JP6327218B2 - Reflow processing method for continuous tinning line - Google Patents

Reflow processing method for continuous tinning line Download PDF

Info

Publication number
JP6327218B2
JP6327218B2 JP2015165185A JP2015165185A JP6327218B2 JP 6327218 B2 JP6327218 B2 JP 6327218B2 JP 2015165185 A JP2015165185 A JP 2015165185A JP 2015165185 A JP2015165185 A JP 2015165185A JP 6327218 B2 JP6327218 B2 JP 6327218B2
Authority
JP
Japan
Prior art keywords
tin
treated
reflow
amount
emissivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015165185A
Other languages
Japanese (ja)
Other versions
JP2017043795A (en
Inventor
宗甫 細田
宗甫 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015165185A priority Critical patent/JP6327218B2/en
Publication of JP2017043795A publication Critical patent/JP2017043795A/en
Application granted granted Critical
Publication of JP6327218B2 publication Critical patent/JP6327218B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Radiation Pyrometers (AREA)

Description

本発明は、連続錫鍍金ラインのリフロー処理方法に関する。   The present invention relates to a reflow processing method for a continuous tinning line.

食缶その他の一般缶用の表面処理鋼板として、錫鍍金鋼板が広く用いられている。この錫鍍金鋼板の製造には、通常、Fe−Sn合金層を生成させ、光沢性および耐食性を高めるため、リフロー処理が採用されている。   A tin-plated steel sheet is widely used as a surface-treated steel sheet for food cans and other general cans. In the production of this tin-plated steel sheet, a reflow treatment is usually employed in order to generate an Fe—Sn alloy layer and to improve glossiness and corrosion resistance.

リフロー処理は、非処理鋼板の温度上昇を所定範囲内に制御するため、抵抗加熱を用いたコンダクションリフローによるか、またはコンダクションリフローに誘導加熱を用いたインダクションリフローの併用によることが一般的である。また、Fe−Sn合金層の合金化度を制御するため、合金化度計をラインに導入して合金化度を実測するか、または合金化の主要因となる被処理鋼板の板温を高精度で制御することが必要である。   In order to control the temperature rise of the non-treated steel sheet within a predetermined range, the reflow treatment is generally performed by the use of induction reflow using resistance heating or induction reflow using induction heating for conduction reflow. is there. In addition, in order to control the degree of alloying of the Fe—Sn alloy layer, an alloying degree meter is introduced into the line to actually measure the degree of alloying, or the plate temperature of the steel sheet to be treated, which is the main factor of alloying, is increased It is necessary to control with accuracy.

従来、被処理鋼板の板温の制御は、被処理鋼板表面の光沢を肉眼で確認して、または特許文献1に記載されているように、画像処理を施して被処理鋼板表面のフローラインを検出して、合金化炉出側における被処理鋼板の板温の設定値を変更することによって行われてきた。これは、コンダクションリフローおよびインダクションリフローは、いずれも被処理鋼板が帯電するので、被処理鋼板の板温を接触式の温度計を用いて実測することが困難であったこと、および被処理鋼板表面の錫の放射率は低く、しかも金属錫量、合金錫量またはこれらの比により被処理鋼板表面の放射率が大きく変動するので、被処理鋼板の板温を非接触式の放射温度計を用いて精度よく測定することができなかったことから、目標とする合金錫量や合金化度が得られないという問題があったことによるものである。   Conventionally, the control of the plate temperature of the steel plate to be processed is performed by confirming the gloss of the surface of the steel plate to be processed with the naked eye, or by applying image processing as described in Patent Document 1, It has been carried out by detecting and changing the set value of the plate temperature of the steel sheet to be processed on the alloying furnace outlet side. This is because it was difficult to measure the plate temperature of the steel plate to be processed using a contact-type thermometer because both the reflow and the induction reflow were charged to the steel plate to be processed. The emissivity of the surface tin is low, and the emissivity of the surface of the steel sheet to be processed varies greatly depending on the amount of metal tin, alloy tin or their ratio. This is because there was a problem that the target amount of alloy tin and alloying degree could not be obtained because it was not possible to measure accurately with use.

特開平09−256193号公報JP 09-256193 A

しかし、従来の合金化炉出側における被処理鋼板の板温設定値を変更する際、目視判断では属人的な誤差が大きく、また、画像処理ではフローラインが無くなる被処理鋼板の板温の境界温度を単に見出すのみであり、いずれの手段によっても、錫鍍金鋼板の合金錫量を精度よく制御することができなかった。   However, when changing the plate temperature setting value of the steel plate to be processed on the conventional alloying furnace outlet side, there is a large personal error in the visual judgment, and the plate temperature of the steel plate to be processed in which there is no flow line in the image processing. The boundary temperature was simply found, and the alloy tin amount of the tin-plated steel sheet could not be accurately controlled by any means.

そこで、本発明は、錫鍍金鋼板の合金錫量を精度よく制御することができる連続錫鍍金ラインのリフロー処理方法を提供することを目的とする。   Then, an object of this invention is to provide the reflow processing method of the continuous tinning line which can control the alloy tin amount of a tinning steel plate accurately.

本発明者は、上記目的を達成すべく鋭意検討を重ねたところ、鋼板の連続錫鍍金ラインのリフローラインにおいて、放射率を補正した放射温度計を用いて、被処理鋼板の合金化炉出側の板温が被処理鋼板の合金化炉出側の板温目標値となるように、リフローの出力電力を制御して、被処理鋼板の合金化炉出側の板温を精度よく制御することで、錫鍍金鋼板の合金錫量を精度よく制御することができることを知得し、本発明を完成させた。   The present inventor has made extensive studies to achieve the above object, and in the reflow line of the continuous tin plating line of the steel sheet, using the radiation thermometer with the corrected emissivity, the alloying furnace exit side of the steel sheet to be processed Control the output power of the reflow so that the plate temperature of the steel plate to be processed becomes the target temperature on the alloying furnace outlet side of the steel plate to be processed, and accurately control the plate temperature on the alloying furnace outlet side of the steel plate to be processed. Thus, it was learned that the amount of tin alloy in the tin-plated steel sheet can be controlled with high precision, and the present invention has been completed.

すなわち、本発明は以下の[1]〜[]である。
[1]鋼板の連続錫鍍金ラインのリフローラインにおいて、連続的に送られてくる錫鍍金された被処理鋼板を、抵抗加熱を用いたコンダクションリフローの出力電力により加熱昇温して合金化炉に通板し、前記被処理鋼板の合金化炉出側の板温を放射温度計により測定し、前記被処理鋼板を急冷処理する連続錫鍍金ラインのリフロー処理方法であって、
(1)前記被処理鋼板の板幅、板厚、ライン速度、金属錫量目標値および合金錫量目標値に基づいて、前記抵抗加熱を用いたコンダクションリフローによる加熱昇温時の出力電力を設定し、
(2)前記金属錫量目標値、前記合金錫量目標値および錫の放射率に基づいて、前記放射温度計の放射率目標値を設定し、ここで、前記放射率は、物体が熱放射で放出する光のエネルギーの、同温の黒体が放出する光のエネルギーに対する比であり、
(3)予め設定した合金化モデルを用いて、前記金属錫量目標値、前記合金錫量目標値、前記放射率目標値と錫の前記放射率との比である放射率補正目標値、および前記被処理鋼板の合金化炉入側の板温に基づいて、前記被処理鋼板の合金化炉出側の板温目標値を算出し、
(4)前記放射率目標値を設定した放射温度計を用いて、前記被処理鋼板の合金化炉出側の板温が前記被処理鋼板の合金化炉出側の板温目標値になるように、前記抵抗加熱を用いたコンダクションリフローの出力電力を制御して、前記被処理鋼板の一部をリフローラインに通板し、
(5)前記被処理鋼板の一部を前記リフローラインに通板した後、前記被処理鋼板の一部の表面の金属錫量および合金錫量を実測し、
(6)前記被処理鋼板の一部の表面の金属錫量および合金錫量を実測して得られた金属錫量実測値および合金錫量実測値、ならびに錫の前記放射率に基づいて、前記放射温度計の放射率を補正し、
(7)前記被処理鋼板の一部の表面の前記金属錫量実測値および前記合金錫量実測値、ならびに錫の前記放射率に基づいて放射率を補正した前記放射温度計を用いて、前記被処理鋼板の残部の合金化炉出側の板温が前記被処理鋼板の合金化炉出側の板温目標値となるように、前記抵抗加熱を用いたコンダクションリフローの出力電力を制御し、
前記被処理鋼板は先行してリフロー処理される被処理鋼板および後行してリフロー処理される被処理鋼板からなり、
〈I〉前記先行してリフロー処理される被処理鋼板に対して、上記(1)〜(7)の処理を行い、
〈II〉前記先行してリフロー処理される被処理鋼板の錫鍍金付着量および前記後行してリフロー処理される被処理鋼板の錫鍍金付着量を測定し、
〈III〉前記先行してリフロー処理される被処理鋼板の錫鍍金付着量と前記後行してリフロー処理される被処理鋼板の錫鍍金付着量との差を算出し、
〈IV−1〉前記差が所定範囲内である場合は、前記後行してリフロー処理される被処理鋼板に対して、前記金属錫量実測値および前記合金錫量実測値に基づいて放射率を補正した放射温度計を用いて、前記後行してリフロー処理される被処理鋼板の合金化炉出側の板温が、前記先行してリフロー処理される被処理鋼板の合金化炉出側の板温目標値となるように、前記抵抗加熱を用いたコンダクションリフローの出力電力を制御し、
〈IV−2〉前記差が所定範囲を超える場合は、前記後行してリフロー処理される被処理鋼板に対して、上記(1)〜(7)の処理を行う、連続錫鍍金ラインのリフロー処理方法
[2]鋼板の連続錫鍍金ラインのリフローラインにおいて、連続的に送られてくる錫鍍金された被処理鋼板を、抵抗加熱を用いたコンダクションリフローおよび誘導加熱を用いたインダクションリフローの出力電力により加熱昇温して合金化炉に通板し、前記被処理鋼板の合金化炉出側の板温を放射温度計により測定し、前記被処理鋼板を急冷処理する連続鍍金ラインのリフロー処理方法であって、
(1)前記被処理鋼板の板幅、板厚、ライン速度、金属錫量目標値および合金錫量目標値に基づいて、前記抵抗加熱を用いたコンダクションリフローおよび前記誘導加熱を用いたインダクションリフローによる加熱昇温時の出力電力を設定し、
(2)前記金属錫量目標値、前記合金錫量目標値および錫の放射率に基づいて、前記放射温度計の放射率目標値を設定し、ここで、前記放射率は、物体が熱放射で放出する光のエネルギーの、同温の黒体が放出する光のエネルギーに対する比であり、
(3)予め設定した合金化モデルを用いて、前記金属錫量目標値、前記合金錫量目標値、前記放射率目標値と錫の前記放射率との比である放射率補正目標値、および前記被処理鋼板の合金化炉入側の板温に基づいて、前記被処理鋼板の合金化炉出側の板温目標値を算出し、
(4)前記放射率目標値を設定した放射温度計を用いて、前記被処理鋼板の合金化炉出側の板温が前記被処理鋼板の合金化炉出側の板温目標値になるように、前記抵抗加熱を用いたコンダクションリフローおよび前記誘導加熱を用いたインダクションリフローの出力電力を制御して、前記被処理鋼板の一部をリフローラインに通板し、
(5)前記被処理鋼板の一部を前記リフローラインに通板した後、前記被処理鋼板の一部の表面の金属錫量および合金錫量を実測し、
(6)前記被処理鋼板の一部の表面の金属錫量および合金錫量を実測して得られた金属錫量実測値および合金錫量実測値、ならびに錫の前記放射率に基づいて、前記放射温度計の放射率を補正し、
(7)前記被処理鋼板の一部の表面の前記金属錫量実測値および前記合金錫量実測値、ならびに錫の前記放射率に基づいて放射率を補正した前記放射温度計を用いて、前記被処理鋼板の残部の合金化炉出側の板温が前記被処理鋼板の合金化炉出側の板温目標値となるように、前記抵抗加熱を用いたコンダクションリフローおよび前記誘導加熱を用いたインダクションリフローの出力電力を制御し、
前記被処理鋼板は先行してリフロー処理される被処理鋼板および後行してリフロー処理される被処理鋼板からなり、
〈I〉前記先行してリフロー処理される被処理鋼板について、上記(1)〜(7)の処理を行い、
〈II〉前記先行してリフロー処理される被処理鋼板の錫鍍金付着量および前記後行してリフロー処理される被処理鋼板の錫鍍金付着量を測定して、
〈III〉前記先行してリフロー処理される被処理鋼板の錫鍍金付着量と前記後行してリフロー処理される被処理鋼板の錫鍍金量との差を算出し、
〈IV−1〉前記差が所定範囲内である場合は、前記後行してリフロー処理される被処理鋼板について、前記金属錫量実測値および前記合金錫量実測値に基づいて放射率を補正した放射温度計を用いて、前記後行してリフロー処理される被処理鋼板の合金化炉出側の板温が、前記先行してリフロー処理される被処理鋼板の合金化炉出側の板温目標値となるように、前記抵抗加熱を用いたコンダクションリフローおよび前記誘導加熱を用いたインダクションリフローの出力電力を制御し、
〈IV−2〉前記差が所定範囲を超える場合は、前記後行してリフロー処理される被処理鋼板に対して、上記(1)〜(7)の処理を行う、連続錫鍍金ラインのリフロー処理方法。
]前記放射温度計の放射率を補正した後、前記金属錫量実測値、前記合金錫量実測値、補正した放射率、前記被処理鋼板の合金化炉入側の板温および放射率を補正した前記放射温度計を用いて測定した前記被処理鋼板の合金化炉出側の板温に基づいて、前記合金化モデルを補正する、上記[1]または2]に記載の連続錫鍍金ラインのリフロー処理方法。
]前記被処理鋼板の一部の表面の前記金属錫量および前記合金錫量を実測する際に、錫鍍金ライン通過後に前記被処理鋼板から試料を採取し、採取した前記試料から前記被処理鋼板の一部の表面の前記金属錫量および前記合金錫量を実測する、上記[1]〜[]のいずれか1つに記載の連続錫鍍金ラインのリフロー処理制御方法。
]前記被処理鋼板の一部の表面の前記金属錫量および前記合金錫量を実測する際に、合金化度計を用いて前記被処理鋼板の一部の表面の前記金属錫量および前記合金錫量を実測する、上記[1]〜[]のいずれか1に記載の連続錫鍍金ラインのリフロー処理制御方法。
That is, this invention is the following [1]-[ 5 ].
[1] In a reflow line of a continuous tin plating line for steel sheets, the steel sheet to be continuously plated is heated and heated by the output power of conduction reflow using resistance heating, and an alloying furnace A reflow treatment method of a continuous tin plating line for rapidly cooling the treated steel plate, measuring the temperature of the treated steel plate on the exit side of the alloying furnace with a radiation thermometer,
(1) Based on the plate width, plate thickness, line speed, metal tin amount target value, and alloy tin amount target value of the steel plate to be treated, the output power at the time of heating and heating by conduction reflow using the resistance heating is calculated. Set,
(2) The emissivity target value of the radiation thermometer is set based on the metal tin amount target value, the alloy tin amount target value, and the emissivity of tin , wherein the emissivity is determined by the heat radiation of the object. Is the ratio of the energy of the light emitted at the same temperature to the energy of the light emitted by the black body of the same temperature,
(3) using a preset alloy model, the metallic tin amount target value, the alloy of tin amount target value, the emissivity target value and the ratio in which emissivity correction target value and the emissivity of the tin, and Based on the sheet temperature on the alloying furnace entry side of the steel sheet to be treated, the target temperature value on the alloying furnace exit side of the steel sheet to be treated is calculated,
(4) Using a radiation thermometer in which the emissivity target value is set, the plate temperature on the alloying furnace outlet side of the steel plate to be processed becomes the target temperature on the alloying furnace outlet side of the steel plate to be processed. In addition, by controlling the output power of the conduction reflow using the resistance heating, a part of the steel plate to be treated is passed through a reflow line,
(5) After passing a part of the steel plate to be treated through the reflow line, the amount of metal tin and the amount of alloy tin on the surface of a part of the steel plate to be treated were measured,
(6) the object to be treated metallic tin amount of a portion of the surface and metallic tin amount measured values obtained by actually measuring the alloy of tin content and alloy tin content measured value of the steel sheet, and based on the emissivity of the tin, the Correct the emissivity of the radiation thermometer,
(7) above using the metal tin content measured value and the alloy of tin content measured values, and the radiation thermometer corrected emissivity based on the emissivity of the tin portion of the surface of the treated steel sheet, wherein as sheet temperature alloying furnace exit side of the remainder of the treated steel sheet is a sheet temperature target value of the alloying furnace exit side of the object to be treated steel sheet, by controlling the output power of the conduction reflow with the resistive heating ,
The steel plate to be treated consists of a steel plate to be treated that is reflow-treated in advance and a steel plate to be treated that is reflow-treated after.
Against the processed steel sheet reflow process to <I> said preceding performs processing (1) above to (7),
<II> Measure the amount of tin plating adhesion of the steel sheet to be treated before reflow treatment and the amount of tin plating adhesion of the steel sheet to be treated after reflow treatment,
<III> Calculate the difference between the amount of tin plating adhesion of the steel sheet to be treated to be reflowed in advance and the amount of tin plating adhesion of the steel sheet to be treated to be reflowed after the reflow treatment,
<IV-1> When the difference is within a predetermined range, the emissivity based on the measured value of the metal tin amount and the measured value of the alloy tin amount for the steel sheet to be processed to be reflowed following the subsequent process. Using the radiation thermometer corrected, the sheet temperature on the alloying furnace outlet side of the steel sheet to be processed to be reflowed in the subsequent process is the alloying furnace outlet side of the steel sheet to be processed to be reflowed in advance. To control the output power of the conduction reflow using the resistance heating so that the plate temperature target value of
If <IV-2> the difference exceeds a predetermined range, relative to the treated steel sheet reflow process with the trailing, the process of (1) above to (7), continuous tin plating line Reflow processing method .
[2 ] In the reflow line of the continuous tin plating line of steel sheet, the steel sheet to be treated that has been continuously plated is subjected to the output power of conduction reflow using resistance heating and induction reflow using induction heating. A reflow treatment method for a continuous plating line in which the temperature of the heated steel sheet is passed through an alloying furnace, the temperature of the steel sheet to be treated is measured with a radiation thermometer, and the steel sheet to be treated is rapidly cooled. There,
(1) Conduction reflow using resistance heating and induction reflow using induction heating based on the plate width, plate thickness, line speed, metal tin amount target value and alloy tin amount target value of the steel plate to be treated Set the output power during heating and heating with
(2) The emissivity target value of the radiation thermometer is set based on the metal tin amount target value, the alloy tin amount target value, and the emissivity of tin , wherein the emissivity is determined by the heat radiation of the object. Is the ratio of the energy of the light emitted at the same temperature to the energy of the light emitted by the black body of the same temperature,
(3) using a preset alloy model, the metallic tin amount target value, the alloy of tin amount target value, the emissivity target value and the ratio in which emissivity correction target value and the emissivity of the tin, and Based on the sheet temperature on the alloying furnace entry side of the steel sheet to be treated, the target temperature value on the alloying furnace exit side of the steel sheet to be treated is calculated,
(4) Using a radiation thermometer in which the emissivity target value is set, the plate temperature on the alloying furnace outlet side of the steel plate to be processed becomes the target temperature on the alloying furnace outlet side of the steel plate to be processed. In addition, by controlling the output power of the induction reflow using the induction heating and the induction reflow using the resistance heating, a part of the steel plate to be treated is passed through a reflow line,
(5) After passing a part of the steel plate to be treated through the reflow line, the amount of metal tin and the amount of alloy tin on the surface of a part of the steel plate to be treated were measured,
(6) the object to be treated metallic tin amount of a portion of the surface and metallic tin amount measured values obtained by actually measuring the alloy of tin content and alloy tin content measured value of the steel sheet, and based on the emissivity of the tin, the Correct the emissivity of the radiation thermometer,
(7) above using the metal tin content measured value and the alloy of tin content measured values, and the radiation thermometer corrected emissivity based on the emissivity of the tin portion of the surface of the treated steel sheet, wherein The reflow using the resistance heating and the induction heating are used so that the plate temperature on the alloying furnace outlet side of the remaining steel plate becomes the target temperature on the alloying furnace outlet side of the steel plate to be processed . to control the output power of the induction reflow had,
The steel plate to be treated consists of a steel plate to be treated that is reflow-treated in advance and a steel plate to be treated that is reflow-treated after.
The treated steel sheet reflow process to <I> said preceding performs processing (1) above to (7),
<II> Measure the tin plating adhesion amount of the steel sheet to be treated before reflow treatment and the tin plating adhesion amount of the steel sheet to be treated after reflow treatment,
<III> Calculate the difference between the amount of tin plating adhesion of the steel sheet to be treated to be reflowed in advance and the amount of tin plating of the steel sheet to be treated to be reflowed after the reflow treatment,
<IV-1> When the difference is within a predetermined range, the emissivity is corrected based on the measured value of the metal tin amount and the measured value of the alloyed tin amount of the steel sheet to be processed to be reflowed following Using the radiation thermometer, the plate temperature on the alloying furnace outlet side of the steel sheet to be processed to be reflowed in the subsequent process is the same as that on the alloying furnace outlet side of the steel sheet to be processed to be reflowed in advance. so that the temperature target value, and controls the output power of the induction reflow using conduction reflow and the induction heating using the resistance heating,
If <IV-2> the difference exceeds a predetermined range, relative to the treated steel sheet reflow process with the trailing, the process of (1) above to (7), continuous tin plating line Reflow processing method.
[ 3 ] After correcting the emissivity of the radiation thermometer, the measured value of the metal tin amount, the measured value of the alloy tin amount, the corrected emissivity, the plate temperature and the emissivity of the steel plate to be treated on the alloying furnace entrance side The continuous tin according to [1] or [ 2] , wherein the alloying model is corrected based on a plate temperature of the treated steel plate measured using the radiation thermometer corrected for the alloying furnace. Reflow processing method for plating line.
[ 4 ] When actually measuring the amount of metallic tin and the amount of alloyed tin on the surface of a part of the steel sheet to be treated, a sample is taken from the steel sheet after passing through a tin plating line, and the specimen is taken from the collected sample. The reflow treatment control method for a continuous tin plating line according to any one of [1] to [ 3 ] above, in which the metal tin amount and the alloy tin amount on a part of the surface of the treated steel plate are measured.
[ 5 ] When measuring the amount of metal tin and the amount of alloy tin on a part of the surface of the steel sheet to be treated, the amount of metal tin on the surface of a part of the steel sheet to be treated using an alloying meter the actually measuring the alloy of tin content, the above-mentioned [1] to [4] reflow processing control method of the continuous tin plating line according to any one of.

本発明によれば、錫鍍金鋼板の合金錫量を精度よく制御することができる連続錫鍍金ラインのリフロー処理方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the reflow processing method of the continuous tin plating line which can control the amount of alloy tin of a tin plating steel plate accurately can be provided.

図1は、本発明のリフロー処理方法を実施するためのリフローラインの一構成を示す図である。FIG. 1 is a diagram showing a configuration of a reflow line for carrying out the reflow processing method of the present invention. 図2は、本発明のリフロー処理方法を示すフローチャートである。FIG. 2 is a flowchart showing the reflow processing method of the present invention. 図3は、実施例に係る錫鍍金鋼板の合金錫量の精度を表すヒストグラムである。FIG. 3 is a histogram showing the accuracy of the alloy tin amount of the tin-plated steel sheet according to the example. 図4は、比較例に係る錫鍍金鋼板の合金錫量の精度を表すヒストグラムである。FIG. 4 is a histogram showing the accuracy of the alloy tin amount of the tin-plated steel sheet according to the comparative example.

以下、本発明の実施の形態について具体的に説明する。
まず、図1に示す本発明のリフロー処理方法を実施するためのリフローラインの一構成の一例について説明する。
Hereinafter, embodiments of the present invention will be specifically described.
First, an example of a configuration of a reflow line for implementing the reflow processing method of the present invention shown in FIG. 1 will be described.

図1に示すリフローラインには、連続的に搬送される錫鍍金された被処理鋼板1を直接抵抗加熱するNo.1コンダクタロール2およびNo.2コンダクタロール8と、被処理鋼板1を保熱し高温にする合金化炉3と、被処理鋼板1を誘導加熱するインダクションヒーター4と、加熱により再溶融した錫を水冷し凝固するクエンチタンク7と、クエンチタンク7内で被処理鋼板1を巻き付けるクエンチロール6が備えられている。
インダクションリフローによる加熱を行わない場合には、インダクションヒーター4は省略可能である。
In the reflow line shown in FIG. 1 conductor roll 2 and no. A two-conductor roll 8, an alloying furnace 3 that keeps the steel plate 1 to be heated to a high temperature, an induction heater 4 that induction-heats the steel plate 1 to be treated, and a quench tank 7 that cools and solidifies tin that has been remelted by heating. A quench roll 6 for winding the steel plate 1 to be treated in the quench tank 7 is provided.
In the case where heating by induction reflow is not performed, the induction heater 4 can be omitted.

さらに、図1に示すリフローラインには、合金化炉3出側の板温を測定するための放射温度計5および合金化炉3入側の板温を測定するための放射温度計9を備える。放射温度計5の放射率は、リフロー処理開始当初は目標値に基づいて算出した放射率目標値を設定するが、リフロー処理開始後に、実測したデータに基づいて算出した放射率(補正値)を用いて放射率を補正する。放射温度計9の放射率は、例えば、錫の放射率を設定する。   Further, the reflow line shown in FIG. 1 includes a radiation thermometer 5 for measuring the plate temperature on the outlet side of the alloying furnace 3 and a radiation thermometer 9 for measuring the plate temperature on the inlet side of the alloying furnace 3. . The emissivity of the radiation thermometer 5 is set to the emissivity target value calculated based on the target value at the beginning of the reflow process, but after the reflow process starts, the emissivity (correction value) calculated based on the actually measured data is set. Use to correct emissivity. As the emissivity of the radiation thermometer 9, for example, the emissivity of tin is set.

さらに、図1に示すリフローラインには、リフロー処理前の被処理鋼板1の錫鍍金量を測定するための付着量計31、板幅を測定するための板幅検出部32、板厚を測定するための板厚検出部33、ライン速度を測定するためのライン速度検出部34、およびリフロー処理後の被処理鋼板1の合金化度を測定するための合金化度計35、リフロー処理後の被処理鋼板1の錫鍍金付着量を測定するための付着量計36を備えることができる。   Further, in the reflow line shown in FIG. 1, an adhesion meter 31 for measuring the amount of tin plating of the steel plate 1 to be processed before the reflow treatment, a plate width detector 32 for measuring the plate width, and a plate thickness are measured. A sheet thickness detecting unit 33 for measuring the line speed, a line speed detecting unit 34 for measuring the line speed, an alloying degree meter 35 for measuring the degree of alloying of the steel sheet 1 after the reflow process, and after the reflow process The adhesion amount meter 36 for measuring the tin plating adhesion amount of the to-be-processed steel plate 1 can be provided.

さらに、図1に示すリフローラインには、制御部として、データの入出力を行うための入出力部20、演算を行うための演算部21、合金錫量目標値、金属錫量目標値、板幅、板厚、ライン速度、錫の放射率、鋼種ごとの合金化進行速度補正係数等を格納したデータベース22、数値などを入力するための入力デバイス23、演算結果を書き込んで記憶するための記憶媒体24、入力された数値などを表示するための表示デバイス25、No.1コンダクタロール2およびNo.2コンダクタロール8に加熱昇温時の出力電力を供給するためのコンダクションリフロー電力供給部10、インダクションヒーター4に加熱昇温時の出力電力を供給するためインダクションリフロー電力供給部11、インダクションリフロー電力供給部11の出力電力を制御するためのインダクションリフロー電力制御部12、コンダクションリフロー電力供給部10の出力電力を制御するためのコンダクションリフロー電力制御部13を備える。
リフロー処理に必要なパラメータがすべてデータベース22に格納されている場合には、入力デバイス23は省略可能である。
表示デバイス25は省略可能である。
Further, the reflow line shown in FIG. 1 includes, as a control unit, an input / output unit 20 for inputting / outputting data, a calculation unit 21 for performing calculation, an alloy tin amount target value, a metal tin amount target value, a plate Database 22 storing width, plate thickness, line speed, emissivity of tin, alloying progress speed correction coefficient for each steel type, input device 23 for inputting numerical values, memory for writing and storing calculation results Medium 24, display device 25 for displaying input numerical values and the like; 1 conductor roll 2 and no. A conduction reflow power supply unit 10 for supplying output power during heating and heating to the two-conductor roll 8; an induction reflow power supply unit 11 for supplying output power during heating and heating to the induction heater 4; and induction reflow power. An induction reflow power control unit 12 for controlling the output power of the supply unit 11 and a conduction reflow power control unit 13 for controlling the output power of the conduction reflow power supply unit 10 are provided.
If all the parameters necessary for the reflow process are stored in the database 22, the input device 23 can be omitted.
The display device 25 can be omitted.

錫鍍金された被処理鋼板1は、No.1コンダクタロール2に巻き付いた後、合金化炉3に入り、その後、クエンチタンク7に入って、クエンチロール6に巻き付いた後、さらに、No.2コンダクタロール8に巻き付いてリフロー処理を終える。被処理鋼板1の板温は、合金化炉3の入側に設置された放射温度計9および合金化炉3の出側に設置された放射温度計5により実測される。   The to-be-treated steel sheet 1 plated with tin is No. After winding around the conductor roll 2, it enters the alloying furnace 3, then enters the quench tank 7 and winds around the quench roll 6. The two-conductor roll 8 is wound and the reflow process is finished. The plate temperature of the steel plate 1 to be treated is measured by a radiation thermometer 9 installed on the entry side of the alloying furnace 3 and a radiation thermometer 5 installed on the exit side of the alloying furnace 3.

その際、コンダクションリフローと称して、No.1コンダクタロール2とNo.2コンダクタロール8により被処理鋼板1に電流を流して被処理鋼板1を加熱し、合金化炉3にて保熱し高温にする。必要に応じて、合金化炉3とクエンチタンク7との間にインダクションヒーター4を設置し、インダクションリフローと称して、被処理鋼板1に高周波電流を流し、誘導加熱により被処理鋼板1を加熱してもよい。
コンダクションリフロー、またはコンダクションリフローおよびインダクションリフローにより被処理鋼板1を加熱し、被処理鋼板1の表面の金属錫を溶融させて急冷することで合金錫が被処理鋼板1の表面に生成される。
一方、被処理鋼板1の表面の金属錫量および合金錫量によって鋼板の放射率ε’は大きく変動する。そのため、被処理鋼板1表面の金属錫量および合金錫量から放射率を計算し、放射温度計5の放射率を補正することで、実測する合金化炉3出側の板温をより正確なものとする。被処理鋼板1の表面の金属錫量および合金錫量は、通板当初は目標値を用いて、その後、被処理鋼板1の一部がリフロー処理された後、そのリフロー処理された一部から実測して得られる実測値を用いる。
At that time, it is called “conduction reflow”. 1 conductor roll 2 and No. 1 A current is passed through the steel plate 1 to be processed by the two-conductor roll 8 to heat the steel plate 1 to be heated and kept at a high temperature in the alloying furnace 3. If necessary, an induction heater 4 is installed between the alloying furnace 3 and the quench tank 7, referred to as induction reflow, a high-frequency current is passed through the steel plate 1 to be processed, and the steel plate 1 to be processed is heated by induction heating. May be.
Alloy steel is produced on the surface of the steel sheet 1 to be treated by heating the steel sheet 1 to be treated by conduction reflow, or by conduction reflow and induction reflow, and melting and quenching the metal tin on the surface of the steel sheet 1 to be treated. .
On the other hand, the emissivity ε ′ of the steel sheet varies greatly depending on the amount of metallic tin and alloy tin on the surface of the steel sheet 1 to be treated. Therefore, the emissivity is calculated from the metal tin amount and the alloy tin amount on the surface of the steel plate 1 to be processed, and the emissivity of the radiation thermometer 5 is corrected, so that the plate temperature on the outlet side of the measured alloying furnace 3 can be more accurately measured. Shall. The metal tin amount and the alloy tin amount on the surface of the steel plate 1 to be processed are the target values at the beginning of the sheet passing, and then, after a part of the steel plate 1 to be processed is reflow-treated, The actual measurement value obtained by actual measurement is used.

次に、本発明の連続錫鍍金ラインのリフロー処理方法の(1)〜(7)について説明する。   Next, (1) to (7) of the reflow processing method for the continuous tin plating line of the present invention will be described.

(1)加熱昇温時の出力電力の設定
加熱昇温時の出力電力の設定は、被処理鋼板1の板幅、板厚、ライン速度、金属錫量目標値および合金錫量目標値に基づいて、コンダクションリフロー、またはコンダクションリフローおよびインダクションリフローによる加熱昇温時の出力電力を設定することにより行う。
(1) Setting of output power at heating temperature rise The setting of output power at heating temperature rise is based on the plate width, plate thickness, line speed, metal tin amount target value and alloy tin amount target value of steel plate 1 to be treated. Then, it is performed by setting the output power at the time of heating and heating by the conduction reflow or the conduction reflow and the induction reflow.

演算部21が、入出力部20を介して、リフローラインを通板する被処理鋼板1の板幅、板厚、ライン速度、金属錫量目標値および合金錫量目標値を、データベース22から取得し、コンダクションリフロー電力供給部10の出力電力を算出し、コンダクションリフロー制御部13に送出して、またはコンダクションリフロー電力供給部10およびインダクションリフロー電力供給部11の出力電力を算出し、コンダクションリフロー制御部13およびインダクションリフロー電力制御部12に送出して、加熱昇温時の出力電力を設定する。
本処理においては、被処理鋼板1の板幅、板厚およびライン速度は、データベース22から数値を取得する代わりに、それぞれ、板幅検出部32、板厚検出部33およびライン速度検出部34から数値を取得してもよいし、入力デバイスから入力された数値を取得してもよい。また、被処理鋼板1の金属錫量目標値および合金錫量目標値の一方または両方は、データベース22から数値を取得する代わりに、入力デバイス23から入力された数値を取得してもよい。
演算部21が取得した被処理鋼板1の板幅、板厚、ライン速度、金属錫量目標値および合金錫量目標値は、記憶媒体24に書き込んで記憶してもよい。
The calculation unit 21 acquires the plate width, plate thickness, line speed, metal tin amount target value, and alloy tin amount target value of the steel plate 1 to be processed through the reflow line from the database 22 via the input / output unit 20. Then, the output power of the conduction reflow power supply unit 10 is calculated and sent to the conduction reflow control unit 13, or the output power of the conduction reflow power supply unit 10 and the induction reflow power supply unit 11 is calculated, It is sent to the induction reflow control unit 13 and the induction reflow power control unit 12 to set the output power during heating and heating.
In this process, the plate width, plate thickness, and line speed of the steel plate 1 to be processed are obtained from the plate width detection unit 32, the plate thickness detection unit 33, and the line speed detection unit 34, respectively, instead of obtaining numerical values from the database 22. A numerical value may be acquired, or a numerical value input from an input device may be acquired. Moreover, instead of obtaining a numerical value from the database 22, one or both of the metal tin amount target value and the alloy tin amount target value of the steel plate 1 to be processed may obtain a numerical value input from the input device 23.
The plate width, plate thickness, line speed, metal tin amount target value, and alloy tin amount target value of the steel plate 1 to be processed acquired by the calculation unit 21 may be written and stored in the storage medium 24.

コンダクションリフロー電力供給部10の出力電力、またはコンダクションリフロー電力供給部10およびインダクションリフロー電力供給部11の出力電力は、W=ρ×C×LS×60×t×10−3×w×(T1−T2)×APSn×APSn−Feで求められる。但し、上式において、W:出力電力(W)、ρ:鉄の比重(kg/m)、C:鉄の比熱(J/kg℃)、LS:ライン速度(m/min)、t:板厚(mm)、w:板幅(mm)、T1:被処理鋼板1の合金化炉入側の板温(℃)、T2:合金化炉出側の板温目標値(℃)、APSn,APSn−Fe:それぞれ、金属錫量目標値、合金錫量目標値毎に実績を基に算出される補正定数である。 The output power of the conduction reflow power supply unit 10 or the output power of the conduction reflow power supply unit 10 and the induction reflow power supply unit 11 is W = ρ × C × LS × 60 × t × 10 −3 × w × ( It is calculated | required by T1-T2) * APSn * APSn-Fe . Where, W: output power (W), ρ: specific gravity of iron (kg / m 3 ), C: specific heat of iron (J / kg ° C.), LS: line speed (m / min), t: Plate thickness (mm), w: plate width (mm), T1: plate temperature (° C) on the alloying furnace entry side of the steel plate 1 to be treated, T2: plate temperature target value (° C) on the alloying furnace exit side, A PSn , APSn-Fe : Correction constants calculated based on actual results for each target value of metal tin and target value of tin of alloy.

(2)放射温度計5の放射率目標値の設定
放射温度計5の放射率目標値の設定は、金属錫量目標値、合金錫量目標値および錫の放射率に基づいて、放射温度計5の放射率目標値を設定することにより行う。
(2) Setting the emissivity target value of the radiation thermometer 5 The emissivity target value of the radiation thermometer 5 is set based on the metal tin amount target value, the alloy tin amount target value, and the tin emissivity. This is done by setting an emissivity target value of 5.

演算部21が、入出力部20を介して、リフローラインを通板する被処理鋼板1の金属錫量目標値および合金錫量目標値、ならびに錫の放射率を、データベース22から取得し、放射温度計5の放射率目標値を算出して、放射温度計5に送出し、設定する。
本処理においては、被処理鋼板1の金属錫量目標値および合金錫量目標値の一方または両方は、データベース22から数値を取得する代わりに、入力デバイス23から入力された数値を取得してもよいし、記憶媒体24に記憶されている場合には、そこから数値を読み出して取得してもよい。また、錫の放射率は、データベース22から数値を取得する代わりに、入力デバイス23から入力された数値を取得してもよい。
演算部21は、算出した放射温度計5の放射率目標値を記憶媒体24に書き込んで記憶する。
The calculation unit 21 acquires, from the database 22, the metal tin amount target value and the alloy tin amount target value of the steel sheet 1 to be processed through the reflow line and the tin emissivity through the input / output unit 20. The emissivity target value of the thermometer 5 is calculated, sent to the radiation thermometer 5, and set.
In this process, one or both of the target value for the metal tin amount and the target value for the tin content of the steel plate 1 to be processed may be obtained by acquiring a numerical value input from the input device 23 instead of acquiring a numerical value from the database 22. In the case where it is stored in the storage medium 24, the numerical value may be read out and acquired therefrom. Moreover, instead of obtaining a numerical value from the database 22, the numerical value input from the input device 23 may be obtained for the emissivity of tin.
The calculator 21 writes the calculated emissivity target value of the radiation thermometer 5 in the storage medium 24 and stores it.

ある一態様では、演算部21は、下記式により放射温度計5の放射率目標値を算出する。
ε’=εSn*f(MPSn)*f(MPFe−Sn
ここで、
ε’は放射温度計5の放射率目標値であり、
εSnは錫の放射率であり、
PSnは金属錫量目標値であり、
PSn−Feは合金錫量目標値であり、
(MPSn)はMPSnの関数であり、
(MPSn−Fe)はMPSn−Feの関数であり、
演算子*は積算演算子である。
In a certain aspect, the calculating part 21 calculates the emissivity target value of the radiation thermometer 5 by the following formula.
ε p '= ε Sn * f 1 (M PSn) * f 2 (M PFe-Sn)
here,
ε p ′ is the emissivity target value of the radiation thermometer 5,
ε Sn is the emissivity of tin,
M PSn is the target amount of metal tin,
MPSn-Fe is the target amount of alloy tin,
f 1 (M PSn ) is a function of M PSn ,
f 2 (M PSn—Fe ) is a function of M PSn—Fe ,
The operator * is an integration operator.

一例として、より詳細には、f(MPSn)は、f(MPSn)=αPSn+βであり、f(MPSn−Fe)は、f(MPSn−Fe)=αPSn−Fe+βである。ここで、α、α、β、βは、実績を基に算出される定数である。 As an example, in more detail, f 1 (M PSn ) is f 1 (M PSn ) = α 1 M PSn + β 1 , and f 2 (M PSn-Fe ) is f 2 (M PSn-Fe ). = Α 2 M PSn-Fe + β 2 . Here, α 1 , α 2 , β 1 , and β 2 are constants calculated based on actual results.

(3)被処理鋼板1の合金化炉3出側の板温目標値の算出
被処理鋼板1の合金化炉3出側の板温目標値の算出は、予め設定した合金化モデルを用いて、金属錫量目標値、合金錫量目標値、放射率目標値と錫の放射率との比である放射率補正目標値、および被処理鋼板1の合金化炉3入側の板温に基づいて、被処理鋼板1の合金化炉3出側の板温目標値を算出することにより行う。
(3) Calculation of the target plate temperature on the outlet side of the alloying furnace 3 of the processed steel plate 1 The target temperature value on the outlet side of the alloying furnace 3 of the processed steel plate 1 is calculated using a preset alloying model. , Metal tin amount target value, alloy tin amount target value, emissivity correction target value which is a ratio of emissivity target value and tin emissivity, and the temperature of the steel sheet to be processed 1 on the inlet side of the alloying furnace 3 Then, it calculates by calculating the plate temperature target value on the outlet side of the alloying furnace 3 of the steel plate 1 to be processed.

まず、演算部21が、錫の放射率をデータベース22から取得し、放射率目標値を記憶媒体24から読み出して取得し、下記式により放射率補正目標値を算出して、記憶媒体24に書き込んで記憶する。
ここで、錫の放射率は、データベース22から取得する代わりに、入力デバイス23から入力された数値を取得してもよいし、記憶媒体24に記憶されている場合には、そこから数値を読み出して取得してもよい。
First, the calculation unit 21 obtains the emissivity of tin from the database 22, reads and obtains the emissivity target value from the storage medium 24, calculates the emissivity correction target value by the following formula, and writes it in the storage medium 24. Remember me.
Here, instead of obtaining the emissivity of tin from the database 22, a numerical value input from the input device 23 may be acquired, and when stored in the storage medium 24, the numerical value is read therefrom. May be obtained.

=ε’/εsn
ここで、
は放射率補正目標値であり、
ε’は放射温度計5の放射率目標値であり、
εsnは錫の放射率である。
E P = ε p '/ ε sn
here,
E P is the emissivity correction target value,
ε p ′ is the emissivity target value of the radiation thermometer 5,
ε sn is the emissivity of tin.

次に、演算部21が、放射率補正目標値を記憶媒体24から読み出して取得し、被処理鋼板1の金属錫量目標値および合金錫量目標値、ならびに鋼種ごとの合金化進行速度補正係数をデータベース22から取得し、被処理鋼板1の合金化炉3入側の板温(実測値)を錫の放射率を設定した放射温度計9から取得し、予め設定した合金化モデルを用いて、被処理鋼板1の合金化炉3出側の板温目標値を算出して、記憶媒体24に書き込んで記憶する。
被処理鋼板1の金属錫量目標値および合金錫量目標値の一方または両方は、データベース22から数値を取得する代わりに、入力デバイス23から入力された数値を取得してもよいし、記憶媒体24に格納されている場合には、そこから数値を読み出して取得してもよく、鋼種ごとの合金化進行速度補正係数は、データベース22から数値を取得する代わりに、入力デバイス23から入力された数値を取得してもよい。
Next, the calculation unit 21 reads and acquires the emissivity correction target value from the storage medium 24, obtains the metal tin amount target value and the alloy tin amount target value of the steel plate 1 to be processed, and the alloying progress rate correction coefficient for each steel type. Is obtained from the database 22, the plate temperature (actually measured value) of the steel sheet to be treated 1 entering the alloying furnace 3 is obtained from the radiation thermometer 9 in which the emissivity of tin is set, and a preset alloying model is used. Then, a target plate temperature value on the outlet side of the alloying furnace 3 of the steel plate 1 to be processed is calculated, written in the storage medium 24 and stored.
One or both of the metal tin amount target value and the alloy tin amount target value of the steel plate 1 to be processed may be acquired from the input device 23 instead of the numerical value from the database 22, or the storage medium. 24, the numerical value may be read out and acquired from the data, and the alloying progression speed correction coefficient for each steel type is input from the input device 23 instead of acquiring the numerical value from the database 22. A numerical value may be acquired.

ある一態様では、予め設定した合金化モデルとして、下記式で表される合金化モデルを用いる。
FeSn=A*(T1−T2)*E*K+B
ここで、
Fesnは合金化度(%)であり、
T1は被処理鋼板1の合金化炉3入側の板温(℃)であり、
T2は被処理鋼板1の合金化炉3出側の板温目標値(℃)であり、
は放射率補正目標値(補正後の放射温度計の放射率目標値ε’と錫の放射率εsnとの比)であり、
Kは鋼種ごとの合金化進行速度補正係数であり、
AおよびBは、それぞれ、定数であり、
演算子“*”は積算演算子である。
In one embodiment, an alloying model represented by the following formula is used as a preset alloying model.
Fe Sn = A * (T1-T2) * E P * K + B
here,
Fe sn is the degree of alloying (%),
T1 is the plate temperature (° C.) of the steel sheet 1 to be treated on the entry side of the alloying furnace 3;
T2 P is a target plate temperature (° C.) on the outlet side of the alloying furnace 3 of the steel plate 1 to be processed.
E P is the emissivity correction target value (the ratio of the emissivity epsilon sn emissivity target value epsilon p 'and tin corrected radiation thermometer),
K is an alloying speed correction factor for each steel type,
A and B are constants, respectively.
The operator “*” is an integration operator.

定数A、Bは、成分の異なる鋼種毎に固有の定数であり、合金化度の実績を基に算出される。   The constants A and B are constants specific to each steel type having different components, and are calculated based on the record of the degree of alloying.

別の一態様では、予め設定した合金化モデルとして下記式で表される合金化モデルを用いる。
Fesn’=C*(T1−T2)*E*K+D
ここで、
Fesn’は合金錫量(g/m)であり、
T1は被処理鋼板1の合金化炉3入側の板温(℃)であり、
T2は被処理鋼板1の合金化炉3出側の板温目標値(℃)であり、
は放射率補正目標値(補正後の放射温度計の放射率目標値ε’と錫の放射率εsnとの比)であり、
Kは鋼種ごとの合金化進行速度補正係数であり、
CおよびDは、それぞれ、定数であり、
演算子“*”は積算演算子である。
In another aspect, an alloying model represented by the following formula is used as a preset alloying model.
Fe sn '= C * (T1-T2 P ) * E P * K + D
here,
Fe sn 'is the amount of alloy tin (g / m 2 ),
T1 is the plate temperature (° C.) of the steel sheet 1 to be treated on the entry side of the alloying furnace 3;
T2 P is a target plate temperature (° C.) on the outlet side of the alloying furnace 3 of the steel plate 1 to be processed.
E P is the emissivity correction target value (the ratio of the emissivity epsilon sn emissivity target value epsilon p 'and tin corrected radiation thermometer),
K is an alloying speed correction factor for each steel type,
C and D are each a constant,
The operator “*” is an integration operator.

定数C、Dは、成分の異なる鋼種毎に固有の定数であり、合金錫量の実績を基に算出される。   The constants C and D are unique constants for each steel type having different components, and are calculated based on the actual amount of alloy tin.

(4)被処理鋼板1の一部のリフローライン通板
被処理鋼板1の一部のリフローライン通板は、放射率目標値を設定した放射温度計5を用いて、被処理鋼板1の合金化炉3出側の板温が被処理鋼板1の合金化炉3出側の板温目標値になるように、コンダクションリフロー電力供給部10の出力電力、またはコンダクションリフロー電力供給部10およびインダクションリフロー電力供給部11の出力電力を制御して、被処理鋼板1の一部をリフローラインに通板することにより行う。
(4) Partial reflow line passing plate of the steel plate 1 to be processed The reflow line passing plate of the steel plate 1 to be processed is an alloy of the steel plate 1 to be processed using the radiation thermometer 5 in which the emissivity target value is set. The output power of the conduction reflow power supply unit 10 or the conduction reflow power supply unit 10 and the plate temperature on the outlet side of the alloying furnace 3 of the steel plate 1 to be processed become the target temperature value on the outlet side of the alloying furnace 3. This is done by controlling the output power of the induction reflow power supply unit 11 and passing a part of the treated steel plate 1 through the reflow line.

被処理鋼板1の一部をリフローラインに通板しながら、演算部21は、放射率目標値を設定した放射温度計5から、被処理鋼板1の合金化炉3出側の板温(実測値)を取得し、被処理鋼板1の一部の合金化炉3出側の板温(実測値)が、記憶媒体24から読み出して取得した被処理鋼板1の合金化炉3出側の板温目標値になるように、コンダクションリフロー電力供給部10、またはコンダクションリフロー電力供給部10およびインダクションリフロー電力供給部11の出力電力を算出し、コンダクションリフロー電力制御部13、またはコンダクションリフロー制御部13およびインダクションリフロー電力制御部12に送出して、コンダクションリフロー電力供給部10の出力電力、またはコンダクションリフロー電力供給部10およびインダクションリフロー電力供給部11の出力電力を設定して、被処理鋼板1を加熱する。   While passing a part of the steel plate 1 to be processed through the reflow line, the calculation unit 21 starts from the radiation thermometer 5 in which the emissivity target value is set, and the temperature of the steel plate 1 on the outlet side of the alloying furnace 3 (actual measurement). Value), and the sheet temperature (actually measured value) of a part of the alloying furnace 3 exiting the steel sheet 1 to be processed is read from the storage medium 24 and acquired. The output power of the conduction reflow power supply unit 10 or the conduction reflow power supply unit 10 and the induction reflow power supply unit 11 is calculated so as to reach the temperature target value, and the conduction reflow power control unit 13 or the conduction reflow is calculated. The output power to the control unit 13 and the induction reflow power control unit 12 and the output power of the conduction reflow power supply unit 10 or the conduction reflow power supply unit 10 and Set the output power of the induction reflow power supply unit 11, for heating an object to be processed steel sheet 1.

(5)被処理鋼板1の金属錫量および合金錫量の実測
被処理鋼板1の金属錫量および合金錫量の実測は、被処理鋼板1の一部をリフローラインに通板した後、被処理鋼板1の一部の表面の金属錫量および合金錫量を実測することにより行う。
(5) Actual measurement of metal tin amount and alloy tin amount of steel plate 1 to be processed Actual measurement of metal tin amount and alloy tin amount of steel plate 1 to be processed is carried out after passing a part of the steel plate 1 to be processed through a reflow line. This is done by actually measuring the amount of metallic tin and the amount of alloyed tin on the surface of a part of the treated steel sheet 1.

リフローラインを一旦止めて、リフロー処理が行われた後の、被処理鋼板1の一部から試料を採取し、採取した試料の表面の金属錫量および合金錫量を実測し、金属錫量実測値および合金錫量実測値を求める。   Once the reflow line is stopped and the reflow process is performed, a sample is taken from a part of the steel sheet 1 to be processed, the amount of metal tin and alloy tin on the surface of the sample is measured, and the amount of metal tin is measured. Values and measured values of alloy tin are obtained.

リフローラインに付着量計36および合金化度計35が設置されている場合には、リフローラインを停止することなく、演算部21は、リフロー処理が行われた後の、被処理鋼板1の一部の錫鍍金付着量を付着量計36から、合金化度を合金化度計35から、それぞれ取得し、リフロー処理が行われた後の、被処理鋼板1の一部の表面の金属錫量実測値および合金錫量実測値を算出して、記憶媒体24に書き込んで記憶する。   In the case where the adhesion amount meter 36 and the alloying degree meter 35 are installed in the reflow line, the calculation unit 21 does not stop the reflow line. The amount of metal tin on the surface of a part of the treated steel sheet 1 after obtaining the amount of tin plating adhesion from the adhesion amount meter 36 and the degree of alloying from the alloying degree meter 35 and performing the reflow treatment An actual measurement value and an alloy tin amount actual measurement value are calculated, written in the storage medium 24, and stored.

(6)放射温度計5の放射率の補正
放射温度計5の放射率の補正は、被処理鋼板1の一部の表面の金属錫量および合金錫量を実測して得られた金属錫量実測値および合金錫量実測値、ならびに錫の放射率に基づいて、放射温度計5の放射率を補正することにより行う。
(6) Correction of the emissivity of the radiation thermometer 5 The correction of the emissivity of the radiation thermometer 5 is performed by actually measuring the amount of metal tin and alloy tin on the surface of a part of the steel plate 1 to be processed. This is performed by correcting the emissivity of the radiation thermometer 5 based on the actually measured value, the actually measured amount of tin alloy, and the emissivity of tin.

演算部21が、リフロー処理が行われた後の、被処理鋼板1の一部の表面の金属錫量実測値および合金錫量実測値を記憶媒体24から読み出して取得し、錫の放射率をデータベース22から取得し、放射温度計5の放射率(補正値)を算出して、放射温度計5に送出する。
本処理においては、被処理鋼板1の一部の表面の金属錫量実測値および合金錫量実測値を記憶媒体24から読み出して取得する代わりに、入力デバイス23から入力された数値を取得してもよく、錫の放射率はデータベース22から取得する代わりに、入力デバイス23から入力された数値を取得してもよいし、記憶媒体24に記憶されている場合には、そこから数値を読み出して取得してもよい。
演算部21は、算出した放射温度計5の放射率(補正値)を記憶媒体24に書き込んで記憶してもよい。
The arithmetic unit 21 reads and acquires the measured value of the metal tin amount and the alloy tin amount of the surface of a part of the surface of the steel sheet 1 after the reflow process is performed, and acquires the tin emissivity. Obtained from the database 22, the emissivity (correction value) of the radiation thermometer 5 is calculated and sent to the radiation thermometer 5.
In this process, instead of reading out and acquiring the measured metal tin amount and the measured alloy tin amount on a part of the surface of the steel sheet 1 to be processed from the storage medium 24, the numerical value input from the input device 23 is acquired. Alternatively, instead of obtaining the emissivity of tin from the database 22, a numerical value input from the input device 23 may be acquired, and when stored in the storage medium 24, the numerical value is read from the input device 23. You may get it.
The computing unit 21 may write and store the calculated emissivity (correction value) of the radiation thermometer 5 in the storage medium 24.

ある一態様では、演算部21は、下記式により放射温度計5の放射率(補正値)を算出する。
ε’=εSn*f1(MSn)*f2(MFe−Sn
ここで、
ε’は放射温度計5の放射率(補正値)であり、
εsnは錫表面の放射率であり
Snは金属錫量実測値であり、
Fe−Snは合金錫量実測値であり、
(MSn)はMSnの関数であり、
(MFe−Sn)はMFe−Snの関数であり、
演算子“*”は積算演算子である。
In one certain aspect, the calculating part 21 calculates the emissivity (correction value) of the radiation thermometer 5 by the following formula.
ε ′ = ε Sn * f 1 (M Sn ) * f 2 (M Fe-Sn )
here,
ε ′ is the emissivity (correction value) of the radiation thermometer 5,
ε sn is the emissivity of the tin surface, M Sn is the measured amount of metallic tin,
M Fe—Sn is a measured value of the amount of alloy tin,
f 1 (M Sn ) is a function of M Sn ,
f 2 (M Fe—Sn ) is a function of M Fe—Sn ,
The operator “*” is an integration operator.

一例として、より詳細には、f(MSn)は、f(MSn)=αSn+βであり、f(MFe−Sn)は、f(MFe−Sn)=αFe−Sn+βである。ここで、α、α、β、βは、実績を基に算出される定数である。 As an example, more specifically, f 1 (M Sn ) is f 1 (M Sn ) = α 3 M Sn + β 3 , and f 2 (M Fe—Sn ) is f 2 (M Fe—Sn ). = Α 4 M Fe-Sn + β 4 . Here, α 3 , α 4 , β 3 , and β 4 are constants calculated based on actual results.

放射温度計5が、放射率(補正値)を放射率算出演算部12から入手し、放射率を補正する。   The radiation thermometer 5 obtains the emissivity (correction value) from the emissivity calculation calculation unit 12 and corrects the emissivity.

(7)出力電力の制御
出力電力の制御は、被処理鋼板1の一部の表面の金属錫量実測値および合金錫量実測値、ならびに錫の放射率に基づいて放射率を補正した放射温度計5を用いて、被処理鋼板1の残部の合金化炉3出側の板温が被処理鋼板1の合金化炉3出側の板温目標値となるように、コンダクションリフロー15の出力電力、またはコンダクションリフロー15およびインダクションリフロー16の出力電力を制御することにより行う。
(7) Output power control The output power is controlled by adjusting the emissivity based on the measured value of the amount of metal tin and the amount of alloy tin measured on a part of the surface of the steel sheet 1 and the emissivity of tin. The output of the conduction reflow 15 is used so that the plate temperature on the outlet side of the alloying furnace 3 of the remaining steel plate 1 to be processed becomes the target temperature on the outlet side of the alloying furnace 3 of the steel plate 1 to be processed. This is done by controlling the power or the output power of the conduction reflow 15 and the induction reflow 16.

被処理鋼板1の残部をリフローラインに通板しながら、演算部21は、放射率を補正した放射温度計5から、被処理鋼板1の合金化炉3出側の板温(実測値)を取得し、被処理鋼板1の残部の合金化炉出側の板温(実測値)が、記憶媒体24から読み出して取得した被処理鋼板1の合金化炉3出側の板温目標値になるように、コンダクションリフロー電力供給部10、またはコンダクションリフロー電力供給部10およびインダクションリフロー電力供給部11の出力電力を算出し、コンダクションリフロー電力制御部13、またはコンダクションリフロー制御部13およびインダクションリフロー電力制御部12に送出し、コンダクションリフロー電力供給部10、またはコンダクションリフロー電力供給部10およびインダクションリフロー電力供給部11の出力電力を設定して、被処理鋼板1を加熱する。   While passing the remaining portion of the steel plate 1 to be processed through the reflow line, the calculation unit 21 calculates the plate temperature (actually measured value) on the outlet side of the alloying furnace 3 of the steel plate 1 to be processed from the radiation thermometer 5 whose emissivity is corrected. The plate temperature (actually measured value) of the remaining steel plate 1 on the alloying furnace outlet side obtained and obtained from the storage medium 24 becomes the target plate temperature on the outlet side of the alloying furnace 3 of the steel plate 1 to be acquired. As described above, the output power of the conduction reflow power supply unit 10 or the conduction reflow power supply unit 10 and the induction reflow power supply unit 11 is calculated, and the conduction reflow power control unit 13 or the conduction reflow control unit 13 and the induction are calculated. It is sent to the reflow power control unit 12 and the conduction reflow power supply unit 10 or the conduction reflow power supply unit 10 and the induction riff Set the output power of over the power supply unit 11, for heating an object to be processed steel sheet 1.

本発明のリフロー処理方法は、合金化炉3出側における被処理鋼板1表面の光沢を肉眼で確認して被処理鋼板1の合金化炉3出側における板温の設定値を変更したり、画像処理を施して被処理鋼板1表面のフローラインを検出して被処理鋼板1の合金化炉3出側における板温の設定値を変更したりすることが無いので、属人的な誤差が入り込む余地が無く、フローラインが無くなる被処理鋼板の板温の境界温度を単に見出すのみではないので、被処理鋼板1の合金化炉3出側の板温を精度よく制御することができる。
また、本発明のリフロー処理方法は、被処理鋼板1の合金化炉3出側の板温を精度よく制御することができるので、得られる錫鍍金鋼板の合金錫量の精度を向上することが期待できる。さらに、合金化度の精度を向上することで、合金化度の精度も向上することができ、錫鍍金鋼板の品質である光沢性および耐食性を向上するとともに、コンダクションリフローおよびインダクションリフローにおける不要な加熱を抑制して、省電力にも寄与することが期待できる。
In the reflow treatment method of the present invention, the gloss of the surface of the steel sheet 1 to be treated on the outlet side of the alloying furnace 3 is confirmed with the naked eye, and the set value of the plate temperature on the outlet side of the alloying furnace 3 of the steel sheet 1 to be treated is changed. Since the image processing is not performed to detect the flow line on the surface of the steel plate 1 to be processed and the set value of the plate temperature on the outlet side of the alloying furnace 3 of the steel plate 1 to be processed is not changed, Since there is no room for entering and the boundary temperature of the plate temperature of the steel plate to be processed where there is no flow line is simply found, the plate temperature on the outlet side of the alloying furnace 3 of the steel plate 1 to be processed can be accurately controlled.
Moreover, since the reflow processing method of this invention can control the plate | board temperature of the alloying furnace 3 exit side of the to-be-processed steel plate 1 with a sufficient precision, it can improve the precision of the alloy tin amount of the obtained tin-plated steel plate. I can expect. Furthermore, by improving the accuracy of the degree of alloying, the accuracy of the degree of alloying can also be improved, improving the gloss and corrosion resistance, which are the quality of the tin-plated steel sheet, and unnecessary in the reflow and induction reflow. It can be expected to contribute to power saving by suppressing heating.

(合金化モデルの補正および合金化炉出側の板温目標値の更新)
本発明のリフロー処理方法は、金属錫量実測値および合金錫量実測値から算出した合金化度、放射温度計5の放射率(補正値)、被処理鋼板1の合金化炉3入側の板温、ならびに被処理鋼板1の合金化炉3出側の板温に基づいて合金化モデルを補正して、被処理鋼板1の合金化炉3出側の板温目標値を更新すると、被処理鋼板1の合金化炉3出側の板温をより精度よく実測でき、被処理鋼板1の合金化炉3出側の板温をより精度よく制御できるので、好ましい。
被処理鋼板1の合金化炉3出側の板温目標値は、予め設定した合金化モデルを用いて、金属錫量目標値、合金錫量目標値、放射率目標値と錫の放射率との比である放射率補正目標値、および被処理鋼板1の合金化炉3入側の板温から算出する。
合金化モデルを表す式の金属錫量目標値、合金錫量目標値および放射率目標値を、それぞれ、金属錫量実測値、合金錫量実測値および放射率(補正値)で置き換えることで、合金化モデルを補正し、合金化炉3出側の板温目標値を更新すると、合金化炉3出側の板温をより精度よく制御することができるので、被処理鋼板1の合金錫量をより精度よく制御することができる。
(Correction of alloying model and update of target temperature at alloying furnace outlet side)
The reflow processing method of the present invention is based on the measured alloying amount of metal tin and the measured amount of tin alloy, the emissivity (correction value) of the radiation thermometer 5, the alloying furnace 3 entrance side of the steel plate 1 to be processed. When the alloying model is corrected based on the sheet temperature and the sheet temperature on the outlet side of the alloying furnace 3 of the steel plate 1 to be processed, and the target temperature value on the outlet side of the alloying furnace 3 of the steel plate 1 to be processed is updated, It is preferable because the temperature of the treated steel sheet 1 on the outlet side of the alloying furnace 3 can be measured with higher accuracy and the temperature of the processed steel sheet 1 on the outlet side of the alloying furnace 3 can be controlled more accurately.
The plate temperature target value on the outlet side of the alloying furnace 3 of the steel plate 1 to be processed is obtained by using a preset alloying model, a metal tin amount target value, an alloy tin amount target value, an emissivity target value, and an emissivity of tin. Is calculated from the emissivity correction target value, which is the ratio of the above, and the plate temperature of the steel sheet to be processed 1 on the entry side of the alloying furnace 3.
By replacing the metal tin amount target value, the alloy tin amount target value and the emissivity target value of the formula representing the alloying model with the metal tin amount actual value, the alloy tin amount actual value and the emissivity (correction value), respectively. If the alloying model is corrected and the target temperature of the alloying furnace 3 exit side is updated, the temperature of the alloying furnace 3 exit side can be controlled more accurately. Can be controlled more accurately.

合金化モデルを表す式の金属錫量目標値、合金錫量目標値および放射率目標値を、それぞれ、金属錫量実測値、合金錫量実測値および放射率(補正値)で置き換えて、「(3)被処理鋼板1の合金化炉3出側の板温目標値の算出」と同様にして、合金化炉3出側の板温目標値(新しい板温目標値)を算出し、被処理鋼板1の合金化炉3出側の板温が新しい板温目標値となるようにリフローの出力電力を制御する。   By replacing the metal tin amount target value, alloy tin amount target value and emissivity target value of the equation representing the alloying model with the metal tin amount actual value, alloy tin amount actual value and emissivity (correction value), respectively, (3) Calculate the plate temperature target value on the outlet side of the alloying furnace 3 of the steel plate 1 to be processed (new plate temperature target value) on the outlet side of the alloying furnace 3 The output power of the reflow is controlled so that the plate temperature of the treated steel plate 1 on the outlet side of the alloying furnace 3 becomes a new plate temperature target value.

(錫鍍金付着量の差異による合金化炉出側の板温目標値の更新)
なお、被処理鋼板1のうち先行してリフロー処理される部分(先行してリフロー処理される被処理鋼板)の錫鍍金付着量と後行してリフロー処理される部分(後行してリフロー処理される被処理鋼板)の錫鍍金付着量との差が所定範囲内である場合には、後行してリフロー処理される被処理鋼板の合金化炉3出側の板温目標値、ならびに放射温度計5の放射率目標値および放射率(補正値)は先行してリフロー処理される被処理鋼板と同じ値に設定すればよいが、その差が処理範囲を超える場合には、先行してリフロー処理される被処理鋼板に対して上述した(1)〜(7)の処理を行った後、後行してリフロー処理される被処理鋼板に対して、上記した(1)〜(7)の処理を行うことが好ましい。
(Update of the target plate temperature on the alloying furnace exit side due to the difference in the amount of tin plating)
It should be noted that the portion of the steel plate 1 to be reflow processed in advance (the steel plate to be processed to be reflowed in advance) and the amount of tin plating adhering to the portion to be reflowed (following and reflow processing) When the difference from the amount of tin plating applied to the steel plate to be treated is within a predetermined range, the target temperature on the outlet side of the alloying furnace 3 of the steel plate to be treated and reflowed, and the radiation The emissivity target value and emissivity (correction value) of the thermometer 5 may be set to the same value as the steel plate to be processed in advance, but if the difference exceeds the processing range, it is preceded. (1) to (7) above (1) to (7) for the steel sheet to be reflow-treated after the processes (1) to (7) described above are performed on the steel sheet to be reflow-treated. It is preferable to perform the process.

錫鍍金付着量は、リフローラインを一旦止めて、リフロー処理が行われる前の被処理鋼板1から試料を採取し、採取した試料の表面の錫鍍金付着量を実測して求めることができるが、リフローラインに付着量計31が設置されている場合には、リフローラインを停止することなく測定できるので好ましい。   The tin plating adhesion amount can be obtained by temporarily stopping the reflow line, collecting a sample from the steel plate 1 before the reflow treatment is performed, and actually measuring the tin plating adhesion amount on the surface of the collected sample. When the adhesion amount meter 31 is installed in the reflow line, measurement can be performed without stopping the reflow line, which is preferable.

なお、先行してリフロー処理される被処理鋼板の錫鍍金付着量と後行してリフロー処理される被処理鋼板の錫鍍金付着量との差の所定範囲は、適宜設定することができるが、例えば、±0.1g/mとすることが好ましく、±0.05g/mとすることがより好ましく、±0g/mとすることがさらに好ましい。 In addition, the predetermined range of the difference between the amount of tin plating adhesion of the steel sheet to be processed to be reflowed in advance and the amount of tin plating adhesion of the steel sheet to be processed to be reflowed later can be appropriately set. for example, preferably set to ± 0.1 g / m 2, more preferably to ± 0.05 g / m 2, and even more preferably from ± 0g / m 2.

板厚0.08〜0.6mm、板幅450〜1100mm、錫付着量が1.0〜14g/mの範囲の被処理鋼板15tonfを400コイル用意し、リフローラインに通板してリフロー処理した。
上記400コイルのうち200コイルは、本発明のリフロー処理方法によりリフロー処理し(実施例)、残り200コイルは放射率を一定とした放射温度計を用いてオペレータが目視で被処理鋼板の光沢を判断してリフロー処理した(比較例)。
図3に、本発明のリフロー処理方法でリフロー処理したコイルの合金錫量の目標値と実測値との外れ割合を、図4に、従来のリフロー処理方法でリフロー処理したコイルの合金錫量の目標値と実測値との外れ割合を示す。なお、図3、図4では、横軸に示した数字は各階級の中央値を示し、各階級は中央値の−5%以上+5%未満を表す。
本発明のリフロー処理方法でリフロー処理したコイルの合金錫量の目標値と実測値との外れ割合は分散1σ=8%、従来のリフロー処理方法でリフロー処理したコイルの合金錫量の目標値と実測値との外れ割合は分散1σ=14%であり、本発明のリフロー処理方法により、被処理鋼板の錫鍍金の合金錫量の精度を著しく向上させることができることがわかった。
400 coils of steel plate 15tonf to be processed with a plate thickness of 0.08 to 0.6 mm, a plate width of 450 to 1100 mm, and a tin adhesion amount of 1.0 to 14 g / m 2 are prepared, passed through a reflow line, and reflow processed. did.
Of the above 400 coils, 200 coils were reflow processed by the reflow processing method of the present invention (Example), and the remaining 200 coils were visually radiated by the operator using a radiation thermometer with a constant emissivity. Judgment was made and reflow processing was performed (comparative example).
FIG. 3 shows the deviation ratio between the target value and the actual measurement value of the alloy tin amount of the coil reflow-treated by the reflow treatment method of the present invention. FIG. 4 shows the alloy tin amount of the coil reflow-treated by the conventional reflow treatment method. The deviation ratio between the target value and the actual measurement value is shown. 3 and 4, the numbers on the horizontal axis represent the median value of each class, and each class represents −5% or more and less than + 5% of the median value.
The deviation ratio between the target value of the alloy tin amount of the coil reflow-treated by the reflow treatment method of the present invention and the measured value is 1σ = 8% variance, and the target value of the alloy tin amount of the coil reflow-treated by the conventional reflow treatment method The deviation rate from the measured value is 1σ = 14% dispersion, and it was found that the accuracy of the alloy tin amount of the tin plating of the steel plate to be treated can be remarkably improved by the reflow treatment method of the present invention.

1:被処理鋼板
2:No.1コンダクタロール
3:合金化炉
4:インダクションヒーター
5:放射温度計
6:クエンチタンクロール
7:クエンチタンク
8:No.2コンダクタロール
9:放射温度計
10:コンダクションリフロー電力供給部
11:インダクションリフロー電力供給部
12:インダクションリフロー電力制御部
13:コンダクションリフロー電力制御部
20:入出力部
21:演算部
22:データベース
23:入力デバイス
24:記憶媒体
31:付着量計
32:板幅検出部
33:板厚検出部
34:ライン速度検出部
35:合金化度計
36:付着量計
1: Steel plate to be treated 2: No. 1 conductor roll 3: alloying furnace 4: induction heater 5: radiation thermometer 6: quench tank roll 7: quench tank 8: No. 1 2 conductor roll 9: radiation thermometer 10: conduction reflow power supply unit 11: induction reflow power supply unit 12: induction reflow power control unit 13: conduction reflow power control unit 20: input / output unit 21: calculation unit 22: database 23: input device 24: storage medium 31: adhesion meter 32: plate width detector 33: plate thickness detector 34: line speed detector 35: degree of alloying meter 36: adhesion meter

Claims (5)

鋼板の連続錫鍍金ラインのリフローラインにおいて、連続的に送られてくる錫鍍金された被処理鋼板を、抵抗加熱を用いたコンダクションリフローの出力電力により加熱昇温して合金化炉に通板し、前記被処理鋼板の合金化炉出側の板温を放射温度計により測定し、前記被処理鋼板を急冷処理する連続錫鍍金ラインのリフロー処理方法であって、
(1)前記被処理鋼板の板幅、板厚、ライン速度、金属錫量目標値および合金錫量目標値に基づいて、前記抵抗加熱を用いたコンダクションリフローによる加熱昇温時の出力電力を設定し、
(2)前記金属錫量目標値、前記合金錫量目標値および錫の放射率に基づいて、前記放射温度計の放射率目標値を設定し、ここで、前記放射率は、物体が熱放射で放出する光のエネルギーの、同温の黒体が放出する光のエネルギーに対する比であり、
(3)予め設定した合金化モデルを用いて、前記金属錫量目標値、前記合金錫量目標値、前記放射率目標値と錫の前記放射率との比である放射率補正目標値、および前記被処理鋼板の合金化炉入側の板温に基づいて、前記被処理鋼板の合金化炉出側の板温目標値を算出し、
(4)前記放射率目標値を設定した放射温度計を用いて、前記被処理鋼板の合金化炉出側の板温が前記被処理鋼板の合金化炉出側の板温目標値になるように、前記抵抗加熱を用いたコンダクションリフローの出力電力を制御して、前記被処理鋼板の一部をリフローラインに通板し、
(5)前記被処理鋼板の一部を前記リフローラインに通板した後、前記被処理鋼板の一部の表面の金属錫量および合金錫量を実測し、
(6)前記被処理鋼板の一部の表面の金属錫量および合金錫量を実測して得られた金属錫量実測値および合金錫量実測値、ならびに錫の前記放射率に基づいて、前記放射温度計の放射率を補正し、
(7)前記被処理鋼板の一部の表面の前記金属錫量実測値および前記合金錫量実測値、ならびに錫の前記放射率に基づいて放射率を補正した前記放射温度計を用いて、前記被処理鋼板の残部の合金化炉出側の板温が前記被処理鋼板の合金化炉出側の板温目標値となるように、前記抵抗加熱を用いたコンダクションリフローの出力電力を制御し、
前記被処理鋼板は先行してリフロー処理される被処理鋼板および後行してリフロー処理される被処理鋼板からなり、
〈I〉前記先行してリフロー処理される被処理鋼板に対して、前記(1)〜(7)の処理を行い、
〈II〉前記先行してリフロー処理される被処理鋼板の錫鍍金付着量および前記後行してリフロー処理される被処理鋼板の錫鍍金付着量を測定し、
〈III〉前記先行してリフロー処理される被処理鋼板の錫鍍金付着量と前記後行してリフロー処理される被処理鋼板の錫鍍金付着量との差を算出し、
〈IV−1〉前記差が所定範囲内である場合は、前記後行してリフロー処理される被処理鋼板に対して、前記金属錫量実測値および前記合金錫量実測値に基づいて放射率を補正した放射温度計を用いて、前記後行してリフロー処理される被処理鋼板の合金化炉出側の板温が、前記先行してリフロー処理される被処理鋼板の合金化炉出側の板温目標値となるように、前記抵抗加熱を用いたコンダクションリフローの出力電力を制御し、
〈IV−2〉前記差が所定範囲を超える場合は、前記後行してリフロー処理される被処理鋼板に対して、前記(1)〜(7)の処理を行う、連続錫鍍金ラインのリフロー処理方法。
In a reflow line of a continuous tin plating line for steel sheets, the steel sheet to be treated that has been continuously plated is heated and heated by the output power of conduction reflow using resistance heating and passed through the alloying furnace. And, the reflow treatment method of the continuous tinning line for measuring the plate temperature of the treated steel sheet on the alloying furnace outlet side with a radiation thermometer, and quenching the treated steel plate,
(1) Based on the plate width, plate thickness, line speed, metal tin amount target value, and alloy tin amount target value of the steel plate to be treated, the output power at the time of heating and heating by conduction reflow using the resistance heating is calculated. Set,
(2) The emissivity target value of the radiation thermometer is set based on the metal tin amount target value, the alloy tin amount target value, and the emissivity of tin , wherein the emissivity is determined by the heat radiation of the object. Is the ratio of the energy of the light emitted at the same temperature to the energy of the light emitted by the black body of the same temperature,
(3) using a preset alloy model, the metallic tin amount target value, the alloy of tin amount target value, the emissivity target value and the ratio in which emissivity correction target value and the emissivity of the tin, and Based on the sheet temperature on the alloying furnace entry side of the steel sheet to be treated, the target temperature value on the alloying furnace exit side of the steel sheet to be treated is calculated,
(4) Using a radiation thermometer in which the emissivity target value is set, the plate temperature on the alloying furnace outlet side of the steel plate to be processed becomes the target temperature on the alloying furnace outlet side of the steel plate to be processed. In addition, by controlling the output power of the conduction reflow using the resistance heating, a part of the steel plate to be treated is passed through a reflow line,
(5) After passing a part of the steel plate to be treated through the reflow line, the amount of metal tin and the amount of alloy tin on the surface of a part of the steel plate to be treated were measured,
(6) the object to be treated metallic tin amount of a portion of the surface and metallic tin amount measured values obtained by actually measuring the alloy of tin content and alloy tin content measured value of the steel sheet, and based on the emissivity of the tin, the Correct the emissivity of the radiation thermometer,
(7) above using the metal tin content measured value and the alloy of tin content measured values, and the radiation thermometer corrected emissivity based on the emissivity of the tin portion of the surface of the treated steel sheet, wherein as sheet temperature alloying furnace exit side of the remainder of the treated steel sheet is a sheet temperature target value of the alloying furnace exit side of the object to be treated steel sheet, by controlling the output power of the conduction reflow with the resistive heating ,
The steel plate to be treated consists of a steel plate to be treated that is reflow-treated in advance and a steel plate to be treated that is reflow-treated after.
<I> The processing (1) to (7) is performed on the steel sheet to be processed to be reflowed in advance.
<II> Measure the amount of tin plating adhesion of the steel sheet to be treated before reflow treatment and the amount of tin plating adhesion of the steel sheet to be treated after reflow treatment,
<III> Calculate the difference between the amount of tin plating adhesion of the steel sheet to be treated to be reflowed in advance and the amount of tin plating adhesion of the steel sheet to be treated to be reflowed after the reflow treatment,
<IV-1> When the difference is within a predetermined range, the emissivity based on the measured value of the metal tin amount and the measured value of the alloy tin amount for the steel sheet to be processed to be reflowed following the subsequent process. Using the radiation thermometer corrected, the sheet temperature on the alloying furnace outlet side of the steel sheet to be processed to be reflowed in the subsequent process is the alloying furnace outlet side of the steel sheet to be processed to be reflowed in advance. To control the output power of the conduction reflow using the resistance heating so that the plate temperature target value of
<IV-2> When the difference exceeds a predetermined range, reflow of a continuous tin plating line for performing the processes (1) to (7) on the steel sheet to be processed to be reflowed following the above process. Processing method.
鋼板の連続錫鍍金ラインのリフローラインにおいて、連続的に送られてくる錫鍍金された被処理鋼板を、抵抗加熱を用いたコンダクションリフローおよび誘導加熱を用いたインダクションリフローの出力電力により加熱昇温して合金化炉に通板し、前記被処理鋼板の合金化炉出側の板温を放射温度計により測定し、前記被処理鋼板を急冷処理する連続鍍金ラインのリフロー処理方法であって、
(1)前記被処理鋼板の板幅、板厚、ライン速度、金属錫量目標値および合金錫量目標値に基づいて、前記抵抗加熱を用いたコンダクションリフローおよび前記誘導加熱を用いたインダクションリフローによる加熱昇温時の出力電力を設定し、
(2)前記金属錫量目標値、前記合金錫量目標値および錫の放射率に基づいて、前記放射温度計の放射率目標値を設定し、ここで、前記放射率は、物体が熱放射で放出する光のエネルギーの、同温の黒体が放出する光のエネルギーに対する比であり、
(3)予め設定した合金化モデルを用いて、前記金属錫量目標値、前記合金錫量目標値、前記放射率目標値と錫の前記放射率との比である放射率補正目標値、および前記被処理鋼板の合金化炉入側の板温に基づいて、前記被処理鋼板の合金化炉出側の板温目標値を算出し、
(4)前記放射率目標値を設定した放射温度計を用いて、前記被処理鋼板の合金化炉出側の板温が前記被処理鋼板の合金化炉出側の板温目標値になるように、前記抵抗加熱を用いたコンダクションリフローおよび前記誘導加熱を用いたインダクションリフローの出力電力を制御して、前記被処理鋼板の一部をリフローラインに通板し、
(5)前記被処理鋼板の一部を前記リフローラインに通板した後、前記被処理鋼板の一部の表面の金属錫量および合金錫量を実測し、
(6)前記被処理鋼板の一部の表面の金属錫量および合金錫量を実測して得られた金属錫量実測値および合金錫量実測値、ならびに錫の前記放射率に基づいて、前記放射温度計の放射率を補正し、
(7)前記被処理鋼板の一部の表面の前記金属錫量実測値および前記合金錫量実測値、ならびに錫の前記放射率に基づいて放射率を補正した前記放射温度計を用いて、前記被処理鋼板の残部の合金化炉出側の板温が前記被処理鋼板の合金化炉出側の板温目標値となるように、前記抵抗加熱を用いたコンダクションリフローおよび前記誘導加熱を用いたインダクションリフローの出力電力を制御し、
前記被処理鋼板は先行してリフロー処理される被処理鋼板および後行してリフロー処理される被処理鋼板からなり、
〈I〉前記先行してリフロー処理される被処理鋼板について、前記(1)〜(7)の処理を行い、
〈II〉前記先行してリフロー処理される被処理鋼板の錫鍍金付着量および前記後行してリフロー処理される被処理鋼板の錫鍍金付着量を測定して、
〈III〉前記先行してリフロー処理される被処理鋼板の錫鍍金付着量と前記後行してリフロー処理される被処理鋼板の錫鍍金量との差を算出し、
〈IV−1〉前記差が所定範囲内である場合は、前記後行してリフロー処理される被処理鋼板について、前記金属錫量実測値および前記合金錫量実測値に基づいて放射率を補正した放射温度計を用いて、前記後行してリフロー処理される被処理鋼板の合金化炉出側の板温が、前記先行してリフロー処理される被処理鋼板の合金化炉出側の板温目標値となるように、前記抵抗加熱を用いたコンダクションリフローおよび前記誘導加熱を用いたインダクションリフローの出力電力を制御し、
〈IV−2〉前記差が所定範囲を超える場合は、前記後行してリフロー処理される被処理鋼板に対して、前記(1)〜(7)の処理を行う、連続錫鍍金ラインのリフロー処理方法。
In the reflow line of a continuous tin plating line for steel plates, the temperature of the steel plate to be treated that is continuously fed is heated by the output power of the induction reflow using induction heating and the induction reflow using induction heating. And passing through the alloying furnace, measuring the sheet temperature of the treated steel sheet on the alloying furnace exit side with a radiation thermometer, and a reflow treatment method of a continuous plating line for rapidly cooling the treated steel sheet,
(1) Conduction reflow using resistance heating and induction reflow using induction heating based on the plate width, plate thickness, line speed, metal tin amount target value and alloy tin amount target value of the steel plate to be treated Set the output power during heating and heating with
(2) The emissivity target value of the radiation thermometer is set based on the metal tin amount target value, the alloy tin amount target value, and the emissivity of tin , wherein the emissivity is determined by the heat radiation of the object. Is the ratio of the energy of the light emitted at the same temperature to the energy of the light emitted by the black body of the same temperature,
(3) using a preset alloy model, the metallic tin amount target value, the alloy of tin amount target value, the emissivity target value and the ratio in which emissivity correction target value and the emissivity of the tin, and Based on the sheet temperature on the alloying furnace entry side of the steel sheet to be treated, the target temperature value on the alloying furnace exit side of the steel sheet to be treated is calculated,
(4) Using a radiation thermometer in which the emissivity target value is set, the plate temperature on the alloying furnace outlet side of the steel plate to be processed becomes the target temperature on the alloying furnace outlet side of the steel plate to be processed. In addition, by controlling the output power of the induction reflow using the induction heating and the induction reflow using the resistance heating, a part of the steel plate to be treated is passed through a reflow line,
(5) After passing a part of the steel plate to be treated through the reflow line, the amount of metal tin and the amount of alloy tin on the surface of a part of the steel plate to be treated were measured,
(6) the object to be treated metallic tin amount of a portion of the surface and metallic tin amount measured values obtained by actually measuring the alloy of tin content and alloy tin content measured value of the steel sheet, and based on the emissivity of the tin, the Correct the emissivity of the radiation thermometer,
(7) above using the metal tin content measured value and the alloy of tin content measured values, and the radiation thermometer corrected emissivity based on the emissivity of the tin portion of the surface of the treated steel sheet, wherein The reflow using the resistance heating and the induction heating are used so that the plate temperature on the alloying furnace outlet side of the remaining steel plate becomes the target temperature on the alloying furnace outlet side of the steel plate to be processed . to control the output power of the induction reflow had,
The steel plate to be treated consists of a steel plate to be treated that is reflow-treated in advance and a steel plate to be treated that is reflow-treated after.
<I> About the to-be-processed steel plate to be reflowed in advance, the processes (1) to (7) are performed,
<II> Measure the tin plating adhesion amount of the steel sheet to be treated before reflow treatment and the tin plating adhesion amount of the steel sheet to be treated after reflow treatment,
<III> Calculate the difference between the amount of tin plating adhesion of the steel sheet to be treated to be reflowed in advance and the amount of tin plating of the steel sheet to be treated to be reflowed after the reflow treatment,
<IV-1> When the difference is within a predetermined range, the emissivity is corrected based on the measured value of the metal tin amount and the measured value of the alloyed tin amount of the steel sheet to be processed to be reflowed following Using the radiation thermometer, the plate temperature on the alloying furnace outlet side of the steel sheet to be processed to be reflowed in the subsequent process is the same as that on the alloying furnace outlet side of the steel sheet to be processed to be reflowed in advance. To control the output power of the induction reflow using the induction heating and the induction reflow using the induction heating so as to become the temperature target value,
<IV-2> When the difference exceeds a predetermined range, reflow of a continuous tin plating line for performing the processes (1) to (7) on the steel sheet to be processed to be reflowed following the above process. Processing method.
前記放射温度計の放射率を補正した後、前記金属錫量実測値、前記合金錫量実測値、補正した放射率、前記被処理鋼板の合金化炉入側の板温および放射率を補正した前記放射温度計を用いて測定した前記被処理鋼板の合金化炉出側の板温に基づいて、前記合金化モデルを補正する、請求項1または2に記載の連続錫鍍金ラインのリフロー処理方法。 After correcting the emissivity of the radiation thermometer, the measured value of the metal tin amount, the measured value of the alloy tin amount, the corrected emissivity, the plate temperature and the emissivity on the alloying furnace entrance side of the steel plate to be processed were corrected. The reflow processing method for a continuous tinning line according to claim 1 or 2 , wherein the alloying model is corrected based on a plate temperature on the alloying furnace outlet side of the steel plate to be processed measured using the radiation thermometer. . 前記被処理鋼板の一部の表面の前記金属錫量および前記合金錫量を実測する際に、錫鍍金ライン通過後に前記被処理鋼板から試料を採取し、採取した前記試料から前記被処理鋼板の一部の表面の前記金属錫量および前記合金錫量を実測する、請求項1〜のいずれか1項に記載の連続錫鍍金ラインのリフロー処理制御方法。 When actually measuring the amount of metal tin and the amount of alloy tin on the surface of a part of the steel plate to be treated, a sample is taken from the steel plate after passing through the tin plating line, and the steel plate to be treated is taken from the collected sample. The reflow treatment control method for a continuous tin plating line according to any one of claims 1 to 3 , wherein the amount of metal tin and the amount of alloy tin on a part of the surface are measured. 前記被処理鋼板の一部の表面の前記金属錫量および前記合金錫量を実測する際に、合金化度計を用いて前記被処理鋼板の一部の表面の前記金属錫量および前記合金錫量を実測する、請求項1〜のいずれか1項に記載の連続錫鍍金ラインのリフロー処理制御方法。 When actually measuring the amount of metal tin and the amount of alloy tin on the surface of a part of the steel sheet to be treated, the amount of metal tin and the tin of alloy on a part of the surface of the steel sheet to be treated using an alloying degree meter The reflow processing control method for a continuous tinning line according to any one of claims 1 to 4 , wherein the amount is actually measured.
JP2015165185A 2015-08-24 2015-08-24 Reflow processing method for continuous tinning line Expired - Fee Related JP6327218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015165185A JP6327218B2 (en) 2015-08-24 2015-08-24 Reflow processing method for continuous tinning line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015165185A JP6327218B2 (en) 2015-08-24 2015-08-24 Reflow processing method for continuous tinning line

Publications (2)

Publication Number Publication Date
JP2017043795A JP2017043795A (en) 2017-03-02
JP6327218B2 true JP6327218B2 (en) 2018-05-23

Family

ID=58210069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015165185A Expired - Fee Related JP6327218B2 (en) 2015-08-24 2015-08-24 Reflow processing method for continuous tinning line

Country Status (1)

Country Link
JP (1) JP6327218B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109763085B (en) * 2019-02-11 2021-07-09 宝钢湛江钢铁有限公司 Method for controlling temperature of alloying section of hot galvanizing line

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4472388B2 (en) * 2004-03-15 2010-06-02 新日本製鐵株式会社 Reflow treatment method for electrotinned steel sheet

Also Published As

Publication number Publication date
JP2017043795A (en) 2017-03-02

Similar Documents

Publication Publication Date Title
KR101185597B1 (en) Method of continuous annealing for steel strip with curie point and continuous annealing apparatus therefor
WO2008078908A1 (en) Temperature controlling method and apparatus in hot strip mill
JP2021536063A (en) Methods and electronic devices for monitoring the manufacture of metal products, related computer programs and equipment
JP5350579B2 (en) Material stabilization method for hot-rolled steel sheet for continuous hot-dip plating
JP6327218B2 (en) Reflow processing method for continuous tinning line
JP2010066132A (en) Method of controlling temperature in continuous annealing furnace, and continuous annealing furnace
JP6102650B2 (en) Plate temperature control method and plate temperature control device in continuous line
JP2008238241A (en) Manufacturing method of aluminum metal sheet
JP5510787B2 (en) Heating furnace plate temperature control method by radiant heating of cold-rolled steel sheet continuous annealing equipment
JP4472388B2 (en) Reflow treatment method for electrotinned steel sheet
JP4306471B2 (en) Method for controlling temperature of metal strip entering plate to hot dipping bath
JP6414170B2 (en) Method and apparatus for measuring ratio of austenite contained in steel sheet and control method for induction furnace induction heating apparatus
JP3380330B2 (en) Sheet temperature control method for continuous annealing furnace
US11779977B2 (en) Method for setting different cooling curves of rolling material over the strip width of a cooling stretch in a hot-strip mill or heavy-plate mill
JP2008255431A (en) Plate temperature control method in continuous treatment line, apparatus, and computer program
JPH10130742A (en) Heat treatment of metastable austenitic stainless steel strip
JP2005248208A (en) Method for controlling sheet temperature of galvannealed steel sheet during induction heating it
JP2861871B2 (en) Control method of winding temperature of hot rolled steel sheet
JP2007077417A (en) Method for determining parameter of model for estimating sheet temperature in inlet side, and apparatus therefor
US20220176429A1 (en) Process for the production of a metallic strip or sheet
CN215879246U (en) Temperature control device of self-adaptation aluminum alloy hot rolling area
JPH01219127A (en) Method for operating continuous annealing furnace
JP2004283846A (en) Hot rolling method and its equipment
JP3518504B2 (en) How to set cooling conditions for steel sheets
KR100460662B1 (en) Method for controling inductive heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R150 Certificate of patent or registration of utility model

Ref document number: 6327218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees