JP2007324493A - Light-emitting device, light-emitting element drive circuit, and driving method of light-emitting element - Google Patents

Light-emitting device, light-emitting element drive circuit, and driving method of light-emitting element Download PDF

Info

Publication number
JP2007324493A
JP2007324493A JP2006155489A JP2006155489A JP2007324493A JP 2007324493 A JP2007324493 A JP 2007324493A JP 2006155489 A JP2006155489 A JP 2006155489A JP 2006155489 A JP2006155489 A JP 2006155489A JP 2007324493 A JP2007324493 A JP 2007324493A
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
output voltage
power supply
element group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006155489A
Other languages
Japanese (ja)
Inventor
Harumi Sakuragi
晴海 櫻木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2006155489A priority Critical patent/JP2007324493A/en
Publication of JP2007324493A publication Critical patent/JP2007324493A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably drive a semiconductor light emitting element regardless of a change in temperature, and enhance efficiency by reducing the loss of a drive circuit. <P>SOLUTION: A light emitting device is provided with: a light emitting element group 12 with semiconductor light emitting elements 11 connected in series; a constant-current drive circuit 16 that is connected with the light emitting element group 12 to drive the light emitting element group 12 at a constant current; a power supply circuit 20 having an input terminal 21 and an output terminal 22, driving the light emitting element group 12 with the output terminal 22 connected with one end of the light emitting element group 12, supplying the voltage to drive the constant-current drive circuit 16, and outputting the voltage on the basis of the signal input in the input terminal 21; and a temperature compensation circuit 30 detecting the ambient temperature of the light emitting element group 12 to generate temperature signals. The power supply circuit 20 inputs temperature signals in the input terminal of the power supply circuit 20, and controls to decrease the output voltage by the temperature signal having detected a rise in the ambient temperature and increase the output voltage by the temperature signal having detected a fall in the ambient temperature. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、LEDやLD等の発光素子を備える発光装置、及び発光素子を駆動するための駆動回路、並びにこれを駆動する駆動方法に関する。   The present invention relates to a light emitting device including a light emitting element such as an LED or an LD, a drive circuit for driving the light emitting element, and a driving method for driving the same.

発光素子に半導体素子を用いた発光装置は、小型で電力効率が良く鮮やかな色の発光をする。また、半導体素子である発光素子は球切れ等の心配がなく、さらに初期駆動特性に優れ、振動やオン・オフ点灯の繰り返しに強いという特長を有する。このような優れた特性を有するため、発光ダイオード(Light Emitting Diode:LED)、レーザダイオード(Laser Diode:LD)等の半導体発光素子を用いる発光装置は、各種の光源として利用されている。特に、GaN系化合物半導体を利用した高輝度の青色発光のLEDが開発された結果、光の三原色である赤(Red)、緑(Green)、青(Blue)のLEDが揃い、これらの組み合わせによってフルカラー発光、あるいは白色発光可能なディスプレイや照明が実現されるに至った。   A light-emitting device using a semiconductor element as a light-emitting element emits light with a small color, high power efficiency, and vivid colors. In addition, a light-emitting element that is a semiconductor element does not have to worry about running out of a ball, has excellent initial driving characteristics, and has a feature of being strong against vibration and repeated on / off lighting. Because of such excellent characteristics, light-emitting devices using semiconductor light-emitting elements such as light-emitting diodes (LEDs) and laser diodes (LDs) are used as various light sources. In particular, as a result of the development of high-luminance blue LEDs using GaN-based compound semiconductors, LEDs of the three primary colors red (Red), green (Green), and blue (Blue) are available. Display and illumination that can emit full color or white light have been realized.

図5に、発光装置200の一例として複数のLED211を使用したLEDディスプレイを示す。この図に示す。このディスプレイは、LED211をマトリクス状に配置し、各LED211のON/OFFや発光量を制御することで、文字やイメージを表示することができる。具体的には、複数のLED211を直列に接続し、カソード側にLED211を定電流駆動する定電流駆動回路216を接続する。このようなLED211の列を複数並列に並べ、各々のアノード側を電源回路220に接続することで、電源回路220が供給する出力電圧Voutにより駆動される。
特開2005−268622号公報 特開平9−232074号公報
FIG. 5 shows an LED display using a plurality of LEDs 211 as an example of the light emitting device 200. Shown in this figure. This display can display characters and images by arranging the LEDs 211 in a matrix and controlling the ON / OFF of each LED 211 and the light emission amount. Specifically, a plurality of LEDs 211 are connected in series, and a constant current driving circuit 216 that drives the LEDs 211 at a constant current is connected to the cathode side. By arranging a plurality of such LEDs 211 in parallel and connecting each anode side to the power supply circuit 220, the LED 211 is driven by the output voltage Vout supplied by the power supply circuit 220.
JP 2005-268622 A Japanese Patent Application Laid-Open No. 9-232074

ところでLEDは温度によって順方向電圧Vfが変動する。具体的には、図6に示すように高温動作時はLEDの順方向電圧Vfが小さく、低温動作時は順方向電圧Vfが大きくなる。このため、定電流駆動回路が直列接続された複数のLEDを駆動でき、なおかつ定電流駆動回路自身の駆動電圧Vdrを確保できる十分な出力電圧Voutが得られるよう、電源回路の出力電圧Voutが設定される。 By the way, the forward voltage V f varies depending on the temperature of the LED. Specifically, as shown in FIG. 6, the forward voltage V f of the LED is small during high temperature operation, and the forward voltage V f is large during low temperature operation. For this reason, the output voltage V out of the power supply circuit can be obtained so that a plurality of LEDs connected in series with the constant current drive circuit can be driven and a sufficient output voltage V out that can secure the drive voltage V dr of the constant current drive circuit itself can be obtained. out is set.

しかしながら、低温動作時でも十分な出力電圧Voutを確保するように出力電圧Voutを高くすると、定電流駆動回路に印加される電圧も高くなるため、熱損失が生じ、消費電力が無駄になるばかりか、回路の発熱量も高くなるため安定性が悪くなり、放熱対策も必要となる。一方、熱損失を抑えるために、出力電圧Voutを低く抑えると、低温動作時にLEDの順方向電圧Vfが大きくなる結果、定電流駆動回路を駆動するための十分な駆動電圧Vdrを確保できず、LEDの駆動が行えなくなるという問題があった。 However, if the output voltage Vout is increased so as to ensure a sufficient output voltage Vout even during low temperature operation, the voltage applied to the constant current drive circuit also increases, resulting in heat loss and wasted power consumption. In addition, the amount of heat generated by the circuit also increases, so the stability deteriorates and measures for heat dissipation are required. On the other hand, if the output voltage Vout is kept low in order to suppress heat loss, the forward voltage Vf of the LED increases during low temperature operation, so that a sufficient drive voltage Vdr for driving the constant current drive circuit is secured. There was a problem that the LED could not be driven.

本発明は、このような問題点に鑑みてなされたものである。本発明の一の目的は、直列接続された半導体発光素子を温度変化によらず安定して駆動でき、かつ駆動回路の損失を低減して効率を高めた発光装置、発光素子駆動回路及び発光素子の駆動方法を提供することにある。   The present invention has been made in view of such problems. One object of the present invention is to provide a light-emitting device, a light-emitting element drive circuit, and a light-emitting element that can stably drive semiconductor light-emitting elements connected in series regardless of temperature changes, and that increase the efficiency by reducing the loss of the drive circuit. It is to provide a driving method.

以上の目的を達成するために第1の発光装置は、半導体発光素子が直列に接続された発光素子群と、発光素子群に接続され、発光素子群を定電流駆動する定電流駆動回路と、入力端子と出力端子を有し、出力端子が発光素子群の一端に接続され発光素子群の駆動、及び定電流駆動回路を駆動させる電圧を供給し、入力端子に入力される信号に基づいた電圧を出力する電源回路と、発光素子群の周囲温度を検出して温度信号を生成する温度補償回路とを備えており、電源回路は、温度信号を電源回路の入力端子に入力し、周囲温度の上昇を検出した温度信号により出力電圧を下げ、周囲温度の下降を検出した温度信号により出力電圧を上げるよう制御できる。   To achieve the above object, a first light emitting device includes a light emitting element group in which semiconductor light emitting elements are connected in series, a constant current driving circuit that is connected to the light emitting element group and drives the light emitting element group at a constant current, A voltage based on a signal input to the input terminal, which has an input terminal and an output terminal, and the output terminal is connected to one end of the light emitting element group to supply a voltage for driving the light emitting element group and driving the constant current driving circuit. And a temperature compensation circuit that detects the ambient temperature of the light emitting element group and generates a temperature signal. The power circuit inputs the temperature signal to the input terminal of the power circuit, and It is possible to control the output voltage to be lowered by the temperature signal that has detected the increase, and to increase the output voltage by the temperature signal that has detected the decrease in the ambient temperature.

また第2の発光装置は、発光素子群を複数備えると共に、これらが並列に配置されて発光部を構成しており、複数の発光素子群を、電源回路に対して並列に接続できる。   In addition, the second light emitting device includes a plurality of light emitting element groups and these are arranged in parallel to form a light emitting unit, and the plurality of light emitting element groups can be connected in parallel to the power supply circuit.

さらに第3の発光装置は、発光部を、複数の半導体発光素子をマトリクス状に配置するように構成できる。   Further, in the third light emitting device, the light emitting unit can be configured to arrange a plurality of semiconductor light emitting elements in a matrix.

さらにまた第4の発光装置は、周囲温度を、半導体発光素子が実装された基板の温度とできる。   Furthermore, in the fourth light emitting device, the ambient temperature can be the temperature of the substrate on which the semiconductor light emitting element is mounted.

さらにまた第5の発光装置は、温度補償回路が、周囲温度の変化に応じて抵抗値が変化するサーミスタを含み、サーミスタは、一端を電源回路の出力端子に接続されると共に、他端を第1の抵抗体を介して接地し、第1の抵抗体の電圧をフィードバック電圧として電源回路の入力端子に入力できる。   Furthermore, in the fifth light emitting device, the temperature compensation circuit includes a thermistor whose resistance value changes in accordance with a change in ambient temperature. The thermistor has one end connected to the output terminal of the power supply circuit and the other end connected to the second end. The voltage of the first resistor can be input to the input terminal of the power supply circuit as a feedback voltage.

さらにまた第6の発光装置は、電源回路をスイッチングレギュレータとできる。   In the sixth light emitting device, the power supply circuit can be a switching regulator.

さらにまた第7の発光装置は、複数の発光ダイオードを備える発光装置であって、定電流駆動される発光ダイオードを直列に接続した発光素子群を複数、並列に接続した発光部と、発光素子群の一端で発光ダイオードのカソード側に接続され、発光素子群を定電流駆動するための定電流駆動回路と、発光素子群の駆動、及び定電流駆動回路の駆動に必要な出力電圧を供給するため発光素子群の他端で発光ダイオードのアノード側に接続されており、入力端子からの信号に基づいて出力電圧を可変とする電源回路と、発光素子群の周囲温度に関する温度信号を検出するためのサーミスタとを備え、サーミスタで検出された温度信号を電源回路の入力端子に入力し、電源回路は周囲温度に応じて出力電圧を調整可能としており、周囲温度が高くなると出力電圧が低くなり、周囲温度が低くなると出力電圧が高くなるように、電源回路が出力電圧を制御できる。   Furthermore, the seventh light emitting device is a light emitting device including a plurality of light emitting diodes, and a plurality of light emitting element groups in which light emitting diodes driven in constant current are connected in series, a light emitting unit connected in parallel, and a light emitting element group A constant current driving circuit for driving the light emitting element group at a constant current, and driving the light emitting element group and an output voltage necessary for driving the constant current driving circuit. Connected to the anode side of the light emitting diode at the other end of the light emitting element group, and a power supply circuit that makes the output voltage variable based on a signal from the input terminal, and a temperature signal for detecting the ambient temperature of the light emitting element group A thermistor is provided, and the temperature signal detected by the thermistor is input to the input terminal of the power supply circuit. The power supply circuit can adjust the output voltage according to the ambient temperature. And the output voltage is lowered, so that the output voltage ambient temperature becomes lower the higher the power supply circuit can control the output voltage.

さらにまた第8の発光素子駆動回路は、複数の半導体発光素子の駆動回路であって、半導体発光素子を直列に接続した発光素子群と接続され、発光素子群を定電流駆動するための定電流駆動回路と、入力端子と出力端子を有し、出力端子は発光素子群の駆動、及び定電流駆動回路の駆動に必要な出力電圧を供給するため発光素子群の一端に接続されており、入力端子に入力される信号に基づいて出力電圧を可変とする電源回路と、発光素子群の周囲温度に基づいて出力電圧を調整するための温度信号を検出する温度補償回路とを備え、温度補償回路で検出された温度信号を電源回路の入力端子に入力し、電源回路は周囲温度に応じて出力電圧を調整可能としており、周囲温度が高くなると出力電圧が低くなり、周囲温度が低くなると出力電圧が高くなるように、電源回路が出力電圧を制御することができる。   The eighth light emitting element driving circuit is a driving circuit for a plurality of semiconductor light emitting elements, and is connected to a light emitting element group in which the semiconductor light emitting elements are connected in series, and is a constant current for driving the light emitting element group at a constant current. The drive circuit has an input terminal and an output terminal. The output terminal is connected to one end of the light emitting element group to supply an output voltage necessary for driving the light emitting element group and driving the constant current drive circuit. A temperature compensation circuit comprising: a power supply circuit that varies an output voltage based on a signal input to a terminal; and a temperature compensation circuit that detects a temperature signal for adjusting the output voltage based on an ambient temperature of the light emitting element group. The temperature signal detected in step 1 is input to the input terminal of the power supply circuit, and the power supply circuit can adjust the output voltage according to the ambient temperature. The output voltage decreases as the ambient temperature increases, and the output voltage decreases as the ambient temperature decreases. As higher, can be the power supply circuit controls the output voltage.

さらにまた第9の発光素子の駆動方法は、複数の半導体発光素子の駆動方法であって、半導体発光素子を直列に接続した発光素子群、及び発光素子群と接続された定電流駆動回路に対して、これらの駆動に必要な出力電圧を電源回路で供給する工程と、電源回路の、出力電圧を出力する出力端子と接続された温度補償回路で、発光素子群の周囲温度に関する温度信号を検出すると共に、検出された温度信号を電源回路の入力端子に入力し、電源回路で、周囲温度が高くなると出力電圧が低くなり、周囲温度が低くなると出力電圧が高くなるように、温度信号に基づいて出力電圧を制御する工程とを含むことができる。   Furthermore, a ninth light emitting element driving method is a driving method for a plurality of semiconductor light emitting elements, and includes a light emitting element group in which semiconductor light emitting elements are connected in series, and a constant current driving circuit connected to the light emitting element group. The temperature signal related to the ambient temperature of the light emitting element group is detected by supplying the output voltage necessary for driving with the power supply circuit and the temperature compensation circuit connected to the output terminal of the power supply circuit that outputs the output voltage. In addition, the detected temperature signal is input to the input terminal of the power supply circuit. In the power supply circuit, based on the temperature signal, the output voltage decreases as the ambient temperature increases, and the output voltage increases as the ambient temperature decreases. And controlling the output voltage.

第1、7〜9発明によれば、周囲温度が変化しても温度補償回路で検出された温度信号に応じて電源回路が出力電圧を制御することにより、必要な出力電圧値に調整され、不要な電力損失を低減できる。第2発明によれば、複数の発光素子群を一の電源回路で駆動制御できる。第3発明によれば、ドットマトリクス状ディスプレイや照明を構成できる。第4発明によれば、基板温度を検出して温度補償を実現できる。第5発明によれば、電源回路の出力端子で得られる出力電圧を、周囲温度に応じて抵抗値を変化させるサーミスタ及び第1の抵抗体で分圧して電源回路にフィードバック制御することにより、容易に出力電圧を周囲温度に応じて増減できる。第6発明によれば、電源回路の出力電圧を容易に可変式として高効率な電源回路を安価に構成できる。   According to the first and seventh to ninth inventions, even if the ambient temperature changes, the power supply circuit controls the output voltage according to the temperature signal detected by the temperature compensation circuit, so that the required output voltage value is adjusted. Unnecessary power loss can be reduced. According to the second invention, a plurality of light emitting element groups can be driven and controlled by a single power supply circuit. According to the third aspect of the invention, a dot matrix display or illumination can be configured. According to the fourth invention, temperature compensation can be realized by detecting the substrate temperature. According to the fifth aspect of the present invention, the output voltage obtained at the output terminal of the power supply circuit is divided by the thermistor that changes the resistance value according to the ambient temperature and the first resistor and is feedback-controlled to the power supply circuit. The output voltage can be increased or decreased according to the ambient temperature. According to the sixth aspect of the invention, the output voltage of the power supply circuit can be easily changed, and a highly efficient power supply circuit can be configured at low cost.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための発光装置、発光素子駆動回路及び発光素子の駆動方法を例示するものであって、本発明は発光装置、発光素子駆動回路及び発光素子の駆動方法を以下のものに特定しない。さらに、本明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、特許請求の範囲、および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。特に実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。
(実施の形態1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a light emitting device, a light emitting element driving circuit, and a light emitting element driving method for embodying the technical idea of the present invention. The driving circuit and the driving method of the light emitting element are not specified as follows. Further, in the present specification, for easy understanding of the scope of claims, numbers corresponding to the members shown in the embodiments are indicated in the scope of claims and “Means for Solving the Problems”. It is added to the member. However, the members shown in the claims are not limited to the members in the embodiments. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention unless otherwise specified, and are merely explanations. It's just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Further, in the following description, the same name and reference numeral indicate the same or the same members, and detailed description will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
(Embodiment 1)

図1に、本発明の実施の形態1に係る発光装置100を示す。この図に示す発光装置100は、発光部10と、温度補償回路30と、電源回路20を備える。
(発光部10)
FIG. 1 shows a light emitting device 100 according to Embodiment 1 of the present invention. The light emitting device 100 shown in this figure includes a light emitting unit 10, a temperature compensation circuit 30, and a power supply circuit 20.
(Light Emitting Unit 10)

発光部10は、複数の発光素子11を直列に接続した発光素子群12を並列に接続している。
(発光素子11)
The light emitting unit 10 is connected in parallel with a light emitting element group 12 in which a plurality of light emitting elements 11 are connected in series.
(Light emitting element 11)

実施の形態1における発光素子11として、LEDチップやLDなど種々の発光素子を利用することができる。これらの半導体発光素子は、入力に対する出力のリニアリティが良く、効率に優れ、長寿命で安定して使用できる利点がある。実施の形態1においてはLEDを使用した。このLEDは、種々の発光素子がリード電極やパッケージなどに配置され、電気的に接続された後、樹脂などの透光性部材により被覆されたものが好適に用いられる。   As the light-emitting element 11 in Embodiment 1, various light-emitting elements such as an LED chip and an LD can be used. These semiconductor light emitting devices have the advantages of excellent output linearity with respect to input, excellent efficiency, long life, and stable use. In Embodiment 1, an LED is used. As this LED, various light-emitting elements are disposed on lead electrodes, packages, and the like, electrically connected, and then covered with a light-transmitting member such as a resin.

実施の形態1の発光素子は、液相成長法、HDVPE法やMOCVD法により基体上にZnS、SiC、GaN、GaP、InN、AlN、ZnSe、GaAsP、GaAlAs、InGaN、GaAlN、AlInGaP、AlInGaN等の半導体を発光層として形成させたものが好適に用いられる。発光素子の発光波長は、半導体層の材料やその混晶度によって紫外光から可視光さらに赤外光まで選択することができる。特に、野外でも好適に利用することができる表示装置とするときには、高輝度発光可能な発光素子が求められる。そこで、緑色系及び青色系の高輝度な発光する発光素子の材料として、窒化物半導体を選択することが好ましい。例えば、発光層の材料として、InXAlYGa1-X-YN(0≦X≦1、0≦Y≦1、X+Y≦1)等が利用できる。また、このような発光素子と、その発光により励起され、発光素子の発光波長と異なる波長を有する光を発する種々の蛍光体と、を組み合わせた発光ダイオードとすることもできる。赤色系の発光する発光素子の材料として、ガリウム・アルミニウム・砒素系の半導体やアルミニウム・インジュウム・ガリウム・燐系の半導体を選択することが好ましい。なお、カラー表示装置とためには、赤色系の発光波長が610nmから700nm、緑色が495nmから565nm、青色の発光波長が430nmから490nmのLEDチップを組み合わせることが好ましい。 The light-emitting element of Embodiment 1 is made of ZnS, SiC, GaN, GaP, InN, AlN, ZnSe, GaAsP, GaAlAs, InGaN, GaAlN, AlInGaP, AlInGaN, etc. on a substrate by liquid phase growth, HDVPE, or MOCVD. What formed the semiconductor as a light emitting layer is used suitably. The emission wavelength of the light-emitting element can be selected from ultraviolet light to visible light and infrared light depending on the material of the semiconductor layer and the degree of mixed crystal. In particular, when a display device that can be suitably used outdoors, a light emitting element capable of emitting light with high luminance is required. Therefore, it is preferable to select a nitride semiconductor as a material of a light emitting element that emits green and blue light with high luminance. For example, In X Al Y Ga 1-XY N (0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, X + Y ≦ 1) can be used as the material of the light emitting layer. Further, a light emitting diode in which such a light emitting element and various phosphors that are excited by the light emission and emit light having a wavelength different from the light emission wavelength of the light emitting element can be combined. It is preferable to select a gallium / aluminum / arsenic semiconductor or an aluminum / indium / gallium / phosphorous semiconductor as a material of a light emitting element emitting red light. For a color display device, it is preferable to combine LED chips having a red emission wavelength of 610 nm to 700 nm, a green emission wavelength of 495 nm to 565 nm, and a blue emission wavelength of 430 nm to 490 nm.

発光素子は、その発光素子に電力を供給するリード電極と電気的に接続され、発光素子を外部から保護する封止部材にて被覆することにより発光ダイオードとされる。発光素子は、成長基板上に半導体層をエピタキシャル成長させた半導体発光素子が好適に利用できる。成長基板は、例えば、サファイア、スピネル、SiC、GaN、GaAs等、公知の材料を用いることができる。また、サファイアのような絶縁性基板でなく、SiC、GaN、GaAs等の導電性基板を用いることにより、p電極及びn電極を対向して配置させることもできる。   The light emitting element is electrically connected to a lead electrode that supplies power to the light emitting element, and is covered with a sealing member that protects the light emitting element from the outside, thereby forming a light emitting diode. As the light emitting element, a semiconductor light emitting element in which a semiconductor layer is epitaxially grown on a growth substrate can be suitably used. For the growth substrate, for example, a known material such as sapphire, spinel, SiC, GaN, or GaAs can be used. In addition, by using a conductive substrate such as SiC, GaN, or GaAs instead of an insulating substrate such as sapphire, the p electrode and the n electrode can be arranged to face each other.

また必要に応じて、発光素子の周囲に波長変換部材を配置し、発光素子の光の波長を変換して、異なる波長の光に変換して出力することもできる。波長変換部材は、例えば透光性樹脂に、発光素子11の光で励起されて蛍光を発する蛍光体を混入することにより形成させたものである。これにより、発光素子11の光をより長波長の光に変換し、発光素子11の光と波長変換部材で変換された長波長の光との混色光を外部に取り出すことが可能となる。
(蛍光体)
Further, if necessary, a wavelength conversion member may be disposed around the light emitting element to convert the light wavelength of the light emitting element, and convert the light to a different wavelength for output. The wavelength conversion member is formed, for example, by mixing in a translucent resin a phosphor that emits fluorescence when excited by the light of the light emitting element 11. Thereby, it becomes possible to convert the light of the light emitting element 11 into light having a longer wavelength, and to extract the mixed color light of the light of the light emitting element 11 and the long wavelength light converted by the wavelength conversion member to the outside.
(Phosphor)

蛍光体は、発光素子11から放出された可視光や紫外光を他の発光波長に変換する。例えば、LEDの半導体発光層から発光された光で励起されて発光する。好ましい蛍光体としては、黄色領域の発光を行う(Y,Gd)3(Al,Ga)512:Ce等で表される希土類アルミン酸塩であるYAG系蛍光体、アルカリ土類窒化珪素蛍光体等のナイトライド系、アルカリ土類酸化窒化珪素蛍光体等のオキシナイトライド系の蛍光体が利用できる。さらに、紫外光により励起されて所定の色の光を発生する公知の蛍光体を用いることができる。 The phosphor converts visible light or ultraviolet light emitted from the light emitting element 11 into another emission wavelength. For example, it is excited by light emitted from the semiconductor light emitting layer of the LED and emits light. Preferred phosphors are YAG phosphors that are rare earth aluminates such as (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce that emit light in the yellow region, and alkaline earth silicon nitride fluorescence. Nitride-based phosphors such as phosphors and oxynitride-based phosphors such as alkaline earth silicon oxynitride phosphors can be used. Furthermore, a known phosphor that is excited by ultraviolet light and generates light of a predetermined color can be used.

LEDチップが発光した光と、蛍光体が発光した光が補色関係等にある場合、それぞれの光を混色させることで白色を発光することができる。具体的には、LEDチップからの光と、それによって励起され発光する蛍光体の光がそれぞれ光の3原色(赤色系、緑色系、青色系)に相当する場合やLEDチップが発光した青色の光と、それによって励起され発光する蛍光体の黄色の光が挙げられる。特に紫外光を用いる場合は、紫外光により励起発光される蛍光体の発光色を単独で利用できるため、信号用の青緑色、黄色、赤色等やパステルカラー等の各種中間色の発光装置の実現も可能である。
(定電流駆動回路16)
When the light emitted from the LED chip and the light emitted from the phosphor are in a complementary color relationship or the like, white light can be emitted by mixing each light. Specifically, the light emitted from the LED chip and the phosphor light excited and emitted thereby correspond to the three primary colors of light (red, green, and blue), or the blue light emitted from the LED chip. The light and the yellow light of the fluorescent substance excited and emitted by it are mentioned. In particular, when using ultraviolet light, the emission color of the phosphor excited and emitted by the ultraviolet light can be used independently, so it is possible to realize light emitting devices of various intermediate colors such as blue-green, yellow, red and pastel colors for signals. Is possible.
(Constant current drive circuit 16)

各発光素子群12は、各々定電流駆動回路16と接続される。このため図1に示す電流駆動部22は、発光素子群に対応した定電流駆動回路16を含んでいる。各定電流駆動回路16は、発光素子11を定電流駆動する定電流駆動回路16と、スイッチング等により通電量を制御する制御回路とを兼用している。ここでは駆動素子として、半導体スイッチング素子であるMOSFETや、バイポーラトランジスタを使用することができる。
(電源回路20)
Each light emitting element group 12 is connected to a constant current drive circuit 16. Therefore, the current driver 22 shown in FIG. 1 includes a constant current driver circuit 16 corresponding to the light emitting element group. Each constant current drive circuit 16 serves both as a constant current drive circuit 16 that drives the light emitting element 11 at a constant current, and a control circuit that controls the amount of energization by switching or the like. Here, a MOSFET or a bipolar transistor which is a semiconductor switching element can be used as the driving element.
(Power supply circuit 20)

電源回路20は、直列接続された発光素子群12と定電流駆動回路16とを駆動するための出力電圧を供給する。図1の電源回路20は入力端子21と出力端子22を備え、出力端子22から出力電圧を出力すると共に、入力端子21への入力信号に基づいて出力電圧を調整できる。   The power supply circuit 20 supplies an output voltage for driving the light emitting element group 12 and the constant current drive circuit 16 connected in series. The power supply circuit 20 shown in FIG. 1 includes an input terminal 21 and an output terminal 22, and can output an output voltage from the output terminal 22 and adjust an output voltage based on an input signal to the input terminal 21.

電源回路20には、出力可変の直流安定化電源としてスイッチング電源、リニア電源、DC/DCコンバータなどが利用できる。ここでは電源回路20としてスイッチング電源を使用する。電圧降下をジュール熱として放出するシリーズレギュレータとは異なり、電力の損失を少なくできるため、高精度、高効率を得ることができる。またスイッチング電源は小型化にも適している。ここではスイッチングレギュレータIC23と整流ダイオード24、チョークコイル25、及び平滑コンデンサ26でスイッチング電源を構成した。   For the power supply circuit 20, a switching power supply, a linear power supply, a DC / DC converter, or the like can be used as an output variable direct current stabilizing power supply. Here, a switching power supply is used as the power supply circuit 20. Unlike series regulators that release voltage drops as Joule heat, power loss can be reduced, so high accuracy and high efficiency can be obtained. Switching power supplies are also suitable for miniaturization. Here, a switching power supply is configured by the switching regulator IC 23, the rectifier diode 24, the choke coil 25, and the smoothing capacitor 26.

出力電圧Voutは、接続されるLED11の数や定電流駆動回路16の仕様(動作に必要な電圧)に応じて設定される。ここでは3個のLED11と定電流駆動回路16が接続されており、スイッチングレギュレータIC23に入力電圧として24Vが与えられると、これを降圧して12Vの直流電圧を出力する。
(温度補償回路30)
The output voltage V out is set according to the number of LEDs 11 to be connected and the specification (voltage required for operation) of the constant current drive circuit 16. Here, three LEDs 11 and a constant current drive circuit 16 are connected, and when 24V is applied as an input voltage to the switching regulator IC 23, it is stepped down to output a DC voltage of 12V.
(Temperature compensation circuit 30)

さらに電源回路20と発光部10との間には温度補償回路30が接続される。温度補償回路30は、LED11の温度を検出し、これを電源回路20で受けて温度に基づいた適切な出力電圧が発光素子群12に印加されるよう制御される。温度補償回路30は、温度検出素子31と第1の抵抗体32とを含み、これらで出力電圧を分圧し、第1の抵抗体32の電圧をフィードバック電圧として電源回路20の入力端子21側に送出する。これにより、LED11の動作温度に応じた適切な出力電圧が発光素子群12及び定電流駆動回路16に供給されるよう、フィードバック制御される。この結果、不必要なまでに高電圧が定電流駆動回路16に印加されて熱損失を生じたり、逆に定電流駆動回路16の駆動に必要な駆動電圧Vdrが確保できず動作不良を生じたりするといった事態を回避し、必要最小限の出力電圧を印加して、高効率で安定した動作を実現できる。 Further, a temperature compensation circuit 30 is connected between the power supply circuit 20 and the light emitting unit 10. The temperature compensation circuit 30 is controlled such that the temperature of the LED 11 is detected and received by the power supply circuit 20 and an appropriate output voltage based on the temperature is applied to the light emitting element group 12. The temperature compensation circuit 30 includes a temperature detection element 31 and a first resistor 32, which divides the output voltage and uses the voltage of the first resistor 32 as a feedback voltage on the input terminal 21 side of the power supply circuit 20. Send it out. Thus, feedback control is performed so that an appropriate output voltage corresponding to the operating temperature of the LED 11 is supplied to the light emitting element group 12 and the constant current drive circuit 16. As a result, a high voltage is unnecessarily applied to the constant current drive circuit 16 to cause heat loss, or conversely, the drive voltage V dr necessary for driving the constant current drive circuit 16 cannot be secured, resulting in malfunction. It is possible to avoid a situation such as that, and to apply a minimum output voltage to achieve a highly efficient and stable operation.

図1の例では、温度補償回路30は、温度検出素子31としてサーミスタと、抵抗R4とを並列に接続した第3の抵抗体34を含む。第3の抵抗体34は、第2の抵抗体36及び第1の抵抗体32と直列に接続されて接地される。この例では第2の抵抗体36は、抵抗R2及びR3を並列接続したものである。また第1の抵抗体32は抵抗R1で構成される。さらに実施の形態1においてサーミスタには、村田製作所製NCP18XQ102F03RBを使用した。   In the example of FIG. 1, the temperature compensation circuit 30 includes a thermistor as a temperature detection element 31 and a third resistor 34 in which a resistor R4 is connected in parallel. The third resistor 34 is connected in series with the second resistor 36 and the first resistor 32 and grounded. In this example, the second resistor 36 is formed by connecting resistors R2 and R3 in parallel. The first resistor 32 is constituted by a resistor R1. Further, NCP18XQ102F03RB manufactured by Murata Manufacturing Co., Ltd. was used as the thermistor in the first embodiment.

さらに第1の抵抗体32と第2の抵抗体36との接続点を電源回路20の出力端子22に接続する。これによって接続点におけるフィードバック電圧Vfbを、電源回路20側に送出できる。電源回路20では、入力端子21に入力される電圧を基準電圧と比較して、これらが一致するように出力電圧をフィードバック制御する。この構成によれば、極めて簡単に出力電圧を温度に応じて最適値に調整できる。 Further, the connection point between the first resistor 32 and the second resistor 36 is connected to the output terminal 22 of the power supply circuit 20. As a result, the feedback voltage V fb at the connection point can be sent to the power supply circuit 20 side. In the power supply circuit 20, the voltage input to the input terminal 21 is compared with the reference voltage, and the output voltage is feedback-controlled so that they match. According to this configuration, the output voltage can be adjusted to the optimum value according to the temperature very easily.

サーミスタは、LED11の動作温度を検出できるように、LED11に近接して配置される。ここでは、LED11を実装した基板上に、サーミスタも実装され、基板の温度を検出することでLED11の動作温度としている。表1に、基板温度とこのときのサーミスタの抵抗値、並びに発光素子群12と定電流駆動回路16の駆動に必要な出力電圧Vout(定格値)を示し、さらに基板温度と出力電圧Voutとの関係を図2に示す。これらの表及び図に示すように、周囲温度によって必要な出力電圧値は変動する。 The thermistor is disposed close to the LED 11 so that the operating temperature of the LED 11 can be detected. Here, a thermistor is also mounted on the substrate on which the LED 11 is mounted, and the operating temperature of the LED 11 is determined by detecting the temperature of the substrate. Table 1 shows the substrate temperature, the resistance value of the thermistor at this time, the output voltage V out (rated value) necessary for driving the light emitting element group 12 and the constant current drive circuit 16, and the substrate temperature and the output voltage V out. FIG. 2 shows the relationship. As shown in these tables and figures, the required output voltage value varies depending on the ambient temperature.

Figure 2007324493
Figure 2007324493

一方、温度補償回路30における基板温度と出力電圧Vout及びLED11の順方向電圧Vfの関係を、表2及び図3に示す。図3において、出力電圧Voutは実線、順方向電圧Vfは破線で示している。また順方向電圧Vfは図1における3つのLED11の順方向電圧の和で表している。これらの表及び図において、各温度における出力電圧Voutと順方向電圧Vfとの差が、定電流駆動回路16に印加される駆動電圧Vdrとなる。 On the other hand, the relationship between the substrate temperature, the output voltage Vout, and the forward voltage Vf of the LED 11 in the temperature compensation circuit 30 is shown in Table 2 and FIG. In FIG. 3, the output voltage V out is indicated by a solid line, and the forward voltage V f is indicated by a broken line. Further, the forward voltage V f is represented by the sum of the forward voltages of the three LEDs 11 in FIG. In these tables and figures, the difference between the output voltage V out and the forward voltage V f at each temperature is the drive voltage V dr applied to the constant current drive circuit 16.

Figure 2007324493

(比較例)
Figure 2007324493

(Comparative example)

さらに、温度補償回路30による損失低減効果を確認するために、上記実施の形態1に係る発光装置100と、温度補償のない従来の発光装置200(図5)とで基板温度によって駆動電圧Vdrが変化する状態を測定した。この結果を表3及び図4に示す。図4において、実線は実施の形態1、破線は比較例を、それぞれ示している。この例では、定電流駆動回路16の駆動電圧Vdrとして、定格0.6Vであるところ、マージンを考慮して1Vが印加されることを目標として、設定した。また比較例における出力電圧は12Vで固定した。この結果、温度補償を行った実施の形態1に係る発光装置100では、駆動電圧Vdrが1V前後でほぼ一定に維持されたのに対し、比較例では温度と共に直線状に上昇する結果となった。このため、基板温度13℃付近よりも低い温度では0.6Vの駆動電圧Vdrが確保できず、動作不良となり、一方で基板温度25℃以上では1Vを超え、60℃では1.88Vもの電圧が定電流駆動回路16に印加されることとなり、相当な熱損失が発生した。特にLEDディスプレイ等では、装置内部が発熱により高温となる上、設置環境によってはさらに高温となることが考えられるため、熱損失が高温の原因となりさらに高温を引き起こすという悪循環によって、発光装置の寿命や信頼性にも影響を及ぼす。これに対して、実施の形態1に係る発光装置では、必要最小限の一定の駆動電圧Vdrに維持できるので、損失及び発熱を抑えて、高効率で信頼性の高い発光装置を得られる。 Further, in order to confirm the loss reduction effect by the temperature compensation circuit 30, the driving voltage V dr depends on the substrate temperature between the light emitting device 100 according to the first embodiment and the conventional light emitting device 200 without temperature compensation (FIG. 5). The state in which changes are measured. The results are shown in Table 3 and FIG. In FIG. 4, the solid line indicates the first embodiment, and the broken line indicates the comparative example. In this example, the drive voltage V dr of the constant current drive circuit 16 is set at a rating of 0.6 V with the goal of applying 1 V in consideration of the margin. The output voltage in the comparative example was fixed at 12V. As a result, in the light emitting device 100 according to the first embodiment in which the temperature compensation is performed, the drive voltage V dr is maintained substantially constant at around 1 V, whereas in the comparative example, the result is a linear increase with the temperature. It was. For this reason, a driving voltage V dr of 0.6 V cannot be secured at a temperature lower than the substrate temperature of around 13 ° C., resulting in a malfunction. On the other hand, a voltage exceeding 1 V at a substrate temperature of 25 ° C. or higher, and a voltage of 1.88 V at 60 ° C. Was applied to the constant current drive circuit 16, and considerable heat loss occurred. In particular, in LED displays and the like, the inside of the device becomes high temperature due to heat generation, and it is considered that the temperature becomes higher depending on the installation environment. It also affects reliability. On the other hand, in the light emitting device according to the first embodiment, the required minimum constant driving voltage Vdr can be maintained, and thus a highly efficient and highly reliable light emitting device can be obtained while suppressing loss and heat generation.

Figure 2007324493
Figure 2007324493

本発明の発光装置、発光素子駆動回路及び発光素子の駆動方法は、LEDを用いたディスプレイや照明装置等に好適に利用できる。   The light-emitting device, the light-emitting element driving circuit, and the light-emitting element driving method of the present invention can be suitably used for a display, an illumination device, and the like using LEDs.

本発明の実施の形態1に係る発光装置を示す回路図である。It is a circuit diagram which shows the light-emitting device which concerns on Embodiment 1 of this invention. 基板温度と出力電圧Voutとの関係を示すグラフである。It is a graph which shows the relationship between board | substrate temperature and output voltage Vout . 温度補償回路における基板温度と出力電圧Vout及びLEDの順方向電圧Vfの関係を示すグラフである。It is a graph which shows the relationship between the board | substrate temperature in a temperature compensation circuit, output voltage Vout, and the forward voltage Vf of LED. 実施の形態1と比較例のそれぞれにつき、基板温度と駆動電圧Vdrの関係を示すグラフである。4 is a graph showing a relationship between a substrate temperature and a drive voltage V dr for each of Embodiment 1 and a comparative example. 複数のLEDを使用したLEDディスプレイを示す回路図である。It is a circuit diagram which shows the LED display which uses several LED. LEDの順方向電圧Vfの温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the forward direction voltage Vf of LED.

符号の説明Explanation of symbols

100…発光装置
11…発光素子
10…発光部
11…発光素子(LED)
12…発光素子群
16…定電流駆動回路
20…電源回路
21…入力端子
22…出力端子
23…スイッチングレギュレータIC
24…整流ダイオード
25…チョークコイル
26…平滑コンデンサ
30…温度補償回路
31…温度検出素子(サーミスタ)
32…第1の抵抗体
34…第3の抵抗体
36…第2の抵抗体
200…従来の発光装置
211…LED
216…定電流駆動回路
220…電源回路
DESCRIPTION OF SYMBOLS 100 ... Light-emitting device 11 ... Light-emitting element 10 ... Light-emitting part 11 ... Light-emitting element (LED)
DESCRIPTION OF SYMBOLS 12 ... Light emitting element group 16 ... Constant current drive circuit 20 ... Power supply circuit 21 ... Input terminal 22 ... Output terminal 23 ... Switching regulator IC
24 ... Rectifier diode 25 ... Choke coil 26 ... Smoothing capacitor 30 ... Temperature compensation circuit 31 ... Temperature detection element (thermistor)
32 ... 1st resistor 34 ... 3rd resistor 36 ... 2nd resistor 200 ... Conventional light-emitting device 211 ... LED
216: Constant current drive circuit 220: Power supply circuit

Claims (9)

半導体発光素子が直列に接続された発光素子群と、
前記発光素子群に接続され、前記発光素子群を定電流駆動する定電流駆動回路と、
入力端子と出力端子を有し、前記出力端子が前記発光素子群の一端に接続され前記発光素子群の駆動、及び前記定電流駆動回路を駆動させる電圧を供給し、前記入力端子に入力される信号に基づいた電圧を出力する電源回路と、
前記発光素子群の周囲温度を検出して温度信号を生成する温度補償回路と、
を備えており、
前記電源回路は、前記温度信号を前記電源回路の入力端子に入力し、周囲温度の上昇を検出した温度信号により出力電圧を下げ、周囲温度の下降を検出した温度信号により出力電圧を上げるよう制御することを特徴とする発光装置。
A light emitting element group in which semiconductor light emitting elements are connected in series;
A constant current driving circuit connected to the light emitting element group and driving the light emitting element group at a constant current;
An input terminal and an output terminal are provided, and the output terminal is connected to one end of the light emitting element group to supply a voltage for driving the light emitting element group and driving the constant current driving circuit, and is input to the input terminal A power supply circuit that outputs a voltage based on the signal;
A temperature compensation circuit that detects an ambient temperature of the light emitting element group and generates a temperature signal;
With
The power supply circuit inputs the temperature signal to the input terminal of the power supply circuit, and controls to lower the output voltage by a temperature signal that detects an increase in ambient temperature, and to increase the output voltage by a temperature signal that detects a decrease in ambient temperature. A light emitting device characterized by:
請求項1に記載の発光装置であって、
前記発光素子群を複数備えると共に、これらが並列に配置されて発光部を構成しており、
前記複数の発光素子群が、前記電源回路に対して並列に接続されてなることを特徴とする発光装置。
The light-emitting device according to claim 1,
A plurality of the light emitting element groups are provided, and these are arranged in parallel to constitute a light emitting unit,
The light emitting device, wherein the plurality of light emitting element groups are connected in parallel to the power supply circuit.
請求項2に記載の発光装置であって、
前記発光部が、複数の半導体発光素子をマトリクス状に配置するように構成されてなることを特徴とする発光装置。
The light-emitting device according to claim 2,
The light emitting unit is configured to arrange a plurality of semiconductor light emitting elements in a matrix.
請求項1から3のいずれか一に記載の発光装置であって、
周囲温度が、半導体発光素子が実装された基板の温度であることを特徴とする発光装置。
The light-emitting device according to any one of claims 1 to 3,
A light-emitting device, wherein the ambient temperature is a temperature of a substrate on which a semiconductor light-emitting element is mounted.
請求項1から4のいずれか一に記載の発光装置であって、
前記温度補償回路が、前記周囲温度の変化に応じて抵抗値が変化するサーミスタを含み、
前記サーミスタは、一端を前記電源回路の出力端子に接続されると共に、他端を第1の抵抗体を介して接地し、前記第1の抵抗体の電圧をフィードバック電圧として前記電源回路の入力端子に入力してなることを特徴とする発光装置。
The light-emitting device according to any one of claims 1 to 4,
The temperature compensation circuit includes a thermistor whose resistance value changes according to a change in the ambient temperature,
One end of the thermistor is connected to the output terminal of the power supply circuit, the other end is grounded via a first resistor, and the voltage of the first resistor is used as a feedback voltage for the input terminal of the power supply circuit. A light emitting device characterized by being inputted to the light emitting device.
請求項1から5のいずれか一に記載の発光装置であって、
前記電源回路がスイッチングレギュレータであることを特徴とする発光装置。
The light emitting device according to any one of claims 1 to 5,
The light-emitting device, wherein the power supply circuit is a switching regulator.
複数の発光ダイオードを備える発光装置であって、
定電流駆動される発光ダイオードを直列に接続した発光素子群を複数、並列に接続した発光部と、
前記発光素子群の一端で発光ダイオードのカソード側に接続され、前記発光素子群を定電流駆動するための定電流駆動回路と、
前記発光素子群の駆動、及び前記定電流駆動回路の駆動に必要な出力電圧を供給するため前記発光素子群の他端で発光ダイオードのアノード側に接続されており、入力端子からの信号に基づいて出力電圧を可変とする電源回路と、
前記発光素子群の周囲温度に関する温度信号を検出するためのサーミスタと、
を備え、
前記サーミスタで検出された温度信号を前記電源回路の入力端子に入力し、前記電源回路は周囲温度に応じて出力電圧を調整可能としており、
周囲温度が高くなると出力電圧が低くなり、周囲温度が低くなると出力電圧が高くなるように、前記電源回路が出力電圧を制御することを特徴とする発光装置。
A light emitting device comprising a plurality of light emitting diodes,
A plurality of light emitting element groups connected in series with light emitting diodes driven in constant current, a light emitting unit connected in parallel;
A constant current drive circuit connected to the cathode side of the light emitting diode at one end of the light emitting element group, and for driving the light emitting element group at a constant current;
The other end of the light emitting element group is connected to the anode side of the light emitting diode in order to supply the output voltage necessary for driving the light emitting element group and the constant current driving circuit, and based on the signal from the input terminal Power supply circuit that makes the output voltage variable,
A thermistor for detecting a temperature signal related to the ambient temperature of the light emitting element group;
With
The temperature signal detected by the thermistor is input to the input terminal of the power circuit, and the power circuit can adjust the output voltage according to the ambient temperature,
The light-emitting device, wherein the power supply circuit controls the output voltage so that the output voltage decreases when the ambient temperature increases and the output voltage increases when the ambient temperature decreases.
複数の半導体発光素子の駆動回路であって、
半導体発光素子を直列に接続した発光素子群と接続され、前記発光素子群を定電流駆動するための定電流駆動回路と、
入力端子と出力端子を有し、前記出力端子は前記発光素子群の駆動、及び前記定電流駆動回路の駆動に必要な出力電圧を供給するため前記発光素子群の一端に接続されており、前記入力端子に入力される信号に基づいて出力電圧を可変とする電源回路と、
前記発光素子群の周囲温度に基づいて出力電圧を調整するための温度信号を検出する温度補償回路と、
を備え、
前記温度補償回路で検出された温度信号を前記電源回路の入力端子に入力し、前記電源回路は周囲温度に応じて出力電圧を調整可能としており、
周囲温度が高くなると出力電圧が低くなり、周囲温度が低くなると出力電圧が高くなるように、前記電源回路が出力電圧を制御することを特徴とする発光素子駆動回路。
A drive circuit for a plurality of semiconductor light emitting elements,
A constant current driving circuit connected to a light emitting element group in which semiconductor light emitting elements are connected in series, and driving the light emitting element group at a constant current;
The output terminal has an input terminal and an output terminal, and the output terminal is connected to one end of the light emitting element group for supplying an output voltage necessary for driving the light emitting element group and driving the constant current drive circuit, A power supply circuit capable of varying the output voltage based on a signal input to the input terminal;
A temperature compensation circuit for detecting a temperature signal for adjusting an output voltage based on an ambient temperature of the light emitting element group; and
With
The temperature signal detected by the temperature compensation circuit is input to the input terminal of the power supply circuit, the power supply circuit is capable of adjusting the output voltage according to the ambient temperature,
The light-emitting element driving circuit, wherein the power supply circuit controls the output voltage so that the output voltage decreases when the ambient temperature increases and the output voltage increases when the ambient temperature decreases.
複数の半導体発光素子の駆動方法であって、
半導体発光素子を直列に接続した発光素子群、及び発光素子群と接続された定電流駆動回路に対して、これらの駆動に必要な出力電圧を電源回路で供給する工程と、
前記電源回路の、出力電圧を出力する出力端子と接続された温度補償回路で、前記発光素子群の周囲温度に関する温度信号を検出すると共に、検出された温度信号を前記電源回路の入力端子に入力し、前記電源回路で、周囲温度が高くなると出力電圧が低くなり、周囲温度が低くなると出力電圧が高くなるように、温度信号に基づいて出力電圧を制御する工程と、
を含むことを特徴とする発光素子の駆動方法。
A method for driving a plurality of semiconductor light emitting devices,
Supplying a light emitting element group in which semiconductor light emitting elements are connected in series, and a constant current driving circuit connected to the light emitting element group with an output voltage necessary for driving the power supply circuit;
A temperature compensation circuit connected to an output terminal for outputting an output voltage of the power supply circuit detects a temperature signal related to the ambient temperature of the light emitting element group, and inputs the detected temperature signal to an input terminal of the power supply circuit. In the power supply circuit, the step of controlling the output voltage based on the temperature signal so that the output voltage decreases when the ambient temperature increases, and the output voltage increases when the ambient temperature decreases;
A method for driving a light-emitting element comprising:
JP2006155489A 2006-06-03 2006-06-03 Light-emitting device, light-emitting element drive circuit, and driving method of light-emitting element Pending JP2007324493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006155489A JP2007324493A (en) 2006-06-03 2006-06-03 Light-emitting device, light-emitting element drive circuit, and driving method of light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006155489A JP2007324493A (en) 2006-06-03 2006-06-03 Light-emitting device, light-emitting element drive circuit, and driving method of light-emitting element

Publications (1)

Publication Number Publication Date
JP2007324493A true JP2007324493A (en) 2007-12-13

Family

ID=38856993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006155489A Pending JP2007324493A (en) 2006-06-03 2006-06-03 Light-emitting device, light-emitting element drive circuit, and driving method of light-emitting element

Country Status (1)

Country Link
JP (1) JP2007324493A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076684A (en) * 2007-09-20 2009-04-09 Harison Toshiba Lighting Corp Light emitting device and lamp fitting
WO2009090788A1 (en) * 2008-01-18 2009-07-23 Sharp Kabushiki Kaisha White light source, and illuminating apparatus and display apparatus both having the same
JP2009283542A (en) * 2008-05-20 2009-12-03 Texas Instr Japan Ltd Led device and led driver
JP2011014945A (en) * 2010-10-22 2011-01-20 Texas Instr Japan Ltd Led drive voltage supply circuit, and led device
JP2011018868A (en) * 2009-06-10 2011-01-27 Sharp Corp Light emitting element driving device, and surface lighting device or display device with the same
WO2012044824A2 (en) * 2010-09-30 2012-04-05 Musco Corporation Apparatus, method, and system for led fixture temperature measurement, control, and calibration
WO2012043630A1 (en) 2010-09-28 2012-04-05 矢崎総業株式会社 Signal transmission device
JP5394387B2 (en) * 2008-10-14 2014-01-22 シャープ株式会社 Liquid crystal display
US10145528B2 (en) 2014-07-30 2018-12-04 Lg Innotek Co., Ltd. Light emitting module
CN114097305A (en) * 2019-07-09 2022-02-25 昕诺飞控股有限公司 Method for controlling lighting device, lighting control circuit and lighting system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299499A (en) * 1999-04-16 2000-10-24 Nippon Seiki Co Ltd Drive circuit
JP2001143879A (en) * 1999-11-16 2001-05-25 Tokiwa Dengyo Kk Power supply circuit
JP2004253364A (en) * 2003-01-27 2004-09-09 Matsushita Electric Ind Co Ltd Lighting system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299499A (en) * 1999-04-16 2000-10-24 Nippon Seiki Co Ltd Drive circuit
JP2001143879A (en) * 1999-11-16 2001-05-25 Tokiwa Dengyo Kk Power supply circuit
JP2004253364A (en) * 2003-01-27 2004-09-09 Matsushita Electric Ind Co Ltd Lighting system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076684A (en) * 2007-09-20 2009-04-09 Harison Toshiba Lighting Corp Light emitting device and lamp fitting
WO2009090788A1 (en) * 2008-01-18 2009-07-23 Sharp Kabushiki Kaisha White light source, and illuminating apparatus and display apparatus both having the same
JP2009283542A (en) * 2008-05-20 2009-12-03 Texas Instr Japan Ltd Led device and led driver
JP4655111B2 (en) * 2008-05-20 2011-03-23 日本テキサス・インスツルメンツ株式会社 LED device and LED drive circuit
JP5394387B2 (en) * 2008-10-14 2014-01-22 シャープ株式会社 Liquid crystal display
JP2011018868A (en) * 2009-06-10 2011-01-27 Sharp Corp Light emitting element driving device, and surface lighting device or display device with the same
US9037003B2 (en) 2010-09-28 2015-05-19 Yazaki Corporation Signal transmission device
WO2012043630A1 (en) 2010-09-28 2012-04-05 矢崎総業株式会社 Signal transmission device
WO2012044824A3 (en) * 2010-09-30 2012-05-31 Musco Corporation Apparatus, method, and system for led fixture temperature measurement, control, and calibration
WO2012044824A2 (en) * 2010-09-30 2012-04-05 Musco Corporation Apparatus, method, and system for led fixture temperature measurement, control, and calibration
US9480121B2 (en) 2010-09-30 2016-10-25 Musco Corporation Apparatus, method, and system for LED fixture temperature measurement, control, and calibration
JP2011014945A (en) * 2010-10-22 2011-01-20 Texas Instr Japan Ltd Led drive voltage supply circuit, and led device
US10145528B2 (en) 2014-07-30 2018-12-04 Lg Innotek Co., Ltd. Light emitting module
CN114097305A (en) * 2019-07-09 2022-02-25 昕诺飞控股有限公司 Method for controlling lighting device, lighting control circuit and lighting system
JP2022540840A (en) * 2019-07-09 2022-09-20 シグニファイ ホールディング ビー ヴィ Method for controlling lighting device, lighting control circuit and lighting system
JP7509861B2 (en) 2019-07-09 2024-07-02 シグニファイ ホールディング ビー ヴィ Method for controlling a lighting device, lighting control circuit and lighting system

Similar Documents

Publication Publication Date Title
JP4957024B2 (en) Light emitting device, light emitting element driving circuit, and light emitting element driving method
JP2007324493A (en) Light-emitting device, light-emitting element drive circuit, and driving method of light-emitting element
US8450748B2 (en) Solid state light emitting device
KR101973142B1 (en) System and method for selected pump leds with multiple phosphors
JP5497641B2 (en) LED with integrated constant current drive circuit
US8536806B2 (en) Semiconductor integrated circuit and operation method thereof
US9307595B2 (en) Light emitting device driving module
WO2005011006A1 (en) Light-emitting apparatus, led illumination, led light-emitting apparatus, and method of controlling light-emitting apparatus
JP2008041650A (en) Lighting system
US10448478B2 (en) LED strip, LED luminaire, and a method of manufacturing thereof
US20180231191A1 (en) Light source with tunable emission spectrum
JP2006190963A (en) Light emitting diode and structure therefor
JP6323319B2 (en) Illumination device and driving method thereof
CN101106856B (en) Lighting apparatus
EP2509394A2 (en) Light emitting device module and surface light source device
JP2013239551A (en) Light emitting device
KR100586676B1 (en) Semiconductor light emitting device
KR101067976B1 (en) Light Emitting Diode Driving Device
KR20090044788A (en) White light emitting device for ac power operation
EP2554018B1 (en) Light emitting diode light source
JP2007273570A (en) Electric circuit device including semiconductor element
KR20120132763A (en) Lighting apparatus
JP2005333051A (en) Luminaire
JP2006258959A (en) Led driving circuit
KR20090078478A (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111122