JP6323319B2 - Illumination device and driving method thereof - Google Patents

Illumination device and driving method thereof Download PDF

Info

Publication number
JP6323319B2
JP6323319B2 JP2014252436A JP2014252436A JP6323319B2 JP 6323319 B2 JP6323319 B2 JP 6323319B2 JP 2014252436 A JP2014252436 A JP 2014252436A JP 2014252436 A JP2014252436 A JP 2014252436A JP 6323319 B2 JP6323319 B2 JP 6323319B2
Authority
JP
Japan
Prior art keywords
light emitting
light
emitting unit
phosphor
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014252436A
Other languages
Japanese (ja)
Other versions
JP2016115497A (en
Inventor
優 ▲高▼島
優 ▲高▼島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2014252436A priority Critical patent/JP6323319B2/en
Publication of JP2016115497A publication Critical patent/JP2016115497A/en
Application granted granted Critical
Publication of JP6323319B2 publication Critical patent/JP6323319B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、照明装置及びその駆動方法に関する。   The present invention relates to a lighting device and a driving method thereof.

近年、環境対策として省エネ化や水銀レス化が強く要望されており、発光ダイオード(以下、「LED」ともいう)を用いた照明器具への移行が進んでいる。LEDを用いた白色発光装置には、青色LED、緑色蛍光体、赤色蛍光体を組み合わせた発光装置がある。この発光装置は、いわゆる三波長形の発光装置であり、3色の光を混色することにより白色光を放出するものである。この発光装置を液晶ディスプレイのバックライトとして使用することで、色表示範囲が広い画像表示装置が得られる。また、エネルギーの利用効率が高いために省エネ化を達成することができる。さらに、照明灯として使用することで、光束が高い上に演色性も良好な照明器具が得られる。   In recent years, there has been a strong demand for energy saving and mercury-free as an environmental measure, and a shift to a lighting apparatus using a light emitting diode (hereinafter also referred to as “LED”) is progressing. White light emitting devices using LEDs include light emitting devices that combine blue LEDs, green phosphors, and red phosphors. This light-emitting device is a so-called three-wavelength light-emitting device, and emits white light by mixing three colors of light. By using this light emitting device as a backlight of a liquid crystal display, an image display device having a wide color display range can be obtained. In addition, energy efficiency can be achieved because of high energy use efficiency. Furthermore, by using it as an illuminating lamp, a luminaire having a high luminous flux and a good color rendering property can be obtained.

このような三波長形の発光装置を実現するために、付活剤としてMn4+を使用した蛍光体を用いることが提案されている(例えば、特許文献1参照)。これによって赤の波長領域で発光するピークの半値幅が狭くなり、結果的に色表示範囲の広い画像表示装置や演色性の高い照明灯が得られる。 In order to realize such a three-wavelength light emitting device, it has been proposed to use a phosphor using Mn 4+ as an activator (see, for example, Patent Document 1). As a result, the half-value width of the peak emitted in the red wavelength region is narrowed. As a result, an image display device having a wide color display range and an illumination lamp with high color rendering properties can be obtained.

ところで、蛍光体の特性評価の一例として残光時間が挙げられる。例えば、Mn4+で付活されたフッ化物蛍光体(例えば、組成式はK2Si26:Mn4+で表される。以下、「KSF蛍光体」と呼ぶこともある。)と、Euで付活されたβサイアロン蛍光体(例えば、組成式はSi6-ZAlZZ8-Z:Eu(0<Z<4.2)である。以下、「βサイアロン蛍光体」と呼ぶこともある。)の2種類について、励起光の照射開始時から発光強度が最大に達するまでの強度変化を図14に示す。 By the way, afterglow time is mentioned as an example of characteristic evaluation of a fluorescent substance. For example, a fluoride phosphor activated with Mn 4+ (for example, the composition formula is represented by K 2 Si 2 F 6 : Mn 4+ . Hereinafter, it may be referred to as “KSF phosphor”). , Eu-activated β sialon phosphor (for example, the composition formula is Si 6-Z Al Z O Z N 8-Z : Eu (0 <Z <4.2). Hereinafter, “β sialon phosphor” FIG. 14 shows changes in intensity from the start of irradiation with excitation light until the emission intensity reaches the maximum.

図14が示す通り、βサイアロン蛍光体は励起後0.5msで発光強度が最大に達しているが、KSF蛍光体は24msで最大に達している。また、KSF蛍光体は、励起光の照射を停止した後に残光と呼ばれる現象が起こり易く、発光が止まるまでの時間が他の蛍光体と比べて長い。KSF蛍光体及びβサイアロン蛍光体について、励起光の照射を停止した後の発光強度の変化を図15に示す。   As shown in FIG. 14, the β sialon phosphor reaches its maximum emission intensity 0.5 ms after excitation, whereas the KSF phosphor reaches its maximum at 24 ms. In addition, the KSF phosphor easily causes a phenomenon called afterglow after the excitation light irradiation is stopped, and the time until the light emission stops is longer than that of other phosphors. FIG. 15 shows the change in emission intensity after stopping the irradiation of excitation light for the KSF phosphor and the β sialon phosphor.

図15が示す通り、βサイアロン蛍光体は励起光を停止後0.2ms程度で発光強度が最大値の1/10以下まで減衰しているが、KSF蛍光体の発光強度が最大値の1/10まで減衰するには20ms程度を要している。このような現象が起こる原因として、一般的にMn4+で付活された蛍光体の励起光に対する応答が遅いことが挙げられる。 As shown in FIG. 15, the β sialon phosphor attenuates the emission intensity to 1/10 or less of the maximum value in about 0.2 ms after stopping the excitation light, but the emission intensity of the KSF phosphor is 1 / maximum of the maximum value. It takes about 20 ms to attenuate to 10. As a cause of such a phenomenon, there is generally a slow response to the excitation light of a phosphor activated with Mn 4+ .

特開2010−93132号公報JP 2010-93132 A

このように応答が遅い蛍光体を使用して、例えば、パルス幅変調によってLEDの発光強度を調光した場合に、調光しない場合と比べて発光色が変化するという懸念があった。   Thus, there is a concern that, when a phosphor with a slow response is used, for example, when the light emission intensity of the LED is dimmed by pulse width modulation, the emission color changes compared to the case where the light intensity is not dimmed.

本発明は、上記課題に鑑みてなされたものであり、その目的の一は、異なる駆動条件で発光強度を調光した場合に、調光しない場合と比べて発光色が変化することを防止できる照明装置及びその駆動方法を提供することである。   The present invention has been made in view of the above problems, and one of its purposes is to prevent the emission color from changing when the light emission intensity is dimmed under different driving conditions as compared with the case where the light is not dimmed. An illumination device and a driving method thereof are provided.

上記課題を解決するべく本発明の一形態によれば、第一発光素子と、前記第一発光素子が発する光を異なる波長の光に変換する第一蛍光体とを備える第一発光部と、第二発光素子を備える第二発光部と、前記第一発光部及び第二発光部とそれぞれ電気的に接続され、前記第一発光素子に第一駆動エネルギーを、前記第二発光素子に第二駆動エネルギーを、それぞれ供給する電源部と、前記電源部から第一発光部に供給される第一駆動エネルギーと、前記電源部から第二発光部に供給される第二駆動エネルギーを個別に制御可能な制御部とを備え、前記第一発光部及び第二発光部は、前記第一発光部と第二発光部の発光強度を、点灯時間を含む駆動条件を変えて測定した結果を、前記第二発光部の発光強度で第一発光部の発光強度を規格化した場合に、駆動時間が短いほど前記第一発光部の発光強度が増加する傾向を示すものであり、前記制御部は、前記第一駆動エネルギーの積算値が、前記第二駆動エネルギーの積算値よりも相対的に低くなるように制御しており、前記第二発光部は、前記第二発光素子が発する光を異なる波長の光に変換する第二蛍光体を含み、前記第一蛍光体が、前記第二蛍光体よりも残光時間が長い赤色蛍光体である。
According to one aspect of the present invention to solve the above-described problem, a first light emitting unit including a first light emitting element and a first phosphor that converts light emitted from the first light emitting element into light of a different wavelength; A second light emitting unit including a second light emitting element is electrically connected to the first light emitting unit and the second light emitting unit, respectively, and the first driving energy is supplied to the first light emitting element and the second light emitting element is supplied to the second light emitting element. The power supply unit that supplies drive energy, the first drive energy supplied from the power supply unit to the first light emitting unit, and the second drive energy supplied from the power supply unit to the second light emitting unit can be individually controlled. A control unit, and the first light emitting unit and the second light emitting unit measure the light emission intensities of the first light emitting unit and the second light emitting unit while changing driving conditions including lighting time. Standardized the light emission intensity of the first light emitting part with the light emission intensity of the two light emitting parts. If the driving time is shorter, the emission intensity of the first light emitting unit tends to increase, and the control unit is configured such that the integrated value of the first driving energy is greater than the integrated value of the second driving energy. The second light-emitting unit includes a second phosphor that converts light emitted from the second light-emitting element into light of a different wavelength, and the first phosphor is the decay time is Ru long red phosphor der than the second phosphor.

本発明の一形態によれば、第二発光部よりも応答性が異なる第一蛍光体を含む第一発光部に供給する第一駆動エネルギーの積算値が第二駆動エネルギーよりも小さくなるように制御することで、発光色のバランスを保った照明装置を実現できる。また、第二蛍光体よりも応答性が異なる第一蛍光体を含む第一発光部への積算エネルギーを低減することで、発光色のバランスを保った照明装置を実現できる。
According to an aspect of the present invention, the integrated value of the first driving energy supplied to the first light emitting unit including the first phosphor having a different response than the second light emitting unit is smaller than the second driving energy. By controlling it, it is possible to realize an illumination device that maintains a balance of emission colors. Moreover, the illuminating device which maintained the balance of emitted light color is realizable by reducing the integration energy to the 1st light emission part containing the 1st fluorescent substance from which responsiveness differs from 2nd fluorescent substance.

本発明の実施の形態1に係る照明装置を示すブロック図である。It is a block diagram which shows the illuminating device which concerns on Embodiment 1 of this invention. 実施の形態1に係る第一発光部と第二発光部を示す模式断面図である。3 is a schematic cross-sectional view showing a first light emitting unit and a second light emitting unit according to Embodiment 1. FIG. 表面実装型の発光部を示す模式平面図である。It is a schematic plan view which shows a surface mount type light emission part. 図3の発光部の「IV−IV」線における模式断面図である。It is a schematic cross section in the "IV-IV" line of the light emission part of FIG. 実施の形態2に係る発光部を示す模式断面図である。6 is a schematic cross-sectional view showing a light emitting unit according to Embodiment 2. FIG. 実施の形態3に係る発光部を示す模式断面図である。6 is a schematic cross-sectional view showing a light emitting unit according to Embodiment 3. FIG. 実施の形態4に係る発光部を示す模式断面図である。6 is a schematic cross-sectional view showing a light emitting unit according to Embodiment 4. FIG. 実施の形態5に係る発光部を示す模式断面図である。6 is a schematic cross-sectional view showing a light emitting unit according to Embodiment 5. FIG. 本発明と比較のために示す比較例1に係る発光部を示す模式断面図である。It is a schematic cross section which shows the light emission part which concerns on the comparative example 1 shown for a comparison with this invention. 本発明と比較のために示す比較例1に係る照明装置を直流電流にて駆動した50ms間の出力光の分光分布を測定したグラフである。It is the graph which measured the spectral distribution of the output light for 50 ms which driven the illuminating device concerning the comparative example 1 shown for a comparison with this invention with direct current. 異なる駆動条件で赤色光の発光強度が変化する様子を示すグラフである。It is a graph which shows a mode that the emitted light intensity of red light changes on different drive conditions. 図12(a)は直流駆動時、図12(b)はパルス駆動時の、電流の時間変化を示すグラフである。FIG. 12A is a graph showing the time change of current during DC driving, and FIG. 12B is a pulse driving. 実施例1に係る照明装置を直流電流にて駆動した50ms間の出力光の分光分布を測定したグラフである。It is the graph which measured the spectral distribution of the output light for 50 ms which driven the illuminating device concerning Example 1 by direct current. KSF蛍光体及びβサイアロン蛍光体について、励起光の照射を開始した後の発光強度の変化を示すグラフである。It is a graph which shows the change of the emitted light intensity after starting irradiation of excitation light about KSF fluorescent substance and beta sialon fluorescent substance. KSF蛍光体及びβサイアロン蛍光体について、励起光の照射を停止した後の発光強度の変化を示す図である。It is a figure which shows the change of the emitted light intensity after stopping irradiation of excitation light about KSF fluorescent substance and (beta) sialon fluorescent substance.

以下、本発明の一実施の形態について適宜図面を参照して説明する。ただし、以下に説明する照明装置は、本発明の技術思想を具体化するためのものであって、特定的な記載がない限り、本発明を以下のものに限定しない。また、一の実施の形態、実施例において説明する内容は、他の実施の形態、実施例にも適用可能である。各図面が示す部材の大きさや位置関係等は、説明を明確にするために誇張していることがある。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings as appropriate. However, the illuminating device described below is for embodying the technical idea of the present invention, and unless otherwise specified, the present invention is not limited to the following. The contents described in one embodiment and example are applicable to other embodiments and examples. The size and positional relationship of the members shown in each drawing may be exaggerated for clarity of explanation.

本発明の一実施の形態に係る照明装置によれば、第一発光素子と、前記第一発光素子が発する光を異なる波長の光に変換する第一蛍光体とを備える第一発光部と、第二発光素子を備える第二発光部と、前記第一発光部及び第二発光部とそれぞれ電気的に接続され、前記第一発光素子に第一駆動エネルギーを、前記第二発光素子に第二駆動エネルギーを、それぞれ供給する電源部と、前記電源部と接続され、前記第一発光部及び第二発光部を個別に駆動するよう、該電源部が供給する前記第一駆動エネルギーと第二駆動エネルギーの量を制御する制御情報を、前記電源部に送出するための制御部とを備え、前記制御部は、前記第一発光部又は前記第二発光部の点灯時間を含む駆動条件を変更させたとき、駆動条件の変更の前後における第一発光部に対する第二発光部の発光強度比を一定に保つよう、前記第一駆動エネルギー又は第二駆動エネルギーを制御しており、前記第二発光部は、前記第二発光素子が発する光を異なる波長の光に変換する第二蛍光体を含み、前記第一蛍光体を、前記第二蛍光体よりも残光時間が長い赤色蛍光体とすることができる。上記構成により、第二蛍光体よりも応答性が異なる第一蛍光体を含む第一発光部への積算エネルギーを低減することで、発光色のバランスを保った照明装置を実現できる。
According to the lighting device according to an embodiment of the present invention, a first light emitting unit including a first light emitting element and a first phosphor that converts light emitted from the first light emitting element into light of a different wavelength; A second light emitting unit including a second light emitting element is electrically connected to the first light emitting unit and the second light emitting unit, respectively, and the first driving energy is supplied to the first light emitting element and the second light emitting element is supplied to the second light emitting element. The first drive energy and the second drive supplied by the power supply unit so as to drive the first light emitting unit and the second light emitting unit, respectively, connected to the power supply unit that supplies driving energy and the power supply unit, respectively. A control unit for sending control information for controlling the amount of energy to the power supply unit, and the control unit changes a driving condition including a lighting time of the first light emitting unit or the second light emitting unit. The first light emission before and after the change of the driving condition To keep the emission intensity ratio of the second light-emitting portion with respect to the constant, the and controls the first driving energy or the second drive energy, the second light emitting unit, the second light emitting element having a different wavelength of light emitted by the A second phosphor that converts light may be included, and the first phosphor may be a red phosphor that has a longer afterglow time than the second phosphor . With the above configuration, it is possible to realize an illuminating device that maintains a balance of emission colors by reducing the energy accumulated in the first light emitting unit including the first phosphor having a different responsiveness than the second phosphor.

また、他の照明装置によれば、前記駆動条件を、パルス幅変調方式におけるデューティ比とできる。   According to another illumination device, the driving condition can be a duty ratio in the pulse width modulation method.

さらにまた、他の照明装置によれば、前記第二蛍光体として、Eu付活βサイアロン蛍光体を含むことができる。   Furthermore, according to another illuminating device, Eu-activated β sialon phosphor can be included as the second phosphor.

さらにまた、他の照明装置によれば、前記第一蛍光体は、組成式が3.5MgO・0.5MgF2・GeO2:Mn4+で表されるMn4+付活Mgフルオロジャーマネート蛍光体又は組成式がM 1 2 2 6:Mn4+(ただし、M 1 はLi+,Na+,K+,Rb+,Cs+,NH4+から選択された少なくとも1種であり、M 2 はSi,Ge,Sn,Ti,Zrから選択された少なくとも1種である。)で表されるMn4+付活フッ化物蛍光体を含むことができる。
Furthermore, according to another illumination device, the first phosphor, the composition formula is 3.5MgO · 0.5MgF 2 · GeO 2: Mn is represented by Mn 4+ 4+ -activated Mg fluoro jar money DOO Phosphor or composition formula is M 1 2 M 2 F 6 : Mn 4+ (where M 1 is at least one selected from Li + , Na + , K + , Rb + , Cs + , NH 4+) , M 2 is at least one selected from Si, Ge, Sn, Ti, and Zr.) And can contain a Mn 4+ activated fluoride phosphor.

さらにまた、他の照明装置によれば、さらに前記第一発光部及び前記第二発光部の、駆動時間に応じて変化する発光強度の変化量を記憶するための記憶部を備えており、前記制御部は、前記記部を参照して、前記第一発光部の発光強度が一定となるように、前記第一発光部又は第二発光部の駆動時間に応じて、第一駆動エネルギーの積算値又は第二駆動エネルギーの積算値を調整することができる。
Still further, according to another illumination device, further comprising a storage unit for storing a change amount of the emission intensity of the first light-emitting unit and the second light-emitting unit, which changes according to the driving time, control unit refers to the SL portion such that said emission intensity of the first light emitting portion becomes constant, according to the drive time of the first light emitting portion or the second light emitting portion, the first driving energy The integrated value or the integrated value of the second driving energy can be adjusted.

さらにまた、他の照明装置によれば、駆動時間が短いほど前記第一発光部の発光強度が、前記第二発光部に比べて増加する場合、前記制御部は、前記第二発光部に比して増加する増加分が相殺されるように、前記第一発光部に供給される第一駆動エネルギーの積算値を減らすように制御することができる。
Furthermore, according to another lighting device, when the light emission intensity of the first light emitting unit increases as compared with the second light emitting unit as the driving time is shorter, the control unit is compared with the second light emitting unit. Thus, the integrated value of the first driving energy supplied to the first light emitting unit can be controlled so as to cancel out the increase that increases.

さらにまた、他の照明装置によれば、駆動時間が短いほど前記第一発光部の発光強度が、前記第二発光部に比べて増加する場合、前記制御部は、前記第二発光部に比して増加する増加分が相殺されるように、前記第一発光部と比べて発光強度が低くなった前記第二発光部に供給される第二駆動エネルギーの積算値を増やすように制御することができる。
Furthermore, according to another lighting device, when the light emission intensity of the first light emitting unit increases as compared with the second light emitting unit as the driving time is shorter, the control unit is compared with the second light emitting unit. And controlling to increase the integrated value of the second driving energy supplied to the second light emitting unit whose light emission intensity is lower than that of the first light emitting unit so that the increased increase is offset. Can do.

さらにまた、他の照明装置によれば、前記制御部が、前記第一発光素子及び第二発光素子をパルス幅変調方式により駆動するものであり、前記第一発光素子を駆動するパルス幅を、前記第二発光素子を駆動するパルス幅よりも狭く制御することができる。上記構成により、PWM方式で駆動する発光素子への供給エネルギーの積算量を調整することで、駆動パルス幅が短い場合に第一発光部の第二発光部に対する発光強度が強くなる事態を抑制でき、発光色のバランスを維持することが可能となる。   Furthermore, according to another illumination device, the control unit drives the first light emitting element and the second light emitting element by a pulse width modulation method, and the pulse width for driving the first light emitting element is set as follows: It can be controlled to be narrower than the pulse width for driving the second light emitting element. With the above configuration, by adjusting the integrated amount of energy supplied to the light emitting element driven by the PWM method, it is possible to suppress a situation where the light emission intensity of the first light emitting unit to the second light emitting unit becomes strong when the drive pulse width is short. Thus, it becomes possible to maintain the balance of the emission colors.

さらにまた、他の照明装置によれば、前記第二発光部はさらに、第三蛍光体として、Eu付活クロロシリケート蛍光体、Eu付活シリケート蛍光体、Eu付活チオガレート蛍光体、希土類アルミン酸塩蛍光体のうち1種以上を含むことができる。   Furthermore, according to another illumination device, the second light emitting unit further includes, as a third phosphor, an Eu-activated chlorosilicate phosphor, an Eu-activated silicate phosphor, an Eu-activated thiogallate phosphor, a rare earth aluminate One or more of the salt phosphors can be included.

さらにまた、他の照明装置によれば、前記第一発光素子と、前記第二発光素子とを、青色発光ダイオードとすることができる。   Furthermore, according to another illumination device, the first light emitting element and the second light emitting element can be blue light emitting diodes.

さらにまた、他の照明装置によれば、前記第一発光部が第一蛍光体を含み、前記第二発光部が第二蛍光体に加えて、前記第一蛍光体を含むことができる。   Furthermore, according to another illumination device, the first light emitting unit may include a first phosphor, and the second light emitting unit may include the first phosphor in addition to the second phosphor.

さらにまた、他の照明装置によれば、前記第一発光部と、前記第二発光部とを、同一のパッケージに形成することができる。   Furthermore, according to another illumination device, the first light emitting unit and the second light emitting unit can be formed in the same package.

さらにまた、他の照明装置によれば、前記制御部が、出力光の調光機能を備えることができる。   Furthermore, according to another illuminating device, the said control part can be equipped with the light control function of output light.

さらにまた、照明装置の駆動方法によれば、第一発光素子と、前記第一発光素子が発する光を異なる波長の光に変換する第一蛍光体とを備える第一発光部と、第二発光素子を備える第二発光部と、前記第一発光部及び第二発光部とそれぞれ電気的に接続され、前記第一発光素子に第一駆動エネルギーを、前記第二発光素子に第二駆動エネルギーを、それぞれ供給する電源部と、前記電源部と接続され、該電源部が供給する前記第一駆動エネルギーと第二駆動エネルギーの量を制御する制御情報を、前記電源部に送出するための制御部とを備える照明装置の駆動方法であって、前記第一発光部及び前記第二発光部を異なる駆動条件で発光させ、それぞれの駆動条件における発光強度を測定する工程と、前記駆動条件それぞれの第一発光部に対する第二発光部の発光速度比を一定に保つ第一駆動エネルギー又は第二駆動エネルギーの積算値を算出する工程と、前記算出された第一駆動エネルギー又は第二駆動エネルギーの積算値を、前記第一発光部又は前記第二発光部に供給する工程とを含み、前記第一蛍光体が、組成式が、3.5MgO・0.5MgF 2 ・GeO 2 :Mn 4+ で表されるMn 4+ 付活Mgフルオロジャーマネート蛍光体、又は組成式がM 1 2 2 6 :Mn 4+ (ただし、M 1 は、Li + ,Na + ,K + ,Rb + ,Cs + ,NH 4+ から選択された少なくとも1種であり、M 2 は、Si,Ge,Sn,Ti,Zrから選択された少なくとも1種である。)で表されるMn 4+ 付活フッ化物蛍光体を含むことができる。
Furthermore, according to the driving method of the illumination device, a first light emitting unit including a first light emitting element, a first phosphor that converts light emitted from the first light emitting element into light of a different wavelength, and a second light emission. A second light emitting unit including an element, and the first light emitting unit and the second light emitting unit are electrically connected to each other, and the first driving energy is supplied to the first light emitting element, and the second driving energy is supplied to the second light emitting element. , A power supply unit to be supplied, and a control unit connected to the power supply unit for sending control information for controlling the amount of the first drive energy and the second drive energy supplied by the power supply unit to the power supply unit A method of driving an illumination device comprising: a step of causing the first light emitting unit and the second light emitting unit to emit light under different driving conditions and measuring light emission intensity under each driving condition; For one light emitting part A step of calculating a first drive energy or an integrated value of the second drive energy that keeps a light emission speed ratio of the second light emitting unit constant, and the calculated integrated value of the first drive energy or the second drive energy, look including the step of supplying the first emitting section or the second light emitting portion, wherein the first phosphor having a composition formula, 3.5MgO · 0.5MgF 2 · GeO 2 : Mn 4 represented by Mn 4+ + Activated Mg fluorogermanate phosphor, or composition formula M 1 2 M 2 F 6 : Mn 4+ (where M 1 is Li + , Na + , K + , Rb + , Cs + , NH 4 at least one selected from +, M 2 is free Si, Ge, Sn, Ti, and Mn 4+ -activated fluoride phosphor represented by at least one selected from Zr.) You can

さらにまた、他の照明装置の駆動方法によれば、第一発光素子と、前記第一発光素子が発する光を異なる波長の光に変換する第一蛍光体とを備える第一発光部と、第二発光素子を備える第二発光部と、前記第一発光部及び第二発光部とそれぞれ電気的に接続され、前記第一発光素子に第一駆動エネルギーを、前記第二発光素子に第二駆動エネルギーを、それぞれ供給する電源部と、前記電源部と接続され、該電源部が供給する前記第一駆動エネルギーと第二駆動エネルギーの量を制御する制御情報を、前記電源部に送出するための制御部とを備え、前記第一発光部及び第二発光部は、前記第一発光部と前記第二発光部の発光強度を、点灯時間を含む駆動条件を変えて測定した結果を、前記第二発光部の発光強度で第一発光部の発光強度を規格化した場合に、駆動時間が短いほど前記第一発光部の発光強度が増加する傾向を示す照明装置の駆動方法であって、前記制御部が、該駆動時間が短いほど前記第一発光部の発光強度が、前記第二発光部に比して増加する増加分を相殺するように、前記第一発光素子に供給する駆動エネルギーの積算値を補正する補正量を決定する工程と、前記制御部が、前記第二発光素子を第二駆動エネルギーで駆動させると共に、前記第一発光素子に対し、前記決定された補正量に従って補正した前記第一駆動エネルギーでもって駆動させる工程とを含み、前記第一蛍光体が、組成式が、3.5MgO・0.5MgF 2 ・GeO 2 :Mn 4+ で表されるMn 4+ 付活Mgフルオロジャーマネート蛍光体、又は組成式がM 1 2 2 6 :Mn 4+ (ただし、M 1 は、Li + ,Na + ,K + ,Rb + ,Cs + ,NH 4+ から選択された少なくとも1種であり、M 2 は、Si,Ge,Sn,Ti,Zrから選択された少なくとも1種である。)で表されるMn 4+ 付活フッ化物蛍光体を含むことができる。
Furthermore, according to another driving method of a lighting device, a first light emitting unit including a first light emitting element and a first phosphor that converts light emitted from the first light emitting element into light of a different wavelength, A second light-emitting unit including two light-emitting elements, and the first light-emitting part and the second light-emitting part are electrically connected to each other, the first drive energy is supplied to the first light-emitting element, and the second drive is supplied to the second light-emitting element. A power supply unit that supplies energy, and control information that is connected to the power supply unit and controls the amount of the first drive energy and the second drive energy supplied by the power supply unit to the power supply unit A control unit, wherein the first light-emitting unit and the second light-emitting unit measure the light emission intensities of the first light-emitting unit and the second light-emitting unit while changing driving conditions including lighting time. Emission intensity of the first light emitting part is standardized by the emission intensity of the two light emitting parts In this case, the driving method of the lighting device shows a tendency that the light emission intensity of the first light emitting unit increases as the driving time is shorter, and the control unit emits light from the first light emitting unit as the driving time is shorter. Determining a correction amount for correcting an integrated value of driving energy supplied to the first light emitting element so as to cancel out an increase in intensity compared to the second light emitting unit; and , together with driving the second light emitting element in the second drive energy, to said first light emitting element, seen including a step of driving with a corrected according to the correction amount the determined the first drive energy, said first one phosphor having a composition formula, 3.5MgO · 0.5MgF 2 · GeO 2 : Mn 4+ -activated Mg fluoro jar money preparative phosphor represented by Mn 4+, or composition formula M 1 2 M 2 F 6: Mn 4+ (where, M 1 is, L +, Na +, K +, Rb +, Cs +, at least one selected from NH 4+, M 2 is at least one selected Si, Ge, Sn, Ti, from Zr. the Mn 4+ -activated fluoride phosphor represented by) may contains Mukoto.

本発明の実施の形態1に係る照明装置の構成を、図1のブロック図に示す。この図に示す照明装置100は、発光部1と、電源部2と、制御部3を備える。以下、発光部1、電源部2、制御部3についてそれぞれ説明する。
(発光部1)
The configuration of the lighting apparatus according to Embodiment 1 of the present invention is shown in the block diagram of FIG. The lighting device 100 shown in this figure includes a light emitting unit 1, a power supply unit 2, and a control unit 3. Hereinafter, the light emitting unit 1, the power supply unit 2, and the control unit 3 will be described.
(Light Emitting Unit 1)

発光部1の構成を、図2の模式断面図に示す。この図に示す発光部1は、個別に構成された第一発光部10と第二発光部20を備える。第一発光部10は、第一発光素子11と、この第一発光素子11と光学的に結合され、第一発光素子11が発する光を異なる波長の光に変換する第一蛍光体12とを備える。   The structure of the light emitting unit 1 is shown in the schematic cross-sectional view of FIG. The light emitting unit 1 shown in this figure includes a first light emitting unit 10 and a second light emitting unit 20 that are individually configured. The first light emitting unit 10 includes a first light emitting element 11 and a first phosphor 12 that is optically coupled to the first light emitting element 11 and converts light emitted from the first light emitting element 11 into light of a different wavelength. Prepare.

一方第二発光部20は、第二発光素子21と、この第二発光素子21と光学的に結合され、第二発光素子21が発する光を異なる波長の光に変換する第二蛍光体22を含む。この例では、第一発光部10と第二発光部20は、蛍光体が異なること以外は、ほぼ共通の仕様として、製造コストを低減できる。   On the other hand, the second light emitting unit 20 includes a second light emitting element 21 and a second phosphor 22 that is optically coupled to the second light emitting element 21 and converts light emitted from the second light emitting element 21 into light of a different wavelength. Including. In this example, the first light emitting unit 10 and the second light emitting unit 20 can reduce the manufacturing cost as a substantially common specification except that the phosphors are different.

各発光部の詳細について、図3及び図4を参照して説明する。この例では、表面実装型発光装置の構成を採用しており、図3は発光部の模式平面図であり、図4は、図3に示す「IV−IV」線における概略断面図である。この発光部は、一例として第一発光部10を示している。第一発光部10は、第一凹部14を有する第一パッケージ13と、第一発光素子11と、第一発光素子11を被覆する封止部材16とを備える。   Details of each light emitting unit will be described with reference to FIGS. 3 and 4. In this example, the configuration of a surface-mounted light-emitting device is adopted, FIG. 3 is a schematic plan view of a light-emitting portion, and FIG. 4 is a schematic cross-sectional view taken along the line “IV-IV” shown in FIG. This light emission part has shown the 1st light emission part 10 as an example. The first light emitting unit 10 includes a first package 13 having a first recess 14, a first light emitting element 11, and a sealing member 16 that covers the first light emitting element 11.

第一発光素子11は、第一パッケージ13に形成された第一凹部14の底面に配置されており、第一パッケージ13に配置された正負一対のリード電極17、18に導電性ワイヤ19によって電気的に接続されている。封止部材16は、第一発光素子11を覆うように第一凹部14内に充填されており、第二蛍光体12を含有する。封止部材16は、第一発光素子11その他の部材を外部環境から保護すると共に波長変換部材としても機能する。さらに正負一対のリード電極17、18は、その一端が第一パッケージ13の外側面に露出されている。これらのリード電極17、18を介して、外部から電力の供給を受けて発光部100が発光する。   The first light emitting element 11 is disposed on the bottom surface of the first recess 14 formed in the first package 13, and the pair of positive and negative lead electrodes 17, 18 disposed in the first package 13 is electrically connected by the conductive wire 19. Connected. The sealing member 16 is filled in the first recess 14 so as to cover the first light emitting element 11, and contains the second phosphor 12. The sealing member 16 functions as a wavelength conversion member while protecting the first light emitting element 11 and other members from the external environment. Further, one end of the pair of positive and negative lead electrodes 17 and 18 is exposed on the outer surface of the first package 13. The light emitting unit 100 emits light when power is supplied from outside through the lead electrodes 17 and 18.

第一、第二発光素子は、第一半導体層(例えば、n型半導体層)、発光層、第二半導体層(例えば、p型半導体層)がこの順に積層された半導体の積層体である。また、第一半導体層及び第二半導体層に接続する電極が設けられる。   The first and second light emitting elements are a semiconductor laminate in which a first semiconductor layer (for example, an n-type semiconductor layer), a light emitting layer, and a second semiconductor layer (for example, a p-type semiconductor layer) are stacked in this order. In addition, electrodes connected to the first semiconductor layer and the second semiconductor layer are provided.

半導体の種類及び材料は特に限定されるものではなく、例えば、III−V族化合物半導体、II−VI族化合物半導体等、種々の半導体が挙げられる。具体的には、InXAlYGa1-X-YN(0≦X、0≦Y、X+Y≦1)等の窒化物系の半導体材料が挙げられ、InN、AlN、GaN、InGaN、AlGaN、InGaAlN等を用いることができる。各層の膜厚及び層構造は、当該分野で公知のものを利用することができる。発光素子の大きさ、形状、また、蛍光体を励起するため、その発光波長は適宜選択することができる。 The kind and material of the semiconductor are not particularly limited, and examples thereof include various semiconductors such as III-V compound semiconductors and II-VI compound semiconductors. Specific examples include nitride semiconductor materials such as In X Al Y Ga 1-XY N (0 ≦ X, 0 ≦ Y, X + Y ≦ 1), and include InN, AlN, GaN, InGaN, AlGaN, and InGaAlN. Etc. can be used. As the film thickness and layer structure of each layer, those known in the art can be used. Since the size and shape of the light emitting element and the phosphor are excited, the emission wavelength can be selected as appropriate.

発光部に含まれる蛍光体として、第一発光部10に含まれる第一蛍光体12と、第二発光部20に含まれる第二蛍光体22を備える。ここでは、第一蛍光体12は、第二蛍光体22よりも残光時間が長い蛍光体とする。このようにすることで、応答特性が第二蛍光体22と異なる第一蛍光体12を含む第一発光部10への積算エネルギーを相対的に低減して、発光色のバランスを保った照明装置を実現できる(詳細は後述する。)。   As the phosphors included in the light emitting unit, a first phosphor 12 included in the first light emitting unit 10 and a second phosphor 22 included in the second light emitting unit 20 are provided. Here, the first phosphor 12 is a phosphor having a longer afterglow time than the second phosphor 22. By doing in this way, the integrated energy to the 1st light emission part 10 containing the 1st fluorescent substance 12 from which the response characteristic differs from the 2nd fluorescent substance 22 is reduced relatively, and the illuminating device which maintained the balance of emitted light color (Details will be described later).

第一蛍光体12として、第一発光素子11の発する光で励起され、赤色の蛍光を発する赤色蛍光体を使用する。このような第一蛍光体12には、4価のマンガンイオンで付活された蛍光体、例えば、組成式が、3.5MgO・0.5MgF2・GeO2:Mn4+で表されるMn4+付活Mgフルオロジャーマネート蛍光体や、組成式がM 1 2 2 6:Mn4+(M 1 は、Li+,Na+,K+,Rb+,Cs+,NH4+から選択された少なくとも1種であり、M 2 は、Si,Ge,Sn,Ti,Zrから選択された少なくとも1種である。)で表されるMn4+付活フッ化物蛍光体(KSF蛍光体)が好適な具体例として挙げられる。 As the first phosphor 12, a red phosphor that is excited by light emitted from the first light emitting element 11 and emits red fluorescence is used. Such a first phosphor 12 includes a phosphor activated with tetravalent manganese ions, for example, Mn whose composition formula is represented by 3.5MgO.0.5MgF 2 .GeO 2 : Mn 4+. 4 + -activated Mg fluorogermanate phosphor, and the composition formula is M 1 2 M 2 F 6 : Mn 4+ (M 1 is Li + , Na + , K + , Rb + , Cs + , NH 4+ And M 2 is at least one selected from Si, Ge, Sn, Ti, and Zr.) Mn 4+ activated fluoride phosphor (KSF fluorescence) Body) is a preferred specific example.

第二蛍光体22として、第二発光素子21の発する光で励起され、緑色の蛍光を発する緑色発光を使用する。緑色発光する第二蛍光体22として、Eu付活βサイアロン蛍光体が用いられる。これによって、応答性が良い緑色蛍光体を形成することができる。本形態の蛍光体として、赤色発光するKSF蛍光体は、Mn4+で付活された蛍光体であるK2SiF6:Mn4+を用いる。緑色発光する蛍光体は、βサイアロン蛍光体を用いる。これによって、応答性が良い緑色蛍光体を形成することができる。 As the second phosphor 22, green light emission that is excited by light emitted from the second light emitting element 21 and emits green fluorescence is used. An Eu-activated β sialon phosphor is used as the second phosphor 22 that emits green light. Thereby, a green phosphor with good responsiveness can be formed. As the phosphor of this embodiment, KSF phosphor emitting red light is, K 2 SiF 6 is activated phosphors with Mn 4+: using Mn 4+. A β sialon phosphor is used as the phosphor emitting green light. Thereby, a green phosphor with good responsiveness can be formed.

なお、蛍光体は、封止部材中に含有されることに限られず、発光部のさまざまな位置や部材中に設けることができる。例えば、蛍光体を含有しない封止部材の上に塗布、接着等された波長変換部材として設けられてもよい。
(電源部2)
The phosphor is not limited to being contained in the sealing member, and can be provided in various positions and members of the light emitting unit. For example, it may be provided as a wavelength conversion member that is applied and bonded onto a sealing member that does not contain a phosphor.
(Power supply unit 2)

また電源部2は、第一発光部10及び第二発光部20とそれぞれ電気的に接続されている。この電源部2は、第一発光素子11に第一駆動エネルギーを、第二発光素子21に第二駆動エネルギーを、それぞれ供給する。
(制御部3)
The power supply unit 2 is electrically connected to the first light emitting unit 10 and the second light emitting unit 20, respectively. The power supply unit 2 supplies the first driving energy to the first light emitting element 11 and the second driving energy to the second light emitting element 21.
(Control unit 3)

制御部3は、電源部2と接続されている。この制御部3は、第一発光部10と第二発光部20の点灯を個別に制御できる。具体的には、電源部2から第一発光素子11に供給される第一駆動エネルギーと、第二発光素子21に供給される第二駆動エネルギーの量を、独立して制御可能としている。   The control unit 3 is connected to the power supply unit 2. The control unit 3 can individually control lighting of the first light emitting unit 10 and the second light emitting unit 20. Specifically, the amount of the first driving energy supplied from the power supply unit 2 to the first light emitting element 11 and the amount of the second driving energy supplied to the second light emitting element 21 can be controlled independently.

また制御部3は、照明装置の出力光の明るさを調整する調光機能を備えている。具体的には、各発光素子に供給する駆動エネルギーを調整して、明るさを変化させる。例えば、発光素子を駆動する電流のパルス幅を変化させるPWM制御を行う。このような制御部3には、調光機能を備えたLEDドライバやコンピュータ等が利用できる。   Moreover, the control part 3 is equipped with the light control function which adjusts the brightness of the output light of an illuminating device. Specifically, the brightness is changed by adjusting the driving energy supplied to each light emitting element. For example, PWM control is performed to change the pulse width of the current for driving the light emitting element. For such a control unit 3, an LED driver or a computer having a dimming function can be used.

さらに制御部3は、第一発光部10又は第二発光部20の点灯時間を含む駆動条件を変更させたとき、駆動条件の変更の前後における第一発光部10に対する第二発光部20の発光強度比を一定に保つよう、第一駆動エネルギー又は第二駆動エネルギーを制御する。
(記憶部4)
Furthermore, when the drive part including the lighting time of the 1st light emission part 10 or the 2nd light emission part 20 is changed, the control part 3 light emission of the 2nd light emission part 20 with respect to the 1st light emission part 10 before and behind the change of a drive condition. The first drive energy or the second drive energy is controlled so as to keep the intensity ratio constant.
(Storage unit 4)

また照明装置は、記憶部4を設けてもよい。記憶部4は、制御部3に接続される。この記憶部4は、制御部3の制御の基礎となる制御情報を保持している。具体的には、発光部1に供給される駆動エネルギー、例えば駆動電流のパルス幅に応じて、第一発光部10と第二発光部20の発光強度が変化する変化量を、予め測定した結果を保持する(詳細は後述)。このような記憶部4には、E2PROM等の不揮発性メモリ等が好適に利用される。
[実施の形態2]
The lighting device may be provided with a storage unit 4. The storage unit 4 is connected to the control unit 3. The storage unit 4 holds control information that is the basis of control of the control unit 3. Specifically, the amount of change in which the light emission intensity of the first light emitting unit 10 and the second light emitting unit 20 changes in accordance with the driving energy supplied to the light emitting unit 1, for example, the pulse width of the driving current, is measured in advance. (Details will be described later). As the storage unit 4, a non-volatile memory such as E 2 PROM is preferably used.
[Embodiment 2]

第一発光部10及び第二発光部20は、これら第一蛍光体12及び第二蛍光体22に加えて、他の蛍光体を適宜加えることもできる。例えば図5に示す実施の形態2に係る発光部1Bのように、第二発光部20Bに、第三蛍光体25を添加してもよい。第三蛍光体25としては、例えばEu付活クロロシリケート蛍光体、Eu付活シリケート蛍光体、Eu付活チオガレート蛍光体、希土類アルミン酸塩蛍光体のうち1種以上を含むことができる。なお第二蛍光体22Bや第一発光部10Bの第一発光素子11B、第一蛍光体12B等については、実施の形態1と同様とできる。また第一発光部10Bの第一パッケージ13Bや第一凹部14B、及び第二発光部20Bの第二パッケージ23B、第二凹部24B、第二発光素子21B、第二蛍光体22B等についても実施の形態1と同様とできる。   In addition to the first phosphor 12 and the second phosphor 22, other phosphors can be appropriately added to the first light emitting unit 10 and the second light emitting unit 20. For example, like the light emitting unit 1B according to Embodiment 2 shown in FIG. 5, the third phosphor 25 may be added to the second light emitting unit 20B. The third phosphor 25 can include, for example, one or more of Eu-activated chlorosilicate phosphor, Eu-activated silicate phosphor, Eu-activated thiogallate phosphor, and rare earth aluminate phosphor. The second phosphor 22B, the first light emitting element 11B of the first light emitting unit 10B, the first phosphor 12B, and the like can be the same as in the first embodiment. Also, the first package 13B and the first recess 14B of the first light emitting unit 10B and the second package 23B, the second recess 24B, the second light emitting element 21B, the second phosphor 22B, etc. of the second light emitting unit 20B are implemented. This can be the same as in the first mode.

あるいは、第二発光部に、第二蛍光体に加えて第一蛍光体を混入させてもよい。このように第一蛍光体を第一発光部と第二発光部に分散して配置することで、第一発光部と第二発光部の色度差が目立つことが無くなる。
[実施の形態3]
Alternatively, the second phosphor may be mixed with the first phosphor in addition to the second phosphor. Thus, by disperse | distributing and arrange | positioning a 1st fluorescent substance in a 1st light emission part and a 2nd light emission part, the chromaticity difference of a 1st light emission part and a 2nd light emission part does not stand out.
[Embodiment 3]

あるいは逆に、図6に示す実施の形態3に係る発光部1Cのように、第二発光部20Cに蛍光体を含めない構成とすることもできる。特に第二蛍光体が応答速度に優れている場合は、第二発光素子と第二蛍光体を同視することができる。そこで、第二蛍光体の有無を事実上考慮しない扱いとしてもよく、本明細書においては、第二蛍光体を含まない第二発光部についても対象とする。なお図6の例においても、第一発光部10Cの第一パッケージ13Cや第一凹部14C、第一発光素子11C、第一蛍光体12C、及び第二発光部20Cの第二パッケージ23C、第二凹部24C、第二発光素子21C等については上述した実施の形態1等と同様とできる。
[実施の形態4]
Or conversely, as in the light emitting unit 1C according to Embodiment 3 shown in FIG. 6, the second light emitting unit 20C may be configured not to include a phosphor. In particular, when the second phosphor has an excellent response speed, the second light emitting element and the second phosphor can be identified with each other. Therefore, it may be handled without considering the presence or absence of the second phosphor, and in the present specification, the second light-emitting portion not including the second phosphor is also an object. In the example of FIG. 6 as well, the first package 13C and the first recess 14C of the first light emitting unit 10C, the first light emitting element 11C, the first phosphor 12C, and the second package 23C of the second light emitting unit 20C, the second The recess 24C, the second light emitting element 21C, and the like can be the same as those in the first embodiment described above.
[Embodiment 4]

なお、発光素子及び蛍光体を収容するパッケージは、図2に示すように第一発光部10と第二発光部20で個別に設ける構成とする他、図7に示す実施の形態4に係る発光部1Dのように、共通のパッケージ13Dとしてもよい。この例では、第一発光部を構成する第一発光素子11Dと第一蛍光体12Dを収容する第一発光領域である第一凹部14Dと、第二発光部を構成する第二発光素子21Dと第二蛍光体22Dを収容する第二発光領域である第二凹部24Dとを、共通パッケージ13Dにおいて個別に設けている。このような構成とすることで、照明装置の小型化や構成の簡素化、コスト削減が図られる。
[実施の形態5]
In addition, the package which accommodates a light emitting element and fluorescent substance is set as the structure provided separately by the 1st light emission part 10 and the 2nd light emission part 20 as shown in FIG. 2, and the light emission which concerns on Embodiment 4 shown in FIG. It is good also as a common package 13D like the part 1D. In this example, the first light emitting element 11D that constitutes the first light emitting part, the first recess 14D that is the first light emitting area that accommodates the first phosphor 12D, and the second light emitting element 21D that constitutes the second light emitting part. A second recess 24D, which is a second light emitting region for accommodating the second phosphor 22D, is provided individually in the common package 13D. With such a configuration, the lighting device can be reduced in size, simplified in configuration, and reduced in cost.
[Embodiment 5]

あるいは、凹部を共通化して、共通の凹部に第一発光素子と第一蛍光体、及び第二発光素子と第二蛍光体を充填する構成としてもよい。このような例を実施の形態5に係る発光部1Eとして、図8の断面図に示す。この図に示す発光部1Eでは、共通パッケージ13Eに設けられた共通の凹部14Eに第一発光素子11Eと第一蛍光体12E、及び第二発光素子21Eと第二蛍光体22Eを充填しており、これによって一層の小型化や部材の共通化を図ることができる。   Or it is good also as a structure which makes a recessed part common and fills a common recessed part with a 1st light emitting element and 1st fluorescent substance and a 2nd light emitting element and 2nd fluorescent substance. Such an example is shown in the cross-sectional view of FIG. 8 as the light emitting unit 1E according to the fifth embodiment. In the light emitting unit 1E shown in this figure, a common recess 14E provided in the common package 13E is filled with the first light emitting element 11E and the first phosphor 12E, and the second light emitting element 21E and the second phosphor 22E. Thus, further downsizing and common use of members can be achieved.

いずれの場合も、第一発光部と第二発光部とは、蛍光体を含めた発光体としてみた場合の残光特性が異なっている。特に蛍光体の中には、残光特性が異なるものが存在する。この場合、残光特性が長い蛍光体では、励起源である発光素子が消灯した後も蛍光を発するため、残留する蛍光によって発光部の発光色すなわち色目が異なってしまう。そこで、このような残光特性の違いを考慮して、残留する蛍光成分を加味した上で予め第一発光部と第二発光部の発光量を調整するよう制御する。これにより、色バランスを一定に維持した高品質な照明装置を実現できる。具体的には、第一発光部の残光が第二発光部よりも長い場合に、第一発光部の発光量を抑えるか、あるいは第二発光部の発光量を加えるか、あるいはまた両方を行うかのいずれかによって、相対的な発光量を所期の色バランスに維持するように制御する。この制御は制御部3が行う。   In either case, the afterglow characteristics of the first light emitting unit and the second light emitting unit are different when viewed as a light emitter including a phosphor. In particular, some phosphors have different afterglow characteristics. In this case, the phosphor having a long afterglow characteristic emits fluorescence even after the light emitting element as the excitation source is turned off, and therefore the emission color, that is, the color of the light emitting portion differs depending on the remaining fluorescence. Therefore, in consideration of such a difference in afterglow characteristics, control is performed in advance to adjust the light emission amounts of the first light emitting unit and the second light emitting unit in consideration of the remaining fluorescent component. Thereby, it is possible to realize a high-quality lighting device that maintains a constant color balance. Specifically, when the afterglow of the first light emitting unit is longer than that of the second light emitting unit, the light emission amount of the first light emitting unit is suppressed, the light emission amount of the second light emitting unit is added, or both Control is performed so that the relative light emission amount is maintained at the desired color balance. This control is performed by the control unit 3.

言い換えると、第一発光部及び第二発光部は、これらを同じ駆動時間で発光させた際、第一発光部と第二発光部の発光強度を駆動時間を変えて測定した結果を、第二発光部の発光強度で第一発光部の発光強度を規格化した場合、駆動時間が短いほど第一発光部の発光強度が増加する傾向を示す。そこで制御部3は、第一駆動エネルギーの積算値が、第二駆動エネルギーの積算値よりも相対的に低くなるように制御する。このように制御部3が、応答特性が第二発光部と異なる第一蛍光体12を含む第一発光部に供給する第一駆動エネルギーの積算値が第二駆動エネルギーよりも小さくなるように制御することで、発光色のバランスを保った照明装置を実現できる。
[比較例1]
In other words, when the first light emitting unit and the second light emitting unit emit light with the same driving time, the results of measuring the emission intensity of the first light emitting unit and the second light emitting unit while changing the driving time are When the light emission intensity of the first light emitting part is normalized by the light emission intensity of the light emitting part, the light emission intensity of the first light emitting part tends to increase as the driving time is shorter. Therefore, the control unit 3 performs control so that the integrated value of the first driving energy is relatively lower than the integrated value of the second driving energy. In this way, the control unit 3 performs control so that the integrated value of the first driving energy supplied to the first light emitting unit including the first phosphor 12 having a response characteristic different from that of the second light emitting unit is smaller than the second driving energy. By doing so, it is possible to realize an illuminating device that maintains a balance of emission colors.
[Comparative Example 1]

次に、比較例1に係る照明装置として、図9に示す発光部を作成し、そのスペクトルを測定した。ここでは、一のパッケージ93に、共通の励起光源として発光素子91を実装し、さらに第一蛍光体92と第二蛍光体95を樹脂中に混合して形成した波長変換部材を凹部94に充填して、照明装置90を作製した。発光素子91には、極大発光波長(ピーク波長)が447nmの青色発光ダイオード(LED)を用いた。また第一蛍光体92として、赤色蛍光体である組成式がK2SiF6:Mn4+であるKSF蛍光体を用意した。さらに第二蛍光体92として、緑色蛍光体である組成式がSi6-ZAlZZ8-Z:Eu(0<Z<4.2)で示されるβサイアロン蛍光体を用意した。またこれらの発光素子91と第一蛍光体92、第二蛍光体95を封入するために、リードフレーム上に樹脂で凹部94を形成したパッケージ93を準備した。
(DC駆動)
Next, as a lighting device according to Comparative Example 1, a light emitting unit shown in FIG. 9 was created, and its spectrum was measured. Here, the light emitting element 91 is mounted as a common excitation light source in one package 93, and the wavelength conversion member formed by mixing the first phosphor 92 and the second phosphor 95 in the resin is filled in the recess 94. Thus, the lighting device 90 was produced. As the light emitting element 91, a blue light emitting diode (LED) having a maximum light emitting wavelength (peak wavelength) of 447 nm was used. As the first phosphor 92, a KSF phosphor having a composition formula of K 2 SiF 6 : Mn 4+ as a red phosphor was prepared. Further as the second phosphor 92, a green phosphor in which a composition formula Si 6-Z Al Z O Z N 8-Z: was prepared Eu beta SiAlON phosphor represented by (0 <Z <4.2). In order to encapsulate the light emitting element 91, the first phosphor 92, and the second phosphor 95, a package 93 having a recess 94 formed of resin on a lead frame was prepared.
(DC drive)

ここで、発光素子91に電源部2から直流電流を供給し、50ms間の出力光の分光分布を測定した結果を図10のグラフに示す。この図に示すように、短波長の側から順に、青色LEDの発光、βサイアロン蛍光体の蛍光、KSF蛍光体の蛍光を示す発光ピークが、それぞれ観測された。   Here, the direct current is supplied to the light emitting element 91 from the power supply unit 2 and the spectral distribution of the output light for 50 ms is measured, and the graph of FIG. As shown in this figure, emission peaks indicating blue LED emission, β sialon phosphor fluorescence, and KSF phosphor fluorescence were observed in order from the short wavelength side.

次に、制御部3でもって発光素子91に電源部2から供給する電流を、直流駆動からパルス駆動に切り替え、さらにパルス幅を変化させて、得られた発光の内、赤色光の発光強度を、青色光で正規化した結果を、図11のグラフ及び表1に示す。   Next, the current supplied from the power supply unit 2 to the light emitting element 91 by the control unit 3 is switched from direct current drive to pulse drive, and the pulse width is changed, and among the obtained light emission, the emission intensity of red light is changed. The results normalized with blue light are shown in the graph of FIG.

Figure 0006323319
Figure 0006323319

このように直流駆動においては、青色光のピーク波長(441nm)における光出力を100としたときの、赤色光のピーク波長(633nm)での光出力は131であった。
(2.5nmパルス駆動)
Thus, in direct current drive, the light output at the peak wavelength of red light (633 nm) was 131 when the light output at the peak wavelength of blue light (441 nm) was 100.
(2.5nm pulse drive)

次に、制御部3でもって発光素子91に電源部2から供給する電流を、2.5msのパルス電流として照明装置を点灯させ、50ms間放置して得られた出力光のスペクトルを測定した。そして上記と同様に、青色光のピーク波長(441nm)における光出力を100としたときの、赤色光のピーク波長(633nm)での光出力を計算したところ、139であった。上述したDC駆動の場合の光出力131と比較して106%となっており、発光スペクトルの設計値より赤色光が過多となった。
(0.5nmパルス駆動)
Next, the lighting device was turned on with the current supplied from the power supply unit 2 to the light emitting element 91 by the control unit 3 as a pulse current of 2.5 ms, and the spectrum of the output light obtained by leaving it for 50 ms was measured. Similarly to the above, when the light output at the peak wavelength of blue light (441 nm) is taken as 100, the light output at the peak wavelength of red light (633 nm) was calculated to be 139. Compared to the light output 131 in the case of the DC drive described above, it was 106%, and red light was excessive from the design value of the emission spectrum.
(0.5 nm pulse drive)

さらにパルス電流値を短くして、0.5msのパルス電流を供給して、同じく50ms間放置して得られた出力光のスペクトルを測定した。そして上記と同様に、青色光のピーク波長(441nm)における光出力を100としたときの、赤色光のピーク波長(633nm)での光出力を計算したところ、143であった。定電流の場合の光出力131と比較して109%となっており、発光スペクトルの設計値より赤色光が過多となった。
[実施例1]
Further, the pulse current value was shortened, a pulse current of 0.5 ms was supplied, and the spectrum of the output light obtained by leaving it for 50 ms was measured. Similarly to the above, when the light output at the peak wavelength of blue light (441 nm) is taken as 100, the light output at the peak wavelength of red light (633 nm) is calculated to be 143. It was 109% compared with the light output 131 in the case of constant current, and red light was excessive from the design value of the emission spectrum.
[Example 1]

上述の比較例のように、直流駆動からパルス駆動に切り替えると、赤色光の発光強度が青色光に対して上昇し、この結果、色バランスが崩れる。特に、照明光として白色光を得ようとする場合は、直流駆動からパルス駆動に切り替えると、赤色成分が相対的に多くなり色味が変わってしまう状態となる。そこで、赤色光と青色光のバランスを、駆動電流の時間幅によらず一定に維持するよう、制御部3でもって調整する。具体的には、発光素子を第一蛍光体と第二蛍光体で共通とせず、第一蛍光体12を励起する第一発光素子11と、第二蛍光体22を励起する第二発光素子21とを個別用意する。さらに制御部3は、これらの第一発光素子11と第二発光素子21を、個別に点灯駆動可能としている。   As in the comparative example described above, when switching from direct current driving to pulse driving, the emission intensity of red light increases with respect to blue light, and as a result, the color balance is lost. In particular, when white light is to be obtained as illumination light, when switching from direct current drive to pulse drive, the red component becomes relatively large and the color changes. Therefore, the control unit 3 adjusts the balance between the red light and the blue light so as to be kept constant regardless of the time width of the drive current. Specifically, the first phosphor and the second phosphor are not used in common, and the first phosphor 12 that excites the first phosphor 12 and the second light-emitting element 21 that excites the second phosphor 22. And prepare separately. Further, the control unit 3 can turn on and drive the first light emitting element 11 and the second light emitting element 21 individually.

本実施例では、制御部3は、青色光や緑色光を得るための第二発光素子21側を駆動する電流量を一定に維持しつつ、赤色光を得るための電流、すなわち赤色蛍光体である第一蛍光体12を励起する第一発光素子11の駆動電流量を調整する。いいかえると、制御部3は、第一発光部10の発光強度が一定となるように、第二発光部20の駆動時間に応じて、第一駆動エネルギーの積算値を調整する。ここで第一駆動エネルギーの積算値の調整は、第一発光素子を駆動する電流値(第一駆動電流)の駆動時間、パルス駆動においてはパルス幅を変化させることで行う。具体的には、第二発光素子21を駆動する駆動電流のパルス幅に応じて、このパルス幅における赤色成分の増加量を差し引いた赤色光の強度が得られるように、所期のパルス幅よりも短くした第一駆動電流を第一発光素子に供給する。   In the present embodiment, the control unit 3 maintains a constant amount of current for driving the second light emitting element 21 for obtaining blue light and green light, while maintaining a constant amount of current for obtaining red light, that is, a red phosphor. The drive current amount of the first light emitting element 11 that excites a certain first phosphor 12 is adjusted. In other words, the control unit 3 adjusts the integrated value of the first driving energy according to the driving time of the second light emitting unit 20 so that the light emission intensity of the first light emitting unit 10 is constant. Here, the integrated value of the first drive energy is adjusted by changing the drive time of the current value (first drive current) for driving the first light emitting element, and the pulse width in the pulse drive. Specifically, in accordance with the pulse width of the driving current that drives the second light emitting element 21, the intensity of red light obtained by subtracting the increase amount of the red component in this pulse width is obtained from the intended pulse width. The first driving current shortened is supplied to the first light emitting element.

このような制御部3による第一発光部10、第二発光部20の個別制御を行うにあたり、予めパルス幅毎の発光強度の変化を把握しておく必要がある。そしてこのような制御情報を保持した状態で、実際の点灯駆動時には、制御部3は点灯すべき駆動エネルギーを、制御情報に基づいて補正して、点灯駆動を行う。このような制御情報は、実際に試作した照明装置を点灯させて、測定したデータをルックアップテーブルとして記憶部4に保持しておく方法や、シミュレーションで得た発光強度の変化を同じくルックアップテーブルとして記憶部4に保持しておく方法等が利用できる。あるいは演算式を用意して、パルス幅毎に発光強度の変化量を演算する方法としてもよい。この場合は、ルックアップテーブル等を保持するための記憶部を用意する必要がなく、ハードウェア構成を簡素化できる。
(照明装置の制御情報の作成)
In performing the individual control of the first light emitting unit 10 and the second light emitting unit 20 by the control unit 3 as described above, it is necessary to grasp the change in the light emission intensity for each pulse width in advance. And in the state which hold | maintains such control information, at the time of an actual lighting drive, the control part 3 correct | amends the drive energy which should be lighted based on control information, and performs a lighting drive. Such control information includes a method of lighting an actually manufactured lighting device and storing measured data in the storage unit 4 as a lookup table, and a change in the emission intensity obtained by simulation. A method of storing the data in the storage unit 4 can be used. Or it is good also as a method of preparing a computing equation and calculating the variation | change_quantity of emitted light intensity for every pulse width. In this case, it is not necessary to prepare a storage unit for holding a lookup table or the like, and the hardware configuration can be simplified.
(Creation of lighting device control information)

本実施例の照明装置を制御するため、予め、制御情報の作成手順を説明する。   In order to control the lighting apparatus of the present embodiment, a procedure for creating control information will be described in advance.

(1)まず、第一工程として、第一発光部10を異なる駆動条件で発光させ、駆動条件の変更の前後における発光強度を測定する。ここで異なる駆動条件とは、直流駆動方式、パルス幅変調方式(デューティ比を変更させた場合を含む)等を含む。また、駆動時間や電圧及び電流量を変化させた条件を含めてもよい。ここでは、DC駆動から、パルス時間を変化させたパルス駆動のそれぞれについて、実際に照明装置を点灯させて発光スペクトルを測定する。   (1) First, as the first step, the first light emitting unit 10 emits light under different driving conditions, and the emission intensity before and after the change of the driving conditions is measured. Here, the different driving conditions include a DC driving method, a pulse width modulation method (including a case where the duty ratio is changed), and the like. Moreover, you may include the conditions which changed drive time, the voltage, and the electric current amount. Here, for each of the pulse drive in which the pulse time is changed from the DC drive, the light emission spectrum is measured by actually turning on the illumination device.

(2)次に、第二工程として、第一発光部10の発光量を第二発光部20で正規化した発光強度を、駆動条件毎に、例えば駆動電流のパルス幅毎に取得する。一例として、駆動条件の変更の前後における差分を算出してもよい。ここでは第二発光部20側の駆動条件を固定し、第一発光部10の発光強度の差分を算出する。この発光強度の差は、例えば後述する図13に示す発光スペクトルのピーク強度の差として算出することができる。   (2) Next, as a second step, the light emission intensity obtained by normalizing the light emission amount of the first light emitting unit 10 by the second light emitting unit 20 is acquired for each driving condition, for example, for each pulse width of the driving current. As an example, the difference before and after the change of the driving condition may be calculated. Here, the driving condition on the second light emitting unit 20 side is fixed, and the difference in light emission intensity of the first light emitting unit 10 is calculated. This difference in emission intensity can be calculated, for example, as the difference in peak intensity of the emission spectrum shown in FIG.

(3)さらに第三工程として、駆動条件それぞれの第一発光部10に対する第二発光部20の発光速度比を一定に保つ第一駆動エネルギー又は第二駆動エネルギーの積算値を算出する。例えば、上記第二工程で算出された発光強度の差を相殺するために必要な駆動エネルギーの積算値を算出する。ここで、「駆動エネルギーの積算値」とは、発光素子に流れる電流と、発光素子に印加される電圧と、発光素子の駆動時間の積をいうものとする。例えば、図12A又は図12Bで示す時間変化する電流量において、実線で囲まれる面積の総和と電圧との積をいうものとする。   (3) Further, as a third step, a first driving energy or an integrated value of the second driving energy for maintaining a constant light emission speed ratio of the second light emitting unit 20 to the first light emitting unit 10 for each driving condition is calculated. For example, an integrated value of driving energy necessary for canceling the difference in light emission intensity calculated in the second step is calculated. Here, the “integrated value of driving energy” refers to the product of the current flowing through the light emitting element, the voltage applied to the light emitting element, and the driving time of the light emitting element. For example, the time-varying current amount shown in FIG. 12A or 12B refers to the product of the sum of the areas surrounded by the solid line and the voltage.

ここでは制御部3が、第二工程で得られた発光スペクトルのピーク強度の差を相殺するために必要な駆動エネルギーの補正量を算出する。ここでは、ピークの高さが略等しくなるように駆動エネルギーを調節して、駆動条件の変更の前後における第一発光部10に対する第二発光部20の発光強度比を一定に保つために必要な、駆動エネルギーの変化量を算出する。例えば、異なる駆動条件(具体的にはPWMのONデューティ)毎に発光強度のピーク高さをそれぞれ求め、ピーク高さの変化率を駆動エネルギーの積算値に乗算することで、発光強度のピーク高さが略揃う駆動エネルギーを算出する。   Here, the control unit 3 calculates the correction amount of the driving energy necessary for canceling the difference in peak intensity of the emission spectrum obtained in the second step. Here, it is necessary to adjust the driving energy so that the peak heights are substantially equal, and to maintain a constant light emission intensity ratio of the second light emitting unit 20 to the first light emitting unit 10 before and after the change of the driving condition. The amount of change in drive energy is calculated. For example, the peak height of the light emission intensity is obtained by obtaining the peak height of the light emission intensity for each different driving condition (specifically, the PWM ON duty) and multiplying the integrated value of the drive energy by the change rate of the peak height. The drive energy with substantially the same length is calculated.

(4)最後に第四工程として、演算された駆動エネルギー補正量に基づいて、各発光部を駆動する。具体的には、第一発光部10には駆動エネルギー補正量に基づいて補正された第一駆動エネルギーの補正積算値を、一方第二発光部20には、補正されていない第二駆動エネルギーの積算値を供給するように、電源部2から第一発光部10、第二発光部20に供給される電流値を制御部3が制御する。   (4) Finally, as the fourth step, each light emitting unit is driven based on the calculated drive energy correction amount. Specifically, the first light emitting unit 10 has a corrected integrated value of the first driving energy corrected based on the driving energy correction amount, while the second light emitting unit 20 has the second driving energy that has not been corrected. The control unit 3 controls the current value supplied from the power supply unit 2 to the first light emitting unit 10 and the second light emitting unit 20 so as to supply the integrated value.

以上のようにして、予め制御情報を作成し、記憶部4に保持した状態で、実際の点灯時において、点灯制御情報を制御部3が制御情報を参照して、駆動エネルギー補正量を算出し、補正後の駆動エネルギーにて、各発光部を制御する。なお駆動エネルギー補正量は、必ずしも演算する必要はなく、パルス幅毎に駆動エネルギー補正量を加味した補正電流値を予め計算して、ルックアップテーブルとして記憶部4に予め保持しておく構成としてもよい。この場合は、ルックアップテーブルを参照するだけで補正電流値を取得できるので、演算の手間を省き、制御部3の処理量を低減できる。   As described above, with the control information created in advance and stored in the storage unit 4, the control unit 3 refers to the control information for the lighting control information and calculates the drive energy correction amount during actual lighting. Each light emitting unit is controlled by the corrected drive energy. The drive energy correction amount does not necessarily have to be calculated, and a correction current value that takes the drive energy correction amount into consideration for each pulse width may be calculated in advance and stored in the storage unit 4 in advance as a lookup table. Good. In this case, the correction current value can be acquired simply by referring to the look-up table, so that the calculation work can be saved and the processing amount of the control unit 3 can be reduced.

以上の例では、PWM方式で各発光素子を点灯制御する方法について説明した。ただ本発明は発光素子の点灯駆動方法をPWM方式に限定するものでなく、他の方法、例えば振幅を調整するPAMや、一定幅のパルスの数を調整することで駆動エネルギーを調整する方式等、既知の点灯駆動制御方式を適宜利用できる。   In the above example, the method of lighting control of each light emitting element by the PWM method has been described. However, the present invention does not limit the lighting driving method of the light emitting element to the PWM method, but other methods such as a PAM for adjusting the amplitude, a method for adjusting the driving energy by adjusting the number of pulses having a certain width, etc. A known lighting drive control method can be used as appropriate.

また以上の方法では、第二駆動エネルギーを維持しつつ、第一発光素子の点灯量すなわち第一駆動エネルギーの積算値を、第二駆動エネルギーの積算値よりも低減させる方法について説明した。ただ本発明はこの方法に限らず、例えば第一駆動エネルギー側を維持して、第二駆動エネルギー側の積算値を第一駆動エネルギーの積算値よりも増やすように制御してもよい。あるいは、第一駆動エネルギーの積算値を増やすと共に、第二駆動エネルギーの積算値を減らすような制御を同時に行ってもよい。このように、相対的に第一駆動エネルギーの積算値を第二駆動エネルギーの積算値よりも低くすることで、残光特性の異なる複数の蛍光体あるいは発光素子を用いた照明装置において、直流駆動から時分割点灯に変化させた場合の色バランスの変化を抑制することができ、高品質な照明を実現できる。   In the above method, the method of reducing the lighting amount of the first light emitting element, that is, the integrated value of the first driving energy, is reduced from the integrated value of the second driving energy while maintaining the second driving energy. However, the present invention is not limited to this method. For example, the first drive energy side may be maintained and the integrated value on the second drive energy side may be controlled to be larger than the integrated value of the first drive energy. Or you may perform simultaneously the control which increases the integrated value of 1st drive energy, and reduces the integrated value of 2nd drive energy. In this way, by making the integrated value of the first driving energy relatively lower than the integrated value of the second driving energy, in the illumination device using a plurality of phosphors or light emitting elements having different afterglow characteristics, direct current driving is performed. Therefore, it is possible to suppress a change in the color balance when changing from time-to-time lighting to high-quality lighting.

さらに以上の例では、発光部として第一発光部と第二発光部の2つを用いた例を説明したが、本発明は発光部を2個とする例に限られず、3以上の発光部を用いて、各発光部の残光特性に応じた駆動エネルギー補正量を演算して、各発光素子の発光強度が異なる駆動条件下でも変化しないように制御することも可能である。
(照明装置の構成)
Further, in the above example, the example in which the first light emitting unit and the second light emitting unit are used as the light emitting unit has been described. It is also possible to calculate a driving energy correction amount corresponding to the afterglow characteristics of each light emitting unit using the above and control so that the light emission intensity of each light emitting element does not change even under different driving conditions.
(Configuration of lighting device)

次に、実施例1に係る照明装置の構成について説明する。ここでは、図2に示すように、第一発光部10と第二発光部20を分離し、これらを制御部3でもって個別に点灯駆動可能とする。第一発光部10は、第一蛍光体12と、この第一蛍光体12を励起する第一発光素子11とを備える。また第二発光部20は、第二蛍光体22と、この第二蛍光体22を励起する第二発光素子21とを備える。   Next, the configuration of the illumination device according to the first embodiment will be described. Here, as shown in FIG. 2, the first light emitting unit 10 and the second light emitting unit 20 are separated, and these can be individually driven by the control unit 3. The first light emitting unit 10 includes a first phosphor 12 and a first light emitting element 11 that excites the first phosphor 12. The second light emitting unit 20 includes a second phosphor 22 and a second light emitting element 21 that excites the second phosphor 22.

第一発光部10及び第二発光部20で励起源として用いる第一発光素子11及び第二発光素子21には、上記比較例と同様、極大発光波長(ピーク波長)が447nmの青色発光ダイオード(LED)を用意した。また第一蛍光体12として、赤色蛍光体である組成式がK2SiF6:Mn4+であるKSF蛍光体を用意した。さらに第二蛍光体22として、緑色蛍光体である組成式がSi6-ZAlZZ8-Z:Eu(0<Z<4.2)で示されるβサイアロン蛍光体を用意した。これらの発光素子や蛍光体を、図2に示す第一パッケージ13、第二パッケージ23の第一凹部14、第二凹部24にそれぞれ封入して、第一発光部10と第二発光部20をそれぞれ得た。なお各蛍光体は、樹脂中に混合して形成した波長変換部材として、発光素子を実装したパッケージの凹部内に充填している。
(照明装置の制御)
The first light-emitting element 11 and the second light-emitting element 21 used as excitation sources in the first light-emitting unit 10 and the second light-emitting unit 20 are blue light-emitting diodes having a maximum emission wavelength (peak wavelength) of 447 nm, as in the comparative example. LED) was prepared. As the first phosphor 12, the composition formula is a red phosphor K 2 SiF 6: were prepared KSF phosphor is Mn 4+. Further as the second phosphor 22, a green phosphor in which a composition formula Si 6-Z Al Z O Z N 8-Z: was prepared Eu beta SiAlON phosphor represented by (0 <Z <4.2). These light emitting elements and phosphors are enclosed in the first recess 14 and the second recess 24 of the first package 13 and the second package 23 shown in FIG. I got each. Each phosphor is filled in a recess of a package on which a light emitting element is mounted as a wavelength conversion member formed by mixing in a resin.
(Control of lighting device)

まず、駆動条件として直流駆動時の分光分布を測定した。ここでは、第一パッケージ13、第二パッケージ23に個別に搭載された第一発光素子11と第二発光素子12に、同一条件で一定の直流電流を供給し、50ms間測定した場合の分光分布を図13に示す。青色光のピーク波長(441nm)における光出力を100としたときの、赤色光のピーク波長(633nm)での光出力は131であり、比較例の場合と同一の分光分布が得られた。   First, the spectral distribution during DC driving was measured as driving conditions. Here, the spectral distribution when a constant direct current is supplied to the first light-emitting element 11 and the second light-emitting element 12 individually mounted on the first package 13 and the second package 23 under the same conditions and measured for 50 ms. Is shown in FIG. The light output at the peak wavelength of red light (633 nm) when the light output at the peak wavelength of blue light (441 nm) is 100 was 131, and the same spectral distribution as in the comparative example was obtained.

次に、異なる駆動条件として、第一発光部10、第二発光部20の第一発光素子11、第二発光素子12に、それぞれ2.5msのパルス電流を供給し、50ms間測定した。ここでは、第二発光部20の発光強度を相対的に小さく調整するため、制御部3でもって駆動エネルギー補正量を加味した電流補正を行う。具体的には、KSF蛍光体の発光強度を補正して、第一発光部10に対する第二発光部20の発光強度比を一定に保つために、βサイアロン蛍光体と結合した第一発光素子11に投入した電流量に対して、KSF蛍光体と結合した第二発光素子21に供給する電流量を94%に低減した。すなわち、DC駆動時の赤色光(633nm)のエネルギー密度が青色光比で131であり、一方2.5msパルス駆動時の赤色光のエネルギー密度が139であることから、電流量の補正量は、131÷139=94%と計算される。この結果、青色光のピーク波長(441nm)における光出力を100としたときの、赤色光のピーク波長(633nm)での光出力は131となり、直流駆動時の光出力と同様の分光分布を得ることができた。   Next, as different driving conditions, a pulse current of 2.5 ms was supplied to each of the first light emitting unit 10, the first light emitting element 11 of the second light emitting unit 20, and the second light emitting element 12, and measurement was performed for 50 ms. Here, in order to adjust the light emission intensity of the second light emitting unit 20 to be relatively small, the control unit 3 performs current correction in consideration of the drive energy correction amount. Specifically, in order to correct the emission intensity of the KSF phosphor and keep the emission intensity ratio of the second light emitting unit 20 to the first light emitting unit 10 constant, the first light emitting element 11 combined with the β sialon phosphor. The amount of current supplied to the second light-emitting element 21 combined with the KSF phosphor was reduced to 94% with respect to the amount of current input to. That is, the energy density of red light (633 nm) during DC driving is 131 in terms of the blue light ratio, while the energy density of red light during 2.5 ms pulse driving is 139. It is calculated as 131 ÷ 139 = 94%. As a result, when the light output at the blue light peak wavelength (441 nm) is 100, the light output at the red light peak wavelength (633 nm) is 131, and the same spectral distribution as the light output at the time of DC driving is obtained. I was able to.

さらに駆動条件を変更し、出力光を低減させるように第一発光部10、第二発光部20の第一発光素子11、第二発光素子12に、それぞれ0.5msのパルス電流を供給し、50ms間測定した。ここでは、制御部3は第一発光素子11に投入した電流量に対して、第二発光素子21に供給する電流量を92%に低減した。この計算も上記と同様、DC駆動時の赤色光のエネルギー密度が131であり、一方0.5msパルス駆動時の赤色光のエネルギー密度が143であることから、電流量の補正量は、131÷143=92%と計算される。この結果、青色光のピーク波長(441nm)における光出力を100としたときの、赤色光のピーク波長(633nm)での光出力は131となり、直流駆動時と同様の光出力の分光分布を得ることができた。これらの実施例1の発光強度の測定結果を、表2に示す。   Further, by changing the driving conditions, a pulse current of 0.5 ms is supplied to each of the first light emitting unit 10 and the first light emitting element 11 and the second light emitting element 12 of the second light emitting unit 20 so as to reduce the output light, Measurement was performed for 50 ms. Here, the control unit 3 reduces the amount of current supplied to the second light emitting element 21 to 92% of the amount of current input to the first light emitting element 11. In this calculation, as described above, the energy density of red light at the time of DC driving is 131, while the energy density of red light at the time of 0.5 ms pulse driving is 143. Therefore, the correction amount of the current amount is 131 ÷. It is calculated that 143 = 92%. As a result, when the light output at the peak wavelength (441 nm) of blue light is set to 100, the light output at the peak wavelength (633 nm) of red light is 131, and the same optical output spectral distribution as that at the time of DC driving is obtained. I was able to. Table 2 shows the measurement results of the emission intensity of these Examples 1.

Figure 0006323319
Figure 0006323319

このようにして、発光部に供給するパルス電流のパルス幅によらず、赤色光と青色光の強度比を一定に保つことが可能となり、よってこのような駆動条件の変化の前後で色バランスを維持した、高品質な照明を得ることが可能となる。このような駆動条件の変化は、特に照明の明るさの変化すなわち調光時に発生し易い。図9のような構成では、パルス幅変調によって発光強度を調光した場合に、調光しない場合と比較して残光特性の異なる蛍光体、例えばKSF蛍光体の光出力が増加して発光色が変化することがあるが、上記実施例1によれば、このような発光色の変化を抑制できる。すなわち、実施例1に係る照明装置は、第一蛍光体12としてKSF蛍光体が含まれる第一波長変換部材を第一発光素子11と共に第一パッケージ13に封入して第一発光部10とし、一方で第二蛍光体22としてβサイアロン蛍光体が含まれる第二波長変換部材を第二発光素子21と共に、個別の第二パッケージ23に封入して第二発光部20とし、制御部3でもって個別にこれらの発光部を制御可能としている。   In this way, it is possible to keep the intensity ratio of red light and blue light constant regardless of the pulse width of the pulse current supplied to the light emitting unit, and thus the color balance before and after such changes in driving conditions. It is possible to obtain a high-quality illumination that is maintained. Such a change in the driving condition is particularly likely to occur during a change in illumination brightness, that is, during dimming. In the configuration as shown in FIG. 9, when the light emission intensity is dimmed by pulse width modulation, the light output of a phosphor having different afterglow characteristics, for example, a KSF phosphor, is increased as compared with the case where the light intensity is not dimmed. However, according to Example 1, it is possible to suppress such a change in emission color. That is, in the lighting device according to the first embodiment, the first wavelength conversion member including the KSF phosphor as the first phosphor 12 is enclosed in the first package 13 together with the first light emitting element 11 to form the first light emitting unit 10. On the other hand, the second wavelength conversion member including the β sialon phosphor as the second phosphor 22 is enclosed in the individual second package 23 together with the second light emitting element 21 to form the second light emitting unit 20. These light emitting units can be individually controlled.

この制御部3は、KSF蛍光体を含んでいない第一発光部10の第一発光素子11に供給する駆動エネルギーの積算値を算出し、算出した駆動エネルギーを第二発光部20の第二発光素子21に供給する。さらに制御部3は、KSF蛍光体を含んでいる第二発光部20側に供給する発光強度の増加分を相殺可能な駆動エネルギーの積算値を算出し、算出した駆動エネルギーを補正値として補正した電流量を第二発光部20側に供給する。これによって第一発光素子11に投入する駆動エネルギーに対して、第二発光素子21に供給する駆動エネルギーを相対的に低減することができる。この結果、パルス幅変調によって発光強度を調光した場合のKSF蛍光体の光出力を、直流駆動した場合のKSF蛍光体の光出力と同様の分光分布に維持することが可能となる。第一発光部10に対する第二発光部20の発光強度比を一定に保つことができるので、発光色が駆動条件の前後で変化する事態を回避でき、高品質な照明光が得られる。   The control unit 3 calculates an integrated value of driving energy supplied to the first light emitting element 11 of the first light emitting unit 10 that does not include the KSF phosphor, and uses the calculated driving energy as the second light emission of the second light emitting unit 20. Supply to the element 21. Further, the control unit 3 calculates an integrated value of driving energy that can cancel the increase in emission intensity supplied to the second light emitting unit 20 side including the KSF phosphor, and corrects the calculated driving energy as a correction value. The amount of current is supplied to the second light emitting unit 20 side. Accordingly, the driving energy supplied to the second light emitting element 21 can be relatively reduced with respect to the driving energy input to the first light emitting element 11. As a result, the light output of the KSF phosphor when the emission intensity is dimmed by pulse width modulation can be maintained in the same spectral distribution as the light output of the KSF phosphor when DC driving is performed. Since the emission intensity ratio of the second light emitting unit 20 to the first light emitting unit 10 can be kept constant, it is possible to avoid a situation in which the emission color changes before and after the driving conditions, and high-quality illumination light can be obtained.

なお第一発光素子11、第二発光素子21は、同じ波長域の光を発する青色発光ダイオードであり、これら第一発光素子11、第二発光素子21が発する青色光によって、緑色蛍光体、赤色蛍光体を励起して3色の光を混色することにより、白色光を放出することができる。また上述の通り、発光部が2以上のパッケージを備えている場合には、パッケージを適当に組み合わせて、発光色のバランスを保った発光部とすることができる。例えば、緑色蛍光体を含む第一発光部を2つ、赤色蛍光体を含む第二発光部を1つ、組み合わせてもよい。さらに、本発明の照明装置は白色光を発する照明に限らず、任意の色の光を出力する照明装置や、出力光を可変とした照明装置とすることもできる。   The first light-emitting element 11 and the second light-emitting element 21 are blue light-emitting diodes that emit light in the same wavelength range. The blue light emitted by the first light-emitting element 11 and the second light-emitting element 21 causes green phosphor and red White light can be emitted by exciting the phosphor and mixing three colors of light. Further, as described above, in the case where the light emitting unit includes two or more packages, the packages can be appropriately combined to form a light emitting unit that maintains a balance of light emission colors. For example, two first light emitting units including a green phosphor and one second light emitting unit including a red phosphor may be combined. Furthermore, the illumination device of the present invention is not limited to illumination that emits white light, but may be an illumination device that outputs light of any color, or an illumination device that changes output light.

本発明に係る照明装置及びその駆動方法は、駆動条件による色度の変化を抑制し、特に青色発光ダイオードを光源とする白色の照明用光源として好適に利用できる。また、バックライト光源、LEDディスプレイ、信号機、照明式スイッチ、各種センサ及び各種インジケータ等にも利用できる。   The illumination device and the driving method thereof according to the present invention can be suitably used as a white illumination light source that suppresses a change in chromaticity due to a drive condition and particularly uses a blue light emitting diode as a light source. It can also be used for backlight light sources, LED displays, traffic lights, illumination switches, various sensors, various indicators, and the like.

100…照明装置、1、1B、1C、1D、1E…発光部、2…電源部、3…制御部、4…記憶部、10、10B、10C…第一発光部、
11、11B、11C、11D、11E…第一発光素子、12、12B、12C、12D、12E…第一蛍光体、13、13B、13C…第一パッケージ、13D、13E…共通パッケージ、14、14B、14C、14D…第一凹部、14E…共通の凹部、16…封止部材、17…リード電極、18…リード電極、19…導電性ワイヤ、20、20B、20C…第二発光部、21、21B、21C、21D、21E…第二発光素子、22、22B、22D、22E…第二蛍光体、23、23B、23C…第二パッケージ、24、24B、24C、24D…第二凹部、25…第三蛍光体、90…照明装置、91…発光素子、92…第一蛍光体、93…パッケージ、94…凹部、95…第二蛍光体。
DESCRIPTION OF SYMBOLS 100 ... Illuminating device 1, 1B, 1C, 1D, 1E ... Light emission part, 2 ... Power supply part, 3 ... Control part, 4 ... Memory | storage part 10, 10B, 10C ... 1st light emission part,
11, 11B, 11C, 11D, 11E ... First light emitting element, 12, 12B, 12C, 12D, 12E ... First phosphor, 13, 13B, 13C ... First package, 13D, 13E ... Common package, 14, 14B , 14C, 14D ... 1st recessed part, 14E ... Common recessed part, 16 ... Sealing member, 17 ... Lead electrode, 18 ... Lead electrode, 19 ... Conductive wire, 20, 20B, 20C ... 2nd light emission part, 21, 21B, 21C, 21D, 21E ... second light emitting element, 22, 22B, 22D, 22E ... second phosphor, 23, 23B, 23C ... second package, 24, 24B, 24C, 24D ... second recess, 25 ... 3rd fluorescent substance, 90 ... illuminating device, 91 ... light emitting element, 92 ... 1st fluorescent substance, 93 ... package, 94 ... recessed part, 95 ... 2nd fluorescent substance.

Claims (16)

第一発光素子と、
前記第一発光素子が発する光を異なる波長の光に変換する第一蛍光体を備える第一発光部と、
第二発光素子を備える第二発光部と、
前記第一発光部及び第二発光部とそれぞれ電気的に接続され、前記第一発光素子に第一駆動エネルギーを、前記第二発光素子に第二駆動エネルギーを、それぞれ供給する電源部と、
前記電源部から第一発光部に供給される第一駆動エネルギーと、前記電源部から第二発光部に供給される第二駆動エネルギーを個別に制御可能な制御部と、
を備え、
前記第一発光部及び第二発光部は、前記第一発光部と第二発光部の発光強度を、点灯時間を含む駆動条件を変えて測定した結果を、前記第二発光部の発光強度で第一発光部の発光強度を規格化した場合に、駆動時間が短いほど前記第一発光部の発光強度が増加する傾向を示すものであり、
前記制御部は、前記第一駆動エネルギーの積算値が、前記第二駆動エネルギーの積算値よりも相対的に低くなるように制御しており、
前記第二発光部は、前記第二発光素子が発する光を異なる波長の光に変換する第二蛍光体を含み、
前記第一蛍光体が、前記第二蛍光体よりも残光時間が長い赤色蛍光体である照明装置。
A first light emitting element;
A first light emitting unit comprising a first phosphor that converts light emitted by the first light emitting element into light of a different wavelength;
A second light emitting unit comprising a second light emitting element;
A power supply unit that is electrically connected to the first light emitting unit and the second light emitting unit, respectively, and supplies a first driving energy to the first light emitting element and a second driving energy to the second light emitting element;
A control unit capable of individually controlling the first driving energy supplied from the power supply unit to the first light emitting unit and the second driving energy supplied from the power supply unit to the second light emitting unit;
With
The first light-emitting unit and the second light-emitting unit measure the light emission intensity of the first light-emitting unit and the second light-emitting unit while changing the driving conditions including the lighting time. When the emission intensity of the first light emitting part is normalized, the light emission intensity of the first light emitting part tends to increase as the driving time is shorter,
The control unit controls the integrated value of the first drive energy to be relatively lower than the integrated value of the second drive energy ,
The second light emitting unit includes a second phosphor that converts light emitted from the second light emitting element into light of a different wavelength,
Wherein the first phosphor, the second phosphor afterglow time is long red phosphor der Ru illumination device than body.
第一発光素子と、
前記第一発光素子が発する光を異なる波長の光に変換する第一蛍光体を備える第一発光部と、
第二発光素子を備える第二発光部と、
前記第一発光部及び第二発光部とそれぞれ電気的に接続され、前記第一発光素子に第一駆動エネルギーを、前記第二発光素子に第二駆動エネルギーを、それぞれ供給する電源部と、
前記電源部と接続され、前記第一発光部及び第二発光部を個別に駆動するよう、該電源部が供給する前記第一駆動エネルギーと第二駆動エネルギーの量を制御する制御情報を、前記電源部に送出するための制御部と
を備え、
前記制御部は、前記第一発光部又は前記第二発光部の点灯時間を含む駆動条件を変更させたとき、駆動条件の変更の前後における第一発光部に対する第二発光部の発光強度比を一定に保つよう、前記第一駆動エネルギー又は第二駆動エネルギーを制御しており、
前記第二発光部は、前記第二発光素子が発する光を異なる波長の光に変換する第二蛍光体を含み、
前記第一蛍光体が、前記第二蛍光体よりも残光時間が長い赤色蛍光体である照明装置。
A first light emitting element;
A first light emitting unit comprising a first phosphor that converts light emitted by the first light emitting element into light of a different wavelength;
A second light emitting unit comprising a second light emitting element;
A power supply unit that is electrically connected to the first light emitting unit and the second light emitting unit, respectively, and supplies a first driving energy to the first light emitting element and a second driving energy to the second light emitting element;
Control information for controlling the amount of the first drive energy and the second drive energy supplied by the power supply unit so as to be connected to the power supply unit and individually drive the first light emitting unit and the second light emitting unit, A control unit for sending to the power supply unit,
The control unit changes a light emission intensity ratio of the second light emitting unit to the first light emitting unit before and after the change of the driving condition when the driving condition including the lighting time of the first light emitting unit or the second light emitting unit is changed. The first driving energy or the second driving energy is controlled so as to keep constant ,
The second light emitting unit includes a second phosphor that converts light emitted from the second light emitting element into light of a different wavelength,
Wherein the first phosphor, the second phosphor afterglow time is long red phosphor der Ru illumination device than body.
請求項1または2に記載の照明装置であって、
前記駆動条件が、パルス幅変調方式におけるデューティ比である照明装置。
The lighting device according to claim 1 or 2,
The lighting device, wherein the driving condition is a duty ratio in a pulse width modulation method.
請求項1〜3のいずれか一項に記載の照明装置であって、
前記第二蛍光体は、Eu付活βサイアロン蛍光体を含む照明装置。
It is an illuminating device as described in any one of Claims 1-3 ,
The second phosphor is an illumination device including an Eu-activated β sialon phosphor.
請求項1〜のいずれか一に記載の照明装置であって、
前記第一蛍光体は、
組成式が3.5MgO・0.5MgF2・GeO2:Mn4+で表されるMn4+付活Mgフルオロジャーマネート蛍光体又は
組成式がM 1 2 2 6:Mn4+(ただし、M 1 は、Li+,Na+,K+,Rb+,Cs+,NH4+から選択された少なくとも1種であり、M 2 は、Si,Ge,Sn,Ti,Zrから選択された少なくとも1種である。)で表されるMn4+付活フッ化物蛍光体を含む照明装置。
It is an illuminating device as described in any one of Claims 1-4 , Comprising:
The first phosphor is
Composition formula 3.5MgO · 0.5MgF 2 · GeO 2: Mn is represented by Mn 4+ 4+ -activated Mg fluoro jar money preparative phosphor or composition formula M 1 2 M 2 F 6: Mn 4+ ( However, M 1 is, Li +, Na +, K +, Rb +, Cs +, at least one selected from NH 4+, M 2 is selected Si, Ge, Sn, Ti, from Zr A lighting device comprising a Mn 4+ activated fluoride phosphor represented by the formula:
請求項1〜のいずれか一に記載の照明装置であって、さらに、
前記第一発光部及び前記第二発光部の、駆動時間に応じて変化する発光強度の変化量を記憶するための記憶部を備えており、
前記制御部は、前記記部を参照して、前記第一発光部の発光強度が一定となるように、前記第一発光部又は第二発光部の駆動時間に応じて、第一駆動エネルギーの積算値又は第二駆動エネルギーの積算値を調整してなる照明装置。
It is an illuminating device as described in any one of Claims 1-5 , Comprising: Furthermore,
The first light emitting unit and the second light emitting unit include a storage unit for storing a change amount of light emission intensity that changes according to a driving time,
Wherein the control unit refers to the SL portion such that said emission intensity of the first light emitting portion becomes constant, according to the drive time of the first light emitting portion or the second light emitting portion, a first drive energy The lighting device formed by adjusting the integrated value of the second or the integrated value of the second driving energy.
請求項1〜のいずれか一に記載の照明装置であって、
駆動時間が短いほど前記第一発光部の発光強度が、前記第二発光部に比して増加する場合、前記制御部は、前記第二発光部に比して増加する増加分が相殺されるように、前記第一発光部に供給される前記第一駆動エネルギーの積算値を減らすように制御してなる照明装置。
It is an illuminating device as described in any one of Claims 1-6 ,
When the light emission intensity of the first light emitting unit increases as the driving time is shorter than that of the second light emitting unit, the control unit cancels the increase that is increased compared to the second light emitting unit. Thus, the illuminating device controlled so that the integrated value of said 1st drive energy supplied to said 1st light emission part may be reduced.
請求項1〜のいずれか一に記載の照明装置であって、
駆動時間が短いほど前記第一発光部の発光強度が、前記第二発光部に比して増加する場合、前記制御部は、前記第二発光部に比して増加する増加分が相殺されるように、前記第一発光部と比べて発光強度が低くなった前記第二発光部に供給される前記第二駆動エネルギーの積算値を増やすように制御してなる照明装置。
It is an illuminating device as described in any one of Claims 1-6 ,
When the light emission intensity of the first light emitting unit increases as the driving time is shorter than that of the second light emitting unit, the control unit cancels the increase that is increased compared to the second light emitting unit. As described above, the lighting apparatus is configured to control to increase the integrated value of the second driving energy supplied to the second light emitting unit whose emission intensity is lower than that of the first light emitting unit.
請求項1〜のいずれか一に記載の照明装置であって、
前記制御部が、前記第一発光素子及び第二発光素子をパルス幅変調方式により駆動するものであり、
前記第一発光素子を駆動するパルス幅を、前記第二発光素子を駆動するパルス幅よりも狭く制御してなる照明装置。
It is an illuminating device as described in any one of Claims 1-6 ,
The control unit drives the first light emitting element and the second light emitting element by a pulse width modulation method,
An illumination device in which a pulse width for driving the first light emitting element is controlled to be narrower than a pulse width for driving the second light emitting element.
請求項のいずれか一に記載の照明装置であって、
前記第二発光部はさらに、第三蛍光体として、Eu付活クロロシリケート蛍光体、Eu付活シリケート蛍光体、Eu付活チオガレート蛍光体、希土類アルミン酸塩蛍光体のうち1種以上を含む照明装置。
A lighting device according to any one of claims 1-9,
The second light emitting unit further includes, as a third phosphor, an illumination containing at least one of Eu-activated chlorosilicate phosphor, Eu-activated silicate phosphor, Eu-activated thiogallate phosphor, and rare earth aluminate phosphor apparatus.
請求項1〜10のいずれか一に記載の照明装置であって、
前記第一発光素子と、前記第二発光素子とが、青色発光ダイオードである照明装置。
It is an illuminating device as described in any one of Claims 1-10 ,
The lighting device in which the first light emitting element and the second light emitting element are blue light emitting diodes.
請求項11のいずれか一に記載の照明装置であって、
前記第一発光部が第一蛍光体を含み、
前記第二発光部が第二蛍光体に加えて、前記第一蛍光体を含む照明装置。
A lighting device according to any one of claims 1 to 11,
The first light emitting portion includes a first phosphor;
The lighting device in which the second light emitting unit includes the first phosphor in addition to the second phosphor.
請求項1〜12のいずれか一に記載の照明装置であって、
前記第一発光部と、前記第二発光部が、同一のパッケージに形成されてなる照明装置。
A lighting device according to any one of claims 1 to 12,
The lighting device in which the first light emitting unit and the second light emitting unit are formed in the same package.
請求項1〜13のいずれか一に記載の照明装置であって、
前記制御部が、出力光の調光機能を備えてなる照明装置。
A lighting device according to any one of claims 1 to 13,
An illumination device in which the control unit has a dimming function for output light.
第一発光素子と、
前記第一発光素子が発する光を異なる波長の光に変換する第一蛍光体と
を備える第一発光部と、
第二発光素子を備える第二発光部と、
前記第一発光部及び第二発光部とそれぞれ電気的に接続され、前記第一発光素子に第一駆動エネルギーを、前記第二発光素子に第二駆動エネルギーを、それぞれ供給する電源部と、
前記電源部と接続され、該電源部が供給する前記第一駆動エネルギーと第二駆動エネルギーの量を制御する制御情報を、前記電源部に送出するための制御部と
を備える照明装置の駆動方法であって、
前記第一発光部及び前記第二発光部を異なる駆動条件で発光させ、それぞれの駆動条件における発光強度を測定する工程と、
前記駆動条件それぞれの第一発光部に対する第二発光部の発光速度比を一定に保つ第一駆動エネルギー又は第二駆動エネルギーの積算値を算出する工程と、
前記算出された第一駆動エネルギー又は第二駆動エネルギーの積算値を、前記第一発光部又は前記第二発光部に供給する工程と
を含み、
前記第一蛍光体が、
組成式が、3.5MgO・0.5MgF 2 ・GeO 2 :Mn 4+ で表されるMn 4+ 付活Mgフルオロジャーマネート蛍光体、又は
組成式がM 1 2 2 6 :Mn 4+ (ただし、M 1 は、Li + ,Na + ,K + ,Rb + ,Cs + ,NH 4+ から選択された少なくとも1種であり、M 2 は、Si,Ge,Sn,Ti,Zrから選択された少なくとも1種である。)で表されるMn 4+ 付活フッ化物蛍光体を含む照明装置の駆動方法。
A first light emitting element;
A first light emitting unit comprising: a first phosphor that converts light emitted by the first light emitting element into light of a different wavelength;
A second light emitting unit comprising a second light emitting element;
A power supply unit that is electrically connected to the first light emitting unit and the second light emitting unit, respectively, and supplies a first driving energy to the first light emitting element and a second driving energy to the second light emitting element;
A driving method of a lighting device, comprising: a control unit connected to the power source unit and controlling the control information for controlling the amount of the first driving energy and the second driving energy supplied by the power source unit to the power source unit Because
Causing the first light emitting unit and the second light emitting unit to emit light under different driving conditions, and measuring the light emission intensity under each driving condition;
Calculating a first drive energy or an integrated value of the second drive energy that keeps a constant light emission speed ratio of the second light-emitting part to the first light-emitting part for each of the driving conditions;
An integrated value of the first drive energy or the second drive energy the calculated, look including the step of supplying the first emitting section or the second light emitting portion,
The first phosphor is
Mn 4+ activated Mg fluorogermanate phosphor represented by a composition formula of 3.5MgO · 0.5MgF 2 · GeO 2 : Mn 4+ , or
The composition formula is M 1 2 M 2 F 6 : Mn 4+ (where M 1 is at least one selected from Li + , Na + , K + , Rb + , Cs + , NH 4+ , 2, Si, Ge, Sn, Ti , at least one selected from Zr.) in Mn 4+ driving method of activated fluoride phosphors including lighting device represented.
第一発光素子と、
前記第一発光素子が発する光を異なる波長の光に変換する第一蛍光体と
を備える第一発光部と、
第二発光素子を備える第二発光部と、
前記第一発光部及び第二発光部とそれぞれ電気的に接続され、前記第一発光素子に第一駆動エネルギーを、前記第二発光素子に第二駆動エネルギーを、それぞれ供給する電源部と、
前記電源部と接続され、該電源部が供給する前記第一駆動エネルギーと第二駆動エネルギーの量を制御する制御情報を、前記電源部に送出するための制御部と
を備え、
前記第一発光部及び第二発光部は、前記第一発光部と前記第二発光部の発光強度を、点灯時間を含む駆動条件を変えて測定した結果を、前記第二発光部の発光強度で第一発光部の発光強度を規格化した場合に、駆動時間が短いほど前記第一発光部の発光強度が増加する傾向を示す照明装置の駆動方法であって、
前記制御部が、該駆動時間が短いほど前記第一発光部の発光強度が、前記第二発光部に比して増加する増加分を相殺するように、前記第一発光素子に供給する駆動エネルギーの積算値を補正する補正量を決定する工程と、
前記制御部が、前記第二発光素子を第二駆動エネルギーで駆動させると共に、前記第一発光素子に対し、前記決定された補正量に従って補正した前記第一駆動エネルギーでもって駆動させる工程と、
を含み、
前記第一蛍光体が、
組成式が、3.5MgO・0.5MgF 2 ・GeO 2 :Mn 4+ で表されるMn 4+ 付活Mgフルオロジャーマネート蛍光体、又は
組成式がM 1 2 2 6 :Mn 4+ (ただし、M 1 は、Li + ,Na + ,K + ,Rb + ,Cs + ,NH 4+ から選択された少なくとも1種であり、M 2 は、Si,Ge,Sn,Ti,Zrから選択された少なくとも1種である。)で表されるMn 4+ 付活フッ化物蛍光体を含む照明装置の駆動方法。
A first light emitting element;
A first light emitting unit comprising: a first phosphor that converts light emitted by the first light emitting element into light of a different wavelength;
A second light emitting unit comprising a second light emitting element;
A power supply unit that is electrically connected to the first light emitting unit and the second light emitting unit, respectively, and supplies a first driving energy to the first light emitting element and a second driving energy to the second light emitting element;
A control unit that is connected to the power source unit and controls the amount of the first drive energy and the second drive energy supplied by the power source unit to the power source unit;
The first light emitting unit and the second light emitting unit measure the light emission intensities of the first light emitting unit and the second light emitting unit while changing the driving conditions including the lighting time. When the light emission intensity of the first light emitting unit is standardized, the driving method of the lighting device showing a tendency to increase the light emission intensity of the first light emitting unit as the drive time is short,
Driving energy supplied to the first light emitting element so that the control unit cancels an increase in light emission intensity of the first light emitting unit as compared with the second light emitting unit as the driving time is shorter. Determining a correction amount for correcting the integrated value of
The control unit driving the second light emitting element with the second driving energy and driving the first light emitting element with the first driving energy corrected according to the determined correction amount;
Only including,
The first phosphor is
Mn 4+ activated Mg fluorogermanate phosphor represented by a composition formula of 3.5MgO · 0.5MgF 2 · GeO 2 : Mn 4+ , or
The composition formula is M 1 2 M 2 F 6 : Mn 4+ (where M 1 is at least one selected from Li + , Na + , K + , Rb + , Cs + , NH 4+ , 2, Si, Ge, Sn, Ti , at least one selected from Zr.) in Mn 4+ driving method of activated fluoride phosphors including lighting device represented.
JP2014252436A 2014-12-12 2014-12-12 Illumination device and driving method thereof Active JP6323319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014252436A JP6323319B2 (en) 2014-12-12 2014-12-12 Illumination device and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014252436A JP6323319B2 (en) 2014-12-12 2014-12-12 Illumination device and driving method thereof

Publications (2)

Publication Number Publication Date
JP2016115497A JP2016115497A (en) 2016-06-23
JP6323319B2 true JP6323319B2 (en) 2018-05-16

Family

ID=56142148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014252436A Active JP6323319B2 (en) 2014-12-12 2014-12-12 Illumination device and driving method thereof

Country Status (1)

Country Link
JP (1) JP6323319B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7031604B2 (en) * 2016-11-29 2022-03-08 日本精機株式会社 Light source drive device and head-up display device
KR102421222B1 (en) * 2017-07-21 2022-07-15 엘지디스플레이 주식회사 Led package and back light unit including the led package
EP3731222A4 (en) * 2017-12-19 2021-01-20 Sony Corporation Signal processing device, signal processing method, and display device
JP7274013B2 (en) * 2017-12-27 2023-05-15 京セラ株式会社 lighting devices and lighting modules
JP7027161B2 (en) * 2017-12-27 2022-03-01 京セラ株式会社 Lighting equipment and lighting modules
WO2020189735A1 (en) * 2019-03-18 2020-09-24 日亜化学工業株式会社 Light emitting module and method for driving light emitting device
JP7220363B2 (en) * 2019-03-28 2023-02-10 パナソニックIpマネジメント株式会社 WAVELENGTH CONVERSION MEMBER, LIGHT SOURCE DEVICE, AND LIGHTING DEVICE

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156956A (en) * 2007-12-25 2009-07-16 Toshiba Corp Liquid crystal display device, television apparatus, and method of controlling liquid crystal display device
JP2009302008A (en) * 2008-06-17 2009-12-24 Toshiba Lighting & Technology Corp Lighting apparatus
JP2011176276A (en) * 2010-02-01 2011-09-08 Mitsubishi Chemicals Corp White light-emitting device, lighting device, and lighting method
JP6197288B2 (en) * 2012-12-27 2017-09-20 日亜化学工業株式会社 Light emitting device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2016115497A (en) 2016-06-23

Similar Documents

Publication Publication Date Title
JP6323319B2 (en) Illumination device and driving method thereof
JP6262335B2 (en) LED drive circuit
JP6151373B2 (en) Light emitting device and lighting device
US10018776B2 (en) Illumination device, illumination equipment, and display device
US8581488B2 (en) White light-emitting semiconductor devices
TWI413276B (en) Light emitting device
TWI615995B (en) Illuminating device
JP6077144B2 (en) LIGHT EMITTING DIODE DRIVING DEVICE AND LIGHTING DEVICE
JP5410342B2 (en) Light emitting device
JP4957024B2 (en) Light emitting device, light emitting element driving circuit, and light emitting element driving method
JP5412710B2 (en) Nitride-based phosphor or oxynitride-based phosphor
JP2006173564A (en) Mixed light emitting element, white light emitting device and backlight module
JP2012009684A (en) Semiconductor light-emitting device
JP2007324493A (en) Light-emitting device, light-emitting element drive circuit, and driving method of light-emitting element
JP2016027644A (en) Semiconductor light emitting device
JP2008013592A (en) White light-emitting phosphor and light-emitting module comprised of the same
JP6428245B2 (en) Light emitting device
US20160177178A1 (en) Red phosphor, white light emitting apparatus, display apparatus, and lighting apparatus
US7804239B2 (en) White light emitting diode
JP2013175679A (en) Light-emitting device
JP4890018B2 (en) White light emitting phosphor and light emitting module using the same
WO2009093611A1 (en) Light emitting module using phosphor and lighting fixture for vehicle using same
JP5697765B2 (en) Phosphor and light emitting device
CN108269904B (en) Phosphor and light emitting device and backlight module using the same
KR101942253B1 (en) Phosphor and light emitting diode having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180326

R150 Certificate of patent or registration of utility model

Ref document number: 6323319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250