JP2011018868A - Light emitting element driving device, and surface lighting device or display device with the same - Google Patents

Light emitting element driving device, and surface lighting device or display device with the same Download PDF

Info

Publication number
JP2011018868A
JP2011018868A JP2009196030A JP2009196030A JP2011018868A JP 2011018868 A JP2011018868 A JP 2011018868A JP 2009196030 A JP2009196030 A JP 2009196030A JP 2009196030 A JP2009196030 A JP 2009196030A JP 2011018868 A JP2011018868 A JP 2011018868A
Authority
JP
Japan
Prior art keywords
voltage
light emitting
emitting element
constant current
driving device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009196030A
Other languages
Japanese (ja)
Other versions
JP5203320B2 (en
Inventor
Manabu Yamamoto
学 山元
Hidenori Shioe
英紀 塩江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009196030A priority Critical patent/JP5203320B2/en
Publication of JP2011018868A publication Critical patent/JP2011018868A/en
Application granted granted Critical
Publication of JP5203320B2 publication Critical patent/JP5203320B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light emitting element driving device that performs supply voltage control respectively optimal for a case when cathode voltages of all light emitting elements are low and a case when the cathode voltage of a light emitting element only at one place is low.SOLUTION: The light emitting element driving device includes: a voltage control circuit 1; a plurality of light emitting element arrays constituted of a plurality of light emitting elements 2 to 7 which emit light in accordance with levels of supplied currents; and constant-current drive control parts 8 to 10 connected to the light emitting element arrays in series respectively. The respective light emitting element arrays are further connected to a plurality of gm amplifiers 11 to 13, and comparisons with a reference voltage 14 are made. When the gm amplifiers 11 to 13 output currents based on the voltage errors, in accordance with the composite current of the output currents of the gm amplifiers 11 to 13, the voltage control circuit 1 adjusts an output voltage VOUT output to the light emitting elements 2 to 7.

Description

本発明は、発光素子駆動装置、特に、発光素子を駆動する駆動電流の電流調整を行う回路を備える発光素子駆動装置、及びそれを備えた面状照明装置または表示装置に関する。   The present invention relates to a light emitting element driving device, and more particularly, to a light emitting element driving device including a circuit for adjusting a current of a driving current for driving a light emitting element, and a planar illumination device or display device including the same.

従来、照明装置又は表示装置等では、蛍光灯又は白熱灯などが光源として使用されている。一方で、従来の光源に比べて、寿命が長く、かつ消費電力も少ないという特徴を備えたLED(発光ダイオード)を照明用又は表示用の光源として使用するための技術開発が行われている。   Conventionally, fluorescent lamps, incandescent lamps, and the like are used as light sources in lighting apparatuses, display apparatuses, and the like. On the other hand, technical development for using an LED (light emitting diode) having features of a long life and low power consumption as compared with a conventional light source as a light source for illumination or display has been performed.

このようなLEDを照明装置等に使用する場合には、十分な明るさを確保するために、LEDを直列又は並列に多数接続し、LEDの集合体として装置内に配置している。また、それぞれのLEDの明るさを均一にするために、各LEDに流れる電流を一定にする定電流素子を備えたLED駆動装置が開示されている(特許文献1参照)。   When such an LED is used in a lighting device or the like, in order to ensure sufficient brightness, a large number of LEDs are connected in series or in parallel and arranged in the device as an aggregate of LEDs. Moreover, in order to make the brightness of each LED uniform, an LED driving device including a constant current element that makes a current flowing through each LED constant is disclosed (see Patent Document 1).

また、特許文献1のようなLED駆動装置では、定電流素子として、例えば、トランジスタが用いられており、このようなトランジスタには、並列に接続された各LEDに流れる電流の合計電流が流れる。このため、トランジスタのエミッタ・コレクタ間に印加される電圧とコレクタに流れる電流とにより生じる電力損失が大きくなり、トランジスタの発熱を如何に放熱するかが問題となる。特にトランジスタの発熱が大きい場合、トランジスタの寿命の劣化に繋がり、装置の信頼性を損なうおそれもある。   Further, in the LED driving device as in Patent Document 1, for example, a transistor is used as the constant current element, and the total current flowing through the LEDs connected in parallel flows through such a transistor. For this reason, the power loss caused by the voltage applied between the emitter and collector of the transistor and the current flowing through the collector increases, and it becomes a problem how to dissipate the heat generated by the transistor. In particular, when the heat generation of the transistor is large, the lifetime of the transistor may be deteriorated and the reliability of the device may be impaired.

この問題を鑑みて、LEDに所定の電流を供給する定電流素子で生じる電力損失を小さくするために、トランジスタのエミッタ・コレクタ間に印加される電圧を時分割でモニターし、定電流駆動部での電力損失を低減する定電流駆動装置が開示されている(特許文献2参照)。   In view of this problem, the voltage applied between the emitter and collector of the transistor is monitored in a time-sharing manner in order to reduce the power loss that occurs in the constant current element that supplies a predetermined current to the LED. Has been disclosed (see Patent Document 2).

特開2007−42758号公報(2007年2月15日公開)Japanese Unexamined Patent Publication No. 2007-42758 (released on February 15, 2007) 特開2007−220855号公報(2007年8月30日公開)JP 2007-220855 A (published August 30, 2007)

しかしながら、特許文献2のような発光素子駆動装置では、モニターしている発光素子のカソード電圧は1ヶ所だけであり、定電流駆動制御部が所定の電流を流す為に必要な最低電圧より低い発光素子のカソード電圧が1ヶ所だけなのか、複数あるのかは判定できないので、発光素子のカソード電圧が1ヶ所だけが低い場合と、すべての発光素子のカソード電圧が低い場合の制御が同じになってしまうという課題がある。   However, in the light emitting element driving apparatus as in Patent Document 2, the cathode voltage of the light emitting element monitored is only one place, and the light emission lower than the minimum voltage necessary for the constant current drive control unit to flow a predetermined current. Since it is not possible to determine whether the device has only one cathode voltage or a plurality of devices, the control is the same when the cathode voltage of the light-emitting device is low and when the cathode voltage of all the light-emitting devices is low. There is a problem of end.

本発明は斯かる事情に鑑みてなされたものであり、発光素子に供給している電圧が非常に低くて、すべての発光素子のカソード電圧が低い場合は、発光素子に入力している電圧を急速に上昇させ、発光素子に供給している電圧が比較的高くて、発光素子のカソード電圧が1ヶ所だけ低い場合は、徐々に供給電圧を上昇させることができる発光素子駆動装置及び該駆動装置を備える面状照明装置または表示装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and when the voltage supplied to the light emitting elements is very low and the cathode voltage of all the light emitting elements is low, the voltage input to the light emitting elements is Light-emitting element driving device capable of gradually increasing the supply voltage when the voltage supplied to the light-emitting element is rapidly increased and the cathode voltage of the light-emitting element is low by only one place, and the driving device It aims at providing a planar illuminating device or a display apparatus provided with.

上記の課題を解決するために、本発明の発光素子駆動装置は、電圧制御回路と、前記電圧制御回路から電圧を与えられ、電流に応じて発光する複数の発光素子と、前記発光素子に与えられる電流が定電流となるようにする定電流駆動制御部とを備える発光素子駆動装置であって、前記複数の発光素子は、1列が少なくとも一つの発光素子を有する複数の発光素子列を形成しており、前記定電流駆動制御部は、前記各発光素子列のそれぞれに直列に接続される複数の定電流駆動制御部として備えられており、さらに、前記各定電流駆動制御部への印加電圧を基準電圧と比較して電圧誤差を検出し、その検出結果に応じた電流を出力する複数の検出部を備えており、前記電圧制御回路は、前記複数の検出の合成出力に基づいて、前記発光素子に与える電圧を制御することを特徴としている。   In order to solve the above-described problems, a light-emitting element driving device according to the present invention includes a voltage control circuit, a plurality of light-emitting elements that are supplied with a voltage from the voltage control circuit and emit light according to a current, and are applied to the light-emitting elements. And a constant current drive control unit configured to make a constant current a constant current, wherein the plurality of light emitting elements form a plurality of light emitting element rows each having at least one light emitting element. The constant current drive control unit is provided as a plurality of constant current drive control units connected in series to each of the light emitting element arrays, and further applied to each constant current drive control unit. A voltage error is detected by comparing a voltage with a reference voltage, and a plurality of detection units that output a current according to the detection result are provided, and the voltage control circuit is based on a combined output of the plurality of detections, The light emitting element It is characterized by controlling the that voltage.

上記の構成によれば、前記電圧制御回路から出力される制御電圧が非常に低く、各発光素子列に接続される定電流駆動制御部への印加電圧がすべて基準電圧以下の時は、前記の複数の検出部において電圧誤差が大きいことを検出できる。そして、前記電圧制御回路は、前記複数の検出の合成出力に基づいて前記発光素子に与える電圧を制御するため、電圧制御回路は制御電圧を急速に上昇させることができる。一方、制御電圧が比較的高く、各発光素子列に接続される定電流駆動制御部への印加電圧の一部が基準電圧以下の時は、その一部の検出部でのみ電圧誤差が大きいことが検出される。このため、前記制御電圧を緩やかに上昇させるという制御が可能になる。   According to the above configuration, when the control voltage output from the voltage control circuit is very low and the applied voltages to the constant current drive control units connected to the light emitting element arrays are all below the reference voltage, It can be detected that the voltage error is large in the plurality of detection units. Since the voltage control circuit controls the voltage applied to the light emitting element based on the combined output of the plurality of detections, the voltage control circuit can rapidly increase the control voltage. On the other hand, when the control voltage is relatively high and part of the voltage applied to the constant current drive control unit connected to each light emitting element array is below the reference voltage, the voltage error is large only in some of the detection units. Is detected. For this reason, the control of increasing the control voltage gradually becomes possible.

また、上記発光素子駆動装置では、前記複数の検出部は、前記基準電圧以下の前記定電流駆動制御部への印加電圧が入力されている一つの前記検出部が出力する出力電流の絶対値に対し、その検出部以外の全ての検出部に入力される前記定電流駆動制御部への印加電圧が基準電圧以上のときに出力する出力合成電流の絶対値の方が小さい構成とすることができる。   Further, in the light emitting element driving apparatus, the plurality of detection units are set to absolute values of output currents output from one detection unit to which an applied voltage to the constant current drive control unit equal to or lower than the reference voltage is input. On the other hand, the absolute value of the output combined current output when the applied voltage to the constant current drive control unit input to all the detection units other than the detection unit is equal to or higher than the reference voltage can be configured to be smaller. .

上記の構成によれば、一部の定電流駆動制御部における印加電圧が基準電圧以下となり、他の一部の定電流駆動制御部における印加電圧が基準電圧以上となるような場合であっても、基準電圧以下の定電流駆動制御部に対する制御が優勢となり、最も低い印加電圧が基準電圧となるように制御される。   According to the above configuration, even when the applied voltage in some constant current drive control units is equal to or lower than the reference voltage and the applied voltage in some other constant current drive control units is equal to or higher than the reference voltage. The control for the constant current drive control unit below the reference voltage is dominant, and the lowest applied voltage is controlled to be the reference voltage.

また、上記発光素子駆動装置では、前記定電流駆動制御部への印加電圧の変化に対し、その電圧が入力されている前記検出部の出力は、前記印加電圧が基準電圧より低い時にはその電圧差に応じて変化される電流を流しだし、前記印加電圧が基準電圧より高い時には一定電流を引く抜くものである構成とすることができる。   Further, in the light emitting element driving device, with respect to the change of the applied voltage to the constant current drive control unit, the output of the detection unit to which the voltage is input is the voltage difference when the applied voltage is lower than the reference voltage. A current that changes according to the current is started, and when the applied voltage is higher than a reference voltage, a constant current is drawn.

また、上記発光素子駆動装置では、前記定電流駆動制御部に掛かる各々の印加電圧を任意の異常判定電圧と比較し、前記異常判定電圧以下である印加電圧を異常であると判定する異常判定回路と、前記異常判定回路によって異常と判定された印加電圧を前記検出部から切り離すスイッチ回路を更に備える構成とすることができる。   Further, in the light emitting element driving apparatus, an abnormality determination circuit that compares each applied voltage applied to the constant current drive control unit with an arbitrary abnormality determination voltage and determines that an applied voltage that is equal to or lower than the abnormality determination voltage is abnormal. And a switch circuit that separates the applied voltage determined to be abnormal by the abnormality determination circuit from the detection unit.

あるいは、上記発光素子駆動装置では、前記定電流駆動制御部に掛かる各々の印加電圧を任意の異常判定電圧と比較し、前記異常判定電圧以下である印加電圧を異常であると判定する異常判定回路と、前記異常判定回路によって異常と判定された印加電圧に接続される前記検出部の出力を、共通に接続された他の検出部の出力から切り離すスイッチ回路を更に備える構成とすることができる。   Alternatively, in the light emitting element driving apparatus, an abnormality determination circuit that compares each applied voltage applied to the constant current drive control unit with an arbitrary abnormality determination voltage and determines that an applied voltage that is equal to or lower than the abnormality determination voltage is abnormal. And a switch circuit that separates the output of the detection unit connected to the applied voltage determined to be abnormal by the abnormality determination circuit from the output of another commonly connected detection unit.

上記の構成によれば、ショートやオープン等の欠陥によって基準電圧以上の電圧が印加されない発光素子列があっても、上記欠陥が生じている発光素子列は異常判定回路によって検出され、前記検出部から切り離される。このため、電圧制御回路によって制御電圧が上げ続けられる不具合を回避できる。   According to the above configuration, even if there is a light emitting element array to which a voltage higher than the reference voltage is not applied due to a defect such as short or open, the light emitting element array in which the defect is generated is detected by the abnormality determination circuit, and the detection unit Detached from. For this reason, the problem that the control voltage is continuously raised by the voltage control circuit can be avoided.

また、上記発光素子駆動装置では、前記電圧制御回路の出力が任意の電圧に上昇するまでは、前記異常判定回路の出力を有効としない機能を更に備える構成とすることができる。   The light emitting element driving device may further include a function that does not validate the output of the abnormality determination circuit until the output of the voltage control circuit rises to an arbitrary voltage.

また、上記発光素子駆動装置では、すくなくとも1つの前記定電流駆動制御部への印加電圧が、任意の電圧に上昇するまでは、前記異常判定回路の出力を有効としない機能を更に備える構成とすることができる。   The light emitting element driving device further includes a function of not enabling the output of the abnormality determination circuit until the voltage applied to at least one constant current drive control unit rises to an arbitrary voltage. be able to.

また、上記発光素子駆動装置では、複数の前記検出部のそれぞれに接続される基準電圧は、各検出部において異なる基準電圧である構成とすることができる。   In the light emitting element driving device, the reference voltage connected to each of the plurality of detection units may be a different reference voltage in each detection unit.

また、上記発光素子駆動装置では、前記定電流駆動制御部によって定電流に制御される駆動電流値は、各定電流駆動制御部が接続される前記各発光素子列毎に異なるものであり、前記基準電圧は、接続される各定電流駆動制御部の駆動電流値に基づいて設定された値である構成とすることができる。   Further, in the light emitting element driving apparatus, a driving current value controlled to a constant current by the constant current driving control unit is different for each light emitting element column to which each constant current driving control unit is connected, and The reference voltage can be configured to be a value set based on the drive current value of each connected constant current drive control unit.

上記の構成によれば、発光素子列毎に異なる定電流で駆動しても、電圧制御回路が出力する制御電圧を最適に制御することができる。   According to said structure, even if it drives with the constant current which changes for every light emitting element row | line | column, the control voltage which a voltage control circuit outputs can be optimally controlled.

また、上記発光素子駆動装置では、前記複数の検出部の出力電流の合成電流を電圧に変換する電流−電圧変換部を更に備え、前記電圧制御回路は、前記電流−電圧変換部によって変換された電圧に基づいて、前記発光素子に与える電流の電圧を制御する構成とすることができる。   The light emitting element driving device further includes a current-voltage conversion unit that converts a combined current of output currents of the plurality of detection units into a voltage, and the voltage control circuit is converted by the current-voltage conversion unit. The voltage applied to the light emitting element can be controlled based on the voltage.

また、上記発光素子駆動装置は、前記電圧制御回路は、DC−DCコンバータである構成とすることができる。   In the light emitting element driving device, the voltage control circuit may be a DC-DC converter.

また、本発明の発光素子駆動装置は、上記記載の発光素子駆動装置の何れかを備えた面状照明装置である。   Moreover, the light-emitting element driving device of the present invention is a planar illumination device including any of the above-described light-emitting element driving devices.

また、本発明の表示装置は、上記記載の発光素子駆動装置の何れかを備えた表示装置である。   The display device of the present invention is a display device including any of the light-emitting element driving devices described above.

本発明の発光素子駆動装置では、発光素子に供給している電圧が非常に低くて、すべての発光素子のカソード電圧が低い場合は、発光素子に入力している電圧を急速に上昇させるような制御を行なう一方、発光素子に供給している電圧が比較的高くて、発光素子のカソード電圧が1ヶ所だけ低い場合は、徐々に供給電圧を上昇させるような制御を行なうことが可能となる。   In the light emitting element driving device of the present invention, when the voltage supplied to the light emitting elements is very low and the cathode voltage of all the light emitting elements is low, the voltage input to the light emitting elements is rapidly increased. On the other hand, when the voltage supplied to the light-emitting element is relatively high and the cathode voltage of the light-emitting element is low by one place, it is possible to perform control such that the supply voltage is gradually increased.

本発明の一実施形態を示すものであり、実施の形態1に係る発光素子駆動装置の要部構成を示す回路図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates an embodiment of the present invention and is a circuit diagram illustrating a configuration of a main part of a light emitting element driving device according to a first embodiment. 実施の形態2に係る発光素子駆動装置の要部構成を示す回路図である。FIG. 6 is a circuit diagram illustrating a configuration of a main part of a light emitting element driving device according to Embodiment 2. 実施の形態2に係る発光素子駆動装置において、オープン欠陥が生じている場合を示す回路図である。6 is a circuit diagram illustrating a case where an open defect has occurred in the light emitting element driving device according to Embodiment 2. FIG. 実施の形態2に係る発光素子駆動装置の変形例を示すものであり、オープン欠陥が生じている場合を示す回路図である。It is a circuit diagram which shows the modification of the light emitting element drive device which concerns on Embodiment 2, and shows the case where the open defect has arisen. 実施の形態2に係る発光素子駆動装置の変形例を示すものであり、異常検出開始判定回路を設けた構成を示す回路図である。FIG. 10 is a circuit diagram illustrating a configuration in which an abnormality detection start determination circuit is provided, showing a modification of the light emitting element driving device according to Embodiment 2. 実施の形態2に係る発光素子駆動装置の変形例を示すものであり、異常検出開始判定回路を設けた他の構成を示す回路図である。It is a circuit diagram which shows the modification of the light emitting element drive device which concerns on Embodiment 2, and shows the other structure which provided the abnormality detection start determination circuit. 実施の形態3に係る発光素子駆動装置の要部構成を示す回路図である。FIG. 5 is a circuit diagram illustrating a configuration of a main part of a light emitting element driving device according to Embodiment 3. 定電流駆動制御部における設定電流値と必要電圧との関係を示すグラフである。It is a graph which shows the relationship between the setting electric current value and required voltage in a constant current drive control part.

〔実施の形態1〕
以下、本発明をその実施の形態を示す図面に基づいて説明する。図1は本実施の形態1に係る発光素子駆動装置の要部構成を示す回路図である。発光素子駆動装置は、電圧制御回路1、発光素子2〜7、定電流駆動制御部8〜10、gmアンプ11〜13、基準電圧14、および電流−電圧変換部17を備えて構成されている。本発明は、面状に配置した複数の発光素子を上記発光素子駆動装置で駆動する面状照明装置や、該面状照明装置をバックライトとして用いる表示装置等に適用できる。
[Embodiment 1]
Hereinafter, the present invention will be described with reference to the drawings illustrating embodiments thereof. FIG. 1 is a circuit diagram showing a main configuration of the light emitting element driving apparatus according to the first embodiment. The light emitting element driving device includes a voltage control circuit 1, light emitting elements 2 to 7, constant current drive control units 8 to 10, gm amplifiers 11 to 13, a reference voltage 14, and a current-voltage conversion unit 17. . The present invention can be applied to a planar illumination device that drives a plurality of light emitting elements arranged in a planar shape by the light emitting element driving device, a display device that uses the planar illumination device as a backlight, and the like.

電圧制御回路1は、発光素子2〜7に制御電圧VOUTを供給するとともに、直列および並列接続された発光素子2〜7全体に所定の定電流を供給するDC−DCコンバータである。なお、図1に示す発光素子の数は、一例であって、図のような2直列や3並列に限定されるものではない。少なくとも2並列以上の発光素子列を有していれば良く、また、各発光素子列は少なくとも1つの発光素子を有していれば良い。   The voltage control circuit 1 is a DC-DC converter that supplies a control voltage VOUT to the light emitting elements 2 to 7 and supplies a predetermined constant current to the entire light emitting elements 2 to 7 connected in series and in parallel. Note that the number of light-emitting elements illustrated in FIG. 1 is an example, and is not limited to two series or three parallels as illustrated. It suffices to have at least two parallel light emitting element arrays, and each light emitting element array only needs to have at least one light emitting element.

各発光素子3,5,7のカソードには、定電流駆動制御部8〜10をそれぞれ接続している。これらにより発光素子2〜7全体に一定の電流(例えば、10〜100mA程度)を供給する定電流駆動回路を構成している。   Constant current drive control units 8 to 10 are connected to the cathodes of the light emitting elements 3, 5 and 7, respectively. As a result, a constant current driving circuit for supplying a constant current (for example, about 10 to 100 mA) to the entire light emitting elements 2 to 7 is configured.

また、発光素子3,5,7のカソードそれぞれには、gmアンプ11〜13の一端を接続しており、gmアンプの他端は基準電圧14に接続してある。なお、gmアンプ11〜13は、入力された発光素子3,5,7のカソードの電圧と基準電圧とを比較し、その電圧差に応じて電流を出力する。また、gmアンプ11〜13の出力は共通に接続されている。   One end of each of the gm amplifiers 11 to 13 is connected to each cathode of the light emitting elements 3, 5, and 7, and the other end of the gm amplifier is connected to the reference voltage 14. The gm amplifiers 11 to 13 compare the input cathode voltages of the light emitting elements 3, 5, and 7 with the reference voltage, and output a current according to the voltage difference. The outputs of the gm amplifiers 11 to 13 are connected in common.

共通に接続されたgmアンプ11〜13の出力には、電流−電圧変換部17が接続される。図1には、電流−電圧変換部の実施例として、電流−電圧変換抵抗15がバイアス電圧16に接続された構成が示されている。この電流−電圧変換部17は一例であり、本発明は、この回路に限定されるものではない。   A current-voltage conversion unit 17 is connected to the outputs of the gm amplifiers 11 to 13 connected in common. FIG. 1 shows a configuration in which a current-voltage conversion resistor 15 is connected to a bias voltage 16 as an embodiment of the current-voltage conversion unit. The current-voltage conversion unit 17 is an example, and the present invention is not limited to this circuit.

電流−電圧変換部17で電流から変換された電圧VEOが電圧制御回路1に入力され、電圧制御回路1は入力された電圧に応じて制御電圧VOUTを調整する。   The voltage VEO converted from the current by the current-voltage converter 17 is input to the voltage control circuit 1, and the voltage control circuit 1 adjusts the control voltage VOUT according to the input voltage.

次に、本実施の形態1に係る発光素子駆動装置の動作について説明する。   Next, the operation of the light emitting element driving device according to the first embodiment will be described.

各発光素子2〜7が点灯した状態で定電流駆動制御部8〜10に流れる電流をIdとし、発光素子3,5,7のカソードの電圧をそれぞれV3,V5,V7すると、定電流駆動制御部8ではW=Id×V3の電力損失を生じ、定電流駆動制御部9ではW=Id×V5の電力損失を生じ、定電流駆動制御部10ではW=Id×V7の電力損失を生じる。各発光素子2〜7を所要の明るさで点灯させるためには、定電流駆動制御部に流れる電流Idは、所要の値になるように設定しなければならず、定電流駆動制御部8〜10での電力損失を低減するためには、発光素子3,5,7のカソード電圧V3,V5,V7を低くする必要がある。   When the current flowing through the constant current drive control units 8 to 10 is Id and the cathode voltages of the light emitting elements 3, 5, and 7 are V3, V5, and V7, respectively, with the light emitting elements 2 to 7 being lit, constant current drive control is performed. The unit 8 generates a power loss of W = Id × V3, the constant current drive control unit 9 generates a power loss of W = Id × V5, and the constant current drive control unit 10 generates a power loss of W = Id × V7. In order to light each light emitting element 2 to 7 with a required brightness, the current Id flowing through the constant current drive control unit must be set to a required value, and the constant current drive control unit 8 to In order to reduce the power loss at 10, the cathode voltages V3, V5 and V7 of the light emitting elements 3, 5 and 7 need to be lowered.

発光素子3,5,7のカソード電圧V3,V5,V7を小さくするためには、制御電圧VOUTを下げればよい。ただし、定電流駆動制御部8〜10には所定の電流を流す為に最低必要な電圧VDRV_minがあり、発光素子3,5,7のカソード電圧V3,V5,V7が最低必要電圧VDRV_min以下になると所定の電流は流せなくなる。   In order to reduce the cathode voltages V3, V5, and V7 of the light emitting elements 3, 5, and 7, the control voltage VOUT may be lowered. However, the constant current drive control units 8 to 10 have a minimum voltage VDRV_min required to flow a predetermined current, and when the cathode voltages V3, V5, and V7 of the light emitting elements 3, 5, and 7 become the minimum required voltage VDRV_min or less. The predetermined current cannot flow.

gmアンプ11〜13は、発光素子3,5,7のカソード電圧V3,V5,V7と基準電圧14とを比較し、発光素子3,5,7のカソード電圧V3,V5,V7と基準電圧14との差の大小に応じて、出力電流の電流値を大小させるように制御する。   The gm amplifiers 11 to 13 compare the cathode voltages V3, V5, and V7 of the light emitting elements 3, 5, and 7 with the reference voltage 14, and the cathode voltages V3, V5, and V7 of the light emitting elements 3, 5, and 7 and the reference voltage 14 are compared. Control is performed so that the current value of the output current is increased or decreased according to the magnitude of the difference.

例えば、発光素子3のカソード電圧V3と基準電圧14とを比較し、発光素子3のカソード電圧V3が基準電圧14より低く、その差が比較的小さい場合には、gmアンプ11は比較的小さい値の電流を電流−電圧変換部17に流し出す。また、発光素子3のカソード電圧V3が基準電圧14より低く、その差が比較的大きい場合には、gmアンプ11は比較的大きい値の電流を電流−電圧変換部17に流し出す。   For example, when the cathode voltage V3 of the light emitting element 3 is compared with the reference voltage 14, and the cathode voltage V3 of the light emitting element 3 is lower than the reference voltage 14, and the difference is relatively small, the gm amplifier 11 has a relatively small value. Is supplied to the current-voltage converter 17. When the cathode voltage V3 of the light emitting element 3 is lower than the reference voltage 14 and the difference is relatively large, the gm amplifier 11 sends a relatively large value of current to the current-voltage conversion unit 17.

一方、発光素子3のカソード電圧V3が基準電圧14より高く、その差が比較的小さい場合には、gmアンプ11は比較的小さい値の電流を電流−電圧変換部17から引き抜く。また同様に、発光素子3のカソード電圧V3が基準電圧14より高く、その差が比較的大きい場合には、gmアンプ11は比較的大きい値の電流を電流−電圧変換部17から引き抜く。   On the other hand, when the cathode voltage V3 of the light emitting element 3 is higher than the reference voltage 14 and the difference is relatively small, the gm amplifier 11 draws a relatively small value of current from the current-voltage conversion unit 17. Similarly, when the cathode voltage V3 of the light emitting element 3 is higher than the reference voltage 14 and the difference is relatively large, the gm amplifier 11 draws a relatively large value of current from the current-voltage conversion unit 17.

これにより、発光素子3,5,7のカソード電圧V3,V5,V7が基準電圧より低い時は電流−電圧変換部17で変換された電圧VEOは高くなり、発光素子3,5,7のカソード電圧V3,V5,V7が基準電圧より高い場合にはVEOは低くなる。   As a result, when the cathode voltages V3, V5, V7 of the light emitting elements 3, 5, 7 are lower than the reference voltage, the voltage VEO converted by the current-voltage conversion unit 17 becomes high, and the cathodes of the light emitting elements 3, 5, 7 When the voltages V3, V5 and V7 are higher than the reference voltage, VEO is low.

電流−電圧変換部17で変換された電圧VEOは電圧制御回路1に入力され、電圧制御回路1は電流−電圧変換部17で変換された電圧VEOの電圧が高くなると制御電圧VOUTを上昇させるように制御し、電流−電圧変換部17で変換された電圧VEOの電圧が低くなると制御電圧VOUTを下げるように制御する。   The voltage VEO converted by the current-voltage conversion unit 17 is input to the voltage control circuit 1, and the voltage control circuit 1 increases the control voltage VOUT when the voltage VEO converted by the current-voltage conversion unit 17 increases. And when the voltage VEO converted by the current-voltage converter 17 becomes lower, the control voltage VOUT is lowered.

これらの制御により、発光素子3,5,7のカソード電圧V3,V5,V7と基準電圧14との差に応じて制御電圧VOUTが調整され、基準電圧14を定電流駆動制御部が所定の電流を流す為に最低必要な電圧VDRV_minにすることで、発光素子3,5,7のカソード電圧V3,V5,V7を最適に(必要最低限に)することができる。   By these controls, the control voltage VOUT is adjusted in accordance with the difference between the cathode voltages V3, V5, V7 of the light emitting elements 3, 5, and 7 and the reference voltage 14, and the constant current drive control unit sets the reference voltage 14 to a predetermined current. The cathode voltage V3, V5, V7 of the light emitting elements 3, 5, and 7 can be optimized (minimum necessary) by setting the voltage VDRV_min that is the minimum necessary for the current to flow.

また、gmアンプ11〜13の出力の電流流し出し能力は、電流引き込み能力に比べて十分に大きくすることが望ましい。   Moreover, it is desirable that the current flowing capacity of the outputs of the gm amplifiers 11 to 13 is sufficiently larger than the current drawing capacity.

実際に使用される発光素子においては、順方向電圧VFは非常にバラツキが大きい。そのため、発光素子3,5,7のカソード電圧V3,V5,V7はバラツキが大きくなり、一部のカソード電圧は基準電圧以下となり、他の一部のカソード電圧は基準電圧以上となることがある。   In light-emitting elements that are actually used, the forward voltage VF varies greatly. Therefore, the cathode voltages V3, V5, and V7 of the light emitting elements 3, 5, and 7 vary widely, and some of the cathode voltages may be lower than the reference voltage, and some of the other cathode voltages may be higher than the reference voltage. .

このような状態では、一部のgmアンプが電流を流し出し、他の一部のgmアンプは電流を引きこむ事になるが、電流流し出し能力の方を十分に大きくすると、gmアンプ出力の合成電流においては電流を流し出す事になる。つまり、電圧制御回路は制御電圧VOUTを上昇させることになり、発光素子3,5,7のカソード電圧V3,V5,V7の最も低い電圧が基準電圧14となるように制御される。   In such a state, some of the gm amplifiers draw current, and some of the other gm amplifiers draw current. However, if the current flowing capacity is sufficiently increased, the output of the gm amplifier is increased. In the combined current, current will flow out. That is, the voltage control circuit increases the control voltage VOUT, and is controlled so that the lowest voltage among the cathode voltages V3, V5, and V7 of the light emitting elements 3, 5, and 7 becomes the reference voltage 14.

例えば、図1のようにgmアンプが3個共通接続されている場合は、gmアンプの電流流し出し能力を、電流引き込み能力の2倍以上とすることが必要となる。   For example, when three gm amplifiers are connected in common as shown in FIG. 1, it is necessary to make the current flow capability of the gm amplifier more than twice the current drawing capability.

また、gmアンプの出力は発光素子のカソード電圧が基準電圧14より低い時には電流を流し出し、基準電圧14以上の時は電流を引き込まないようにして、発光素子3,5,7のカソード電圧には関係なく、gmアンプの共通接続したノードから一定電流を引き抜く構成とする事でも同様に制御される。   Further, the output of the gm amplifier generates current when the cathode voltage of the light emitting element is lower than the reference voltage 14, and does not draw current when the cathode voltage is higher than the reference voltage 14, so that the cathode voltage of the light emitting elements 3, 5, and 7 is obtained. Regardless of the above, the same control can be performed by adopting a configuration in which a constant current is drawn from a commonly connected node of the gm amplifier.

gmアンプ11〜13の出力を共通接続している事で、発光素子3,5,7のカソード電圧V3,V5,V7のうち、基準電圧14より低いノードが1ヶ所の場合と複数ある場合とでは、gmアンプの出力の合成電流は異なる事になり、1ヶ所の場合に比べて複数の場合の方が合成電流は大きくなる。   By connecting the outputs of the gm amplifiers 11 to 13 in common, the cathode voltages V3, V5, and V7 of the light emitting elements 3, 5, and 7 have one node lower than the reference voltage 14 and a plurality of nodes. Then, the combined current of the output of the gm amplifier is different, and the combined current is larger in a plurality of cases than in the case of one place.

そうすることで、制御電圧VOUTが非常に低くて、発光素子のカソード電圧がすべて基準電圧14以下の時は、電圧制御回路1は制御電圧VOUTを急速に上昇させ、制御電圧VOUTが比較的高くなり、発光素子のカソード電圧の1ヶ所だけが基準電圧14以下となった場合には制御電圧VOUTを緩やかに上昇させるという制御が可能になる。   By doing so, when the control voltage VOUT is very low and the cathode voltages of the light emitting elements are all below the reference voltage 14, the voltage control circuit 1 rapidly increases the control voltage VOUT, and the control voltage VOUT is relatively high. Thus, when only one portion of the cathode voltage of the light emitting element becomes equal to or lower than the reference voltage 14, it is possible to perform control such that the control voltage VOUT is gradually increased.

〔実施の形態2〕
図2は、実施の形態2に係る発光素子駆動装置の要部構成を示す回路図である。図2に示す発光素子駆動装置は、図1における実施の形態1に係る発光素子駆動装置と類似した構成を有しているが、さらに、異常検出回路21、スイッチ回路22、およびプルアップ電圧23を備えて構成されている。尚、図2の発光素子駆動装置において、図1の発光素子駆動装置と同様の構成については、図1と同じ参照番号を付し、詳細な説明は省略する。
[Embodiment 2]
FIG. 2 is a circuit diagram showing a main configuration of the light emitting element driving apparatus according to the second embodiment. The light emitting element driving device shown in FIG. 2 has a configuration similar to that of the light emitting element driving device according to the first embodiment in FIG. 1, but further includes an abnormality detection circuit 21, a switch circuit 22, and a pull-up voltage 23. It is configured with. In the light emitting element driving apparatus of FIG. 2, the same reference numerals as those in FIG. 1 are assigned to the same configurations as those of the light emitting element driving apparatus of FIG.

異常検出回路21は、発光素子3,5,7のカソード電圧V3,V5,V7のそれぞれを検出できるように、これらのカソード電圧と接続されており、異常検出結果をスイッチ回路22に出力する。スイッチ回路22は、gmアンプ11〜13の前段に配置され、複数のスイッチから構成されており、異常検出回路21からの結果出力に応じて、gmアンプ11〜13の何れかをカソード電圧V3,V5,V7から切り離し、代わりにプルアップ電圧23と接続させる。   The abnormality detection circuit 21 is connected to these cathode voltages so as to detect each of the cathode voltages V3, V5, V7 of the light emitting elements 3, 5, 7, and outputs an abnormality detection result to the switch circuit 22. The switch circuit 22 is arranged in front of the gm amplifiers 11 to 13 and includes a plurality of switches. Depending on the result output from the abnormality detection circuit 21, any one of the gm amplifiers 11 to 13 is connected to the cathode voltage V3. Disconnect from V5 and V7 and connect to pull-up voltage 23 instead.

図1の構成では、発光素子のカソードの一つがGNDにショートした場合や、発光素子がオープンしているような不具合があった場合、制御電圧VOUTをどれだけ上昇させても、GNDにショートしたノード(定電流駆動制御部10の入力側ノード)の電圧は基準電圧14以上に上昇しない(ほぼ0Vのまま)ので、電圧制御回路1は制御電圧を上げ続ける事になる。   In the configuration of FIG. 1, when one of the cathodes of the light emitting element is short-circuited to GND or when there is a problem that the light-emitting element is open, no matter how much the control voltage VOUT is increased, it is shorted to GND. Since the voltage of the node (the input side node of the constant current drive control unit 10) does not rise above the reference voltage 14 (mainly remains at 0V), the voltage control circuit 1 continues to raise the control voltage.

本実施の形態2に係る発光素子駆動装置では、上述のショートやオープン等の不具合がない場合には、図2に示すように、スイッチ回路22の各スイッチは、gmアンプ11〜13のそれぞれをカソード電圧V3,V5,V7に接続するため、実施の形態1における発光素子駆動装置と同様の動作を行うことができる。   In the light emitting element driving device according to the second embodiment, when there is no problem such as short circuit or open circuit, as shown in FIG. 2, each switch of the switch circuit 22 includes each of the gm amplifiers 11 to 13. Since it is connected to the cathode voltages V3, V5 and V7, the same operation as that of the light emitting element driving device in the first embodiment can be performed.

一方、例えば図3に示すように、発光素子7のカソードがオープンとなる不具合が生じている場合、この不具合は異常検出回路21によって検出され、異常検出回路21は異常検出結果をスイッチ回路22に出力する。スイッチ回路22は、gmアンプ13に接続されるスイッチを切り替え、gmアンプ13をプルアップ電圧23と接続させる。尚、異常検出回路21は、各発光素子列のカソード電圧を異常判定電圧と比較し、異常判定電圧以下である発光素子列を異常であると判定する。   On the other hand, for example, as shown in FIG. 3, when a problem occurs in which the cathode of the light emitting element 7 is open, this problem is detected by the abnormality detection circuit 21, and the abnormality detection circuit 21 sends the abnormality detection result to the switch circuit 22. Output. The switch circuit 22 switches a switch connected to the gm amplifier 13 and connects the gm amplifier 13 to the pull-up voltage 23. The abnormality detection circuit 21 compares the cathode voltage of each light emitting element array with the abnormality determination voltage, and determines that the light emitting element array that is equal to or lower than the abnormality determination voltage is abnormal.

本実施の形態2の発光素子駆動装置では、上記制御により、ショートやオープン等の不具合による異常が生じた発光素子列がある場合でも、異常と判定された発光素子列以外の情報のみで電圧制御回路1は制御電圧VOUTを制御する事ができる。すなわち、電圧制御回路1が制御電圧VOUTを上げ続けるといった事態を防止することができる。   In the light emitting element driving apparatus according to the second embodiment, even when there is a light emitting element array in which an abnormality due to a short circuit or an open occurs due to the above control, voltage control is performed only by information other than the light emitting element array determined to be abnormal. The circuit 1 can control the control voltage VOUT. That is, it is possible to prevent the voltage control circuit 1 from continuously increasing the control voltage VOUT.

また、図4は、図2に示す発光素子駆動装置の変形例を示すものであり、スイッチ回路22およびプルアップ電圧23の代わりに、gmアンプ11〜13の後段に配置されたスイッチ回路24を有している。スイッチ回路24は、異常検出回路21からの結果出力に応じて、gmアンプ11〜13の出力の何れかを、gmアンプ11〜13の出力を共通接続したノードから切り離す。   FIG. 4 shows a modification of the light emitting element driving device shown in FIG. 2. Instead of the switch circuit 22 and the pull-up voltage 23, a switch circuit 24 arranged after the gm amplifiers 11 to 13 is provided. Have. The switch circuit 24 disconnects any of the outputs of the gm amplifiers 11 to 13 from the node that commonly connects the outputs of the gm amplifiers 11 to 13 in accordance with the result output from the abnormality detection circuit 21.

図4においても、発光素子7のカソードがオープンとなる不具合が生じている場合を例示する。この不具合は異常検出回路21によって検出され、異常検出回路21は異常検出結果をスイッチ回路24に出力する。スイッチ回路22は、gmアンプ13の出力を、gmアンプ11〜13の出力を共通接続したノードから切り離す。この構成によっても、電圧制御回路1は、異常と判定された発光素子列以外の情報のみで制御電圧VOUTを制御する事ができ、図2の発光素子駆動装置と同様の効果が得られる。   FIG. 4 also illustrates a case where a problem that the cathode of the light emitting element 7 is open occurs. This malfunction is detected by the abnormality detection circuit 21, and the abnormality detection circuit 21 outputs an abnormality detection result to the switch circuit 24. The switch circuit 22 disconnects the output of the gm amplifier 13 from the node that commonly connects the outputs of the gm amplifiers 11 to 13. Also with this configuration, the voltage control circuit 1 can control the control voltage VOUT only by information other than the light emitting element row determined to be abnormal, and the same effect as the light emitting element driving device of FIG. 2 can be obtained.

図5は、図4に示す発光素子駆動装置に異常検出開始判定回路25を追加した回路例を示すものである。図4の異常検出回路21において、発光素子列が異常であるとの判定は、各発光素子列のカソード電圧が異常判定電圧以下であることを検出してなされるものである。しかしながら、発光素子列に異常がなくても制御電圧VOUTの電圧が低い時には発光素子列のカソード電圧が異常判定電圧以下になる事があり、発光素子列の異常誤検出の原因となる。   FIG. 5 shows a circuit example in which an abnormality detection start determination circuit 25 is added to the light emitting element driving device shown in FIG. In the abnormality detection circuit 21 of FIG. 4, the determination that the light emitting element array is abnormal is made by detecting that the cathode voltage of each light emitting element array is equal to or lower than the abnormality determination voltage. However, even if there is no abnormality in the light-emitting element array, when the control voltage VOUT is low, the cathode voltage of the light-emitting element array may be equal to or lower than the abnormality determination voltage, which causes erroneous detection of the light-emitting element array.

図5における異常検出開始判定回路25は、制御電圧VOUTがある任意の電圧以上になった事を検出し、ある任意の電圧以上になれば異常検出回路21が各発光素子列の異常検出を開始するように制御する。このように、電圧制御回路1の出力が任意の電圧に上昇するまでは、異常判定回路21の出力を有効としない機能を更に備えることより、制御電圧VOUTが十分高い時だけ異常検出を行う事ができ、発光素子列の異常誤検出を防ぐ事ができる。   The abnormality detection start determination circuit 25 in FIG. 5 detects that the control voltage VOUT has become equal to or higher than a certain voltage, and when it exceeds a certain arbitrary voltage, the abnormality detection circuit 21 starts detecting abnormality in each light emitting element array. Control to do. In this way, until the output of the voltage control circuit 1 rises to an arbitrary voltage, the function of not enabling the output of the abnormality determination circuit 21 is further provided, so that abnormality detection is performed only when the control voltage VOUT is sufficiently high. Thus, erroneous detection of abnormalities in the light emitting element array can be prevented.

図6は、図4に示す発光素子駆動装置に異常検出開始判定回路26を追加した回路例を示すものである。異常検出開始判定回路26は、各発光素子列のカソード電圧をモニターし、いずれかのカソード電圧が異常検出開始判定電圧以上になれば、異常検出回路21が各発光素子列の異常検出を開始するように制御する。この異常検出開始判定電圧を発光素子列の最大バラツキ以上の電圧にしておけば、いずれかのカソード電圧がこの電圧以上になったことをもって、全てのカソード電圧に十分な電圧が印加された状態と判断できる。このように、すくなくとも1つの定電流駆動制御部への印加電圧が、任意の電圧に上昇するまでは、異常判定回路21の出力を有効としない機能を更に備えることにより、制御電圧VOUTが十分高い時だけ異常検出を行う事ができ、発光素子列の異常誤検出を防ぐ事ができる。   FIG. 6 shows a circuit example in which an abnormality detection start determination circuit 26 is added to the light emitting element driving device shown in FIG. The abnormality detection start determination circuit 26 monitors the cathode voltage of each light emitting element array, and when any cathode voltage becomes equal to or higher than the abnormality detection start determination voltage, the abnormality detection circuit 21 starts detecting abnormality of each light emitting element array. To control. If this abnormality detection start determination voltage is set to a voltage equal to or higher than the maximum variation of the light-emitting element array, when any one of the cathode voltages exceeds this voltage, a sufficient voltage is applied to all the cathode voltages. I can judge. In this way, the control voltage VOUT is sufficiently high by further providing a function that does not enable the output of the abnormality determination circuit 21 until the voltage applied to at least one constant current drive control unit rises to an arbitrary voltage. Abnormality detection can be performed only at times, and erroneous detection of abnormalities in the light emitting element array can be prevented.

〔実施の形態3〕
図7は、実施の形態3に係る発光素子駆動装置の要部構成を示す回路図である。図7に示す発光素子駆動装置は、図1における実施の形態1に係る発光素子駆動装置と類似した構成を有しているが、gmアンプ11〜13のそれぞれが異なる基準電圧31〜33に接続されている点で図1とは異なる。尚、図7の発光素子駆動装置において、図1の発光素子駆動装置と同様の構成については、図1と同じ参照番号を付し、詳細な説明は省略する。
[Embodiment 3]
FIG. 7 is a circuit diagram showing a main configuration of the light emitting element driving apparatus according to Embodiment 3. In FIG. The light emitting element driving apparatus shown in FIG. 7 has a configuration similar to that of the light emitting element driving apparatus according to the first embodiment in FIG. 1, but the gm amplifiers 11 to 13 are connected to different reference voltages 31 to 33, respectively. 1 is different from FIG. In the light emitting element driving apparatus of FIG. 7, the same reference numerals as those in FIG. 1 are given to the same configurations as those of the light emitting element driving apparatus of FIG.

本実施の形態3に係る発光素子駆動装置の動作について以下に説明する。   The operation of the light emitting element driving apparatus according to Embodiment 3 will be described below.

定電流駆動制御部8〜10には所定の電流を流す為に必要な電圧VDRV_minがあり、発光素子3,5,7のカソード電圧V3,V5,V7が最低必要電圧VDRV_min以下になると所定の電流が流せなくなる点は実施の形態1と同じである。   The constant current drive control units 8 to 10 have a voltage VDRV_min necessary for flowing a predetermined current. When the cathode voltages V3, V5, and V7 of the light emitting elements 3, 5, and 7 become the minimum required voltage VDRV_min or less, the predetermined current is supplied. Is the same as in the first embodiment.

この最低必要電圧VDRV_minは、同じ定電流駆動回路を使用した場合、図8に示すように、定電流駆動部の設定電流値を大きくすると、それに伴って最低必要電圧も大きくなる。したがって、定電流駆動制御部8〜10で駆動する電流値がそれぞれ異なる場合、定電流駆動制御部8〜10が設定どおりの電流を駆動するための最低必要電圧VDRV_minはそれぞれ異なることになる。   When the same constant current drive circuit is used, the minimum required voltage VDRV_min increases as the set current value of the constant current drive unit is increased as shown in FIG. Therefore, when the current values driven by the constant current drive control units 8 to 10 are different, the minimum required voltage VDRV_min for the constant current drive control units 8 to 10 to drive the current as set is different.

図7の発光素子駆動装置では、基準電圧31〜33の電圧をそれぞれ異なる値とすることで、定電流駆動制御部8〜10で駆動する電流値がそれぞれ異なる場合に対応可能となる。すなわち、図7の構成において、基準電圧31は定電流駆動制御部8の最低必要電圧、基準電圧32は定電流駆動制御部9の最低必要電圧、基準電圧33は定電流駆動制御部10の最低必要電圧とする。こうすることで、発光素子3,5,7のカソード電圧V3,V5,V7と基準電圧31,32,33との差に応じて制御電圧VOUTが調整される。これにより、定電流駆動制御部の必要最低電圧がそれぞれ異なる場合でも、発光素子3,5,7のカソード電圧V3,V5,V7を最適に(必要最低限に)することができる。   In the light emitting element driving apparatus of FIG. 7, by setting the reference voltages 31 to 33 to different values, it is possible to cope with cases where the current values driven by the constant current drive control units 8 to 10 are different. That is, in the configuration of FIG. 7, the reference voltage 31 is the minimum necessary voltage of the constant current drive control unit 8, the reference voltage 32 is the minimum necessary voltage of the constant current drive control unit 9, and the reference voltage 33 is the minimum voltage of the constant current drive control unit 10. Use the required voltage. In this way, the control voltage VOUT is adjusted according to the difference between the cathode voltages V3, V5, V7 of the light emitting elements 3, 5, 7 and the reference voltages 31, 32, 33. As a result, even when the necessary minimum voltages of the constant current drive control units are different, the cathode voltages V3, V5, V7 of the light emitting elements 3, 5, 7 can be optimized (minimum necessary).

本実施の形態3の発光素子駆動装置は、例えば、3種類(すなわち、赤,緑,青)のLEDを用いるカラー液晶表示装置のバックライト駆動において有効である。すなわち、発光素子に赤色LEDと青色LEDと緑色LEDを使用し、各色のLEDの輝度と色度とを各LEDに流れる電流で調整して白色光源を構成する場合においては、各色のLED毎に設定電流が異なる事が多い。このため、同色のLEDを直列に接続し、異なる色のLED列は並列に配置し、各列毎に異なる定電流で駆動するために本実施形態2の回路構成を使用するとよい。これにより、各LED列のカソード電圧を最適にする事ができ、定電流駆動制御部での電力損失を最小限にする事ができる。   The light emitting element driving apparatus according to the third embodiment is effective in, for example, backlight driving of a color liquid crystal display apparatus using three types of LEDs (that is, red, green, and blue). That is, in the case of using a red LED, a blue LED, and a green LED as light emitting elements and adjusting the luminance and chromaticity of each color LED by the current flowing through each LED, a white light source is configured for each LED of each color. The set current is often different. For this reason, it is preferable to use the circuit configuration of the second embodiment in order to connect LEDs of the same color in series, arrange LED columns of different colors in parallel, and drive each column with a different constant current. Thereby, the cathode voltage of each LED row can be optimized, and the power loss in the constant current drive control unit can be minimized.

以上のように、本発明に係る発光素子駆動装置では、定電流駆動制御部での電力損失を小さくする事ができ、定電流駆動制御部の発熱を抑制することができる。また、発熱を防止して信頼性を向上させることができる。また、発熱が少なくなれば、定電流駆動制御部に対して放熱部材を設けるなどの放熱対策を施す必要がなくなり、装置の構造を簡単にでき、小型化を図ることができる。   As described above, in the light emitting element driving device according to the present invention, power loss in the constant current drive control unit can be reduced, and heat generation in the constant current drive control unit can be suppressed. Further, heat generation can be prevented and reliability can be improved. Further, if the heat generation is reduced, it is not necessary to take a heat dissipation measure such as providing a heat dissipation member for the constant current drive control unit, the structure of the apparatus can be simplified, and the size can be reduced.

本発明は、発光素子を駆動する駆動電流の電流調整を行う回路を備える発光素子駆動装置に適用でき、及びそれを備えた面状照明装置または表示装置に利用することができる。   The present invention can be applied to a light emitting element driving device including a circuit that adjusts a driving current for driving a light emitting element, and can be used for a planar illumination device or a display device including the circuit.

1 電圧制御回路
2〜7 発光素子
8〜10 定電流駆動制御部
11〜13 gmアンプ(検出部)
14,31〜33 基準電圧
15 抵抗
16 バイアス電圧
17 電流−電圧変換部
21 異常検出回路
22,24 スイッチ回路
23 プルアップ電圧
DESCRIPTION OF SYMBOLS 1 Voltage control circuit 2-7 Light emitting element 8-10 Constant current drive control part 11-13 gm amplifier (detection part)
14, 31 to 33 Reference voltage 15 Resistor 16 Bias voltage 17 Current-voltage converter 21 Abnormality detection circuit 22, 24 Switch circuit 23 Pull-up voltage

Claims (13)

電圧制御回路と、前記電圧制御回路から電圧を与えられ、電流に応じて発光する複数の発光素子と、前記発光素子に与えられる電流が定電流となるようにする定電流駆動制御部とを備える発光素子駆動装置であって、
前記複数の発光素子は、1列が少なくとも一つの発光素子を有する複数の発光素子列を形成しており、
前記定電流駆動制御部は、前記各発光素子列のそれぞれに直列に接続される複数の定電流駆動制御部として備えられており、
さらに、前記各定電流駆動制御部への印加電圧を基準電圧と比較して電圧誤差を検出し、その検出結果に応じた電流を出力する複数の検出部を備えており、
前記電圧制御回路は、前記複数の検出の合成出力に基づいて、前記発光素子に与える電圧を制御することを特徴とする発光素子駆動装置。
A voltage control circuit; a plurality of light emitting elements which are supplied with a voltage from the voltage control circuit and emit light according to a current; and a constant current drive control unit configured to make the current applied to the light emitting elements constant. A light emitting element driving device,
The plurality of light emitting elements form a plurality of light emitting element rows, each row having at least one light emitting element,
The constant current drive control unit is provided as a plurality of constant current drive control units connected in series to each of the light emitting element rows,
In addition, a voltage error is detected by comparing the voltage applied to each of the constant current drive control units with a reference voltage, and a plurality of detection units for outputting a current according to the detection result are provided.
The voltage control circuit controls a voltage applied to the light emitting element based on a combined output of the plurality of detections.
前記複数の検出部は、
前記基準電圧以下の前記定電流駆動制御部への印加電圧が入力されている一つの前記検出部が出力する出力電流の絶対値に対し、その検出部以外の全ての検出部に入力される前記定電流駆動制御部への印加電圧が基準電圧以上のときに出力する出力合成電流の絶対値の方が小さいことを特徴とする請求項1に記載の発光素子駆動装置。
The plurality of detection units are:
The absolute value of the output current output from one detection unit to which the applied voltage to the constant current drive control unit below the reference voltage is input is input to all detection units other than the detection unit 2. The light emitting element driving device according to claim 1, wherein the absolute value of the output combined current output when the voltage applied to the constant current drive control unit is equal to or higher than the reference voltage is smaller.
前記定電流駆動制御部への印加電圧の変化に対し、その電圧が入力されている前記検出部の出力は、前記印加電圧が基準電圧より低い時にはその電圧差に応じて変化される電流を流しだし、前記印加電圧が基準電圧より高い時には一定電流を引く抜くものであることを特徴とする請求項1または2に記載の発光素子駆動装置。   In response to a change in the applied voltage to the constant current drive control unit, the output of the detection unit to which the voltage is input passes a current that changes according to the voltage difference when the applied voltage is lower than a reference voltage. However, the light emitting element driving device according to claim 1, wherein when the applied voltage is higher than a reference voltage, a constant current is drawn. 前記定電流駆動制御部に掛かる各々の印加電圧を任意の異常判定電圧と比較し、前記異常判定電圧以下である印加電圧を異常であると判定する異常判定回路と、
前記異常判定回路によって異常と判定された印加電圧を前記検出部から切り離すスイッチ回路を更に備えることを特徴とする請求項1から3の何れかに記載の発光素子駆動装置。
An abnormality determination circuit that compares each applied voltage applied to the constant current drive control unit with an arbitrary abnormality determination voltage and determines that an application voltage that is equal to or lower than the abnormality determination voltage is abnormal,
4. The light emitting element driving device according to claim 1, further comprising a switch circuit that disconnects an applied voltage determined to be abnormal by the abnormality determination circuit from the detection unit. 5.
前記定電流駆動制御部に掛かる各々の印加電圧を任意の異常判定電圧と比較し、前記異常判定電圧以下である印加電圧を異常であると判定する異常判定回路と、
前記異常判定回路によって異常と判定された印加電圧に接続される前記検出部の出力を、共通に接続された他の検出部の出力から切り離すスイッチ回路を更に備えることを特徴とする請求項1から3の何れかに記載の発光素子駆動装置。
An abnormality determination circuit that compares each applied voltage applied to the constant current drive control unit with an arbitrary abnormality determination voltage and determines that an application voltage that is equal to or lower than the abnormality determination voltage is abnormal,
2. The switch circuit according to claim 1, further comprising a switch circuit that disconnects an output of the detection unit connected to an applied voltage determined to be abnormal by the abnormality determination circuit from an output of another commonly connected detection unit. 4. The light emitting element driving device according to any one of 3.
前記電圧制御回路の出力が任意の電圧に上昇するまでは、前記異常判定回路の出力を有効としない機能を更に備えることを特徴とする請求項4または5に記載の発光素子駆動装置。   6. The light emitting element driving device according to claim 4, further comprising a function of not enabling the output of the abnormality determination circuit until the output of the voltage control circuit rises to an arbitrary voltage. すくなくとも1つの前記定電流駆動制御部への印加電圧が、任意の電圧に上昇するまでは、前記異常判定回路の出力を有効としない機能を更に備えることを特徴とする、請求項4または5に記載の発光素子駆動装置。   6. The method according to claim 4, further comprising a function of not enabling the output of the abnormality determination circuit until an applied voltage to at least one constant current drive control unit rises to an arbitrary voltage. The light emitting element drive device of description. 複数の前記検出部のそれぞれに接続される基準電圧は、各検出部において異なる基準電圧である事を特徴とする請求項1から7に記載の発光素子駆動装置。   The light-emitting element driving device according to claim 1, wherein a reference voltage connected to each of the plurality of detection units is a different reference voltage in each detection unit. 前記定電流駆動制御部によって定電流に制御される駆動電流値は、各定電流駆動制御部が接続される前記各発光素子列毎に異なるものであり、
前記基準電圧は、接続される各定電流駆動制御部の駆動電流値に基づいて設定された値であることを特徴とする請求項8に記載の発光素子駆動装置。
The drive current value controlled to a constant current by the constant current drive control unit is different for each light emitting element row to which each constant current drive control unit is connected,
The light-emitting element driving device according to claim 8, wherein the reference voltage is a value set based on a driving current value of each constant current driving control unit connected thereto.
前記複数の検出部の出力電流の合成電流を電圧に変換する電流−電圧変換部を更に備え、
前記電圧制御回路は、前記電流−電圧変換部によって変換された電圧に基づいて、前記発光素子に与える電流の電圧を制御することを特徴とする請求項1から9の何れかに記載の発光素子駆動装置。
A current-voltage conversion unit that converts a combined current of output currents of the plurality of detection units into a voltage;
10. The light emitting device according to claim 1, wherein the voltage control circuit controls a voltage of a current applied to the light emitting device based on a voltage converted by the current-voltage conversion unit. Drive device.
前記電圧制御回路は、DC−DCコンバータであることを特徴とする請求項1から10の何れかに記載の発光素子駆動装置。   The light-emitting element driving device according to claim 1, wherein the voltage control circuit is a DC-DC converter. 請求項1から11までのいずれか1項に記載の発光素子駆動装置を備えたことを特徴とする面状照明装置。   A planar illumination device comprising the light emitting element driving device according to claim 1. 請求項1から11までのいずれか1項に記載の発光素子駆動装置を備えたことを特徴とする表示装置。   A display device comprising the light emitting element driving device according to claim 1.
JP2009196030A 2009-06-10 2009-08-26 LIGHT EMITTING ELEMENT DRIVE DEVICE AND SHEET LIGHTING DEVICE OR DISPLAY DEVICE EQUIPPED WITH THE SAME Expired - Fee Related JP5203320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009196030A JP5203320B2 (en) 2009-06-10 2009-08-26 LIGHT EMITTING ELEMENT DRIVE DEVICE AND SHEET LIGHTING DEVICE OR DISPLAY DEVICE EQUIPPED WITH THE SAME

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009139108 2009-06-10
JP2009139108 2009-06-10
JP2009196030A JP5203320B2 (en) 2009-06-10 2009-08-26 LIGHT EMITTING ELEMENT DRIVE DEVICE AND SHEET LIGHTING DEVICE OR DISPLAY DEVICE EQUIPPED WITH THE SAME

Publications (2)

Publication Number Publication Date
JP2011018868A true JP2011018868A (en) 2011-01-27
JP5203320B2 JP5203320B2 (en) 2013-06-05

Family

ID=43596416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009196030A Expired - Fee Related JP5203320B2 (en) 2009-06-10 2009-08-26 LIGHT EMITTING ELEMENT DRIVE DEVICE AND SHEET LIGHTING DEVICE OR DISPLAY DEVICE EQUIPPED WITH THE SAME

Country Status (1)

Country Link
JP (1) JP5203320B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243679A (en) * 2010-05-17 2011-12-01 New Japan Radio Co Ltd Light emitting element drive circuit
KR101206342B1 (en) 2011-03-25 2012-11-29 (주)칩앤라이트 Driving Apparatus for Light Emitting Diode
JP2013258070A (en) * 2012-06-13 2013-12-26 New Japan Radio Co Ltd Load drive circuit
JP2019514205A (en) * 2016-07-06 2019-05-30 レイセオン カンパニー Apparatus and method for driving a laser diode array with high power pulsed current with low side linear drive with protection of the laser diode array and monitoring and adjustment of power efficiency
CN112235914A (en) * 2020-10-16 2021-01-15 中国直升机设计研究所 Display control circuit with lamp for cabin switch plate
KR102291817B1 (en) * 2020-10-13 2021-08-24 (주)선일일렉콤 Led driving circuit for lighting

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108519A (en) * 2004-10-08 2006-04-20 Shindengen Electric Mfg Co Ltd Led lighting drive circuit
JP2006210435A (en) * 2005-01-25 2006-08-10 Rohm Co Ltd Power supply device, light emitting device and display device
JP2006320158A (en) * 2005-05-16 2006-11-24 Rohm Co Ltd Constant current driving circuit, electronic device using the same, and method for driving light emitting diode
JP2007220855A (en) * 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd Led lighting circuit
JP2007324493A (en) * 2006-06-03 2007-12-13 Nichia Chem Ind Ltd Light-emitting device, light-emitting element drive circuit, and driving method of light-emitting element
JP2008130513A (en) * 2006-11-24 2008-06-05 Matsushita Electric Works Ltd Led lighting circuit and illumination fixture using it
JP2008305978A (en) * 2007-06-07 2008-12-18 New Japan Radio Co Ltd Step-up circuit
JP2009021314A (en) * 2007-07-11 2009-01-29 New Japan Radio Co Ltd Driving device of light emitting element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108519A (en) * 2004-10-08 2006-04-20 Shindengen Electric Mfg Co Ltd Led lighting drive circuit
JP2006210435A (en) * 2005-01-25 2006-08-10 Rohm Co Ltd Power supply device, light emitting device and display device
JP2006320158A (en) * 2005-05-16 2006-11-24 Rohm Co Ltd Constant current driving circuit, electronic device using the same, and method for driving light emitting diode
JP2007220855A (en) * 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd Led lighting circuit
JP2007324493A (en) * 2006-06-03 2007-12-13 Nichia Chem Ind Ltd Light-emitting device, light-emitting element drive circuit, and driving method of light-emitting element
JP2008130513A (en) * 2006-11-24 2008-06-05 Matsushita Electric Works Ltd Led lighting circuit and illumination fixture using it
JP2008305978A (en) * 2007-06-07 2008-12-18 New Japan Radio Co Ltd Step-up circuit
JP2009021314A (en) * 2007-07-11 2009-01-29 New Japan Radio Co Ltd Driving device of light emitting element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243679A (en) * 2010-05-17 2011-12-01 New Japan Radio Co Ltd Light emitting element drive circuit
KR101206342B1 (en) 2011-03-25 2012-11-29 (주)칩앤라이트 Driving Apparatus for Light Emitting Diode
JP2013258070A (en) * 2012-06-13 2013-12-26 New Japan Radio Co Ltd Load drive circuit
JP2019514205A (en) * 2016-07-06 2019-05-30 レイセオン カンパニー Apparatus and method for driving a laser diode array with high power pulsed current with low side linear drive with protection of the laser diode array and monitoring and adjustment of power efficiency
KR102291817B1 (en) * 2020-10-13 2021-08-24 (주)선일일렉콤 Led driving circuit for lighting
CN112235914A (en) * 2020-10-16 2021-01-15 中国直升机设计研究所 Display control circuit with lamp for cabin switch plate
CN112235914B (en) * 2020-10-16 2022-06-21 中国直升机设计研究所 Display control circuit with lamp for cabin switch plate

Also Published As

Publication number Publication date
JP5203320B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
TWI419609B (en) Led device with simultaneous open and short detection function and method thereof
JP5346592B2 (en) Light emitting device and light emitting device driving method
JP5203320B2 (en) LIGHT EMITTING ELEMENT DRIVE DEVICE AND SHEET LIGHTING DEVICE OR DISPLAY DEVICE EQUIPPED WITH THE SAME
US8035310B2 (en) Circuit for driving light source
US8378586B2 (en) Distributed architecture voltage controlled backlight driver
US10152926B2 (en) Driving circuit for light emitting element, light emitting device using same, and display apparatus
JP5086028B2 (en) LED lighting control device
JP2006325396A (en) Dc-dc converter having overcurrent/overvoltage protection function and led drive circuit including same
JP2008258428A (en) Driving circuit of white led for illumination, illuminator with the same, and electronic device
US20110043138A1 (en) Light Emitting Device Capable of Dynamically Regulating Output Voltage and Related Control Method
US8227994B2 (en) Vehicular lamp
JP2011108799A (en) Light emitting device, and lighting system and display device equipped with light emitting device
KR20110057359A (en) Apparatus for providing constant current for led device and method thereof
JP2011199220A (en) Light emitting element driving device
JP2009016459A (en) Driving device and illuminating device
KR102099828B1 (en) Light emitting diode lamp
JP5666173B2 (en) LIGHT EMITTING DIODE DRIVING CIRCUIT, DRIVE METHOD, LIGHT EMITTING DEVICE USING THE SAME, ELECTRONIC DEVICE, AND LIGHTING DEVICE
KR101127040B1 (en) Led lighting device to pwm driving of microcontroller
US20110128304A1 (en) Light emitting element circuit and liquid crystal display device
KR20130063863A (en) Detecting ciurcuit for open of led array and led driver apparatus having the same in
TWI631546B (en) Driving module and driving method for organic light emitting element
TWI462638B (en) Control circuit and method thereof for a driving current
KR20110049095A (en) Backlight unit
JP2011113684A (en) Light emitting device, and lighting system and display device with the same
JP5693025B2 (en) LED device and lighting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees