら既に説明した方法において、露光用の光(参照光Lrおよび物体光Lo)として、対応する波長域のコヒーレント光を用いることにより、作製され得る。また、各波長域のホログラム要素を積層してホログラム記録媒体55−1〜55−3を作製することに代え、各波長域のコヒーレント光からなる物体光Loおよび参照光Lrを、それぞれ同時にホログラム感光材料58に露光して、単一のホログラム記録媒体55−1〜55−3によって、複数の波長域の光をそれぞれ回折するようにしてもよい。
(光学素子)
上述した形態において、光学素子50が、フォトポリマーを用いた反射型の体積型ホログラム55−1〜55−3からなる例を示したが、これに限られない。また、光学素子50は、銀塩材料を含む感光媒体を利用して記録するタイプの体積型ホログラムを含んでもよい。さらに、光学素子50は、反射型の体積型ホログラム記録媒体を含んでいてもよいし、レリーフ型(エンボス型)のホログラム記録媒体を含んでいてもよい。
ただし、レリーフ(エンボス)型ホログラムは、表面の凹凸構造によってホログラム干渉縞の記録が行われる。しかしながら、このレリーフ型ホログラムの場合、表面の凹凸構造による散乱が、新たなスペックル生成要因となる可能性があり、この点において体積型ホログラムの方が好ましい。体積型ホログラムでは、媒体内部の屈折率変調パターン(屈折率分布)としてホログラム干渉縞の記録が行われるため、表面の凹凸構造による散乱による影響を受けることはない。
もっとも、体積型ホログラムでも、銀塩材料を含む感光媒体を利用して記録するタイプのものは、銀塩粒子による散乱が新たなスペックル生成要因となる可能性がある。この点において、ホログラム記録媒体55−1〜55−3としては、フォトポリマーを用いた体積型ホログラムの方が好ましい。
反射型のホログラム記録媒体は、透過型のホログラム記録媒体に比べて、波長選択性が高い。すなわち、反射型のホログラム記録媒体は、異なる波長に対応した干渉縞を積層させても、所望の層のみで所望の波長のコヒーレント光を回折させることができる。また、0次光の影響を除去する点でも、反射型のホログラム記録媒体は優れている。
一方、透過型のホログラム記録媒体は、回折可能なスペクトルが広く、レーザ光源の許容度が広いが、異なる波長に対応した干渉縞を積層させると、所望の層以外の層でも所望の波長のコヒーレント光が回折されてしまう。よって、一般には、透過型のホログラム記録媒体は、積層構造にするのが困難である。
また、図3に示す露光工程では、いわゆるフレネルタイプのホログラム記録媒体が作成されることになるが、レンズを用いた記録を行うことにより得られるフーリエ変換タイプのホログラム記録媒体を作成してもかまわない。ただ、フーリエ変換タイプのホログラム記録媒体を用いる場合には、像再生時にもレンズを使用してもよい。
また、ホログラム記録媒体55−1〜55−3に形成されるべき縞状パターン(屈折率変調パターンや凹凸パターン)は、現実の物体光Loおよび参照光Lrを用いることなく、予定した再生照明光La1〜La3の波長や入射方向、並びに、再生されるべき像の形状や位置等に基づき計算機を用いて設計されてもよい。このようにして得られたホログラム記録媒体55−1〜55−3は、計算機合成ホログラムとも呼ばれる。また上述した変形例のように波長域の互いに異なる複数のコヒーレント光が照射装置60から照射される場合には、計算機合成ホログラムとしてのホログラム記録媒体55−1〜55−3は、各波長域のコヒーレント光にそれぞれ対応して設けられた複数の領域に平面的に区分けされ、各波長域のコヒーレント光は対応する領域で回折されて像を再生するようにしてもよい。
さらに、上述した形態において、光学素子50が、各位置に照射されたコヒーレント光を拡げて、当該拡げたコヒーレント光を用いて対応する被照明領域LZ1〜LZ3を照明するホログラム記録媒体55−1〜55−3を、有している例を示したが、これに限られない。光学素子50は、ホログラム記録媒体55−1〜55−3に代えて或いはホログラム記録媒体55−1〜55−3に加えて、それぞれが入射光の進行方向を変化させるとともに拡散させて、複数の被照明領域LZ1〜LZ3のうちの対応する被照明領域を照明し得る光学要素としての複数のレンズアレイ(光拡散素子)を有するようにしてもよい。このようなレンズアレイの具体例として、拡散機能を付与された全反射型または屈折型フレネルレンズや、フライアイレンズ等を挙げることができる。このような照明装置40においても、照射装置60が、各レンズアレイ上をコヒーレント光が走査するようにして、光学素子50にコヒーレント光を照射するようにし、且つ、照射装置60から光学素子50の各位置に入射したコヒーレント光が、それぞれ対応するレンズアレイによって進行方向を変化させられて対応する被照明領域LZ1〜LZ3を照明するよう、照射装置60および光学素子50を構成しておくことにより、スペックルを効果的に目立たなくさせることができる。
(照明方法)
上述した形態において、照射装置60が光学素子50上でコヒーレント光を一次元方向に走査可能とするように構成され、且つ、光学素子50のホログラム記録媒体55−1〜55−3(またはレンズアレイ)が各位置に照射されたコヒーレント光を二次元方向に拡散するよう(拡げるように、発散させるように)に構成され、これにより、照明装置40が二次元的な被照明領域LZ1〜LZ3を照明する例を示した。ただし、既に説明してきたように、このような例に限定されることはなく、例えば、照射装置60が光学素子50上でコヒーレント光を二次元方向に走査可能とするように構成され、且つ、光学素子50のホログラム記録媒体55−1〜55−3(またはレンズアレイ)が各位置に照射されたコヒーレント光を二次元方向に拡散するよう(拡げるように、発散させるように)に構成され、これにより、照明装置40が二次元的な被照明領域LZ1〜LZ3を照明してもよい(図9を参照しながら、既に説明した態様)。
(変形例の組み合わせ)
なお、以上において上述した基本形態に対するいくつかの変形例を説明してきたが、当然に、複数の変形例を適宜組み合わせて適用することも可能である。
(スクリーンの数)
以上の説明では、投射型映像表示装置10が3つのスクリーン15−1〜15−3を備える一例について説明したが、2つのスクリーンや、4つ以上のスクリーンを備えても良い。これらの場合、投射装置が、それぞれスクリーンの数と同数のホログラム記録媒体と空間光変調器と投射光学系とを備えるようにすれば良い。各ホログラム記録媒体は、それぞれ散乱板の像が記録されたものである。その上で、投射装置が、スクリーンの数と同数の分割光を照射し、各分割光が、各再生照明光として、対応するホログラム記録媒上を走査する照射装置を備えるようにすれば良い。

Claims (12)

  1. 複数の被照明領域を照明する照明装置であって、
    光を拡散し得る複数の光拡散素子を、含む光学素子と、
    前記光学素子に複数のコヒーレント光を照射し、各コヒーレント光が対応する光拡散素子上を走査する照射装置と、を備え、
    前記各光拡散素子の各位置に入射して拡散された前記コヒーレント光は、前記光拡散素子上の拡散位置によらず、それぞれ、対応する被照明領域の全域を重ねて照明し、
    前記照射装置は、
    コヒーレント光を生成する光源と、
    前記光源からの前記コヒーレント光を分割して複数の分割光を生成する光分割部と、
    前記光分割部からの前記各分割光の進行方向をそれぞれ変化させて、当該各分割光が対応する光拡散素子上を走査するようにする走査デバイスと、を有し、
    前記複数の光拡散素子のそれぞれに入射されるコヒーレント光の入射位置および入射角度は時間に応じて変化し、
    前記複数の光拡散素子のそれぞれが照明する前記対応する被照明領域内の各点に入射されるコヒーレント光の入射方向は時間に応じて変化する照明装置。
  2. 前記走査デバイスは、前記各分割光をそれぞれ反射するミラーを含み、前記各ミラーの向きを変化させることによって、前記各分割光の進行方向を変化させる
    請求項1に記載の照明装置。
  3. 前記照射装置は、前記光分割部からの前記各分割光をそれぞれ伝送する光ファイバを有し、
    前記走査デバイスは、前記各光ファイバの出射端の向きを変化させることによって、前記光ファイバにより伝送された前記各分割光の進行方向を変化させる
    請求項1に記載の照明装置。
  4. 前記各分割光は、対応するミラー上の一点に照射され、前記各ミラー上の一点で反射された各分割光は、対応する一点からの発散光束を構成し、当該各発散光束は対応する光拡散素子に入射される、請求項2に記載の照明装置。
  5. 前記各分割光は、対応するミラー上の一点に照射され、前記各ミラー上の一点で反射された各分割光は、対応する一点からの発散光束を構成し、
    前記各発散光束を構成する各光をそれぞれ一定の方向に進ませて平行光束を構成し、当該各平行光束を対応する光拡散素子に入射させる平行光生成手段をさらに有する、請求項2に記載の照明装置。
  6. 前記照射装置は、前記走査デバイスから入射した前記各分割光をそれぞれ伝送して、前記光学素子に照射する光ファイバを有する、請求項1に記載の照明装置。
  7. 前記各分割光はそれぞれ対応する光ファイバの出射端からの発散光束を構成し、当該各発散光束は対応する光拡散素子に入射される、請求項6に記載の照明装置。
  8. 前記照射装置は、前記光分割部からの前記各分割光をそれぞれ伝送するミラー光学系を有し、
    前記走査デバイスは、前記ミラー光学系から入射した前記各分割光の進行方向をそれぞれ変化させる、請求項1に記載の照明装置。
  9. 前記走査デバイスは、前記各分割光をそれぞれ反射するミラーを含み、前記各ミラーの向きを変化させることによって、前記各分割光の進行方向を変化させ、
    前記各分割光は、対応するミラー上の一点に照射され、前記各ミラー上の一点で反射された各分割光は、対応する一点からの発散光束を構成し、当該各発散光束は対応する光拡散素子に入射される、請求項8に記載の照明装置。
  10. 前記走査デバイスは、前記各分割光をそれぞれ反射するミラーを含み、前記各ミラーの向きを変化させることによって、前記各分割光の進行方向を変化させ、
    前記各分割光は、対応するミラー上の一点に照射され、前記各ミラー上の一点で反射された各分割光は、対応する一点からの発散光束を構成し、
    前記各発散光束を構成する各光をそれぞれ一定の方向に進ませて平行光束を構成し、当該各平行光束を対応する光拡散素子に入射させる平行光生成手段をさらに有する、請求項8に記載の照明装置。
  11. 前記光拡散素子は、ホログラム記録媒体である、請求項1から請求項10のいずれか1項に記載の照明装置。
  12. 前記光拡散素子は、レンズアレイである、請求項1から請求項10のいずれか1項に記載の照明装置。
JP2016212071A 2010-09-08 2016-10-28 照明装置 Active JP6332407B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010201419 2010-09-08
JP2010201419 2010-09-08

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015161283A Division JP6128174B2 (ja) 2010-09-08 2015-08-18 照明装置

Publications (2)

Publication Number Publication Date
JP2017040934A JP2017040934A (ja) 2017-02-23
JP6332407B2 true JP6332407B2 (ja) 2018-05-30

Family

ID=45810766

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2012533024A Active JP5796578B2 (ja) 2010-09-08 2011-09-08 投射装置および投射型映像表示装置
JP2015161283A Active JP6128174B2 (ja) 2010-09-08 2015-08-18 照明装置
JP2016212071A Active JP6332407B2 (ja) 2010-09-08 2016-10-28 照明装置

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2012533024A Active JP5796578B2 (ja) 2010-09-08 2011-09-08 投射装置および投射型映像表示装置
JP2015161283A Active JP6128174B2 (ja) 2010-09-08 2015-08-18 照明装置

Country Status (3)

Country Link
US (4) US8950871B2 (ja)
JP (3) JP5796578B2 (ja)
WO (1) WO2012033170A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101225560B1 (ko) * 2010-09-07 2013-01-24 다이니폰 인사츠 가부시키가이샤 코히렌트 광원을 이용한 조명 장치
JP6041093B2 (ja) * 2012-07-06 2016-12-07 大日本印刷株式会社 ホログラム再生装置、ホログラム再生方法、投射型映像表示装置
KR102507206B1 (ko) * 2013-01-15 2023-03-06 매직 립, 인코포레이티드 초고해상도 스캐닝 섬유 디스플레이
US9473754B2 (en) * 2013-10-31 2016-10-18 Christie Digital Systems Usa, Inc. Dynamic light distribution system and apparatus
US9291826B2 (en) * 2013-11-20 2016-03-22 Christie Digital Systems Usa, Inc. System for variable distribution of light to a plurality of projectors
US20150138509A1 (en) * 2013-11-20 2015-05-21 Christie Digital Systems Canada Inc. Light distribution system with a blue laser and colour conversion
JP6252298B2 (ja) * 2014-03-27 2017-12-27 大日本印刷株式会社 照明装置
JP6417802B2 (ja) * 2014-09-05 2018-11-07 大日本印刷株式会社 照明装置、投射装置及び光源装置
CN107074146B (zh) 2014-11-07 2020-02-21 大日本印刷株式会社 照明装置及车辆
JP6581203B2 (ja) * 2015-03-04 2019-09-25 フェイスブック・テクノロジーズ・リミテッド・ライアビリティ・カンパニーFacebook Technologies, Llc 仮想現実システムにおけるスパース投影
WO2017051868A1 (ja) * 2015-09-25 2017-03-30 大日本印刷株式会社 照明装置
DE102015218829B4 (de) * 2015-09-30 2018-08-16 Bayerische Motoren Werke Aktiengesellschaft Bilderzeugungsvorrichtung und Verfahren zur Herstellung eines Arrays bildgebender Elemente
DE102016107307A1 (de) * 2016-04-20 2017-10-26 Hella Kgaa Hueck & Co. Beleuchtungsvorrichtung für Fahrzeuge
CN106597790B (zh) * 2016-12-22 2019-04-02 深圳市华星光电技术有限公司 一种激光投影仪显示装置
CN107329389A (zh) * 2017-07-06 2017-11-07 河北工程大学 一种层叠衍射成像装置
CN109388003A (zh) * 2017-08-04 2019-02-26 深圳光峰科技股份有限公司 光源系统及投影装置
US10880529B2 (en) * 2019-04-09 2020-12-29 GM Global Technology Operations LLC Speckle reduction with image dithering
JP7417874B2 (ja) 2019-06-28 2024-01-19 大日本印刷株式会社 照明装置及び照明方法
CN114114675B (zh) * 2020-08-27 2024-02-06 成都理想境界科技有限公司 一种拼接式扫描投影装置及方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5313479A (en) 1992-07-29 1994-05-17 Texas Instruments Incorporated Speckle-free display system using coherent light
US5684566A (en) 1995-05-24 1997-11-04 Svg Lithography Systems, Inc. Illumination system and method employing a deformable mirror and diffractive optical elements
JPH09134135A (ja) * 1995-11-09 1997-05-20 Mitsubishi Electric Corp レーザ投影表示装置
JP3830000B2 (ja) * 1997-03-04 2006-10-04 大日本印刷株式会社 拡散ホログラム原版及び拡散ホログラム
DE19902110C2 (de) * 1999-01-20 2001-08-30 Schneider Laser Technologies Videoprojektionssystem zur Projektion von mehreren Einzelbildern
US6466368B1 (en) 2000-04-26 2002-10-15 3M Innovative Properties Company Rear projection screen with reduced speckle
CA2357432A1 (en) * 2001-09-06 2003-03-06 Utar Scientific Inc. System and method for relieving eye strain
KR100445127B1 (ko) * 2002-04-09 2004-08-21 삼성전자주식회사 광결합 소자 및 광결합 소자를 이용한 영상 투사 장치
JP2004038012A (ja) 2002-07-05 2004-02-05 Minolta Co Ltd 映像表示装置
US6859326B2 (en) * 2002-09-20 2005-02-22 Corning Incorporated Random microlens array for optical beam shaping and homogenization
GB0301317D0 (en) 2003-01-21 2003-02-19 Holographic Imaging Llc Image projection device and method
JP3972837B2 (ja) 2003-02-28 2007-09-05 セイコーエプソン株式会社 照明装置、プロジェクタ及び光学装置
US8251512B2 (en) * 2004-07-08 2012-08-28 Imax Corporation Equipment and methods for the display of high resolution images using multiple projection displays
US8016428B2 (en) 2005-06-20 2011-09-13 Panasonic Corporation 2-dimensional image display device or illumination device for obtaining uniform illumination and suppressing speckle noise
JP5096320B2 (ja) 2006-04-12 2012-12-12 パナソニック株式会社 画像表示装置
JP2008175869A (ja) 2007-01-16 2008-07-31 Seiko Epson Corp 光源装置、照明装置、モニタ装置、画像表示装置及びプロジェクタ
JP5302512B2 (ja) 2007-03-30 2013-10-02 日立コンシューマエレクトロニクス株式会社 光学ユニット及び映像表示装置
JP4379482B2 (ja) 2007-04-03 2009-12-09 セイコーエプソン株式会社 光源装置及びプロジェクタ
JP2008262029A (ja) 2007-04-12 2008-10-30 Seiko Epson Corp 照明装置及びプロジェクタ
WO2009034694A1 (ja) 2007-09-14 2009-03-19 Panasonic Corporation プロジェクタ
JP5125528B2 (ja) * 2008-01-15 2013-01-23 ソニー株式会社 投射型表示装置
JP2009186647A (ja) 2008-02-05 2009-08-20 Seiko Epson Corp 照明装置及びプロジェクタ
JP5326596B2 (ja) * 2009-01-21 2013-10-30 株式会社Jvcケンウッド 照明装置及びそれを用いた投影画像表示装置
JP5097181B2 (ja) 2009-09-07 2012-12-12 株式会社日立製作所 投写型映像表示システム
US8561557B2 (en) 2009-09-30 2013-10-22 Babcock & Wilcox Power Generation Group, Inc. Primary oxidant feed to oxy-fired circulating fluidized bed (CFB)
US8444272B2 (en) * 2010-01-25 2013-05-21 Corning Incorporated Multi-projector system using multiplexed illumination
US8561667B1 (en) * 2010-06-22 2013-10-22 Kenney Manufacturing Co. Window treatment with knuckle joint driver

Also Published As

Publication number Publication date
US20130169941A1 (en) 2013-07-04
US20160062131A1 (en) 2016-03-03
US9217879B2 (en) 2015-12-22
US10228573B2 (en) 2019-03-12
WO2012033170A1 (ja) 2012-03-15
JP2017040934A (ja) 2017-02-23
US9423627B2 (en) 2016-08-23
JPWO2012033170A1 (ja) 2014-01-20
US20160327805A1 (en) 2016-11-10
US20150085518A1 (en) 2015-03-26
JP6128174B2 (ja) 2017-05-17
US8950871B2 (en) 2015-02-10
JP5796578B2 (ja) 2015-10-21
JP2016014884A (ja) 2016-01-28

Similar Documents

Publication Publication Date Title
JP6332407B2 (ja) 照明装置
JP6304337B2 (ja) 照明装置、投射装置および投写型映像表示装置
JP6179553B2 (ja) 照明装置
JP6226252B2 (ja) 照明装置、投射装置および投射型映像表示装置
JP5678961B2 (ja) 投射装置および投射型映像表示装置
JP5737633B2 (ja) 照明装置、投射装置および投射型映像表示装置
JP6066384B2 (ja) 投射装置および投射型映像表示装置
JP5678869B2 (ja) 照明装置、投射装置および投射型映像表示装置
JP5556517B2 (ja) 照明装置、投射装置および投射型映像表示装置
WO2012141254A1 (ja) 照明装置、投射装置および投射型映像表示装置
JP6598100B2 (ja) 照明装置、投射装置および投射型映像表示装置
JP2012220931A (ja) 照明装置、投射装置および投射型映像表示装置
JP5510826B2 (ja) 照明装置、投射装置および投射型映像表示装置
JP5828374B2 (ja) 投射装置および投射型映像表示装置
JP2017076149A (ja) 投射装置および投射型映像表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180416

R150 Certificate of patent or registration of utility model

Ref document number: 6332407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150